Dept Copy

Department of Statistics
University of Wisconsin-Madison
PhD Qualifying Exam Part I
September 4, 2007
12:30–4:30pm, Room 133 SMI

- There are a total of FOUR (4) problems in this exam. Please do a total of THREE (3) problems.
- Each problem must be done in a separate exam book.
- Please turn in THREE (3) exam books.
- Please write your code name, NOT your real name, on each exam book.

- 1. Let X have probability density f_{θ} (with respect to some σ -finite measure), where $\theta \geq 0$ is an unknown parameter.
 - (a) Let $\theta_1 > 0$ be a fixed value, $L = f_{\theta_1}(X)/f_0(X)$, and G be the distribution function of L under $\theta = 0$. Define p = 1 G(L) (the so-called p-value). Show that $p \leq 1/L$.
 - (b) Assume in part (a) that G is continuous. Show directly that if $\theta = 0$, then p has a uniform distribution on (0,1).
 - (c) Assume that the family $\{f_{\theta}: \theta \geq 0\}$ has monotone likelihood ratio in a real-valued statistic Y. Let H be the distribution function of Y when $\theta = 0$ and p = 1 H(Y). Show that, if H is continuous, then the uniformly most powerful (UMP) test of size $\alpha \in (0,1)$ for testing

$$H_0: \theta = 0$$
 versus $H_1: \theta > 0$

rejects H_0 if and only if $p \leq \alpha$.

(d) Suppose that we drop the condition that H is continuous in part (c). Derive a possibly randomized UMP test of size α .

- 2. Throughout this problem, the pair (X,Y) has a joint density f(x,y) with respect to Lebesgue measure on R^2 and a joint distribution function F(x,y). Let F_1 and F_2 be the marginal distribution functions of X and Y, respectively, and let Φ denote the standard normal distribution function. In statistical finance, the transformations $X \to Z = \Phi^{-1}(F_1(X))$, $Y \to W = \Phi^{-1}(F_2(Y))$ are used.
 - (a) Show that the marginal distributions of Z and W are standard normal.
 - (b) Give an example of a F(.,.) where (Z,W) is not bivariate normal. Give an expression for the distribution function or density of (Z,W) for your example.
 - (c) The bivariate normal copula model is defined by the assumption that the joint distribution of (Z, W) is bivariate normal with zero mean, unit variance, and correlation coefficient ρ . That is,

$$F \in \mathcal{F} = \{F : (\Phi^{-1}(F_1(X)), \Phi^{-1}(F_2(Y))) \sim N(0, 0, 1, 1, \rho)\}.$$

Let $\{(X_i,Y_i), i=1,2,\ldots n\}$ be independent and identically distributed with distribution function F, and set $Z_i = \Phi^{-1}(F_1(X_i)), W_i = \Phi^{-1}(F_2(Y_i)),$ $i=1,2,\ldots,n$. If we (temporarily) assume that F_1 and F_2 are known, and if $F \in \mathcal{F}$, then $E(ZW) = \rho$ and a method of moments "estimate" of ρ is $\hat{\rho}_{\text{MOM}} = n^{-1} \sum_{i=1}^{n} Z_i W_i$. Find the asymptotic distribution of $\sqrt{n}(\hat{\rho}_{\text{MOM}} - \rho)$ when $F \in \mathcal{F}$. You may use the fact that $E(Z^4) = 3$.

(d) With the same notation and assumptions as in part (c), that is, we assume F_1 and F_2 known, find the asymptotic distribution of $\sqrt{n}(\hat{\rho}_{\texttt{MLE}} - \rho)$, where $\hat{\rho}_{\texttt{MLE}}$ is the maximum likelihood "estimate" of ρ . You may use the fact that for $F \in \mathcal{F}$, (Z, W) has density

$$\frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{-\frac{z^2 - 2\rho zw + w^2}{2(1-\rho^2)}\right\}.$$

- (e) i. Show that \mathcal{F} is invariant under coordinate-wise strictly increasing transformations. That is, if $(X,Y) \sim F \in \mathcal{F}$ and $U = h_1(X)$, $V = h_2(Y)$ with h_1 and h_2 strictly increasing, then the distribution G of (U,V) is in \mathcal{F} .
 - ii. Let \hat{F}_1 and \hat{F}_2 denote the empirical distributions of the X's and Y's respectively, and set $\tilde{F}_1 = n\hat{F}_1/(n+1)$, $\tilde{F}_2 = n\hat{F}_2/(n+1)$. Let $\hat{\rho}$ be the estimate of ρ obtained by replacing F_1 and F_2 by \tilde{F}_1 and \tilde{F}_2 in $\hat{\rho}_{\text{MOM}}$ as defined in part (c). Show that $\hat{\rho}$ is invariant under $X \to U$, $Y \to V$, where U and V are as defined in part (i) above.

3. Let $\{x_1, ..., x_m\}$ and $\{y_1, ..., y_n\}$ be two independent samples from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$, respectively. Denote $d = (x_1, ..., x_m, y_1, ..., y_n)$.

Denote \bar{y} to be the sample mean of the y_i 's, and \bar{x} to be the sample mean of the x_i 's, $s_1^2 = \sum_{i=1}^m (x_i - \bar{x})^2/m$, and $s_2^2 = \sum_{i=1}^n (y_i - \bar{y})^2/n$. Let Ψ_v be the cumulative distribution function of a t-distribution with v degrees of freedom. Consider the one-sided test problem $H_0: \mu_1 - \mu_2 \leq 0$ versus $H_1: \mu_1 - \mu_2 > 0$.

(a) Prove that under the non-informative prior $\pi(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2) \propto \sigma_1^{-2} \sigma_2^{-2}$, the posterior probability that $H_0: \mu_1 - \mu_2 \leq 0$ is true has the form:

$$p(d) \equiv E_B \left\{ \Psi_{m+n-2} \left((\bar{y} - \bar{x}) \sqrt{\frac{m+n-2}{B^{-1} s_1^2 + (1-B)^{-1} s_2^2}} \right) \right\},\,$$

where $B \sim beta((m-1)/2, (n-1)/2)$.

(b) Define

$$f(b) = \Psi_v \left(\frac{z}{\sqrt{b^{-1}t_1 + (1-b)^{-1}t_2}} \right), \text{ for } b \in (0,1),$$

where $z \leq 0$, $t_1 > 0$, $t_2 > 0$, and v > 0 are fixed constants. It is known that f(b) is a convex function of b and that f(b) is strictly convex if z < 0. Let Ψ_v^{-1} be the inverse function of Ψ_v and let Φ be the standard normal distribution function. Define

$$g(a) \equiv P\left\{\Psi_{m+n-2}\left(\frac{Z}{\sqrt{(m-1)^{-1}aC_{m-1}+(n-1)^{-1}(1-a)C_{n-1}}}\right) \leq r\right\}$$

$$= E_{C_{m-1},C_{n-1}}\left[\Phi\left\{\sqrt{\frac{aC_{m-1}}{m-1}+\frac{(1-a)C_{n-1}}{n-1}}\left(\Psi_{m+n-2}^{-1}(r)\right)\right\}\right]$$

where Z, C_{m-1} and C_{n-1} are independent random variables such that $Z \sim N(0,1)$, $C_{m-1} \sim \chi^2_{m-1}$, and $C_{n-1} \sim \chi^2_{n-1}$. Prove that g(a) is a convex function of a.

(c) Prove that the posterior probability p(d) in part (a) has the following repeated sampling distribution property with respect to the distribution of d:

$$P_d(p(d) \le r) \le \Psi_{\min\{m-1,n-1\}}(\Psi_{m+n-2}^{-1}(r)).$$

4. Let x_1, x_2, \ldots, x_n be n fixed real numbers such that $0 < \sum_{i=1}^n (x_i - \bar{x})^2 < \infty$ where $\bar{x} = n^{-1} \sum_{i=1}^n x_i$. We observed data $\{(x_1, y_1), \ldots, (x_n, y_n)\}$, where

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \tag{\dagger}$$

and the ε_i are independent random variables with $E(\varepsilon_i) = 0$ and $E(\varepsilon_i^2) = \sigma^2$, i = 1, 2, ..., n. Let $\hat{\beta}_0$ and $\hat{\beta}_1$ denote the least-squares estimates of β_0 and β_1 , respectively. Given a fixed number z, we wish to estimate $\mu = E(y)$ at z. Thus, $\mu = \beta_0 + \beta_1 z$. Let $\hat{\mu}$ denote the least-squares estimate of μ .

(a) Suppose that instead of fitting the true model (†), we fit the incorrect model

$$y_i = \eta + \varepsilon_i, \quad i = 1, 2, \dots, n$$

where η is a constant. Let $\hat{\mu}_1$ denote the least-squares estimate of η . Find a necessary and sufficient condition on $\beta_0, \beta_1, \sigma^2$, and x_1, \ldots, x_n for $E(\hat{\mu}_1 - \mu)^2 < E(\hat{\mu} - \mu)^2$.

(b) Next suppose that we fit the incorrect (no-intercept) model

$$y_i = \gamma x_i + \varepsilon_i, \quad i = 1, 2, \dots, n.$$

Let $\hat{\gamma}$ denote the least-squares estimate of γ and define $\hat{\mu}_2 = \hat{\gamma}z$. Find a necessary and sufficient condition for $E(\hat{\mu}_2 - \mu)^2 < E(\hat{\mu} - \mu)^2$.

Notes:

(i) All expectations are taken with x_1, \ldots, x_n and z fixed.

(ii) You may use the formulas: $\hat{\beta}_1 = s_x^{-1} \sum_i (x_i - \bar{x})(y_i - \bar{y}), \ \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$

$$Var(\hat{\beta}_{0}) = \sigma^{2}(n^{-1} + s_{x}^{-1}\bar{x}^{2})
Var(\hat{\beta}_{1}) = \sigma^{2}s_{x}^{-1}
Cov(\hat{\beta}_{0}, \hat{\beta}_{1}) = -\sigma^{2}\bar{x}s_{x}^{-1}$$

where $\bar{y} = n^{-1} \sum_{i} y_i$ and $s_x = \sum_{i} (x_i - \bar{x})^2$.