
Department of Statistics

University of Wisconsin, Madison

PhD Qualifying Exam Part II

August 29, 2013

1:00-4:00pm, Room 133 SMI

• There are a total of FOUR (4) problems in this exam. Please do a total of TWO (2)
problems.

• Each problem must be done in a separate exam book.

• Please turn in TWO (2) exam books.

• Please write your code name and NOT your real name on each exam book.
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1. Let X and Y be integrable random variables and F and G be two σ-fields on a probability
space with probability P . For a random variable Z, define σ(Z) be the σ-field generated
by Z. For parts (a), (b), and (c), suppose that

P (B|F) = P (B|G) a.s. for any B ∈ σ(X). (1)

(a) Show that
E[E(Y |X)|F ] = E[E(Y |X)|G] a.s.

(b) Under condition (1) with F = σ(X), show that

σ(X) ⊂ G

and
E(X|F) = E(X|G) a.s.

(c) Under condition (1) with F ⊂ G, show that, for any A ∈ G and B ∈ σ(X),

P (A ∩B|F) = P (A|F)P (B|F) a.s.

(d) For any event B, show that, for any A ∈ σ(Y ),∫
A

P (B|Y )dP = P (A ∩B).

Without further assumptions, can we conclude that P (B|Y ) = IB a.s.? If not, then
determine the conditions needed so that this is true. Prove your claims.
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2. Fix s > 0. Let {Zn}n≥1 be a collection of independent random variables with

P (Zn = −1) = P (Zn = 1) =
n−s

2
, and P (Zn = 0) = 1− n−s.

Set Y0 = 0 and for n ≥ 1 define

Yn = nsYn−1|Zn|+ ZnI (Yn−1 = 0) .

where I(A) denotes the indicator function for the event A.

(a) Prove that {Yn} satisfies, for every n,

i. E (|Yn|) <∞, and

ii. E
(
Yn+1

∣∣Y1, Y2, ..., Yn) = Yn.

(b) Determine the values of s > 0, if any, for which Yn
P−→ 0. Prove both when conver-

gence holds and when it does not.

(c) Determine the values of s > 0, if any, for which Yn
a.s.−−→ 0. Prove both when conver-

gence holds and when it does not.

(d) Determine the values of s > 0, if any, for which Yn
L1−→ 0. Prove both when conver-

gence holds and when it does not.

(e) Prove that for any x > 0,

P

(
max
1≤k≤n

Yk ≥ x

)
≤ 1

2x

(
1 +

n−1∑
k=1

(k + 1)−s(1− k−s)

)
.
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3. Suppose we have n pairs of observations (x1, y1), (x2, y2), . . . , (xn, yn) from the model
Yi ∼ N(βxi, σ

2) where we treat the x1, x2, . . . , xn values as fixed.

(a) Find the maximum likelihood estimate of β and of σ2.

(b) State the distribution of the maximum likelihood estimate β̂.

(c) Suppose σ2 is known to be equal to 5. We seek a test of the null hypothesis
H0 : β = 0 versus the alternative HA : β = 2. Which of the following designs will
result in more power if in fact HA is true? Explain your choice.

(i) x1 = x2 = · · · = x10 = 0; x11 = x12 = · · · = x20 = 10; or

(ii) x1 = x2 = · · · = x5 = 0; x6 = x7 = · · · = x15 = 12?

(d) Suppose instead that the true model is Yi ∼ N(γ0 + γ1xi, σ
2). Repeat part (c) for

H0 : γ1 = 0 versus the alternative HA : γ1 = 2.

(e) Suppose that it is uncertain whether the true model is Yi ∼ N(βxi, σ
2) or Yi ∼

N(γ0 + γ1xi, σ
2). Suppose σ2 is known to be equal to 5. We seek a test of the null

hypothesis that the slope, i.e., the coefficient of xi, is zero, versus the alternative
that the slope is 2. Which of the two designs, (i) or (ii), in part (c) would you
recommend? Explain your choice.

(f) We can assess the model Yi ∼ N(γ0 + γ1xi, σ
2) by using the quantity

R2
c =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

,

where ŷi is the fitted value for i-th observation.

Consider the data set:
x 0 1 2
y 1 2 1

For this data set R2
c = 0.

Suppose instead we fit the model Yi ∼ N(βxi, σ
2). We could assess this model by

using the quantity

R2
nc =

∑
ŷ2i∑
y2i
,

where ŷi is the fitted value from this model. Some authors argue that this quantity
is meaningless as a measure of the success of the regression. By referring to the
data set above, explain why.
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4. Consider the linear regression model,

yi = xi1β1 + · · ·+ xiKβK + εi, i = 1, · · · , n,

where ε1, · · · , εn are independent and identically distributed N (0, σ2) random variables.
Assume that σ2 is known and, without loss of generality, that σ2 = 1. Also, assume that
the true K-dimensional vector β is of the form (β1, · · · , βk0 , 0, · · · , 0)′ for some k0 ≤ K
and βj > 0, ∀j ≤ k0. Consider model selection criteria of the form

C(k, λ) ≡ RSS(k) + λk, k = 0, · · · , K,

where RSS(k) is the residual sum of squares of the least squares fit with the first k
covariates only, and λ > 0 represents penalty for over-fitting. The model dimension is
chosen by minimizing this criterion over k = 0, · · · , K.

(a) Fit a linear model with the first k covariates to the data and call the fit Ŷk. Let
Pk = Xk(X

′
kXk)

−1X′k, where Xk is the design matrix of a linear model with the

first k covariates. Show that for k = k0, · · · , K, the residual random vector Y−Ŷk

is (I − Pk)ε for the fitted model, where Y = (y1, · · · , yn)′, Ŷk = (ŷ1, · · · , ŷn)′,
ε = (ε1, · · · , εn)′, and I is n dimensional identity matrix.

(b) Find an expression for C(k, λ) that only involves ε, Pk, λ, and k.

(c) Consider the sequence of random variables, Zi ≡ ε′(Pi −Pi−1)ε , for i = 1, · · · , K.
By convention, define P0 = 0, the zero matrix. Derive the joint distribution of
Z1, · · · , ZK .

(d) Define δk(λ) = ε′Pkε − λk. Using the sequence of random variables Zi derived in
(c), show that

δk(λ) =
k∑
i=1

(Zi − λ).

(e) The results in (c) and (d) show that δk(λ) is a sequence of partial sums. Define
k̂λ as the minimizer of C(k, λ) over {k0 ≤ k ≤ K}. How is k̂λ related to the path
defined by the sequence {δk(λ) : k = k0, · · · , K}?

(f) How would you simulate the distribution of k̂λ to study statistical properties of the
model size selected by the criterion C(k, λ)?
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