Department of Statistics
University of Wisconsin, Madison
PhD Qualifying Exam Part II
January 21, 2010
1:00-4:00pm, Room 133 SMI

- There are a total of FOUR (4) problems in this exam. Please do a total of TWO (2) problems.
- Each problem must be done in a separate exam book.
- Please turn in TWO (2) exam books.
- Please write your code name and NOT your real name on each exam book.

4. Suppose $(Z_1, T_1), \dots, (Z_n, T_n)$ are i.i.d. as (Z, T), where T > 0 is a survival time and $Z \in \mathbb{R}$ with $0 < E[Z^2] < \infty$ and P(Z = 0) = 0 is a predictor random variable. Let $H(z, t; \beta)$, $\beta \in \mathbb{R}$, denote the distribution of (Z, T) and assume that the marginal distribution of Z does not involve β . Consider the estimating equation

$$\frac{1}{n}\sum_{i=1}^{n}\psi_{0}(z_{i},t_{i};\beta)=0,$$

where $\psi_0(z,t;\beta) = \frac{\dot{r}(z;\beta)}{\dot{r}(z;\beta)} - \dot{r}(z;\beta)t$, where $r(\cdot;\beta) > 0$ is a known 1-1 function of β for almost all z with derivative $\dot{r}(z;\beta) = \partial r(z;\beta)/\partial \beta$.

Suppose H is such that T given Z = z has the Weibull distribution with c.d.f.

$$1 - \exp\{-r(z; \beta_0)t^{\alpha}\} \quad \alpha > 0.$$

Hint: You may use the fact that if W has the Weibull distribution with c.d.f. $1 - \exp(-w^{\alpha}/\theta)$, then $E[W] = \theta^{1/\alpha}c_0(\alpha)$ and $\operatorname{var}(W) = \theta^{2/\alpha}c(\alpha)$, where $c_0(\alpha) = \Gamma(\alpha^{-1} + 1)$ and $c(\alpha) = \Gamma(2\alpha^{-1} + 1) - [\Gamma(\alpha^{-1} + 1)]^2$.

- (a) For what values of α , does $E_H[\psi_0(Z,T;b)] = 0$ have the solution $b = \beta_0$? Show your work.
- (b) Let $r(z; \beta) = \exp(-\beta z)$ and let α be the answer(s) to part (a). Is the solution $b = \beta_0$ in part (a) unique? Justify your answer.
- (c) Let $D(b) = \frac{1}{n} \sum_{i=1}^{n} \psi_0(Z_i, T_i; b)$. Suppose $r(z, \beta) = \exp(-\beta z)$. Show that D(b) = 0 has a unique solution with probability one.
- (d) Let β_1 be the solution to $E_H[\psi_0(Z,T;b)] = 0$ where H is the distribution for which $(T \mid z)$ has the Weibull distribution given above. Let $r(z,\beta) = \exp(-\beta z)$ and let $\widehat{\beta}$ be the solution to D(b) = 0 as detailed in (c). Derive the asymptotic distribution of $\sqrt{n}(\widehat{\beta} \beta_1)$ assuming that (Z,T) has the distribution H. Simplify your answer as much as possible using the given distributional assumptions.
- (e) Suppose P(Z=1) = P(Z=-1) = 1/2. Give the asymptotic distribution in (d) for this case. What is the value of the variance in the asymptotic distribution of $\sqrt{n}(\widehat{\beta} \beta_1)$ when $\alpha = 1$?

- 1. Let X be a positive random variable with finite E(X), t be a positive number, $Y_t = \min\{X,t\}$, and $Z_t = \max\{X,t\}$. Assume that $P(X \leq t) > 0$ and $P(X \geq t) > 0$.
 - (a) Show that $E(X|Y_t) = X$ a.s. if and only if X is a constant on the event $\{X \ge t\}$.
 - (b) Find expressions for $E(X|Y_t)$ and $E(X|Z_t)$, and show that they are indeed the conditional expectations.
 - (c) Show that $E(X|Y_t) = Y_t$ a.s. if and only if P(X > t) = 0.
 - (d) Assume that the distribution function of X is continuous and strictly increasing over $(0, \infty)$. Show that both $P(E(X|Y_t) < E(X|Z_t))$ and $P(E(X|Y_t) > E(X|Z_t))$ are positive and the sum of them is one.

- 2. A population consists of X_n individuals at times $n=0,1,2,\cdots$. Between time n and time n+1 each of these X_n individuals dies with probability $q\in(0,1)$ independently of others, and the population at time n+1 is equal to the survivors from the X_n individuals plus an independent Poisson random number with mean λ . Let X_0 be Poisson with mean λ_0 .
 - (a) Find the distribution of X_n
 - (b) Derive the limiting distribution of X_n as $n \to \infty$.
 - (c) For $n, k \ge 1$, compute $E[X_{n+k}|X_n]$.
 - (d) Show that as $n \to \infty$, $\sum_{k=1}^{n} X_k/n$ converges in probability to some constant c and identify c.
 - (e) Can you find constants a and b such that $\sum_{k=1}^{n} (X_k a) / \sqrt{nb}$ has an asymptotic standard normal distribution?

3. Table 1 shows the yields from an experiment involving three two-level factors A, B and C in a balanced incomplete block design. Identify the effects confounded with block effects in each replicate and complete the ANOVA table below.

Table 1: Results from a balanced incomplete block experiment

e I: Re	Surts			111	Dile	A	В	C	Yield
Blk	A	В	C	Yield	Blk			12	
	n Haq			plica		11			
und 1	Rep		-1	10	- 3	-1	-1	-1	
_	1	1	-1	17	3	-1	1	-1	9
1	_	7	1	9	3	1	-1	1	16
1,	-1	-1		.10	3	1	1	1	16
1	1	1	1		4	1	-1	-1	8
2	1	-1	-1	17		1	1	-1	9
2	-1	1	-1	12	4	1		1	6
2	1	-1	1.	19	4	-1	-1		2
2	-1	1	1	11	4	-1	1	1	
Replicate 3					Replicate 4				
.8309		-1	-1	6	7	1	-1	-1	17
5	-1			15		-1	1	-1	13
5	1	-1	-1	8	100	-1	-1	1	9
5	-1	1	1			1	1	1	16
5	1	1	1		•	-1	-1	-1	9
6	-1	1	-1		8		70 10		
6	1	1	-1	1		ison.		1335	1 17
6	-1	1	1		7 8	O MILE	1 -		4.4
					4 8	-	1	1	1 14
6	1	-1				11411	2 1357		

Cource	Df	Sum of squares	Mean square	F
Source	7880	266.875		
Blocks		180.500		
A		6.125		
В		8.000		
C		0.000	dois of A. H.	
AB				
AC				
BC			*	
ABC				
Residuals			<u> </u>	
Total (corr.)		·	

- 4. A scale has two pans. The measurements given by the scale is the difference between the weights in pan # 1 and pan # 2 plus a random error ϵ . Suppose that $E[\epsilon] = 0$ and $Var(\epsilon) = \sigma^2$, and that in repeated uses of the scale, observations are independent. Suppose that three objects, #1, #2, and #3, have weights β_1 , β_2 , and β_3 . Measurements are taken as follows:
 - (1) Object #1 and object #3 are put on pan #1, nothing on pan #2.
 - (2) Object #2 and object #3 are put on pan #1, nothing on pan #2.
 - (3) Object #2 and object #3 are put on pan #1, object #1 on pan #2.
 - (4) Object # 3 is put on pan # 1, and object #1 and object # 2 on pan # 2.
 - (5) Object #1 and object #3 are put on pan #1, object #2 on pan #2.
 - (6) Object #1 and object #2 are put on pan #1, nothing on pan #2.
 - (7) Object #2 is put on pan # 1 and nothing on pan # 2.
 - (8) Object #1 is put on pan # 1 and nothing on pan # 2.

Answer the following questions based on the above measurements.

- (a) Let $\mathbf{Y} = (Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7, Y_8)'$ be the vector of observations. Formulate this as a linear model, and find $\mathbf{c_1}$, $\mathbf{c_2}$, and $\mathbf{c_3}$ such that $\hat{\beta}_1 = \mathbf{c_1}'\mathbf{Y}$, $\hat{\beta}_2 = \mathbf{c_2}'\mathbf{Y}$, and $\hat{\beta}_3 = \mathbf{c_3}'\mathbf{Y}$.
- (b) Discuss the bias and variance properties of the estimators you found in part (a) by first proving and then using the Gauss-Markov theorem.
- (c) Find the matrix A such that $s^2 = \mathbf{Y}'\mathbf{AY}$, where s^2 is an unbiased estimator of σ^2 .
- (d) For the observation Y = (9, 8, 5, 1, 7, 6, 3, 4)', find s^2 , and estimate the covariance matrix of $\hat{\beta}$.
- (e) Using the measurements from part (d), test whether the weights of the three objects are equal to each other at a significance level of 0.05.
- (f) Show that eight such weighings can be made in such a way that the least squares estimators of β_1 , β_2 , and β_3 have smaller variances than the experiment above.