Department of Statistics University of Wisconsin, Madison PhD Qualifying Exam Part I August 27, 2013 12:30-4:30pm, Room 133 SMI

- There are a total of FOUR (4) problems in this exam. Please do a total of THREE (3) problems.
- Each problem must be done in a separate exam book.
- Please turn in THREE (3) exam books.
- Please write your code name and **NOT** your real name on each exam book.

1. Suppose $\mathbf{X} = (X_1, \ldots, X_K)'$ follows a multinomial distribution $\operatorname{Multi}(n, \pi)$, where $\pi = (\pi_1, \ldots, \pi_K)'$ with $\pi_k > 0$, $\forall k$. Let $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_q)'$ be a parameter vector with q < K-1. Let $h : \mathcal{R}^q \to \mathcal{R}^K$ be a known re-parameterization function such that $\boldsymbol{\pi} = h(\boldsymbol{\theta})$. Assume the parameter space of $\boldsymbol{\theta}$ is an open set. Let $\widehat{\boldsymbol{\theta}}$ be the maximum likelihood estimator of $\boldsymbol{\theta}$. Assume the re-parameterization function h is chosen so that $\widehat{\boldsymbol{\theta}}$ exists and is unique.

For the following three questions, please show the details of derivation and calculation.

- (a) Write down the likelihood function of θ. Derive the limiting distribution of √n(θ − θ), as n → ∞, while K is fixed. Express the limiting covariance matrix in terms of θ and h. Additionally, carefully state any extra conditions used to obtain the result.
- (b) To estimate $\boldsymbol{\pi}$, we have two estimators: $\widehat{\boldsymbol{\pi}}_1 = h(\widehat{\boldsymbol{\theta}})$ and $\widehat{\boldsymbol{\pi}}_2 = \boldsymbol{X}/n$. Let $g: \mathcal{R}^K \to \mathcal{R}$ be any continuously differentiable function. Show that $\sqrt{n} \left[g(\widehat{\boldsymbol{\pi}}_1) g(\boldsymbol{\pi}) \right] \to N(0, \sigma_1^2)$ and $\sqrt{n} \left[g(\widehat{\boldsymbol{\pi}}_2) g(\boldsymbol{\pi}) \right] \to N(0, \sigma_2^2)$, as $n \to \infty$, while K is fixed. Express σ_1^2 and σ_2^2 in terms of $\boldsymbol{\theta}$, h and g.
- (c) Show that $\sigma_2^2 > \sigma_1^2$.

2. Suppose that X_1, \dots, X_n are independent random variables, and X_i follows a binomial distribution with m trials and success probability p_i , where

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 z_i, \qquad i = 1, \cdots, n,$$

 β_0 and β_1 are parameters, z_i is a known covariate, and $z_1 < \cdots < z_n$.

- (a) Find the likelihood function of (β_0, β_1) . Prove that if $0 < X_1 + \cdots + X_n < mn$, the MLE, $(\widehat{\beta}_0, \widehat{\beta}_1)$, of (β_0, β_1) exists and is unique.
- (b) State some appropriate conditions and then derive a non-degenerate limiting distribution of $\sqrt{n}[(\hat{\beta}_0, \hat{\beta}_1) - (\beta_0, \beta_1)]$ under the conditions, as $n \to \infty$, while *m* is fixed.
- (c) A prior distribution Π of (β_0, β_1) has a joint cumulative distribution function given by

$$\Pi(\beta_0 \le u, \beta_1 \le v) = \frac{e^u}{1 + e^u} \, 1(v \ge 0), \qquad -\infty < u, v < \infty,$$

where $1(\cdot)$ is an indicator function. Derive the posterior distribution of (β_0, β_1) . Find the Bayesian estimator of (p_1, \dots, p_n) under the loss function

$$L((p_1, \cdots, p_n), (a_1, \cdots, a_n)) = \sum_{j=1}^n (p_j - a_j)^2 / [p_j(1 - p_j)]$$

(d) Assume that $\beta_1 = 0$. A prior distribution of β_0 has a cumulative distribution function

$$G(u) = \frac{e^u}{1 + e^u}, \qquad -\infty < u < \infty.$$

Find the Bayesian estimator of p_1 under the loss function $L(p_1, a) = (p_1-a)^2/[p_1(1-p_1)]$. Is the Bayesian estimator a minimax estimator of p_1 under the same loss function? Prove or disprove your answer.

- 3. Consider random variables X_1, X_2, \ldots from a common distribution with density f(x) and cumulative distribution function F(x). The distribution satisfies $P(0 \le X_i \le 1) = 1$. In addition, we have random variables $U_1, U_2, \ldots \sim \text{Uniform}(0, 1)$. All random variables are mutually independent.
 - (a) In terms of these random variables, define

$$N = \min\{n \ge 1 : U_n \le 1 - X_n\}$$

and determine the probability mass function of N.

(b) Show that the cumulative distribution function G(y) of $Y = X_N$ equals

$$G(y) = \frac{F(y) - m(y)}{1 - m(1)}$$

where $m(y) = \int_{0}^{y} x f(x) \, dx$, for $y \in [0, 1]$.

- (c) Suppose we have independent and identically distributed copies Y_1, Y_2, \ldots, Y_m of Y from above, and we seek to estimate the distribution corresponding to f and F. Construct estimators using:
 - i. parametric model: $f(x) = \frac{\Gamma(\theta_1 + \theta_2)}{\Gamma(\theta_1)\Gamma(\theta_2)} x^{\theta_1 1} (1 x)^{\theta_2 1}$ for positive parameters θ_1, θ_2 .
 - ii. nonparametric model entailing no finite-dimensional constraints.
- (d) Assume that instead of Y_1, Y_2, \ldots, Y_m of Y, we only observe realizations of copies N_1, N_2, \ldots, N_m of N. What properties of the distribution can be estimated based on N_1, N_2, \ldots, N_m ?

4. Suppose that we have observations $\{X_1, \ldots, X_n\}$ and $\{Y_1, \ldots, Y_n\}$, where $\{X_1, \ldots, X_n\}$ come from Class A, and $\{Y_1, \ldots, Y_n\}$ come from Class B.

The following notation and assumptions will be used in parts (a)–(c). Let c_1 and c_2 be finite constants. Assume that $\{u_j\}_{j=1}^n \stackrel{\text{i.i.d.}}{\sim} N(0,1), \{v_j\}_{j=1}^n \stackrel{\text{i.i.d.}}{\sim} N(0,1), e \sim N(0,\sigma_e^2),$ where $\sigma_e^2 \in (0,\infty)$. Assume that $\{u_j\}_{j=1}^n, \{v_j\}_{j=1}^n$ and e are mutually independent.

For both parts (a) and (b), use the following t-statistic:

$$T = \frac{Y - X}{\sqrt{\frac{2}{n}S}}, \quad \text{for } n \ge 2,$$

where \overline{Y} and \overline{X} are sample means and $S^2 = \frac{\sum_{j=1}^{n} (X_j - \overline{X})^2 + \sum_{j=1}^{n} (Y_j - \overline{Y})^2}{2n-2}$ is the pooled estimator of variance.

(a) Assume that for $j = 1, \ldots, n$,

$$X_j = c_1 + u_j + \frac{e}{2}, \qquad Y_j = c_2 + v_j + \frac{e}{2}.$$
 (1)

We wish to test H_0 : $c_1 = c_2$, using the above t-statistic T. Derive the null distribution of this test statistic.

(b) Assume that for $j = 1, \ldots, n$,

$$X_j = c_1 + u_j - \frac{e}{2}, \qquad Y_j = c_2 + v_j + \frac{e}{2}.$$
 (2)

We wish to test H_0 : $c_1 = c_2$, using the above t-statistic T. Derive the null distribution of this test statistic.

(c) Comment on the suitability of the t-statistic T for the testing problems in (a) and (b).