
ParaP

ynTM

Paradyn Paral le l Performance Tools

User’s Guide 5/5/98

Paradyn Project
Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685
paradyn@cs.wisc.edu

User’s Guide

Release 2.1
May 1998

1-2
-3
-5
-6
-7

2
-1
2-1
-3
-4

-6
6
8
-10
10
1
12
3

-1
-1
1
-1
-2
2
2
-3
-3
4
-1
-2
-2

.
1
-3
4
5

-1
-2

-1
-2

8-1
Page i

1 Overview..1-1
1.1 Release notes (version 2.1) ...
1.2 Supported hardware and software platforms ..1
1.3 Other documentation: Manuals ...1
1.4 Other documentation: Technical papers ..1
1.5 Contacting the Paradyn developers ...1

2 Running Paradyn..-1
2.1 Overview of major steps ...2
2.2 Setting up Paradyn and the Paradyn daemons ..
2.3 Preparing your application program ...2
2.4 Running Paradyn ...2
2.5 Running applications with Paradyn ..2

2.5.1 Defining a new process ...2-
2.5.2 Attaching to a process ...2-

2.6 Architectural issues ...2
2.6.1 Solaris ...2-
2.6.2 RS/6000 running IBM AIX version 4.1 ..2-1
2.6.3 PVM ..2-
2.6.4 WindowsNT ..2-1

3 Main Control window ..3
3.1 Main menubar ...3

3.1.1 File menu ..3-
3.1.2 Setup menu ..3
3.1.3 Phase menu ...3
3.1.4 Visi menu/button ...3-
3.1.5 Help menu ...3-

3.2 Status lines ..3
3.3 Buttons ..3

4 Tunable Constants..-1
4.1 Overview ...4
4.2 User Tunable Constants ..4
4.3 Developer Tunable Constants ...4

5 Selecting resources..5-1
5.1 Resources (The “Where” Axis) ..5-
5.2 The Where Axis display ..5
5.3 How to select foci using the Where Axis ..5-
5.4 The Where Axis GUI ..5-

6 Selecting metrics..6-1
6.1 How to select metrics ..6
6.2 Metric Descriptions ...6

7 Controlling visis...7-1
7.1 Starting ..7
7.2 Stopping ..7

8 Phases...8-1
8.1 Starting a new phase ...
User’s Guide May 5, 1998 Release 2.1

8.2 Visualizations and Phases ...8-1
8.3 The Performance Consultant and phases ..8-1

9-1
-1

-3
-4
4
-5
6
-7
9-13
10
0-1
-2
-2

0-3
0-5
-6
-6
0-7
-7
-8

0-10
11-1
1-1
1-1
1-2

1-3
1-4
1-5
-6

1-6
1-7
-8
-9

1-9
1-11
1-11
1-12
-14
1-15
-15
-17

1-17
1-18
-19
Page ii

9 Performance Consultant...
9.1 The W3 search model ...9

9.1.1 The Why Axis ...9-2
9.1.2 The search strategy ...9

9.2 Running the Performance Consultant ...9
9.2.1 The Performance Consultant window ...9-
9.2.2 Starting and stopping a search ..9
9.2.3 The Search History Graph display ..9-

9.3 Interpreting the results ..9
9.4 Customizing the search parameters ..

10 Standard visi modules..-1
10.1 Time Histogram visi ..1

10.1.1 Actions menu ..10
10.1.2 View menu ..10
10.1.3 Panning and zooming ..1

10.2 Barchart visi ..1
10.2.1 Changing metrics and foci being viewed ..10
10.2.2 Viewing data ...10

10.3 Table visi ...1
10.3.1 Actions menu ..10
10.3.2 View menu ..10

10.4 3D Terrain visi ..1
11 Paradyn Configuration Language ..

11.1 Notation ...1
11.2 Lexical conventions ..1
11.3 Language structure ..1
11.4 Daemon definition ...1
11.5 Process definition ..1
11.6 Tunable constant definition ...1
11.7 Visi definition ..11
11.8 Exclude definition ...1
11.9 Metric Description Language ...1

11.9.1 Metric definition ..11
11.9.2 Variables ..11
11.9.3 Types ...1
11.9.4 Predefined variables ..1
11.9.5 Resource lists ..1
11.9.6 Constraints ..1
11.9.7 Metric definitions ..11
11.9.8 Metric statements ..1
11.9.9 Metric expressions ..11
11.9.10 Function calls ..11
11.9.11 Instrumentation requests ...1
11.9.12 Instrumentation code ...1
11.9.13 Interaction of constraints and metrics ...11
User’s Guide May 5, 1998 Release 2.1

11.9.14 A complete example ...11-19

. 1-4

. 1-4
1-4

... 2-2

.. 2-2
-4
.. 2-5
. 2-6
.. 2-7
... 2-9
.. 2-9
-10

-11
-12
-12
-13

. 3-1

.. 4-1
. 4-2
.. 4-3
. 4-4

. 5-1

. 5-3
.. 5-4
5-5

. 6-1

. 6-2
.. 6-3
. 6-7

. 7-1
. 7-1
Page -iii

1 Overview
Figure 1: Platforms on which Paradyn (User Interface and Visualizers) can run
Figure 2: Platforms on which Paradyn can monitor application programs
Figure 3: Summary of Paradyn capabilities by platform (v2.0 vs. 2.1)

2 Running Paradyn
Figure 4: Files needed to run Paradyn ...
Figure 5: Environment variables used when running Paradyn ...
Figure 6: Modifying application Makefile to link for Paradyn (generic example). 2
Figure 7: Starting Paradyn ..
Figure 8: Defining a new application process ...
Figure 9: Paradyn ready to run the application ..
Figure 10: Specifying a process to attach to. ...
Figure 11: Attach completed ..
Figure 12: Sample Makefile for x86-Solaris. ... 2
Figure 13: Example AIX link command line for sequential C programs. 2
Figure 14: Example AIX link command for POE MPI programs using the IP adapter. 2
Figure 15: Example AIX link command for POE MPI programs using the US adapter. .. 2
Figure 16: Sample Makefile for WindowsNT. ... 2

3 Main Control window
Figure 17: Paradyn Main Control window ..

4 Tunable Constants
Figure 18: The Tunable Constants Window ...
Figure 19: Tunable Constants Descriptions Window ..
Figure 20: User-level Tunable Constants ...
Figure 21: Developer-level Tunable Constants. Use at your own risk!

5 Selecting resources
Figure 22: Where Axis window. ...
Figure 23: Showing all resources in the Where Axis display ...
Figure 24: A single focus selected ..
Figure 25: Multiple foci selection ..

6 Selecting metrics
Figure 26: Metrics dialog box ...
Figure 27: Metrics dialog box with several metrics selected ..
Figure 28: Metrics defined in Paradyn ...
Figure 29: Developer Mode Metrics defined in Paradyn ..

7 Controlling visis
Figure 30: Paradyn Main Control window ..
Figure 31: Start A Visualization menu ..
User’s Guide May 5, 1998 Release 2.1

... 8-1

.. 8-2
. 8-2

. 9-2
. 9-4
... 9-6
.. 9-8
... 9-9
9-10
. 9-11
9-12

0-1
10-2
10-3
0-4
0-5
10-6
0-7
10-8
0-9
-10

1-2
1-11
1-14
Page -iv

8 Phases
Figure 32: Phase Table Display ...
Figure 33: Time Histogram: Global Phase ...
Figure 34: Time Histogram: Local Phase (3) ..

9 Performance Consultant
Figure 35: The Why Axis ..
Figure 36: A sample Performance Consultant window ...
Figure 37: The Performance Consultant’s search begins ..
Figure 38: The Performance Consultant refines bottleneck to CPUbound
Figure 39: Search History Graph tunable constants for saving screen space
Figure 40: The Performance Consultant refines bottleneck beyond CPUbound
Figure 41: The second set of Search History Graph refinements
Figure 42: Final Search History Graph bottleneck refinement ..

10 Standard visi modules
Figure 43: Time Histogram with Actions and View menus expanded 1
Figure 44: Time Histogram with curve selected ..
Figure 45: Time Histogram after smooth and hide options applied
Figure 46: Zoomed Time Histogram: color and black-and-white modes 1
Figure 47: Barchart visualization window ... 1
Figure 48: Barchart showing total values ...
Figure 49: Table visualization window .. 1
Figure 50: Table visualization showing short focus names ..
Figure 51: Table visualization with values shown to two significant digits 1
Figure 52: 3D Terrain visualization ... 10

11 Paradyn Configuration Language
Figure 53: List of MDL keywords .. 1
Figure 54: Predefined variables .. 1
Figure 55: Metric labels. ... 1
User’s Guide May 5, 1998 Release 2.1

en ran
 and

 a spe-

perfor-

 has a
ch of

PARC

 combi-

ms to

uage
 These

 pro-

ata to
played
thering
 and
.

ta vol-
lica-

e Con-
lected.
play a
ails, so

uish
Page 1-1

1 OVERVIEW

Paradyn is a tool for measuring the performance of parallel and distributed programs. Wh
with Paradyn, instrumentation is dynamically inserted into the running application program
its performance is reported in real-time. Paradyn’s features include:

• Run-time program instrumentation: you do not have to modify your source code or use
cial compiler. Paradyn directly instruments the binary image of your running program.

• Performance data visualizations: Paradyn currently provides visualizations to present
mance data in time-plots, bar graphs, and tables.

• Automated search for performance bottlenecks: Paradyn’s Performance Consultant
well-defined notion of bottlenecks and can control Paradyn’s instrumentation in sear
your bottlenecks.

• Multi-platform support: Paradyn currently can measure programs running on Solaris (S
and x86), AIX & SP2 (RS6000), and WindowsNT (x86).

• Support for heterogeneity: Paradyn can measure programs running on heterogeneous
nations of the above systems.

• The ability to monitor and display performance data, and isolate performance proble
particular intervals (“phases”) of program execution.

• An open interface for defining new performance metrics: the Metric Description Lang
allows the advanced Paradyn user/programmer to define new performance metrics.
metrics can be based on application specific performance data.

• An open interface for adding new performance visualizations: using Paradyn’s Visilib,
grammers can interface new or existing display routines to Paradyn performance data.

Paradyn differs from many performance tools in that it can decide what performance d
collect while the program is running. When you select some performance metric to be dis
for some part of your program, at that moment Paradyn will insert the necessary data ga
instrumentation into your application program. This method allows you to have direct
dynamic control over the overhead of data collection (you don’t pay for what you don’t use)

A tool based on dynamic instrumentation can control instrumentation overhead and da
ume while still being able to collect information about the time-varying behavior of your app
tion program.

Dynamic instrumentation may seem a bit unusual at first. When you (or the Performanc
sultant) are not requesting a particular kind of performance data, it is usually not being col
This means that there may be intervals of time for which you cannot display data: if you dis
time-plot, there will be gaps in the curves. Paradyn tries to keep you informed of these det
that you can use this information to your advantage.

Note: this manual contains color figures with detail which may not be easy to disting
when printed/viewed in grayscale.
User’s Guide May 5, 1998 Release 2.1

ersions,
ceding
s, and

rms are
 is no
uences
ed as

chine-
mple-
ommon
depen-

odi-

lock

aradyn

ment
sNT,

ry on
Page 1-2

1.1 Release notes (version 2.1)

Release 2.1 of the Paradyn Parallel Performance Tools includes both source and binary v
and associated manuals. This incremental (minor) release primarily consolidates the pre
Paradyn 2.0 release of September 1997, deploying advanced functionality to more platform
generally enhancing capabilities, performance and software engineering. Supported platfo
SPARC & x86 Solaris, x86/WindowsNT and RS6000/AIX (SP2). As of this release, support
longer available for SunOS earlier than 5.4 (Solaris 2.4). Some highly optimized code seq
found in applications compiled under Solaris 2.6 and UltraSPARC may not be recogniz
instrumentable.

A synchronized 1.1 release of the DynInstAPI library which provides a standardized ma
independent interface to Paradyn’s dynamic instrumentation (run-time code patching) co
ments this Paradyn release. Note that while Paradyn and the DynInstAPI share some c
code, and hence the distribution of the DynInstAPI with Paradyn, they can both be used in
dently of each other.

New features for Paradyn 2.1 include:

• application re-linking requirement removed for SPARC/Solaris
(Paradyn now dynamically loads its run-time instrumentation library and works with unm
fied application executables on SPARC/Solaris and x86/WindowsNT)

• automatic code block identification [on Solaris platforms]
(eliminating the requirement to re-link the application program using explicit code b
markers, now also relevant for x86/Solaris)

• merged processing of statically and dynamically-linked modules [on Solaris platforms]
allowing generalized module and function exclusion

• better handling of optimized code [on SPARC architecture].

• handling of stripped dynamic libraries [under Solaris]

• more powerful, simplified MDL syntax for metric definition

• enhanced metrics for I/O in MPI programs [on the SP2]

• scalability to monitor larger numbers of processes

• refined main console user interface

• easier, parameterized source build (with PVM support now a build option)

• many performance improvements, bug-fixes and software revisions.

Further implementation details behind these features (and more) are available in the P
Developer’s Guide.

New features in release 2.0 of Paradyn included support for MPI within the POE environ
on the SP2, WindowsNT support, shared objects (dynamic linking) on Solaris and Window
removing the need to relink programs with the Paradyn run time instrumentation libra
User’s Guide May 5, 1998 Release 2.1

SPARC-Solaris and WindowsNT, and many efficiency improvements. HP-UX was no longer sup-
ported in release 2.0.

 variety

 with
ep is
 under
od-

rary.

Unix
ions in
)

t share
mptive
 pro-
mptive
uaran-

or very
nters or
allow

system

ion that
onitor
etero-

ith the

d on
 PVM
 be run
Page 1-3

Paradyn releases attempt to make capabailities available as early as possible on a wide
of platforms, however, there are some limitations in the current version:

• Instrumentation of dynamically linked libraries is not supported on AIX.

• AIX application programs that are to be monitored using Paradyn need to be re-linked
explicit code block markers and Paradyn’s run-time instrumentation library. This link st
necessary because Paradyn isn’t yet able to dynamically load its instrumentation library
AIX, and the peculiar format of libraries makes it difficult to distinguish user and library m
ules. Details of this link step are described in Section 2.3 and Section 2.6.2.

• x86/Solaris programs also need to be linked with Paradyn’s run-time instrumentation lib

• Only the Paradyn daemon and runtime libraries are available for x86/WindowsNT. (A
platform must be used for the X11-based Paradyn main control process and visualizat
conjunction with monitored x86/WindowsNT applications as described in Section 2.6.4.

• Paradyn currently cannot instrument some threaded applications or applications tha
code space. Paradyn currently does not know about threads. If you use a non-pree
thread package, Paradyn will still work; performance data can be attributed to the UNIX
cesses, but cannot be broken-down by thread. If you use any multiprocessing or pree
threading package, Paradyn’s instrumentation is likely to misbehave (i.e., we make no g
tees on what will happen).

• Paradyn currently uses 32-bit counters as the basis for some of its instrumentation. F
frequent events, such as those triggered by hardware counters (such as instruction cou
memory reference counters), these 32-bit counters will overflow. Future releases will
larger counters.

• Instrumentation and monitoring of 64-bit applications is not supported.

• Instrumentation metrics for I/O are based on the Unixread() andwrite() system calls. If
you use read or write for socket operations, these will appear as I/O. If you use other
calls that do file I/O, these will not be accounted for.

Most (if not all) of these restrictions will be relaxed in the next major release of Paradyn.

1.2 Supported hardware and software platforms

The Paradyn process (front-end and user interface) can run on any of the types of workstat
are listed in Figure 1. The workstations and parallel computers on which Paradyn can m
programs are listed in Figure 2: Paradyn can also monitor application program running on h
geneous combinations of these platforms.

Paradyn capabilities vary by platform, and these are summarized in Figure 3, along w
differences between capabilities of release 2.0 and release 2.1.

Application programs written to run with PVM (version 3.x or later) can be measure
SPARC & x86 Solaris, and AIX systems. You need to use a Paradyn daemon with built-in
support (such as those in the binary releases) for these platforms. MPI programs can only
User’s Guide May 5, 1998 Release 2.1

under the POE environment on the SP2.

ssors.

s.

rs.

ssors

s.

ors,
n-
Page 1-4

System Identifier Description

sparc-sun-solaris2.4 Solaris operating system version 2.4 or later on SPARC proce

i386-unknown-solaris2.5 Solaris operating system version 2.5 or later on x86 processor

rs6000-ibm-aix4.1 AIX operating system version 4.1 or later on RS6000 processo

Figure 1: Platforms on which Paradyn (User Interface and Visualizers) can run

System Identifier Description

sparc-sun-solaris2.4 Solaris operating system version 2.4 or later on SPARC proce
Users of earlier Solaris/SunOS versions can contact us.

i386-unknown-solaris2.5 Solaris operating system version 2.5 or later on x86 processor

rs6000-ibm-aix4.1 AIX operating system version 4.1 or later on RS6000 process
also supports the SP2 with the MPL interface in the POE enviro
ment. AIX 3.2 users can contact us atparadyn@cs.wisc.edu .

i386-unknown-nt4.0 WindowsNT operating system version 4.0 on x86 processors.

Figure 2: Platforms on which Paradyn can monitor application programs

Key:
♥ Support currently under development
♣ Applications compiled by VC++ only
♦ Support added in DynInstAPI v1.1 only
♠ Programs started under SP2 POE only

SPARC
Solaris

x86
Solaris

x86
WinNT

RS6000
AIX

Front-end/GUI (paradyn & Visi s) ✔ ✔ ✘ ✔
Daemon (paradynd & libdyninstRT) ✔ ✔ ✔♣ ✔
DynInstAPI library ✔ ✔ ✔♣ ✔
Shared-objects / dynamic linking ✔ ✔ ✔ ✘
libdyninstRT as a shared library ✔ ✘♥ ✔ ✘
Dynamic loading of libdyninstRT ✘➟✔ ✘♥ ✔ ✘
Attach to running process(es) ✔ ✔ ✔ ✘♦

Supported parallel execution modes PVM PVM PVM
 MPI♠
User’s Guide May 5, 1998 Release 2.1

Figure 3: Summary of Paradyn capabilities by platform (v2.0 vs. 2.1)

l it on
version

gh the
s, and
mmon
manual

ance
 Table
yn.

aliza-
ming
aradyn
ce for
te on

 to just
tch.

 by the
nify the
rocess,
le I/O.

ing or
hread
Page 1-5

1.3 Other documentation: Manuals

In addition to thisUser’s Guide, the following documentation is available for Paradyn:

Installation Guide

The Installation Guide describes how to obtain Paradyn via anonymous ftp and instal
your system(s). It also describes the minimum operating system and system software
numbers needed for compatibility with this release of Paradyn.

Tutorial

The tutorial provides a step-by-step example of the use of Paradyn. It walks you throu
main features of starting a program with Paradyn, displaying performance visualization
using the Performance Consultant. The tutorial is intended to show you many of the co
and most useful features, but is not a complete description of Paradyn’s features. This
(theUser’s Guide) contains the complete description of Paradyn.

VisiLib Programmer’s Guide

Visilib is the standard API interface for external processes that want to collect perform
data from Paradyn. Paradyn performance visualizations (Time Histogram, Bar Chart,
and 3D Terrain) execute as separate processes, using Visilib as their interface to Parad

Visilib provides a simple interface and abstract to the writer of a new performance visu
tion. The library handles the details of communicating with Paradyn, processing inco
performance data, providing notifications of changes in the data, and clean-up when P
terminates. Paradyn itself will start the visualization process and provide the user interfa
selecting the data to visualize. The writer of the visualization module is left to concentra
the display and graphics aspects.

Developer’s Guide

This is intended for those who wish to understand the Paradyn source code—whether
to browse it or to actually make changes with the intent of rebuilding Paradyn from scra

LibThread Programmer’s Guide

Paradyn’s internal design is multi-threaded using a custom thread package designed
Paradyn Project. This thread package uses simple message-passing constructs to u
actions of waiting for a message from another thread, a message from another UNIX p
a message from a formatted event stream (such as the X window server), a signal, or fi

This documents the API to libThread and may be useful if you are working on extend
porting Paradyn, or if you are just looking for a useful thread package. In Paradyn, libT
often is used with our RPC generator, Igen. A manual is not yet available for Igen.
User’s Guide May 5, 1998 Release 2.1

lated

ghan,
un-

llel

rton

 Bar-

lling-

, and

e”, R.

on P.

on P.

rton P.

iller.

 Uni-
. The-

 Irvin,
eport

rth,
Page 1-6

1.4 Other documentation: Technical papers

Following is a bibliography of currently available papers on the technology contained in or re
to Paradyn. These papers can be obtained from the Paradyn Project Web home page.

1. “The Paradyn Parallel Performance Measurement Tools”, Barton P. Miller, Mark D. Calla
Jonathan M. Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna K
chithapadam, and Tia Newhall.IEEE Computer28, 11, (November 1995). Special issue on Para
and Distributed Processing Tools.

2. “An Adaptive Cost Model for Parallel Program Instrumentation” Jeffrey K. Hollingsworth and Ba
P. Miller. EuroPar’96 Conference, Lyon, France, August 1996. Appears asLNCS 1123, Vol.I, pp. 88-
97, Springer-Verlag.

3. “Dynamic Program Instrumentation for Scalable Performance Tools”, Jeffrey K. Hollingsworth,
ton P. Miller, and Jon Cargille.Scalable High Performance Computing Conference, Knoxville, May
1994.

4. “Dynamic Control of Performance Monitoring on Large Scale Parallel Systems”, Jeffrey K. Ho
sworth and Barton P. Miller.International Conference on Supercomputing, Tokyo, July 19-23, 1993.

5. “The Paradyn Parallel Performance Tools and PVM”, Barton P. Miller, Jeffrey K. Hollingsworth
Mark D. Callaghan.Environments and Tools for Parallel Scientific Computing, J. J. Dongarra and
B. Tourancheau, eds., SIAM Press, 1994.

6. “Mapping Performance Data for High-Level and Data Views of Parallel Program Performanc
Bruce Irvin and Barton P. Miller.International Conference on Supercomputing, Philadelphia, May
1996.

7. “A Performance Tool for High-Level Parallel Programming Languages”, R. Bruce Irvin and Bart
Miller. Programming Environments for Massively Parallel Distributed Systems, K. M. Decker and
R. M. Rehmann editors, Birkhauser Verlag, pp. 299-314, 1994.

8. “Optimizing Array Distributions in Data-Parallel Programs”, Krishna Kunchithapadam and Bart
Miller. 7th Annual Workshop on Languages and Compilers for Parallel Computing, Ithaca, NY.
August 1994.

9. “Integrating a Debugger and Performance Tool for Steering”, Krishna Kunchithapadam and Ba
Miller. Workshop on Debugging and Performance Tuning for Parallel Computing Systems. Cape Cod,
Massachusetts, USA, October 1994.

10. “What to Draw? When to Draw? An Essay on Parallel Program Visualization”, Barton P. Miller.Jour-
nal of Parallel and Distributed Computing18, 2 (June 1993).

11. “Binary Wrapping: A Technique for Instrumenting Object Code”, Jon Cargille and Barton P. M
SIGPLAN Notices27, 6 (June 1992).

12. “Finding Bottlenecks in Large-scale Parallel Programs”, Jeffrey K. Hollingsworth, August 1994.
versity of Wisconsin-Madison Computer Sciences Department Technical Report #1243 (Ph.D
sis).

13. “Performance Measurement Tools for High-Level Parallel Programming Languages”, R. Bruce
October 1995. University of Wisconsin-Madison Computer Science Department Technical R
#1292 (Ph.D. Thesis).

14. “MDL: A Language and Compiler for Dynamic Program Instrumentation”, Jeffrey K. Hollingswo
Barton P. Miller, Marcelo J. R. Goncalves, Oscar Naim, Zhichen Xu and Ling Zheng.PACT’97, San
User’s Guide May 5, 1998 Release 2.1

Francisco, California, USA. November, 1997.

preciate

ersion

 bi-
s!
Page 1-7

1.5 Contacting the Paradyn developers

There are various ways to get in touch with us. We are happy to answers questions and ap
feedback.

e-mail: paradyn@cs.wisc.edu

This is our project e-mail address. Use this address for technical questions or requests.

Web: http://www.cs.wisc.edu/~paradyn

This is our home page. From this page, you can find out how to get a binary or source v
of Paradyn. You can also get updates and news on the current release of Paradyn.

FTP: ftp://grilled.cs.wisc.edu/paradyn/

This is our ftp site. In the “paradyn” directory, you will find subdirectories containing the
nary and source versions of the Paradyn release. Make sure to look at the README file

FAX: +1-608-262-9777

Postal: Paradyn Project
Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street
Madison, WI 53706-1685
USA
User’s Guide May 5, 1998 Release 2.1

you an
e are

yn

di-
n pro-

tion,
ctly on

aradyn
lication
mance
ication,
ntrol of
tion files
 must

yn Win-

efer to

le and
ations
e listed
Page 2-1

2 RUNNING PARADYN

In this section, we describe the steps that you should follow to run Paradyn. First we give
overview of the major steps and then we explain each one in detail. For this section, w
assuming that you have already installed Paradyn as documented in theInstallation Guide.

2.1 Overview of major steps

To run Paradyn, follow the steps:

1. Set up Paradyn and daemons (Section 2.2): You need to specify the location of the Parad
executable and configuration files and some external libraries.

2. Prepare your application program (Section 2.3): Generally Paradyn is able to handle unmo
fied executables, however, on some platforms you may need to re-link your applicatio
gram with Paradyn’s run-time dynamic instrumentation library.

3. Run Paradyn (Section 2.4): Paradyn has several options that you may use during execu
such as adding a new process to your application. These options may be specified dire
the command line or in a Paradyn configuration file for the application.

Sections 2.2 through 2.4 explain these steps in more detail.

2.2 Setting up Paradyn and the Paradyn daemons

Paradyn has two main parts: the Paradyn front-end and user interface (“paradyn”) and the P
daemons (“paradynd”), which are the agents that run on each remote host where your app
program is running. Paradyn contains the user interface that allows you to display perfor
visualizations, use the Performance Consultant to find bottlenecks, start or stop your appl
and monitor the status of your application. The Paradyn daemons operate under the co
Paradyn to monitor and instrument the application processes. Paradyn also uses configura
to specify details of Paradyn configuration, instrumentation and application programs. You
also have Tk and Tcl library files installed to be able to use Paradyn (and to use the Parad
dowsNT daemon, a special RPC package is also required).

For the details of installing Paradyn, its daemons, Tk/Tcl and other external software, r
theParadyn Installation Guide.

After you have installed Paradyn, you need to specify the location of Paradyn’s executab
configuration files. The files needed to run Paradyn are listed in Figure 4, along with explan
of their use. The environment variables that are needed or helpful when running Paradyn ar
in Figure 5, along with a description of their use.
User’s Guide May 5, 1998 Release 2.1

 user
pro-
ur

 the
sion
rch

ns.
ried

le

the
m

e

st

Tk
. If
a-
Page 2-2

File Use

paradyn The executable that starts a Paradyn session and provides the main
interface. There are versions for each supported platform and an ap
priate version should be placed in a location that will be found by yo
shell’s search path (or you can specify the full path name to run it).

paradynd The executable for a Paradyn daemon. Versions exist for each of
supported target application environments, and an appropriate ver
should be placed in a location that will be found by your shell’s sea
path (or you can specify the full path name to run it).

paradyn.rc Contains crucial information, such as metric and daemon definitio
The following steps are used to try to find this file (these steps are t
in listed order):

1. Look in the directory specified by the environment variab
“PARADYN_ROOT” for file $PARADYN_ROOT/paradyn.rc .

2. Look in your current working directory for the fileparadyn.rc .

.paradynrc In addition toparadyn.rc , Paradyn will also look in your account’s
home directory for a file named.paradynrc (note the slightly different
form). This file is processed after, and in addition toparadyn.rc .

Figure 4: Files needed to run Paradyn

Environment Variable Use

PARADYN_ROOT Specifies the location of theparadyn.rc configuration file. In source
code distributions of Paradyn, it is also used to locate the root of
Paradyn code tree. (Not required if you are running Paradyn fro
your current working directory or from your home directory.)

PARADYN_LIB Used on SPARC-Solaris platforms to specify the Paradyn run-tim
instrumentation shared object file (libdyninstRT.so.1). It must
specify the full path name of this file:

setenv PARADYN_LIB /usr/home/me/libdyninstRT.so.1

(Note: when running PVM applications, the shared object file mu
be in a directory that is readable by any user.)

TCL_LIBRARY
TK_LIBRARY

These environment variables specify the location of the Tcl and
command files needed to implement the basic Tcl/Tk object types
you have been using a current installed version of Tcl/Tk, you prob
bly already have these set. If not, then the instructions in thePara-
dyn Installation Guide describe how to reset them.

Figure 5: Environment variables used when running Paradyn
User’s Guide May 5, 1998 Release 2.1

-
 plat-

dyn’s
t

arkers
r
lly
e con-
-
y,
s and

ries
ode of

n be
on
ies to

on’s
ake-

b)

stru-
Page 2-3

2.3 Preparing your application program

Paradyn is able to instrument unmodified binary (a.out) files, though currently only on SPARC
Solaris and x86/WindowsNT platforms: future releases will extend this capability to other
forms. Where re-linking is required, step through the following items:

1. To allow Paradyn to insert instrumentation into your application, you need to link Para
run-time instrumentation library (libdyninstRT.o) with your application. (This step is no
needed on the x86/WindowsNT and SPARC/Solaris platforms wherelibdyninstRT.dll or
libdyninstRT.so.1 is loaded dynamically after the application starts.)

2. Generally there is no more need to link your application with the special code block m
DYNINSTstartCode.o and DYNINSTendCode.o which used to help Paradyn identify you
application code in the finala.out file, and distinguish system libraries which genera
weren’t instrumented. Undesired libraries, modules and functions can generally now b
veniently excluded from instrumentation using anexclude specification in one of your Para
dyn configuration files (e.g., seeparadyn.rc for exclusion of the standard C run-time librar
libc). Note that instrumentation of large libraries often requires considerable resource
can be fairly slow, therefore it is usually worthwhile explicitly excluding such libraries.NB:
due to the peculiar AIX library structure, it is not generally possible to exclude such libra
with a single exclude specification, and use of the code blocks to delimit application c
interest is thereforestill recommended for programs on the AIX platform.

3. Use of the compile flag-g is recommended to generate debugging information which ca
exploited by Paradyn, and the-static (or some equivalent flag) is needed when linking
platforms where Paradyn cannot currently instrument dynamic libraries (this only appl
rs6000-ibm-aix4.1).

Figure 6 is an example of how you would modify the link command in your applicati
Makefile to handle the extra link step if required by the current version of Paradyn. If your M
file contained the link step shown in Figure 6(a), you would change it as shown in Figure 6(

Once you have compiled and linked your application program with Paradyn’s run time in
mentation library, you are ready to run Paradyn.
User’s Guide May 5, 1998 Release 2.1

 Para-

;

ame is

y be
h will
Page 2-4

2.4 Running Paradyn

At this point, your should be ready to run your application program with Paradyn. You start
dyn by entering the following command:

% paradyn

Several optional command line arguments can be used when invoking Paradyn:

• -f <pcl-configuration-filename>
specifies a file from where Paradyn can read configuration commands (see Section 11)

• -default_host <host name>
specifies the default host where Paradyn should start an application when no host n
given. (If the-default_host option is not used, the default host is the local host.)

• -x <connect-filename>
specifies a file to which Paradyn daemon start-up information will be written, which ma
used by external programs to explicitly start Paradyn daemons on different hosts whic
connect to this Paradyn front-end. (This file is created if it doesn’t already exist.)

OBJECTS = main.o this.o that.o
bubba: ${OBJECTS}

${CC} ${OBJECTS} \
-lm -lcurses -ltermcap -o bubba

(a) Original link command in the Makefile

OBJECTS = main.o this.o that.o

PARADYN_LIBDIR = $(PARADYN_ROOT)/lib/$(PLATFORM)
PARADYN_LIB = $(PARADYN_LIBDIR/libdyninstRT.so

bubba .pd : ${OBJECTS}
${CC} -g \

$(PARADYN_LIBDIR)/DYNINSTstartCode.o \
${OBJECTS} \
$(PARADYN_LIBDIR)/DYNINSTendCode.o \
$(PARADYN_LIB) \
-lm -lcurses -ltermcap -o bubba .pd

(b) Modified link command to run application with Paradyn.
Items inBold face are changes (additions)

Figure 6: Modifying application Makefile to link for Paradyn (generic example).
Note: x86/Solaris and AIX actually require different options; see Section 2.6.
User’s Guide May 5, 1998 Release 2.1

n in

to run
ram

).

w you

,

 repre-
re is a
erface
Page 2-5

Paradyn should start running and display the Paradyn Main Control Window, show
Figure 7. This window has five menu options,File , Setup , Phase , Visi, andHelp . These options
allow you to:

1. File : At present, the only command in this menu isExit Paradyn .

2. Setup : This menu has selections to allow you to describe a new application program
(Define a Process , described below), attach to an already-running application prog
(Attach to a Process , described below), change Paradyn’s tunable constants (Tunable Con-
stants Control , described in Section 4), and start the Performance Consultant (Performance
Consultant , described in Section 9).

3. Phase : start and define a new local phase for visualizations and analysis (see Section 8

4. Visi : start visualizations of your application performance (see Section 7).

5. Help : get additional information about Paradyn.

Additionally, there are four buttons in this window:RUN, PAUSE, SAVE andEXIT. RUN and
PAUSE are disabled when there is no application currently defined. These two buttons allo
to run or stop execution of your application as you wish.SAVE will save the current configuration
of Paradyn for future experiments.SAVE functionality is currently not implemented. Finally
EXIT will exit Paradyn, killing the application program if necessary, and end the session.

The Paradyn Main Control Window can contain several status lines. Each status line
sents information about some part of Paradyn or your application. In the initial window, the
status line labeled “UIM status”. This line shows the current state of Paradyn’s User Int
Manager (“ready” in this case).

Figure 7: Starting Paradyn
User’s Guide May 5, 1998 Release 2.1

cess to
w.

cess.

eave

ning),

mote
y (on
ation

ge to
tax is
path
ed

 A tilde

 the
set to
 with
Page 2-6

2.5 Running applications with Paradyn

There are two ways to give Paradyn an application program to monitor: defining a new pro
start, and attaching to an already-running process. These two methods are described belo

2.5.1 Defining a new process

One way to measure a program with Paradyn is to select the optionDefine A Process from
theSetUp menu. A new window appears, as shown in Figure 8.

From this window, you can specify the following parameters:

1. User: This is your login name on the host on which Paradyn will run your application pro
If you leave this field blank, the login will default to your current login name.

2. Host: This is the name of the host on which Paradyn will run your application. If you l
this field blank, it will default to the host specified with the-default_host command line
option to paradyn, or to the current host (the one on which the Paradyn front-end is run
if the option-default_host is not used.

3. Directory : Paradyn runs paradynd and your application as follows. First, it performs a re
login operation using the “User” and “Host” fields specified above. The current director
the remote machine) at this point is the root directory—not usually where your applic
program resides. The “directory” entry box allows you to specify a directory to chan
before executing the command specified in the “Command” entry box. The allowed syn
familiar in Unix: the path specified may start with a slash (“/”) (specifying an absolute
name, starting from the file system root directory), or it may start with a tilde (“~”) follow
by a user name (specifying a path name rooted at the specified user’s home directory).
not followed by a user name is the same as a tilde followed by the current user name.

4. Command: The command that will start this instance of your application program. If
Directory entry has been filled in, the command is executed with the current directory
the specified path. If the Directory entry is left blank, then the command will be executed

Figure 8: Defining a new application process
User’s Guide May 5, 1998 Release 2.1

the current directory set to the home directory of the specified user.

s, the
”. If

n
e pro-

d the

plica-
appli-

e ready

ration
, new

he com-

.pcl”
Page 2-7

5. Daemon: This option allows you to specify which Paradyn daemon to run. For most use
default daemon (“defd”) is appropriate; for PVM applications, you should select “pvmd
you specify additional daemons in the Paradyn configuration file, they will appear here.

Once you have made your selections, click onAccept and Paradyn will start the applicatio
program and initialize it. When the status of the Paradyn window is like that in Figure 9, th
gram is ready to run and be measured.

The window in Figure 9 shows several new status lines with the following information:

1. Application name: This is the name of the application program (foo), the host machine where
it has been started (if remote), the user identifier which it is running as (if different), an
type of daemon which is monitoring it (defd).

2. Application status: This is the overall application status (eitherPAUSED or RUNNING).

3. Data Manager: This is the status of Paradyn’s Data Manager.

4. Processes: This is the process identifier of the controlling process in your application.

5. beaufort: There is one status line on each host or node on which you are running your ap
tion; here there is the status line for host “beaufort”. It shows the current status of your
cation process on this host/node.

Notice that since you have defined a new process the RUN button is enabled and you ar
to run and measure your program!

The information in the “Define a Process” window can be stored in a Paradyn Configu
Language (PCL) file. In this file, the user can specify information such as: user application
visualizations to be added to the system, new metrics, and additional paradyn daemons. T
plete details of the Paradyn Configuration Language are given in Section 11.

As a simple example, if we want to run an application called “bubba”, a file called “bubba

Figure 9: Paradyn ready to run the application
User’s Guide May 5, 1998 Release 2.1

:

 “dir”
 “dae-

not con-
 every
ish to
re them.
f time.
ish to

P2. In
 when
 moni-
se.

most

e
ecutable

ng a
f a pro-
y from
-
amin-
m

he sep-
you
Page 2-8

might contain:

process bubba {
dir “/p/paradyn/applications/sequential/bubba”;
command “bubba.pd example.dat;
daemon defd;

}

and the command to automatically start Paradyn with this application would be like this

% paradyn -f bubba.pcl

This command tells Paradyn to run the application “bubba” in the directory specified by
using the command line specified by “command” with the Paradyn daemon specified by
mon” (defd or default daemon in this case).

2.5.2 Attaching to a process

Sometimes, defining a new process from Paradyn as shown in the previous sub-section is
venient. The main limitation of defining a new process is that a new process is launched
time you run Paradyn (and killed every time you exit Paradyn). Many programs you may w
measure are not amenable to starting up and shutting down every time you wish to measu
Typically these are server-type programs, which are meant to run for an indefinite amount o
In such cases, it is more convenient to attach to an already-running program when you w
measure it with Paradyn, and to detach from it when you exit Paradyn.

Attaching to a running process is not yet implemented for processes running on AIX/S
addition, Paradyn currently does not detach from the application when you exit Paradyn; as
a new process has been defined and started by Paradyn, Paradyn kills the application it is
toring and all its processes when it exits. These limitations will be removed in a future relea

To attach to a running process, chooseAttach to a Process from theSetup menu of the Para-
dyn main window. A dialog box (Figure 10) will appear.

The User, Host , andDaemon items have the same meaning as in Section 2.5.1. The
important box isPid , where you specify the process identifier of the process (on theHost
machine) you wish to attach to. TheExecutable file item lets you specify a full pathname to th
executable file corresponding to the process id. The Paradyn Daemon needs to find the ex
file on disk in order to extract symbols (procedures, modules) that will go in theCode portion of
the ParadynWhere Axis . Obtaining symbols from the executable file is also done when defini
new process (Section 2.5.1). However, it can be burdensome to enter the full path name o
cess that you want to attach to; it is possible that you might not even know the disk director
which it was launched. Therefore, if you leave theExecutable file item blank, the Paradyn Dae
mon will make an effort to locate its value automatically. (It obtains the program name by ex
ing the process’ first argument,argv[0] . It then looks in several directories for this progra
name; it searches the process’ current directory and all items in itsPATH environment variable.
For those interested, further technical details on how attach is performed can be found in t
arateParadyn Developer’s Guide.) If Paradyn reports that it cannot locate the executable file,
User’s Guide May 5, 1998 Release 2.1

will have to enter the full path name in theExecutable file field.

d. After
tion. To
lt
ttach.
alizes it

-

Page 2-9

The Paradyn daemon can attach to a process, whether it is currently running or stoppe
it has attached, you may wish to have the daemon automatically pause or run the applica
do this, choose eitherPause application or Run application items from the dialog box. The defau
is Leave as is , which detects whether the program was running or stopped at the time of a
Note that the process is necessarily paused for a short time while the Paradyn daemon initi
(parses its symbol table, parses any shared libraries it has been linked with, etc.)

When you have entered the desired parameters, click onATTACH to perform the attach opera
tion. When ready, the Paradyn main window should look like Figure 11.

Figure 10: Specifying a process to attach to.

Figure 11: Attach completed
User’s Guide May 5, 1998 Release 2.1

ubsec-

nami-
object
 needed
menta-
,
file for
-time

mance
nt will

uded in

 in
ble
on
Page 2-10

2.6 Architectural issues

Certain platforms require slight modifications to the procedures discussed above. In this s
tion, we describe each of them in turn.

2.6.1 Solaris

On SPARC-Solaris and x86-Solaris platforms we support instrumenting shared objects (dy
cally-linked libraries). Dynamic executables are executables that are linked with shared
files, and are the default output generated by the link-editor, therefore no special flags are
to create dynamic executables. On the SPARC-Solaris platform, Paradyn’s run-time instru
tion library is a shared object (libdyninstRT.so.1) which is dynamically loaded at run-time
and does not need to be linked with the executable file. Figure 6 shows a sample make
SPARC-Solaris. Linking on x86-Solaris currently requires a static version of the Paradyn run
instrumentation library (libdyninstRT.so) and some additional libraries (socket and nsl).
Figure 12 shows a sample Makefile for x86-Solaris

On both platforms, shared objects will show up on the Paradyn Where axis and perfor
data can be collected for functions from shared objects. Also, the Performance Consulta
include functions in shared objects in its search for bottlenecks. The MDLexclude option can be
used to specify shared objects and/or functions from shared objects that should not be incl
the Performance Consultant’s search. This is discussed in more detail in Section 11.8.

Finally, when using the Sun C or Fortran compilers, you should also specify the-xs option
together with-g . The-g option alone will direct the compiler to place debugging information
the object files (.o files), but it will not place the debugging information on the executa
(a.out) file. You must use the-xs option so that the compiler will add the debugging informati
to the a.out file. The-xs option is not needed if you are using gcc.

OBJECTS = main.o this.o that.o
PARADYN_LIBDIR = $(PARADYN_ROOT)/lib/$(PLATFORM)
PARADYN_LIB = $(PARADYN_LIBDIR)/libdyninstRT.o
bubba.pd: ${OBJECTS}

cc -xs -g \
${OBJECTS} \
$(PARADYN_LIB) \
-lm -lcurses -ltermcap \
-lsocket -lnsl \
-o bubba.pd

Linking an application to run with Paradyn.
Items inBold face show the changes for x86-Solaris.

Figure 12: Sample Makefile for x86-Solaris.
User’s Guide May 5, 1998 Release 2.1

 to be

 inter-
ents

assed
is is a
om-

su-
alled

 the
rou-

ided

pass it

hows
k com-
tation

ast US
imilar,
The
in the
 place
Page 2-11

2.6.2 RS/6000 running IBM AIX version 4.1

When linking AIX programs, two additional options (beyond those shown in Figure 6) need
present. The first is the link flag-bnoobjreorder. If you forget this flag, you will be reminded
with an error window when paradyn tries to run this program. Note that this flag needs to be
preted by the AIX linker, but is unknown to most compilers. Different compilers pass argum
to the linker differently. In some, if the argument isn’t understood by the compiler, it gets p
to the linker automatically. On others, a specific prefix flag is needed to tell the compiler “th
linker option; don’t try to interpret it.” For example, when linking using the GNU gcc or g++ c
pilers, preface the option with-Xlinker to get:

-Xlinker -bnoobjreorder

The second AIX-specific option is needed to ensure that Paradyn’s runtime library (libdyn-

instRT.o) gets linked properly. Compared to traditional UNIX linkers, the AIX linker is unu
ally aggressive in optimization. One optimization is the removal of code that is not c
elsewhere in the binary. Since the routines inlibdyninstRT.o are called only by paradynd’s
dynamic (runtime) instrumentation, by default, the AIX linker will unfortunately leave out
contents oflibdyninstRT.o . What is needed is a way to force the linker to include certain
tines and variables. In the AIX linker, this is done with the-bE:<filename> option, where
<filename> is a text file containing a list of functions and/or variable names. We have prov
such a file for you in the AIX ftp distribution; the file is calledDYNINST_EXPORTS. Assuming
you have installed this file in the same directory aslibdyninstRT.o, the following should be
added to your link line:

-bE:$(PARADYN_LIBDIR)/DYNINST_EXPORTS

Of course, if necessary, preface this option with whatever is required by your compiler to
verbatim to the linker; e.g.-Xlinker , as above.

Three examples of AIX link command lines are given in the figures below. Figure 13 s
the link command line that may be used for sequential C programs. Figure 14 shows the lin
mand line for a MPI program running under the POE environment on an RS/6000 works
cluster or SP/2. Figure 15 shows the link command line for a POE MPI program using the f
switch network adapter on an SP/2. The link command lines for Fortran programs are s
except that-lxlf90 (and maybe also-lxlf) are appended at the end of the command line.
exact link command line you need may vary, but, if possible, we recommend you mainta
link command line components in the relative order shown in the figures. For instance, try to
-lc ahead of the other-l s.

cc -g -bnso -bnoobjreorder -bI:/lib/syscalls.exp \
-bE:$(PARADYN_LIBDIR)/DYNINST_EXPORTS -o seqProg \
$(PARADYN_LIBS)/DYNINSTstartCode.o \
$(OBJECTS) \
$(PARADYN_LIBS)/DYNINSTendCode.o \
$(PARADYN_LIB) -lc

Figure 13: Example AIX link command line for sequential C programs.
User’s Guide May 5, 1998 Release 2.1

 with
e PVM

l

 in

-

Page 2-12

2.6.3 PVM

For the PVM message passing system, the procedure of linking the application program
Paradyn is the same. However, one of the following two steps is necessary in order for th
system to findparadynd and your application:

1. If you can modify the directory$PVM_ROOT/bin/$PVM_ARCH, you can copy or linkpara-
dynd and your application into this directory.

2. If you cannot modify the directory$PVM_ROOT/bin/$PVM_ARCH, you can create a loca
directory$HOME/pvm3/bin/$PVM_ARCH and copy or linkparadynd and your application
into this directory. This works because PVM will look for the executables first
$PVM_ROOT/bin/$PVM_ARCH and then it will check for a local$HOME/pvm3/bin/
$PVM_ARCH directory. This is clumsy, but it is caused by the way PVM currently works.

PVM is freely available by anonymous ftp atnetlib2.cs.utk.edu (cd pvm3, get index) or at
http://netlib2.cs.utk.edu/pvm3/index.html . Paradyn currently supports PVM ver
sion 3.3.

ld -bpT:0x10000000 -bpD:0x20000000 -btextro \
-bnodelcsect -bnso -bI:/lib/syscalls.exp \
-bE:/usr/lib/libg.exp -bnoobjreorder -H4 \
-bE:$(PARADYN_LIBDIR)/DYNINST_EXPORTS -o IPmpiProg \
/usr/lpp/ppe.poe/lib/crt0.o \
$(PARADYN_LIBS)/DYNINSTstartCode.o \
$(OBJECTS) \
$(PARADYN_LIBS)/DYNINSTendCode.o \
$(PARADYN_LIB) -lc -lg -lm \
-L/usr/lpp/ppe.poe/lib -lppe -lmpi -lvtd \
-L/usr/lpp/ppe.poe/lib/ip -lmpci

Figure 14: Example AIX link command for POE MPI programs using the IP adapter.

ld -bpT:0x10000000 -bpD:0x20000000 -btextro \
-bnodelcsect -bnso -bI:/lib/syscalls.exp \
-bE:/usr/lib/libg.exp -bnoobjreorder -H4 \
-bE:$(PARADYN_LIBDIR)/DYNINST_EXPORTS -o USmpiProg \
-bI:/usr/lpp/ssp/css/libus/fs_ext.exp \
/usr/lpp/ppe.poe/lib/crt0.o \
$(PARADYN_LIBS)/DYNINSTstartCode.o \
$(OBJECTS) \
$(PARADYN_LIBS)/DYNINSTendCode.o \
$(PARADYN_LIB) -lc -lg -lm \
-L/usr/lpp/ppe.poe/lib -lppe -lmpi -lvtd \
-L/usr/lpp/ppe.poe/lib/us -lmpci

Figure 15: Example AIX link command for POE MPI programs using the US adapter.
User’s Guide May 5, 1998 Release 2.1

ssors.
(Solaris
e are

have
can

 with
 direct
rted).

rosoft
 in

r.

le with
Studio

,

 used
recto-

 for the

achine

d has
u will
Page 2-13

2.6.4 WindowsNT

Currently only the Paradyn back-end is ported to the WindowsNT environment on x86 proce
That means that you need to run the Paradyn graphical front end on some other platform
or AIX). The way Paradyn works in WindowsNT is similar to other platforms, however ther
a few small differences.

On Windows NT the run-time instrumentation library (libdyninstRT.dll) is loaded dynam-
ically, so there is no need to re-link your application with this library. However you must
libdyninstRT.dll in a directory that is listed in your “path” environment variable, so that it
be found by the dynamic linker.

Paradyn needs symbolic debug information, so you must compile your application
debugging information enabled. We currently only handle COFF symbols, so you must also
the compiler and linker to generate a COFF symbol table (CodeView format is not suppo
The option to enable COFF symbol table will depend on the compiler used. For the Mic
compiler this option is/Z7 . You must also direct the linker to generate symbolic information
the symbol file. The options/debug and /debugtype:coff must be passed to the linke
Figure 16 shows a sample Makefile for the Microsoft Visual C++ compiler.

Paradyn needs to instrument some system libraries (in particular,kernel32.dll), and this can
only be done if the symbols for the system libraries are installed. The symbols are availab
the NT disks, and they can be installed by the compilers (e.g. the Microsoft Development
has an option to install the system symbols files).

The files which are needed to run on WindowsNT areparadynd.exe (the paradyn daemon)
libdyninstRT.dll (the run-time dynamic instrumentation library), andoncrpc.dll (a version
of the Sun RPC library for WindowsNT, included with the Paradyn binary release, which is
by Paradynd to communicate with the Paradyn front-end). All of these files should be in di
ries that are listed on your “path” environment variable.

In order to have a Paradyn daemon started automatically by the Paradyn front-end (as
other platforms), you need to have a remote shell daemon (rshd) running on the WindowsNT
machine(s), and you must be able to execute commands on WindowsNT from the Unix m
where the Paradyn front-end is running. If you don’t have anrshd running on the WindowsNT
machine, you must start the daemon manually. Either refer to the-x command-line option for
Paradyn to automatically get this information (Section 2.4) or once the Paradyn front-en
started go the “File” menu and select the option “Daemon start-up info”. In either case yo

CC = cl /Z7
OBJECTS = main.obj this.obj that.obj

bubba.exe: $(OBJECTS)
link -out:bubba.exe -debug -debugtype:coff \

$(OBJECTS)

Figure 16: Sample Makefile for WindowsNT.
User’s Guide May 5, 1998 Release 2.1

get the command you need to type to start a Paradyn daemon on a remote machine. You must start

ill be
 host
d line
 like:

ion, and

ams.
Page 2-14

paradynd giving the exact arguments shown but specifying the appropriate “flavor” (which w
winnt for WindowsNT): note that for each session the port identifier (and possibly also
machine) arguments will be slightly different, so you can’t reuse exactly the same comman
for different Paradyn sessions. The command line to start paradynd on WindowsNT will look

paradynd -zwinnt -l2 -m myhostmachine -p 12345

Once the Paradyn daemon is started, it connects to the existing Paradyn front-end sess
everything else will work as usual.

Note that Paradyn is currently not expected to work with gcc-compiled application progr
User’s Guide May 5, 1998 Release 2.1

own in
parts of
 menu
 a part

section

play a

e
ses exit.

unning
e Con-

ha-
n can

 can
 attach
Page 3-1

3 MAIN CONTROL WINDOW

In this section we discuss features of the Paradyn main control window (an example is sh
Figure 17). The Paradyn main window is the interface though which a user can access all
the Paradyn tool. The main window is divided into three sections; the top section contains a
bar, the middle section contains a dynamic set of status lines (split into a generic part and
for per-process status information which is both resizable and scrollable), and the bottom
contains a set of menu buttons. We discuss the details of each of these below.

3.1 Main menubar

The menu bar in the Paradyn main control window contains five items; four of these dis
sub-menu when selected, and the other opens a dialog, as follows:

3.1.1 File menu

TheFile sub-menu contains only the one menu item:Exit Paradyn . When this item is selected, th
Paradyn process and all currently-associated application, daemon and visualization proces
The same effect can be achieved by clicking on theEXIT button (Section 3.3).

3.1.2 Setup menu

The Setup menu contains items to define an application process, to attach to an already-r
application process, to create a Performance Consultant window, to bring up the Tunabl
stants dialog, and to bring up the Where Axis display. SelectingDefine A Process displays the
Define A Process window (this window is shown in Figure 8 in Section 2.5.1). This is a mec
nism through which a user can provide information about their application so that Parady
start it. A description of how to use theDefine A Process window is given in Section 2.5.1.

Using Define A Process creates (i.e. starts) a new application process, which Paradyn
begin monitoring right away. Sometimes, however, it is more convenient to ask Paradyn to

Figure 17: Paradyn Main Control window
User’s Guide May 5, 1998 Release 2.1

to an already-running process (supported since Paradyn release 1.2). This is especially useful for

ery time
g pro-

 is
sNT.

w.
eneck

ich
e set of

ser
5.

nu:

e first

defining

ow
 visual-

ointers
n
f the
t

ed ver-
rovide
Page 3-2

server-type processes such as database servers or file servers, for which re-launching ev
you wish to measure with Paradyn would be inconvenient. To attach to an already-runnin
cess, selectAttach to a Process from the Setup sub-menu. A description of how to useAttach to a
Process is given in Section 2.5.2.Note that currently, attaching to an already-running process
only implemented for processes running on Solaris (both SPARC and x86) and x86/Window

The Performance Consultant menu item will bring up the Performance Consultant windo
This window provides an interface for the user to start automated performance bottl
searches. The Performance Consultant is described in Section 9.

TheTunable Constants menu item will bring up the Tunable Constants dialog, through wh
the user can set values for any tunable constants defined in Paradyn. Information about th
tunable constants and how they can be modified is given in Section 4.

The Where Axis menu item will bring up the Where Axis display, through which the u
makes resource hierarchy selections. Information about the Where Axis is given in Section

3.1.3 Phase menu

Phases may be started using thePhase menu. There are presently four items under this me
Start , Start with Perf Consultant , Start with Visis , andStart with Perf Consultant & Visis . Each item
under this menu will create a new phase; they differ in what additional actions they take. Th
item, Start , does nothing additional.Start with Perf Consultant will have Paradyn’s Performance
Consultant module (Section 9) commence searching on this phase, as opposed to simply
the new phase.Note: Start with Visis and Start with Perf Consultant & Visis are not yet imple-
mented.Complete information about phases is provided in Section 8.

3.1.4 Visi menu/button

Visualization processes can be started by selecting them from theStart A Visualization dialog
which appears upon pressing theVisi button in the main menubar. A complete description of h
to start a visualization process is given in Section 7.1, and documentation on the standard
ization modules is given in Section 10.

3.1.5 Help menu

TheHelp menu options offers basic information about Paradyn in separate displays.General Info
has summary information about Paradyn capabilities and supported platforms, along with p
to project Web pages and theparadyn@cs.wisc.edu maintainers’ account for further informatio
or to report problems.License Info contains a copy of the license agreement governing use o
Paradyn Parallel Performance Tools.Release Info provides information related to the curren
Paradyn release (and obtaining other releases). Finally,Version Info displays build/release infor-
mation about the version of Paradyn which is running: it is more detailed than the abbreviat
sion identifier appearing in the upper-right of the display title, and you may be asked to p
this information when reporting any problems with special versions of Paradyn.
User’s Guide May 5, 1998 Release 2.1

 which
ys status
itoring

 (single
pplica-
 on
r pro-

stitutes
rea no
n of the
/node
yed).

hen
,

s for
tools.

n and
Page 3-3

3.2 Status lines

The middle section of the Paradyn main window consists of a dynamic set of status lines
are updated as Paradyn runs and learns about new application processes. Each line displa
information about some part of Paradyn, the application, or the Paradyn daemons mon
application processes.

The main window in Figure 17 contains status lines that were created after a sequential
process) application was defined. Some of the status lines contain information about the a
tion program, such as its name (foo), the process identifier(s) associated with the application
the host (PID=19271) and an indented/offset area with status lines for each host machine o
cessor node on which the application is running (in this case, only on one host,beaufort).
There are also lines displaying the status of the UI Manager and Data Manager (ready).

The indented/offset area grows additional lines as hosts or nodes join the set which con
the application managed by Paradyn. After a certain number of lines is reached, this a
longer grows automatically and a scrollbar appears in the indent area to manage this regio
display. If desired, the window can be vertically resized to display more (or all) of the host
status lines, or shrunk to display fewer (down to a minimum number which can still be displa

3.3 Buttons

There are four buttons at the bottom of the Paradyn main window.

TheRUN andPAUSE buttons allow the user to run or pause execution of the application. W
the application is running, theRUN button is disabled and thePAUSE button enabled. Conversely
when the application is paused thePAUSE button is disabled and theRUN button enabled. Before
an application has been defined, both buttons are disabled.

TheSAVE button writes the application execution data Paradyn currently maintains to file
off-line analysis. This is useful for exporting execution data from Paradyn to other analysis

TheEXIT button, when selected, will exit Paradyn and terminate all associated applicatio
visualization processes.
User’s Guide May 5, 1998 Release 2.1

-
 layout

ction 9).

e listed

l-

f a
e if the
int tun-
e name
 slider
ed on

sed by
Page 4-1

4 TUNABLE CONSTANTS

4.1 Overview

Users can customize Paradyn’s operation throughtunable constants. Paradyn defines several tun
able constants that may be altered by the user, ranging in scope from user-interface window
issues to tuning the automated search parameters of the Performance Consultant (see Se

Tunable constants are either boolean or floating-point. Paradyn’s tunable constants ar
in Sections 4.2 and 4.3.

To change the value of a tunable constant, chooseTunable Constants Control from theSetup
menu of theParadyn Main Control window. This brings up the window shown in Figure 18. Boo

ean tunable constants (developerMode, showWhereAxisTips, showShgKey, showShgTips, and so
on throughhideShgShadowNodes in Figure 18) are shown first. The checkbox to the right o
boolean tunable constant is colored gray if the tunable constant’s setting is false, and blu
tunable constant’s setting is true. Floating-point tunable constants appear next. Floating-po
able constants with bounds on their acceptable values have a slider widget in between th
and the entry field. You can type a new value into the entry field or click the mouse on the
and “drag” it to the desired value. The minimum and maximum allowable values are display
the left and right sides of the slider as a convenience.

Changes made to tunable constant values do not take effect until the window is dismis

Figure 18: The Tunable Constants Window
User’s Guide May 5, 1998 Release 2.1

clicking on Accept . Clicking onCancel will dismiss the window without making any changes.

s, until

lt values.
our lik-
yn on

 liking.

ant.

re

-
rt if any
er tun-
e realize
.

el-
Page 4-2

Tunable constant settings remain in effect for the duration of this Paradyn session; that i
you explicitly change the value again through this menu or quit the Paradyn process.

Each time a new Paradyn session is started, tunable constants are reset to their defau
This can be an inconvenience if the default values of certain tunable constants are not to y
ing. The Paradyn Configuration Language (PCL) allows you to create files read by Parad
startup. Among many other things, such files can contain tunable constant settings to your
See Section 11.6 for particulars on how to set tunable constant values in a PCL file.

Under theHelp menu is an entry calledShow Tunable Descriptions . Invoking this menu item
brings up theTunable Descriptions window, giving a concise description of each tunable const
An example is shown in Figure 19.

4.2 User Tunable Constants

Each tunable constant is classified as eitherUser or Developer mode. User tunable constants a
intended for everyday use. User tunable constants are listed in Figure 20.

4.3 Developer Tunable Constants

Developer tunable constants are not intended for everyday use.If you change a developer mode
tunable constant, you are presuming a detailed knowledge of the internal workings of Para
dyn. We provide no guarantees on how system behavior changes, nor can we offer suppo
developer tunable constant has been altered from its original setting. In addition, develop
able constants are subject to significant change from release to release. Nevertheless, w
that some experienced users may benefit by occasional access to these tunable constants

To access developer tunable constants set the tunable constantdeveloperMode to true and click
Accept : theTunable Constants window will re-present itself containing both the user and dev
oper tunable constants. Setting the tunable constantdeveloperMode to false will “hide” the devel-

Figure 19: Tunable Constants Descriptions Window
User’s Guide May 5, 1998 Release 2.1

oper tunable constants once again. Developer tunable constants are listed in Figure 21.

n
 real

r-
 the
e-
 on

nce
me

ce

ng

nt

ot

or

t.

.

iza-

air

PU

 I/O

ing

the
Page 4-3

Tunable Name Description

showWhereAxisTips (bool) If true, the Where Axis window is drawn with several user-interface tips o
how to select and expand where axis items. Setting to false saves screen
estate.

costLimit (float) Maximum allowable perturbation of the application when running the Pe
formance Consultant (Section 9). Paradyn keeps track of an estimate of
extent to which its instrumentation is perturbing the application under ex
cution; this tunable constant allows users to set a maximum upper-bound
such perturbation, as a percentage of execution time.

minObservationTime (float) Specifies a lower bound on the time (in seconds) before the Performa
Consultant will begin using data collected to evaluate hypotheses. This ti
guards against the effects of transient data values at the start of a phase.

sufficientTime (float) Specifies the minimum amount of time (in seconds) before the Performan
Consultant can conclude that a hypothesis is false.

showShgKey (bool) If true, the Performance Consultant window includes a key to the meani
of the node and text colors shown.

showShgTips (bool) If true, the Performance Consultant window includes a key to releva
mouse functions.

hideShgTrueNodes (bool) If true, the Performance Consultant’s Search History Graph (SHG) will n
show true nodes.

hideShgFalseNodes (bool) If true, the SHG will not show false nodes.

hideShgUnknownNodes (bool) If true, the SHG will not show nodes which haven’t been determined true
false yet.

hideShgNeverSeenNodes (bool) If true, the SHG will not show nodes which it has not begun to evaluate ye

hideShgActiveNodes (bool) If true, the SHG will not show nodes which are active (instrumented).

hideShgInactiveNodes (bool) If true, the SHG will not show nodes which are inactive (un-instrumented)

hideShgShadowNodes (bool) If true, the SHG will not show shadow nodes.

PC_SyncThreshold (float) Percentage Performance Consultant uses as threshold for all synchron
tion hypotheses (such asExcessiveSyncWaitingTime). For example, select-
ing 20% here will cause any synchronization-related hypothesis-focus p
testing above 0.20 to conclude “true.”

PC_CPUThreshold (float) Percentage Performance Consultant uses as threshold for determining C
bottlenecks (CPUbound).

PC_IOThreshold (float) Percentage Performance Consultant uses as threshold for determining
blocking time bottlenecks (ExcessiveIOBlockingTime).

PC_IOOpThreshold (float) Number of bytes Performance Consultant uses as threshold for determin
small I/O operation bottlenecks (TooManySmallIOOps).

developerMode (bool) If set, additional tunable constants and metrics are made available to
user. NB: USE AT YOUR OWN RISK!!
User’s Guide May 5, 1998 Release 2.1

Figure 20: User-level Tunable Constants

ted

ime

ted

nts

.

ime

any

cute

. The

e

e

e

e

e

e

e

Page 4-4

Tunable Name Description

hysteresisRange (float) Represents the fraction above and below threshhold that a test should use.

PCprintDataTrace (bool) If true, the Performance Consultant prints a full trace to stdout of all PC-rela
data events: data arrival at the PC, data values after filtering, etc.

PCprintTestResults (bool) If true, the Performance Consultant prints data to the console window every t
it computes a result value for an experiment.

PCprintDataCollection
(bool)

If true, the Performance Consultant prints out trace information on PC-initia
instrumentation requests and disables.

PCuseIndividualThresholds
(bool)

If true, the Performance Consultant will ignore the user-level tunable consta
PC_SyncThreshold ,PC_CPUThreshold ,PC_IOThreshold ,PC_IOOpThreshold ,
and use a set of hypothesis-specific developer-level tunable constants instead

PCprintSearchChanges
(bool)

If true, the Performance Consultant prints data to the console window every t
it draws a conclusion for a hypothesis, or starts or stops an experiment.

PCcollectInstrTimings
(bool)

Times all instrumentation requests, saving result inTESTresult.out

printChangeCollection
(bool)

If true, the name of each metric/focus pair is printed to the console window
time it is enabled or disabled.

printSampleArrival (bool) If true, the arrival of each sample fromparadynd is printed out to the console
window.

tclPrompt (bool) If true, a Paradyn prompt is presented, allowing the user to type in and exe
arbitrary Tcl language commands.

EnableRequestPacketSize
(float)

It represents the length of the packet sent when batching enable requests
default value is 5.

highSyncThreshold (float) If PCuseIndividualThresholds is set to true, this will be used as the Performanc
Consultant test threshold forExcessiveSyncWaitingTime.

highCPUtoSyncRatio-
Threshold (float)

If PCuseIndividualThresholds is set to true, this will be used as the Performanc
Consultant test threshold forCPUbound.

lockOverhead (float) If PCuseIndividualThresholds is set to true, this will be used as the Performanc
Consultant test threshold forlockOverhead.

minLockSize (float) If PCuseIndividualThresholds is set to true, this will be used as the Performanc
Consultant test threshold forminLockSize.

highIOthreshold (float) If PCuseIndividualThresholds is set to true, this will be used as the Performanc
Consultant test threshold forExcessiveIOBlockingTime.

diskBlockSize (float) If PCuseIndividualThresholds is set to true, this will be used as the Performanc
Consultant test value forTooManySmallIOOps.

seekBoundThreshold (float) If PCuseIndividualThresholds is set to true, this will be used as the Performanc
Consultant test threshold forseekBound.

Figure 21: Developer-level Tunable Constants. Use at your own risk!
User’s Guide May 5, 1998 Release 2.1

When theDeveloper Mode tunable constant is set, Paradyn makes available a number of addi-
tional “developer-mode metrics” for selection. For further details, see Section 6.

e data
ogram
.1 dis-

erfor-
xample

 future
xis, its

 barriers,
amming
 Some
 would
Page 5-1

5 SELECTING RESOURCES

You specify performance data for Paradyn to collect in two parts: the type of performanc
and the part(s) of the program for which you want this data collected. The parts of your pr
are calledresources in Paradyn. This section discusses how to select resources. (Section 6
cusses how to selectmetrics—the type of performance data.)

5.1 Resources (The “Where” Axis)

TheWhere Axis is used to describe the parts of your program for which Paradyn can report p
mance data. It is a visual representation of different ways to specify these parts. A simple e
of a Where Axis is given in Figure 22. The Where Axis is used to make allresource-related selec-
tions. For example, users will use the Where Axis for adding resources to a visi, and in the
for manual refinements in the Performance Consultant. This section describes the Where A
visual representation, and how to make selections.

Before we delve into specific examples of usage, a few definitions are in order:

Resources:

Resources are program components. Examples include modules, procedures, processes,
locks, processor nodes, and disks. Some of the resource types are common to all progr
platforms. Examples of these common resources include Modules and Procedures.
resources are only supported on particular platforms. An example of this type of resource
be the Barrier synchronization object.

Figure 22: Where Axis window.
“Whole Program” has three unexpanded subtrees and one expanded subtree (Code)
User’s Guide May 5, 1998 Release 2.1

resents
hierar-

he
gs,

he pro-
ted into
odule
odule

ibrar-

ot cor-
d next.

ther
tions are
table.
y the
 files or

s into
l
arsing a
 the
AIX
IX, all
ctive

sting”
-
 com-

 by
Page 5-2

Resource Hierarchy:

Paradyn organizes all of a program’s resources into hierarchies (trees). Each hierarchy rep
a broad class of objects in an application. Typically, a parallel program has at least four
chies:Code (under which we have an application’s modules, then individual functions),Process

(under which we have each node in a parallel machine),Machine (these are the nodes or hosts in t
parallel or distributed environment), andSyncObject (that includes such types as message ta
semaphores and barriers).

The code hierarchy contains a hierarchical representation of the code which comprises t
gram under examination. It is a two level hierarchy. The code space as a whole is separa
modules, which represent a high level grouping of program functionality. In general, a m
corresponds to an individual source file in a higher level language, or to a single library. A m
contains all of the functions located in the corresponding original source file (or files, for l
ies).

There are a few instances in which the set of modules displayed in the code hierarchy will n
respond exactly to the set of source files and modules linked into the program, as discusse

The “DEFAULT_MODULE” module holds all functions which could not be assigned to any o
module, either because the necessary information could not be found, or because the func
not rightfully assigned to any of the input files or libraries which make up the given execu
On most supported platforms, this module should include only functions which are built-in b
compiler or environment, in the sense that they do not come from any user specified source
libraries (e.g., the_start , __do_global_ctors_aux , and __do_global_dtors_aux func-
tions provided incrt0 by most Unix C compilers).

Some compiler and linker settings do not generate enough information to resolve function
modules: e.g., when compiled/linked without the ‘-g ’ compilation flag which requests a symbo
table be included in the object/executable for the use of tools such as a debugger. When p
file which does not contain this information, Paradyn assigns all functions to
“DEFAULT_MODULE”. In particular, we are not aware of any compilers and linkers on the
platform which provide the necessary information. As such, when Paradyn is used on A
functions are generally placed in that module. Note that this affects the MDL “exclude” dire
(Section 11.8).

In Paradyn versions 2.1 and above, it is no longer necessary to explicitly delineate “intere
user code withDYNINSTstartCode andDYNINSTendCode block objects. However, later Para
dyn versions should still correctly parse executables which have been so built. To maintain
patibility with older Paradyn versions, when an application is linked withDYNINSTstartCode
and DYNINSTendCode, any statically linked code which is outside of the range delimited
DYNINSTstartCode andDYNINSTendCode is placed in the “DYN_MODULE” module.

Focus:
User’s Guide May 5, 1998 Release 2.1

A focus is a set of selections from the Where Axis containing exactly one resource fromeach
resource hierarchy. For example, in the Where Axis of Figure 22, a focus might be the set

e
de in
m (all

llowing

U
 by

ppli-

source
eds, if
r nodes

. The
 a single
le, in

des
Page 5-3

{/Code/Alloc.o, /Machine, /Process, /SyncObject}. The selection/Code/Alloc.o means restrict our perfor-
mance data collection to only the code contained in moduleAlloc.o . The selection/Machine

means all machines (nodes) on which your program is running./Process means all processes in th
program and/SyncObject means for all types of synchronization used. If you select the root no
each hierarchy, this means that Paradyn will collect data for a metric for the whole progra
nodes, processes, modules, etc.).

Performance data is collected for a particular focus. For example, suppose we made the fo
focus selection and requested that CPU time data be collected for this focus:{/Code/Alloc.o/XtCalloc,

/Machine, /Process/psicm.pd.pn{123657_mendota}, /SyncObject}. This selection means “measure the CP
time spent in functionXtCalloc while it’s being executed on any machine, only when executed
processpsicm.pd.pn{123657_mendota}, and for any type and instance of aSyncObject.” In this example,
CPU time is ametric. Paradyn metrics are functions that describe how the behavior of your a
cation program changes over time. Metrics and their selection are presented in Section 6.

5.2 The Where Axis display

Resources for your application program are displayed in the Where Axis display. The re
hierarchy in Figure 22 is an example of a such a window. Many programs will have hundr
not thousands of resources; displaying the complete tree for all of their hierarchies and thei
(as in Figure 23) is cumbersome to the user, who will have difficulty finding desired items.

Paradyn allows the user to control how much of the Where Axis is visible at any one time
children of a node may be displayed as separate single nodes or be displayed together in
listbox. The listbox is a compact way of representing many children of a node. For examp
Figure 22, the root node (Whole Program) has four (yes, four!) child nodes. Three of these no
(Machine, Process, andSyncObject) are combined in the blue listbox. The fourth child ofWhole Pro-
gram is the salmon colored single node,Code .

Figure 23: Showing all resources in the Where Axis display
User’s Guide May 5, 1998 Release 2.1

If the listbox contains a large number of nodes, then it may even have a scroll bar on the side.

esently
 it from
istbox
de

tbox

y. You
istbox

lick the
on one
own in

ctions
rrently
5 there
Page 5-4

A triangle beside a node in a listbox means that it is not a leaf node—that the subtree is pr
un-expanded to conserve screen real estate. Double-clicking on such a node will expand
the listbox as a single node. This new single node will be salmon colored with a blue l
below, containing its child nodes. TheCode node in Figure 22 was originally displayed as a no
in the listboxWhole Program. Double-clicking on theCode resulted inCode being displayed as single
node. SinceCode is not a leaf node, its children (a list of modules) are displayed as a lis
below.

After expanding a node, the resource desired may still be buried lower in the hierarch
can continue to double-click on appropriate nodes. Shift-double-click on the parent of a l
(that is, on a pink node showing a listbox under it) will expandall listbox items one level.

5.3 How to select foci using the Where Axis

A focus is a selection of one resource from each resource hierarchy. To choose a focus, c
left mouse button over a resource name, thereby selecting it. Performing this operation
resource in each hierarchy selects a single focus. An example of such a selection is sh
Figure 24. The focus selected in this figure is:

{/Code/anneal.c/a_cost, /Machine/goat, /process, /SyncObject}.

The Where Axis also can be used to select multiple foci at the same time. Multiple sele
are done by making more than one selection in a given hierarchy. The set of foci cu
selected is the cross-product of all resource hierarchy selections. For example, in Figure 2
are three resources selected from theCode hierarchy (/Code/channel.c, /Code/anneal.c, and
/Code/anneal.c/a_cost), one resource selected from theMachine hierarchy (/Machine/goat), one resource

Figure 24: A single focus selected
User’s Guide May 5, 1998 Release 2.1

selected from theProcess hierarchy (/Process), and two resources selected from theSyncObject hier-

is

ed sub-
ed by
n.

 at the
 to the

atch.
 is case-

 dese-
Page 5-5

archy (they are/SyncObject and/SyncObject/Semaphore). The total number of foci currently selected
therefore (3× 1 × 1 × 2 = 6). They are:

• {/Code/channel.c, /Machine/goat, /Process, /SyncObject}

• {/Code/channel.c, /Machine/goat, /Process, /SyncObject/Semaphore}

• {/Code/anneal.c, /Machine/goat, /Process, /SyncObject}

• {/Code/anneal.c, /Machine/goat, /Process, /SyncObject/Semaphore}

• {/Code/anneal.c/a_cost, /Machine/goat, /Process, /SyncObject}

• {/Code/anneal.c/a_cost, /Machine/goat, /Process, /SyncObject/Semaphore}

5.4 The Where Axis GUI

Locating a resource

Resource names are sorted in every listbox, to ease locating resources. All sibling expand
trees are sorted left-to-right on screen. A subtree’s sibling listbox is always leftmost, follow
its expanded items, if any. If all of a subtree’s children are expanded, then no listbox is draw

To quickly locate a resource, you may type a resource prefix into the “Search” entry box
bottom of the Where Axis window and press return. This feature finds, expands, and scrolls
first resource with that prefix (if any). Continuing to press return will find the next prefix m
The search wraps around to the beginning when no more matches are found. The search
sensitive.

Selecting a resource

Clicking on a resource name (whether in a listbox or expanded) selects it. Clicking again

Figure 25: Multiple foci selection
User’s Guide May 5, 1998 Release 2.1

lects it. A <ctrl-dbl-click> on the root of an expanded subtree will select all of its children (but not

 To
nt

l un-

ntain-

), the
nd so

er the
witch
e new

erefore

addi-
olding

here
Page 5-6

its children’s children; i.e., not recursively). Another <ctrl-dbl-click> deselects the same.

To deselect every node in the Where Axis, chooseClear from theSelections menu.

Listbox expansion

As previously mentioned, double-clicking on a non-leaf listbox item will expand it.
quickly expandall (non-leaf) items of a given listbox, <shift-dbl-click> on the listbox’s pare
node (which is always salmon colored). Another <shift-dbl-click> on the listbox’s parent wil
expand all children back into the listbox.

The navigate menu

If many Where Axis items have been expanded (e.g. a <shift-dbl-click> on a listbox co
ing 100 elements), it may be difficult finding your way around the Where Axis. TheNavigate
menu can help with this. After clicking on any node (whether or not it was a listbox node
Navigate menu will contain every ancestor of that node (i.e., its parent, its parent’s parent, a
on up to the root node). Selecting any item from theNavigate menu will scroll the Where Axis so
the chosen item is visible.

Changing abstractions

All abstractions presently known to the Where Axis will be represented by an entry und
Abstraction menu. The currently displayed abstraction has a highlighted menu entry. To s
abstractions, simply choose the appropriate item under this menu. New abstractions—lik
resources—may be reported to the Where Axis at any time. The Abstractions menu is th
dynamic.

In the current version of Paradyn, only the Base abstraction is supported.

Scrolling

The Where Axis contains traditional horizontal and vertical scrollbars for navigation. In
tion, the Where Axis may be scrolled by moving the mouse to the center of the window, h
down the Alt key, and moving the mouse. The mouse pointer will remain fixed, but the W
Axis will scroll around it.
User’s Guide May 5, 1998 Release 2.1

is sec-
ct met-

tion 5)

metrics
Box is
s
 the

cribes

 in the

 addi-
trics”
ion 6.2;
ection)

 select
 to the
x of
Page 6-1

6 SELECTING METRICS

A metric is a time-varying function that quantifies some aspect of program performance. Th
tion illustrates the metrics selection process in Paradyn. Section 6.1 describes how to sele
rics and Section 6.2 describes all the metrics currently defined in Paradyn.

6.1 How to select metrics

When you wish to display or modify performance data, you must select a focus (see Sec
and list of metrics. This section discusses how to selectmetrics—the type of performance data.

The Metrics Dialog Box appears when Paradyn needs the user to specify one or more
for some operation. Currently, there is only one place in Paradyn where the Metrics Dialog
used: when choosing metric-focus pairs to add to avisi. Choosing a set of metric-focus pair
involves making selection(s) from both the Metrics Dialog Box (for the metrics) and from
where axis (for the foci). In this section, we will discuss only metric selection; Section 5 des
in detail how to make focus selections.

A sample metrics dialog box appears in Figure 26. Note that the metrics which appear

dialog box are specific to the platform being run (such as sequential vs. parallel/PVM). In
tion, if thedeveloperMode tunable constant is set (see Section 4.3), the “developer mode me
are also made available. Complete descriptions of the various metrics are provided in Sect
expert users can use Paradyn Configuration Language’s Metric Description Language (S
to add custom metrics.

When the metrics dialog box appears, select one or more metrics from the given list. To
a metric, simply click the mouse in any checkbox. Selected metrics will have a red square
left of the metric name in the dialog box. Figure 27 shows how the metrics dialog bo
Figure 26 would look after the metricscpu , msg_bytes_sent , andprocedure_calls were selected.

Figure 26: Metrics dialog box
User’s Guide May 5, 1998 Release 2.1

Clicking on a previously-selected metric will deselect it. Clicking on theCLEAR button at the bot-

vious
nfigura-
ing this

ce or for

rcent-

 are like
Page 6-2

tom will deselect all selected metrics.

When done with metric selections, pressACCEPT or CANCEL . The metrics dialog box will
disappear at that time; it will reappear the next time a metric selection is required1.

6.2 Metric Descriptions

A list of all current metrics is presented in Figure 28. As we have described in the pre
Section, expert users can create their own custom designed metrics using the Paradyn Co
tion Language. Most of the metrics that appear in Figure 26 and Figure 27 were created us
language and are provided within Paradyn. Additionally, an expert user can selectDeveloper
Mode metrics (Figure 28). Developer mode metrics are mostlyinternal metrics, or metrics that
have been hard coded into Paradyn, that can be used to monitor Paradyn’s own performan
debugging purposes. Developer mode can be selected from theTunable Constants option of the
Setup menu, as it is illustrated in Figure 18 (Section 4). AfterdeveloperMode is selected, a
larger list of metrics will appear in the metrics dialog box.

It is important to make a distinction between three types of metrics:normalized, unnormalized
andsampled. Normalized metrics are time related metrics that are being computed as a pe
age (e.g.,cpu). Unnormalized metrics are mainly computed using counters (e.g.,procedure_calls)
and they are usually expressed as a rate (e.g., operations per second). Sampled metrics
unnormalized metrics, but the units are not represented as a rate (e.g., operations).

Figure 27: Metrics dialog box with several metrics selected
User’s Guide May 5, 1998 Release 2.1

1. This contrasts with theWhere Axis window (Section 5), which is kept open because the ability to browse a
program’s resource hierarchy at any time is desirable.

Page 6-3

Metric Description Units Visi Axis
Label

active_processes Each bin represents the number of processes
active during the corresponding interval of
time. Aggregation is the average number of
processes active over an interval of time.

of pro-
cesses

operations

cpu Each bin represents the percentage of CPU
time spent during the corresponding time inter-
val. Aggregation is total CPU time over an
interval.

CPUs CPUs

cpu_inclusive Same ascpu but includes called procedures in
the process time calculation.

CPUs CPUs

exec_time Each bin represents the elapsed wall clock time
per unit during the corresponding time interval.
Aggregation is the sum over the interval.

exec time CPUs

exec_inclusive Each bin represents the elapsed wall clock time
per unit during the corresponding time interval.
Aggregation is the sum over the interval. The
difference between exec_time and
exec_inclusive is that exec_inclusive includes
the time spent in calls to other functions (i.e., it
is less intrusive thanexec_time).

exec time CPUs

io_bytes This metric represents the number of bytes for
Input/Output operations. Currently, only “read”
and “write” are supported as input/output oper-
ations both for UNIX and PVM.

#bytes
read/
written

bytes

io_ops Number of Input/Output operations. IO opera-
tions are the same as forio_bytes.

IO ops operations

io_wait Time spent during Input/Output operations. IO
operations are the same as forio_bytes.

CPUs CPUs

Figure 28: Metrics defined in Paradyn
User’s Guide May 5, 1998 Release 2.1

Page 6-4

msgs The total number of messages sent and
received. The unit is operations per unit of
time. Aggregation is the sum of all sends and
receives over the time interval. Send and
receives are defined as follows:

UNIX send:“write”
UNIX recv:“read”
PVM send:“pvm_send”
PVM recv:“pvm_recv”

#msgs
sent/recv

msgs

pp_msgs Similar tomsgs, but it counts the number of
point-to-point messages (only for MPI applica-
tions). Point-to-point communications are
defined as follows:MPI__Send,
MPI__Bsend, MPI__Ssend, MPI__Isend,
MPI__Issend, MPI__Recv, MPI__Irecv,

MPI__Sendrecv, MPI_Sendrecv_replace .

#msgs msgs

cc_msgs Similar tomsgs, but it counts the number of
collective communications (only for MPI appli-
cations). Collective communications are
defined as follows:MPI__Bcast,
MPI__Alltoall, MPI_Alltoallv,
MPI__Gather, MPI__Gatherv,
MPI__Allgather, MPI__Allgatherv,
MPI__reduce, MPI__allreduce,
MPI__Reduce_scatter, MPI__Scatter,

MPI__Scatterv, MPI__Scan .

#msgs msgs

msg_bytes Number of message bytes sent and received.
Aggregation is the total number of bytes sent
and received. Send and receive are defined as
follows:

UNIX : “read”, “write”
PVM : “pvm_send”, “pvm_recv”

#bytes
sent/recv

bytes

msg_bytes_recv Number of message bytes received per unit of
time. Aggregation is the total number of bytes
received. Message receives are defined as for
msgs.

of msg-
bytes
recv

bytes

Metric Description Units Visi Axis
Label

Figure 28: Metrics defined in Paradyn
User’s Guide May 5, 1998 Release 2.1

Page 6-5

pp_msgBytesRecv Similar tomsg_bytes_recv, but only for receive
messages involved in point to point communi-
cations (MPI applications only). These point to
point communications are defined as follows:
MPI__Recv, MPI__Irecv, MPI__Sendrecv,

MPI_Sendrecv_replace.

of msg
bytes
recv

bytes

cc_msgBytesRecv Similar tomsg_bytes_recv, but only for receive
messages involved in collective communica-
tions (MPI applications only). These collective
communications are defined as follows:
MPI__Bcast, MPI__Alltoall,
MPI_Alltoallv, MPI__Gather,
MPI__Gatherv, MPI__Allgather,
MPI__Allgatherv, MPI__reduce,
MPI__allreduce, MPI__Reduce_scatter,
MPI__Scatter, MPI__Scatterv,

MPI__Scan .

of msg
bytes
recv

bytes

msg_bytes_sent Number of message bytes sent per unit of time.
Aggregation is the total number of bytes sent.
Message sends are defined as for “msgs”.

of msg-
bytes
sent

bytes

pp_msgBytesSent Similar to msg_bytes_sent, but only for send
messages involved in point to point communi-
cations (MPI applications only). These point to
point communications are defined as follows:
MPI__Send, MPI__Bsend, MPI__Ssend,
MPI__Isend, MPI__Issend,

MPI__Sendrecv, MPI_Sendrecv_replace .

of msg
bytes
sent

bytes

cc_msgBytesSent Similar tomsg_bytes_sent, but only for send
messages involved in collective communica-
tions (MPI applications only). These collective
communications are defined as follows:
MPI__Bcast, MPI__Alltoall,
MPI_Alltoallv, MPI__Gather,
MPI__Gatherv, MPI__Allgather,
MPI__Allgatherv, MPI__reduce,
MPI__allreduce, MPI__Reduce_scatter,
MPI__Scatter, MPI__Scatterv,

MPI__Scan .

of msg
bytes
sent

bytes

number_of_cpus Number of CPUs in the system. #CPUs #CPUs

Metric Description Units Visi Axis
Label

Figure 28: Metrics defined in Paradyn
User’s Guide May 5, 1998 Release 2.1

Page 6-6

observed_cost Internal metric : Indicates the effect on the
application from collecting data. Its purpose is
to check that the overhead of data collection
does not exceed pre-defined levels, and should
these levels be exceeded, it reports to the higher
level consumers of data.

wasted
CPUs

CPUs

pause_time Each bin represents the fraction of time in
which the application program was paused by
Paradyn. Maximum value is 1.0. Aggregation
is the total time paused over an interval.

pause-
time

CPUs

predicted_cost Internal metric : Expected overhead of collect-
ing the data necessary to compute a metric for a
particular focus or combination of resources.
The predicted cost is expressed as the percent-
age utilization of CPU.

wasted
CPUs

CPUs

procedure_calls Each bin represents the number of procedure
calls per unit during the corresponding time
interval. Aggregation is the total number of
procedure calls over an interval.

of calls operations

procedure_called Same asprocedure_calls except all child proce-
dure calls are included in the count.

of calls operations

sync_ops The number of synchronization operations per
unit of time. Aggregation is the sum. The fol-
lowing are defined as synchronization opera-
tions:

UNIX : “write”, “read”, “recv”, “recvfrom”,
“select”, “sendmsg”, “send”, “sendto”
PVM : “pvm_send”, “pvm_recv”

#sync
ops

operations

sync_wait The elapsed wall time spent waiting for a syn-
chronization operation. Aggregation is the sum
of all waiting time. The following will be
included in the reported times:

UNIX : “write”, “read”
PVM : “pvm_send”, “pvm_recv”

sync
wait time

CPUs

Metric Description Units Visi Axis
Label

Figure 28: Metrics defined in Paradyn
User’s Guide May 5, 1998 Release 2.1

Page 6-7

Metric Description Units Visi
Axis
Label

bucket_width Internal metric : It is the length of the time inter-
val represented by each histogram bucket (where
Paradyn stores performance data).

seconds seconds

smooth_obs_cost Internal metric : Thesmooth_obs_cost is a better
approximation of the current instrumentation cost
in the system. It determines a threshold for the
maximum degree of perturbation cost that the sys-
tem can allow.

wasted
CPUs

CPUS

Figure 29: Developer Mode Metrics defined in Paradyn
User’s Guide May 5, 1998 Release 2.1

 Para-

aliza-
ase per-

ceive

before
by the
Page 7-1

7 CONTROLLING VISIS

This section describes how to start and stop visualization processes (known as ‘visis’) from
dyn.

7.1 Starting

A new visualization can be requested by pressing theVisi button from the Paradyn main window
menubar (Figure 30), which opens theStart A Visualization dialog.

This dialog presents a list of visualizations to choose from as shown in Figure 31. Visu
tions can be started so that they receive either global phase performance data or current ph
formance data. The selection in Figure 31 is for a Histogram visualization that will re
performance data from the global phase of the application’s execution.

Once a visualization has been defined, metric and focus menuing is usually initiated
the visualization process is started. Whether or not this menuing is done is determined

Figure 30: Paradyn Main Control window

Figure 31: Start A Visualization menu
User’s Guide May 5, 1998 Release 2.1

force flag setting in the PCL entry for this visualization. If the force option is set then the visual-

arting
lization
 menu-
lization

ss has
 to
rocess
isualiza-
Page 7-2

ization process is started without metric and focus menuing. This is typically used for st
visualizations that do not want to enable data flow before starting. The Phase Table visua
is an example of one which should have the force option set. For other visualizations, once
ing is done, and at least one metric/focus combination is successfully enabled, the visua
process is started.

7.2 Stopping

Stopping a visualization process can occur in one of two ways. First, the visualization proce
a menu option to quit that invokes the VisiLibQuitVisi routine and then exits. The second way
stop a visualization process is to kill it (as a Unix process). Paradyn will detect that the p
has exited and take care of disabling data and cleaning up any state associated with the v
tion process.
User’s Guide May 5, 1998 Release 2.1

re two
he
ntervals
se ends

ccur at
xecu-
 global
l phase
ase of

new
rmance
s when

sualiza-
s. Typi-
hows a
 shows

and the
hing on
Page 8-1

8 PHASES

Phases in Paradyn are contiguous time-intervals within an application’s execution. There a
kinds of phases: theglobal phase andlocal phases. The global phase starts at the begining of t
program execution and extends to the current time. Local phases are non-overlapping subi
of the global phase. When a new local phase is defined in the system, the current local pha
and all data collection for the current phase stops. Data collection for the new phase will o
a finer granularity than collection for data the global phase. At any time in the program’s e
tion, data collection can be enabled for one or both of the the current local phase and the
phase. Similarly, a Performance Consultant search (Section 9) can be started for the globa
of an application’s execution, or can be restricted to search over only the current local ph
execution.

8.1 Starting a new phase

A new local phase can be defined by selectingStart under thePhase menu of the Paradyn main
window (Section 3) orStart Phase from the Phase Table display menu (Figure 32). When a
phase is defined, any visualizations defined for the current local phase stop receiving perfo
data. Similarly, if the Performance Consultant is active for the current phase, its search end
a new phase is defined.

8.2 Visualizations and Phases

Visualizations can show data for either the local phase or the global phase. Local phase vi
tions receive and display performance data from the phase’s start time until the phase end
cally, local phase data is collected at a finer granularity than global phase data. Figure 33 s
real time histogram visualization that has been defined for the global phase, and Figure 34
one that has been defined for specific phase.

8.3 The Performance Consultant and phases

The Performance Consultant (Section 9) can simultaneously search both the local phase
global phase. Complete details are given in the Performance Consultant section; searc

Figure 32: Phase Table Display
User’s Guide May 5, 1998 Release 2.1

multiple phases in particular is discussed in that section.

Page 8-2

Figure 33: Time Histogram: Global Phase

Figure 34: Time Histogram: Local Phase (3)
User’s Guide May 5, 1998 Release 2.1

t your
x pro-
dyn’s
tify the
ere”)
hy-

earch-
 met-

for-
9.3),

4).

he PC

t
 of its

ems.

the
n 4).
cution
which

ticu-
Axis, as

gh to
s that
phase
ms that
r prob-
Page 9-1

9 PERFORMANCE CONSULTANT

Paradyn provides many options for selecting and displaying performance information abou
application program. Sometimes these options can be overwhelming. In a large, comple
gram, it can be difficult to know where to start looking for performance problems, and Para
Performance Consultant is designed to help. The Performance Consultant (PC) helps iden
type of performance problems (“why”), where in the program these problems occur (“wh
and the time during the execution during which the problem occurred (“when”). This “w

where-when” model of searching for performance problems is called the W3 (pronounced “W-
cubed”) Search Model and forms the core of the PC.

The PC is automated so that, in its normal mode of operation, you simply tell it to start s
ing for performance problems. The PC will continually select and refine which performance
rics are enabled and for which foci they will be enabled.

In this section, we describe the W3 Search Model (Section 9.1), the components of the Per
mance Consultant’s window (Section 9.2), how to interpret what the PC tells you (Section
and (once you get a bit of experience) how to adjust and fine-tune its operation (Section 9.

9.1 The W3 search model

The Performance Consultant automatically locates potential bottlenecks in your code. T
describes each bottleneck by statingwhy there is a problem (thehypothesis), andwhere in the
application the problem was found (thefocus, see Section 5). You can direct the search to find ou
when the problem occurred by including either the entire execution or a particular phase
execution.

The “Why” Axis: The PC includes the definition of a set of generic performance probl
These problems, called “hypotheses”, are typically of the form:

PerfMetricX > SpecifiedThreshold

where PerfMetricX is some metric defined in Paradyn (Section 6) and
SpecifiedThreshold is a value that you can set by using a Tunable Constant (Sectio
The threshold value is typically expressed as a fraction (between 0 and 1) of the exe
time of the application program. Each hypothesis may also contain pruning directives,
cause some portion of the resource hierarchy to be ignored while searching.

The “Where” Axis: A focus in Paradyn allow you to constrain a performance metric to a par
lar subset of program resources. The PC makes step-by-step selections in the Where
it tries to isolate the cause of performance problems.

The “When” Axis: The PC can look for performance problems whose effect is large enou
stand out over the total execution of the application program, or it can look for problem
stand out during a restricted interval of time. You can associate a PC with each
(Section 8). The PC associated with the global phases searches for performance proble
affect the entire program execution; the PC associated with a local phase searches fo
User’s Guide May 5, 1998 Release 2.1

lems that affect (at least) that interval of execution.

in the
lored

 bottle-
es not
val of
 signif-

etc.) is

pothe-

ble

ant

 to

f that
way to
s been
Page 9-2

Depending on the complexity of the application program, i.e., the number of nodes
Where Axis for the application, the number of hypothesis/focus pairs that could be exp
might be quite large. On the other hand, the goal is to find the handful of most troublesome
necks in the application. Any hypothesis/focus pair that doesn’t exceed the threshold do
require further attention; realistically, any that exceeds the threshold for only a short inter
time won’t get any attention. For this reason the PC only reports bottlenecks that exist for a
icant portion of the overall phase being tuned.

9.1.1 The Why Axis

The space of all possible hypotheses (such as synchronization-bound, CPU-bound,

called the Why Axis. The root hypothesis is the genericTopLevelHypothesis. This hypothesis is
considered true if any hypothesis at the next level is true. Descriptions of the remaining hy
ses follow:

• CPUbound: Compares CPU time to the tunable constantPC_CPUThreshold . Searching
through/SyncObject and/Process hierarchies is disabled.

• ExcessiveSyncWaitingTime: Compares total synchronization waiting time to the tuna
constantPC_SyncThreshold .

• ExcessiveIOBlockingTime: Compares total I/O waiting time to the tunable const
PC_IOThreshold . Searching through the/SyncObject hierarchy is disabled.

• TooManySmallIOOps: Compares average number of bytes per I/O operation
PC_IOOpThreshold . Searching through the/SyncObject hierarchy is disabled.

If a particular hypothesis in the Why Axis tests true, the PC will try to test the children o
hypothesis next. When the Performance Consultant searches along the Why Axis in this
test more detailed hypotheses for a particular focus, we say that a Why Axis refinement ha
made.

Figure 35: The Why Axis

TopLevelHypothesis

ExcessiveSyncWaitingTime CPUbound ExcessiveIOBlockingTime

TooManySmallIOOps
User’s Guide May 5, 1998 Release 2.1

uests to
ypothe-
focus

pansion
at
a
d to

s moving
ample,

ol-

tion
 instru-
cking
rches

her

alled
 pair
ents
m

ready-
Page 9-3

9.1.2 The search strategy

When a new search is started, the Performance Consultant makes instrumentation req
evaluate the topmost levels of the why and where axes; that is, it evaluates each top level h
sis (CPUBound, SyncWaiting, IOBlocking) for WholeProgram. These particular hypothesis/
pairs will continue to be evaluated for the entire phase.

There are two questions of interest here: when is the search expanded, and how is ex
done? The search is expanded anytime a(hypothesis : focus) pair tests true. The only exception is
start-up, when an initial set of(hypothesis : focus) pairs are enabled. If, at any time,
(hypothesis : focus) pair (h : f) tests true, then the following hypothesis:focus pairs will be adde
the search:(h : all child foci of WholeProgram), plus (all child hypotheses of h : f). The why axis, and
each of the resource hierarchies, are trees, so refining one step in the search is defined a
down along a single edge in either the why axis or one of the resource hierarchies. For ex
from (ExcessiveIOBlockingTime : WholeProgram), using the resource hierarchy in Figure 24, the f
lowing set of(hypothesis : focus) pairs would be added:

1. One step along the Why Axis:
(TooManySmallIOOps : WholeProgram)

2. One step along the code hierarchy:

3. One step along the machine hierarchy:
(ExcessiveIOBlockingTime : goat)

4. One step along the process hierarchy:
ExcessiveIOBlockingTime : bubba.pd(21878_goat)

All of the new(hypothesis : focus) pairs resulting from this expansion generate instrumenta
requests, and, if possible, data collection begins immediately. However, the total amount of
mentation active at any given time during the tuning session is limited by an internal cost-tra
system. If the total cost of currently enabled instrumentation for all visualizations and sea
exceeds the cost threshold, new(hypothesis : focus) pairs are queued and activated after some ot
instrumentation is disabled.

Each(hypothesis : focus) pair is represented as a node of a directed acyclic graph (DAG), c
the Search History Graph (SHG). The root node of the SHG represents the
(TopLevelHypothesis : WholeProgram), and its child nodes represent the list of possible refinem
chosen as described above. If a SHGnode tests false, it is not expanded. After a certain minimu
observation interval, testing on all but the topmost level false nodes is halted. If an al
expanded node changes from true to false, then testing is halted for all of its children.

(ExcessiveIOBlockingTime : bubba.c) (ExcessiveIOBlockingTime : channel.c)

(ExcessiveIOBlockingTime : graph.c) (ExcessiveIOBlockingTime : outchan.c)

(ExcessiveIOBlockingTime : partition.c) (ExcessiveIOBlockingTime : anneal.c)
User’s Guide May 5, 1998 Release 2.1

ation.
ting and
Graph.

s been

uested
e not
“Cur-
ve gray
s for all
 Consult-

given
Page 9-4

9.2 Running the Performance Consultant

In this section, we describe how to run the Performance Consultant on an applic
Section 9.2.1 describes the Performance Consultant Window, Section 9.2.2 describes star
stopping a search, and Section 9.2.3 provides a detailed description of the Search History

9.2.1 The Performance Consultant window

The Performance Consultant window may be opened any time after an application ha
defined (see Section 2.4) by choosingPerformance Consultant from theSetup menu of Paradyn’s
main window. Figure 36 shows a sample Performance Consultant window.

TheSearches menu contains a list of all possible phases on which a search has been req
or may be started, including the default, “Global”, for whole program searches. If you hav
defined any phases for the application, then you will see only two choices, “Global” and
rent.” The currently displayed phase has a blue diamond next to its name; the others ha
diamonds. Choosing items under this menu allows you to page through the search display
active, paused, and completed searches. When a new phase is defined, the Performance
ant detects it, and adds the new phase’s name to itsSearches menu.

TheCurrent Search line gives the name of the currently displayed search phase. At any

Figure 36: A sample Performance Consultant window

Searches
Menu

Current
Search

Search Status

Search History
Graph

Node Status

SHG Color
Key

Help Tips
User’s Guide May 5, 1998 Release 2.1

time, it is always the same as theSearches menu item having a blue diamond before its name.

played
xpected
rma-

g a dif-

he
by the
hes will
aph in

e the
e. For
e node
e a

cuss
oved by

o con-

nt
. Note
ication

e a new

enta-
s only

tart of a
Page 9-5

The Search Status box is a scrolling text display just beneath theCurrent Search line. From
time to time, the Performance Consultant adds some information about the currently dis
search in this box; examples include when refinements are made, phases end, and une
error conditions occur. As with most items in the Performance Consultant window, the info
tion displayed is specific to the currently displayed search; changing searches (by choosin
ferent item under theSearches menu) will show different information.

The Search History Graph Display is the large resizable window below the status box. T
Search History Graph is a compact graphical display of the history of refinements made
Performance Consultant. Each search has a distinct Search History Graph; changing searc
show a different Search History Graph. Section 9.2.3 discusses the Search History Gr
detail.

TheNode Status displays extra information for a given Search History Graph node. To se
full description for any node in the SHG display, click the middle mouse button on the nod
example, the node status line in Figure 40 shows the full hypothesis and focus for the blu
labeledgoat. For convenience, this line of information will remain present until the next tim
node is clicked on with the middle mouse button. TheSearch and Pause buttons are described in
Section 9.2.2, where we discuss running the Performance Consultant.

TheSHG Color Key explains the colors and display styles used in the SHG display. We dis
each key item in Section 9.2.3. To conserve screen space, the SHG Color Key may be rem
setting the tunable constantshowShgKey to false.

Help Tips describe mouse and key presses in the Performance Consultant window. T
serve screen space, the help tips may be removed by setting the tunable constantshowShgTips to
false.

9.2.2 Starting and stopping a search

To start the currently displayed search, click on theSearch button in the Performance Consulta
window. The PC directs instrumentation insertion to begin locating application bottlenecks
that the application program must be running for data to be collected for the PC; if the appl
has not been started or has been paused, (re-)start it by pressing theRUN button of the Paradyn
Main Window (see Section 2). Current Phase Searches may also be started at the same tim
phase is defined. To do so, chooseStart with Performance Consultant from thePhase menu of
Paradyn’s main window.

ThePause button stops the Performance Consultant temporarily, and removes all instrum
tion for the particular search displayed. Note that it does not stop the application itself; it
effect is on the PC’s currently displayed search. To resume a search after pausing, pressResume .

A search ends when its phase ends; for a current phase, this is when you define the s
new phase; for the global phase, it is when the application terminates.
User’s Guide May 5, 1998 Release 2.1

ress in
m:
look

 time,
mance

History
Page 9-6

9.2.3 The Search History Graph display

As the Performance Consultant searches for bottleneck(s), it leaves a record of its prog
the Search History Graph. Initially, the Search History Graph contains only a single ite
TopLevelHypothesis. A few moments after the search begins, the Search History Graph will
like that in Figure 37. The three items within the listbox belowTopLevelHypothesis are what the

Performance Consultant first tests the program for—excessive synchronization waiting
excessive I/O blocking time, or CPU bound. To use the terminology given above, the Perfor
Consultant is presently trying to find outwhy the program is running slowly, as opposed towhere
(what program resource(s)) it is running slowly. Whenever items are added to the Search
Graph, we say that arefinement has been performed. In this example, aWhy Axis refinement has

Figure 37: The Performance Consultant’s search begins
User’s Guide May 5, 1998 Release 2.1

been performed, indicated by the yellow line connectingTopLevelHypothesis to its descendant list-

dow, a

 in the

 in the

t and is

ement
is CPU
es

s will
s been

a
 exam-
am is

ts
g large

tly
e in the

ions of
sultant
e nodes
char-
s of any
in more

 for the
 to inter-
nd (and
Page 9-7

box. As shown in the window’s key area at the bottom of the Performance Consultant win
yellow line is a Why Axis refinement; a purple line is a Where Axis refinement.

Each item in the Search History Graph of Figure 37 has a green background. As shown
window’s key area, a green background indicatesUnknown status; that is, we do not yet know
whether any ofExcessiveSyncWaitingTime, ExcessiveIOBlockingTime, or CPUBound are true or false,
since we have just begun the Performance Consultant’s search. Also, the text of each item
listbox has a white foreground. As shown in the window’s key area, white text indicates anactive
test; that is, the Performance Consultant has instrumented the program to perform the tes
collecting data for it.

We continue the search until the Performance Consultant has made a further refin
(Figure 38). First, note that the Performance Consultant has decided that the program
bound (because CPUbound is drawn with a blue background). The nod
(ExcessiveSyncWaitingTime : WholeProgram) and (ExcessiveIOBlockingTime : WholeProgram) have
both tested false, so their background color is now pink. Although all three of these node
continue to be tested (which we see by the white text), only the true node, CPUBound, ha
expanded to try to further refine the bottleneck. As a result of the search, a listbox belowCPUb-
ound has appeared. The line connectingCPUbound to its children is drawn in purple, since is
Where Axis refinement. Each item in the listbox contains program resources that are being
ined with theCPUbound hypothesis. The Performance Consultant has decided that the progr
CPU bound; now it’s trying to refine the bottleneck to (in this case) a certain machine (goat) or the
source code modules (bubba.c, partition.c, etc.).

Double-clicking on a true node (such asCPUbound in Figure 38) collapses the display so i
children are no longer shown. Because it saves screen space, this is useful for traversin
complex search graphs. In the example of Figure 38, double-clicking onCPUbound would put
CPUbound into the listbox withExcessiveSyncWaitingTime andExcessiveIOBlockingTime. A triangle
will appear next toCPUbound in the listbox to indicate that it has children which are presen
being hidden to save screen space. To expand the node’s children, double-click on the nam
listbox.

Screen space can be saved in the Search History Graph by hiding certain combinat
node types. For example, you may wish to view only nodes which the Performance Con
has determined to be true bottlenecks (blue nodes). Or, you may wish to show all but thos
which have been determinednot to be bottlenecks (pink nodes). There are seven such node
acteristics; boolean tunable constants (Section 4) can be set to show or not to show node
given characteristic. We now briefly describe each node characteristic; they are discussed
detail in Section 9.3.

9.3 Interpreting the results

Results may change over time because the Performance Consultant continues running
duration of the phase being tuned. Figure 40 shows a search in progress and explains how
pret the PC display. The Performance Consultant has decided that the program is CPU bou
User’s Guide May 5, 1998 Release 2.1

it represents this by presentingCPUbound drawn with a blue background). The nodes
(ExcessiveSyncWaitingTime : WholeProgram) and (ExcessiveIOBlockingTime : WholeProgram) have

remain
ck.

 pos-
ine
t is
thesis/

ure 40,
Page 9-8

both tested false, so their background color is now pink. Although all three of these nodes
active, only the true node,CPUbound, has been expanded to try to further refine the bottlene
Each item in the listbox underCPUbound contains program resources that have been tested as
sible refinements of theCPUbound hypothesis. Refinements to two different true nodes (mach
namegoat and source code modulepartition.c) have been made. The Performance Consultan
capable of making an arbitrary number of simultaneous refinements, because multiple hypo
focus pairs may be tested concurrently. For example, in the Search History Graph of Fig
the Performance Consultant will try to make refinements of the two true nodes belowCPUbound:
goat andpartition.c.

Figure 38: The Performance Consultant refines bottleneck to CPUbound
User’s Guide May 5, 1998 Release 2.1

r exam-

 same
 a copy.

e list-
r of
 always
tbox is

nts are
air

be

se it’s

clicked

-

Page 9-9

Two separate search paths may converge through expansion to the same child node. Fo
ple, the next refinement ofgoat might bepartition.c, and the next refinement ofpartition.c might be
goat. If so, they would share the same child node:(CPUbound : /Code/partition.c,/Machine/goat,/Pro-
cess,/SyncObject). The search display does not connect the two different parent nodes to the
child; instead, it adds a child node for each, where one is a regular node and the other(s) is
These copies are calledshadow nodes. In Figure 40, the regular nodegoat has been clicked with
the middle mouse button to provide its details in the information line below the shg, while th
box itemgoat underpartition.c is drawn in italics to indicate that it is a shadow node. The colo
a shadow node will be updated to reflect the status of its regular node. Shadow nodes are
leaf nodes; although the regular node may be expanded in the usual way, the resulting lis
not be copied to the shadow nodes. In this example, the nodegoat underpartition.c is a shadow
node because it has the same hypothesis/focus pair (CPUbound : /Code/partition.c,/Machine/goat,/
Process,/SyncObject) as the listbox itempartition.c undergoat.

Figure 41 shows the contents of the Search History Graph after the next set of refineme
made. First, the nodepartition.c undergoat has been found true; this is the hypothesis/focus p
CPUbound : /Code/partition.c,/Machine/goat,/Process,/SyncObject discussed above. This focus can
read as, “code in modulepartition.c when executing on machinegoat”. The shadow nodegoat
underpartition.c is also true; no attempt is made to refine anything beyond it, however, becau
just a shadow node ofpartition.c undergoat. Additionally, the nodep_makeMG underpartition.c is
now true. Its hypothesis/focus pair is(CPUbound : /Code/partition.c/p_makeMG,/Machine,/Process,/
SyncObject). Note thatp_makeMG has just a single element in the listbox below it (goat), and it’s a
shadow node. The hypothesis/focus pair for this node is shown in Figure 41 (i.e., we have

Visual representation
Tunable Constant to
control display look

Description

1. Gray node background shgHideNeverSeenNodes Nodes that the Performance Consultant has not yet
examined.

2. Green node backgroundshgHideUnknownNodes Nodes that the Performance Consultant has not yet
determined to be true or false.

3. Blue node background shgHideTrueNodes Nodes that the Performance Consultant has deter-
mined to be true.

4. Pink node background shgHideFalseNodes Nodes that the Performance Consultant has deter-
mined to be false.

5. White node text shgHideActiveNodes Nodes with white text are those that are active—the
Performance Consultant has instrumented the pro-
gram and is collecting performance data for it.

6. Black node text shgHideInactiveNodes Nodes with black text are inactive—the Performance
Consultant has not instrumented the program to col
lect performance data for it.

7. Italicized node text shgHideShadowNodes Nodes with italicized text are shadow nodes; they are
discussed in Section 9.3.

Figure 39: Search History Graph tunable constants for saving screen space
User’s Guide May 5, 1998 Release 2.1

the middle button on that node). It can be read as “functionp_makeMG of modulepartition.c;

tenta-

own in

licked
Page 9-10

machinegoat”. This item is a shadow node ofp_makeMG, located in the listbox belowpartition.c
which is in turn undergoat. Hence, in Figure 41, two searches are in progress. The first has
tively concluded that a bottleneck exists for modulepartition.c on machinegoat. The other has ten-
tatively concluded that a bottleneck exists for the functionp_makeMG (of modulepartition.c), and
is trying to refine further.

The state of the Performance Consultant after the next (and last) refinement is sh
Figure 42. In the middle of the figure, we see thatp_makeMG (underpartition.c, in turn undergoat)
is true. Its hypothesis/focus pair is shown below the Search History Graph (i.e., we have c
the middle button on the node). It can be read “functionp_makeMG of modulepartition.c; machine

Figure 40: The Performance Consultant refines bottleneck beyond CPUbound
User’s Guide May 5, 1998 Release 2.1

goat”. In addition, the shadow nodegoat underp_makeMG (in turn underpartition.c) has been set to

nd will
listbox
for-
 that a
Page 9-11

true, to reflect the change in truth value of the actual node for which it is a marker.

In this example, we are done. The Performance Consultant has found the bottleneck, a
not refine any further nodes. After a few more moments, the green items (unknown) in the
below partition.c will turn pink (false); though we do not show a picture of it here. The Per
mance Consultant will continue to re-evaluate all true nodes and top level hypotheses so
change in application behavior will update the search.

Figure 41: The second set of Search History Graph refinements
User’s Guide May 5, 1998 Release 2.1

All nodes which are true (blue) at the end of the search indicate hypothesis/focus pairs that

odes to
el of the
 and so
urrent
PU

evel.
Page 9-12

have remained true for a significant portion of the phase searched. The PC refines all true n
as specific a focus as possible; in some cases the focus will be refined down to the leaf lev
resource hierarchies, but in others the bottleneck is spread across some number of foci
refinement stops earlier. For example, total CPU time for a module may exceed the c
PC_CPUThreshold , but the module may contain a number of functions with roughly equal C
times. If no single function exceeds the threshold, refinement will terminate at the module l

Whenever a node tests true, a note is added to theSearch Status Box near the top of the win-

Figure 42: Final Search History Graph bottleneck refinement
User’s Guide May 5, 1998 Release 2.1

dow. At any time during your tuning session you may scroll through this list to see a history of test

fail to
 behav-
t behav-
ck is of
 com-

er the

 search
 perfor-
ions in

earch:

 than
 control

clu-

ctive at
ation,
lower.
aliza-
Page 9-13

results.

It is possible for the Performance Consultant to report false negatives: that is, it may
detect bottlenecks in the code for any of the following reasons: you start a search after the
ior has started and ended; you perform a search on a phase that contains several distinc
ioral phases, so no individual bottleneck occurs throughout the entire phase; or the bottlene
relatively short duration, relative to the length of the phase being tested. The PC may fail to
pletely refine a given bottleneck, if the individual refinement changes from false to true aft
PC has tested and found it false.

9.4 Customizing the search parameters

The Performance Consultant has several kinds of controls that you can set to customize its
operation. These controls are tunable constants that set the threshold for deciding when a
mance problems exists. Setting the tunable constants is easily done following the instruct
Section 4.

Several user-level tunable constants are currently defined to control the s
PC_CPUThreshold , PC_SyncThreshold , PC_IOThreshold , andPC_IOOpThreshold . For example, if
PC_CPUThreshold is set to 0.3 (30% of the phase), then any focus with CPU time greater
30% of the phase’s elapsed time will be reported as a bottleneck. Other tunable constants
the sensitivity of the hypothesis testing.

The tunable constants determine the thresholds used for testing hypotheses:

PC_CPUThreshold : used for hypothesisCPUbound.

PC_SyncThreshold : used for hypothesesExcessiveSyncWaitingTime.

PC_IOThreshold : used for hypothesisExcessiveIOBlockingTime.

PC_IOOpThreshold : used for hypothesisTooSmallIOOps.

These tunable constants determine search parameters:

minObservationTime: all tests will be continued for at least this interval of time before any con
sions are drawn. This protects against transitory effects at the start of a phase.

costLimit : determines an upper bound on the total amount of instrumentation that can be a
a given time while the application runs. A low value permits less concurrent instrument
so the search may proceed more slowly but perturbation of the application will also be
A high value increases perturbation, which may result in less accurate values for all visu
tions as well as the Performance Consultant.
User’s Guide May 5, 1998 Release 2.1

ure call
easily
e data.
ation.
ribed

time.
e
time for
 global

 and

 of
Page 10-1

10 STANDARD VISI MODULES

Paradyn provides an open interface to its performance data. All visualization modules (visi’s) in
Paradyn are external processes that use the Paradyn-provided library and remote proced
interface (VisiLib) to access performance data in real time. Existing visualizations can be
added to Paradyn by modifying them to use VisiLib routines to access Paradyn performanc
Paradyn currently has visis for a time-histogram, bar chart, table and 3-d terrain visualiz
These visualizations are described in the following sections, and the VisiLib library is desc
in a separate document, theVisiLib Programmer’s Guide.

10.1 Time Histogram visi

The time-histogram visualization plots performance data for metric/focus pairs over
Figure 43 shows a time-histogram with theActions and View menu expanded. It shows thre
curves corresponding to three enabled metric/focus pairs. The time axis begins at the start
the phase over which the data is being displayed (in this case the data is displayed for the
phase which begins at time 0). The time-histogram can display multipley-axes. In Figure 43 there

are twoy-axes displayed; the rightmost one corresponding to the metric “CPU utilization”,
the leftmost corresponding to the metric “Procedure Calls”. Eachy-axis is labeled with the units
in which its corresponding metric is measured. They-axis labels can be seen in Figure 43.

Time-histogram is launched by choosing Histogram from theStart A Visualization dialog pro-
duced by pressing theVisi button in the Paradyn Main Control window. A dialog box with a list

Figure 43: Time Histogram with Actions and View menus expanded

New Curve(s)
Delete Curve(s)
Keep on Exit

Smooth Curves(s)
Unsmooth Curve(s)
Hide Curve
Show Curve
BW/Color Toggle
Refresh Display
User’s Guide May 5, 1998 Release 2.1

all visis known to Paradyn is brought up; choose Histogram and clickAccept .

n pro-
d in the
-
 a
focus
e the

ocess.
 to add

cess
ses exit

zation.
es. By
ction on
Page 10-2

10.1.1 Actions menu

The Actions Menu contains options which when selected invoke calls to the paradyn mai
cess. A set of curves can be deleted by first selecting a set of curve labels from the legen
lower left of the display and then choosing theDelete Curve(s) option. Figure 44 shows an exam
ple of selecting a curve label. If theDelete Curve(s) option was selected next, this would make
call to the paradyn process to disable data collection for the metric “CPU Utilization” and
“Code/partition.c” for this visualization process. The visualization display would then remov
label and curve associated with this disabled metric/focus pair.

TheAdd Curve(s) menu option, if selected, makes a menuing request to the paradyn pr
The paradyn process will display metric and focus menus for the user to select new curves
to the time-histogram visualization.

TheKeep on Exit menu options, if selected, will keep the time-histogram visualization pro
running when the Paradyn process exits. The default behavior is that visualization proces
when the Paradyn process exits.

10.1.2 View menu

The View Menu contains options to change the way the curves are displayed by the visuali
These changes are local to the visualization process, and thus do not call any VisiLib routin
selecting a curve label(s), and one of the menu options, a user can invoke the selected a
the selected curve(s).

Figure 44: Time Histogram with curve selected
User’s Guide May 5, 1998 Release 2.1

A smoothed curve is one that shows the effects of passing a filter over the data to remove
spikes from the curve. Figure 44 shows the results of invoking theSmooth Curve(s) menu option

ves and

llection
ot dis-
s the
ould

n of
 same

layed
ed view
t of
r can be
shows
Page 10-3

on the three curves. The original curve data can be re-displayed by selecting a set of cur
choosing theUnsmooth Curve(s) menu option. Figure 43 shows the unsmoothed curves.

Hiding a curve deletes the curve from the display, but does not cause a disable data co
action in the paradyn process; data continues to be sent for the hidden curve, it is just n
played. A hidden curve is indicated by its lack of a curve line color label. Figure 45 show
results of hiding the “CPU </Code/partition.c>” curve. To re-display this curve, the user w
select the curve’s label and choose theShow Curve(s) menu option.

TheBW/Color Toggle menu option alternately displays a black-and-white or a color versio
the real-time histogram. Figure 46 shows the color and black-and-white versions of the
curves. TheRefresh Display menu option redraws the entire histogram display.

10.1.3 Panning and zooming

The scroll bars at the bottom and right of the time-histogram allow the interval of time disp
in the histogram window to be adjusted. The zoom bar can be adjusted to get a more detail
of a particular time interval along thex-axis. As the zoom bar is moved upwards, the percen
the totalx-axis displayed decreases. Also, once the zoom bar has been moved, the pan ba
used to change the time interval that is currently being displayed in the window. Figure 46
the time-histogram with a zoomed and panned view.

Figure 45: Time Histogram after smooth and hide options applied
User’s Guide May 5, 1998 Release 2.1

Page 10-4

Figure 46: Zoomed Time Histogram: color and black-and-white modes
User’s Guide May 5, 1998 Release 2.1

wed in

lected
(along
ts own

ci and
; it is
Histo-
e. On

e
 to

select
heck-

Axis
.

i you
Page 10-5

10.2 Barchart visi

Barchart is an external visualization module that enables many metric-focus pairs to be vie
real time. Barchart receives its data through thevisi lib. The visi lib is described in theVisiLib
Programmer’s Guide; we do not discuss it further here.

Figure 47 shows the Barchart window. The vertical axis contains the names of all foci se
for viewing. There are also a certain number of metrics currently selected for viewing; they
with a range of values) are displayed in the horizontal axis. Note that each metric has i
color; this helps identify the bars emanating horizontally next to each focus.

Barchart is designed to view many metric/focus pairs. In Figure 47, there are seven fo
two metrics, leading to metric/focus pairs. Barchart can easily handle far more
not unusual to display 30 or more foci, and five or more metrics. This contrasts with the
gram visi (see Section Figure 47:), which is restricted to eleven metric/focus pairs at a tim
the other hand, Barchart has no way to show how metric/focus pairs change over time.

Barchart is launched by choosing it from theStart A Visualization dialog produced by pressing th
Visi button in the Paradyn Main Control window. A dialog box with a list of all visis known
Paradyn is brought up; choose Barchart and clickAccept .

A dialog box containing all metrics known to Paradyn will appear. Paradyn is asking you to
some initial metric-focus pair(s) for the Barchart. Choose metric(s) by selecting desired c
boxes in the metrics dialog box1. Choose foci by selecting desired resources in the Where
window.2 The metric-focus pairs generated will be the cross-product of the foci and metrics

At this point, the Barchart window (as in Figure 47) should appear, with the metrics and foc
selected. If Paradyn is running an application, data should begin appearing immediately.

Figure 47: Barchart visualization window

7 2× 14=
User’s Guide May 5, 1998 Release 2.1

1. For details on selecting metrics, refer to Section 6.
2. For details of focus selection, and the Where Axis in general, refer to Section 5.

dd as
hoose
int
s, and

w data
erwrit-

 values
down
iewing
ime.

ccord-

of Bar-
Page 10-6

10.2.1 Changing metrics and foci being viewed

You must specify an initial metric/focus set when launching a barchart. You may later a
many more metric/focus pairs as desired (duplicates will be correctly filtered). To do this, c
Add Bars from the Barchart’sActions menu. The interface for adding metrics and foci at this po
is the same as upon startup; you will be shown the metrics dialog box for choosing metric
the where axis for choosing foci.

You may delete foci by clicking on their names and choosingDelete Selected Foci from the
Actions menu.

10.2.2 Viewing data

Values being viewed in a Barchart are, by default, current. Each time a screenful of ne
arrives (from Paradyn), Barchart immediately displays the most recent values, thereby ov
ing the previous screenful of data, which is lost forever3.

There are two other ways of viewing data. Under theView menu, we could choose to viewAver-
age values. In this case, what we see on the screen will be the average (over time) of all
collected by this instantiation of Barchart. After a short time, the bars will probably setting
to a steady state; this is to be expected when viewing average values. The third way of v
data is to viewTotal values . This causes the bar values to monotonically increase over t
Figure 48 shows a Barchart, otherwise similar to that of Figure 47, withTotal instead ofCurrent

values displayed. Note that the metric units (the lower left corner of Figure 48) changes a
ingly, and that the metric bounds (the lower right part of Figure 48) adjust accordingly.

3. To get a feeling for metric/focus pair changes over time, try the Histogram visi (Section Figure 47:) instead

Figure 48: Barchart showing total values
User’s Guide May 5, 1998 Release 2.1

chart.

radyn
t

e that

e line

 pairs
etric-
wever,

dyn

dyn is
lecting
s in the
uct of

i you

er add
d). To
Page 10-7

10.3 Table visi

Like the Time Histogram (Section Figure 47:) and Barchart (Section 10.2), Table is a Pa
visualization module (visi) that receives its data through thevisi lib (described in the documen
VisiLib Programmer’s Guide) interface.

Figure 49 shows the Table window. The columns are metrics; the rows are foci. Not

there are two lines describing each metric: the first name (in blue) is the metric name; th
below it (in black) gives the metric’s units.

Like Barchart, Table uses screen real estate efficiently—it can show many metric-focus
at a time. For example, Figure 49 has four metrics and eight foci for a total of m
focus pairs. It is reasonable for a Table to show hundreds of metric/focus pairs at a time. Ho
like Barchart, Table cannot show how metric/focus pair values are changing over time.

Table is launched from theStart A Visualization dialog resulting from pressing theVisi button
in the Paradyn Main Control window menubar. A dialog with a list of all visis known to Para
is brought up; chooseTable and clickAccept .

A dialog box containing all metrics known to Paradyn will appear (see Section 6). Para
asking you to select some initial metric-focus pair(s) for the Table. Choose metric(s) by se
desired checkboxes in the metrics dialog box. Choose foci by selecting desired resource
Where Axis window (see Section 5). The metric-focus pairs generated will be the cross-prod
the foci and metrics.

At this point, the Table window (as in Figure 49) should appear, with the metrics and foc
specified. If the application is running, data should begin appearing immediately.

10.3.1 Actions menu

Launching Table requires an initial metric/focus set to be specified. However, you may lat
or delete metric-focus pairs as desired (when adding, duplicate pairs will be correctly filtere
add metric-focus pairs, chooseAdd Entries from Table’sActions menu. The interface for adding

Figure 49: Table visualization window

4 8× 32=
User’s Guide May 5, 1998 Release 2.1

he met-

 metric
h one
 on the
le; the

top of
 pair,
econd

nu

h short

radyn,
o view
s
ion of
 to be
Page 10-8

metric/focus pairs is the same as when starting Table (Section 10.3); choose entries from t
rics dialog box and the Where Axis window.

Deletion in Table can take 3 forms; you can delete a focus (an entire row of the table), a
(an entire column of the table), or a single metric-focus pair (a single cell of the table) wit
delete operation. First you select what to delete by clicking once with the left mouse button
appropriate item. To delete a focus, click on the focus name itself on the left side of the tab
entire row will become highlighted. To delete a metric, click on the metric name itself at the
the table; the entire column will become highlighted. To delete an individual metric/focus
click on the cell value; it will become highlighted. Once you have selected an item, the s
entry of theActions menu (namedDelete Selected Focus (entire row) , Delete Selected Metric
(entire column) , or Delete Selected Cell , as appropriate) will become active. Choose that me
item to perform the deletion.

10.3.2 View menu

 Long vs. short names

Focus names can be displayed in long form (e.g.,/Code/anneal.c) or in short form (e.g.,
anneal.c). To toggle between the long and short forms, chooseLong Names from Table’sView
menu. The default is to show long names. Figure 50 shows the equivalent of Figure 49 wit
instead of long names..

 Current vs. average vs. total values

By default, Table cells are “current”: As soon as a screenful of new data arrives from Pa
Table redraws the cells with the new values. As with Barchart, there are two other ways t
data. Under theView menu, we could choose to viewAverage values. In that case, metric/focu
pair values shown will be the average (over time) of all values collected by this instantiat
Table . After a short time, the values shown will probably settle down to a steady state; this is

Figure 50: Table visualization showing short focus names
User’s Guide May 5, 1998 Release 2.1

expected when viewing averages. The third way of viewing data isTotal values . This causes the

d. To

rt by
 to
 is
 to the

n, the

 best

xam-
e foci

ignifi-

ificant
Page 10-9

bar values to monotonically increase over time.

 Sorting metrics

By default, Table displays the columns (metrics) in the order in which they were adde
sort them by name, chooseSort Metrics (ascending) from Table’sView menu. To change back to
the default, chooseDon’t Sort Metrics from Table’sView menu.

 Sorting foci

By default, Table displays the rows (foci) in the order in which they were added. To so
name, chooseSort Foci (ascending) from Table’s View menu. Note that sorting foci is sensitive
the current setting ofLong Names in theView menu: if long focus names are displayed, sorting
according to these long names; if short focus names are displayed, sorting is according
short names.

There is another way to sort foci: by value. ChoosingSort Foci By Values (of Selected Metric)
effectively turns Table into a profiler; whenever a screenful of new data arrives from Parady
foci (rows) are reordered to match the new values. When viewingCurrent Values , rows can seem
to jump around so quickly that they are difficult to read. Sorting foci by value clearly works
when viewingAverage Values or Total Values , which reach a steady state quickly.

In order to sort foci by value, Table needs to know which metric to sort by. To give an e
ple, sorting the foci of the table in Figure 50 would yield very different orderings between th
procedure_calls andcpu . In the former,graph.c has a higher value thanpartition.c ; not so the lat-
ter.

 Significant digits

Individual metric/focus pairs are floating point values. You can change the number of s
cant digits in which these values are viewed by choosing the desired item under theView menu.
Figure 50 is shown to five significant digits. Figure 51 shows the same table with two sign
digits. Scientific notation is used when necessary.

Figure 51: Table visualization with values shown to two significant digits
User’s Guide May 5, 1998 Release 2.1

 data

 a
ant to
hich
Page 10-10

10.4 3D Terrain visi

Like all the previous visis,Terrain is a Paradyn visualization module (visi) that receives its
through the visi lib (described in the documentVisiLib Programmer’s Guide) interface. The Ter-
rain visualization displays data in 3D, allowing the performance data to be analyzed usingsur-
face rather than curves or bars. This visualization can be particularly useful when we w
compare a particular metric for different foci (like the example shown below in Figure 52, w
displays CPU time for machines “beaufort”, “cham” and “poona”).

Figure 52: 3D Terrain visualization
User’s Guide May 5, 1998 Release 2.1

isis, set-
 one or

uration

rminal

 non-
titions,

White
ment is
s

ers are
ign.

er way.
pt for
ll”

ess-
ara-
Page 11-1

11 PARADYN CONFIGURATION LANGUAGE

The Paradyn configuration language (PCL) is used for defining daemons, processes, and v
ting value of tunable constants, and defining new metrics. Paradyn reads commands from
more of the following files (in this order):

1. a file named$PARADYN_ROOT/paradyn.rc , wherePARADYN_ROOT is a shell environ-
ment variable defining a path, or if this file is not found, a file namedparadyn.rc in the
current working directory (see Section 2.2, and also theParadyn Installation Guide);

2. a file named$HOME/.paradynrc in the user’s home directory;

3. a configuration file given as a command line argument to Paradyn with the ‘-f ’ option (e.g.
“paradyn -f foo ”).

The remainder of this chapter describes the syntax and semantics of the Paradyn config
language.

11.1 Notation

We use an extended-BNF (EBNF) notation to describe the syntax of the language. Nonte
symbols in the grammar are written initalics, terminal symbols (tokens) incourier , and reserved
keywords and symbols are written inboldface.

In the description of the grammar the symbol ::= is used to introduce the definition for a
terminal symbol, a vertical bar | represents a choice, braces {} represent zero or more repe
and brackets [] are used to represent an optional item. Parentheses are used for grouping.

11.2 Lexical conventions

The tokens of the language are identifiers (Ident), integer (Integer), floating-point (Float), and
string (string) constants, and the reserved keywords and symbols enumerated below.
spaces, tabs, newlines, and comments are ignored, except to separate tokens. A com
started by the characters// . All characters from the// until the first newline are considered a
part of the comment and are ignored.

Identifiers are a sequence of letters, digits, and underscore, starting with a letter. Identifi
case sensitive and may be of arbitrary length. Predefined identifiers start with a $ (dollar) s

Some identifiers are reserved for use as keywords and cannot be used in any oth
Figure 53 is a list of all keywords in the language (all keywords are case sensitive, exce
“true” and “false”). The four words “setCounter”, “addCounter”, “subCounter”, “functionCa
are obsolete, but they are reserved so that MDL can detect an old configuration file.

There are six words: “readAddress”, “readSymbol”, “startProcessTimer”, “stopProc
Timer”, “startWallTimer”, “stopWallTimer”, which are not keywords, but are considered as P
dyn standard function calls. See Section 11.9.10 for an explanation of their meanings.
User’s Guide May 5, 1998 Release 2.1

quence
double
 string

e.

 braces.

s, pro-
jects.
Page 11-2

There are three types of constants: strings, integers, and floating-point. A string is a se
of zero or more characters (not containing a newline or a double quote) surrounded by
quotes. (Note that the usual expansion of control characters does not apply, e.g. “\n” is a
containing two characters, a ‘\’ and a ‘n’, not a string containing the newline character.)

Integer and floating-point constants are unsigned and defined as:
Integer ::= digit { digit }
Float ::= Integer . Integer

The following operators are currently supported. More operators may be added in the futur

& = + += - -= / * < > <= >= == != && || () [] , . ++

A statement is teminated with a semicolon, and statements are grouped together with curly
Instrumentation code are inside brackets (* and *), see Section 11.9.12.

11.3 Language structure

A Paradyn configuration file consists of a sequence of zero or more definitions of daemon
cesses, visis, metrics, values for tunable constants, and functions excluded from shared ob

DefinitionList ::= { Definition }

$arg $return addCounter

aggregateOperator append avg

base Call command

constraint constrained counter

daemon default derived

developer dir EventCounter

exclude false flavor

float force foreach

functionCall host if

is in int

items library limit

list max metric

min mode module

name normal normalized

postInsn preInsn prepend

procedure process processTimer

replace resourceList SampledFunction

setCounter string style

subCounter sum true

tunable_constant units unitsType

unnormalized user visi

void wallTimer

Figure 53: List of MDL keywords
User’s Guide May 5, 1998 Release 2.1

may be
defined
 is made
 a dae-
or metric
).

ifferent
tandard
e for
le can
radyn.
he fla-
radyn

red. The

dentify
oes not
 process

om-
 relative

’s PATH
Page 11-3

Definition ::=
DaemonDef|
ProcessDef|
TunableDef|
VisiDef |
ExcludeDef|
mdlDef

Each definition introduces a name to an object. The scope of names is global. A name
redefined, in which case the new definition replaces the old one. Thus, all references to a re
name become a reference to the newest object that is bound to the name, even if the use
before the redefinition. However, different types of objects have different name spaces, so
mon and a process may have the same name, for example. The name and scope rules f
definitions differ from the rules for other definitions (see Section for a complete description

One attribute that can appear in many object definitions is a flavor. Paradyn may have d
versions that are used on different systems. Currently, there are five versions, one for s
Unix systems, one for Unix systems running PVM, one for MPI, one for WindowsNT and on
COW (cluster of workstations). Each of these versions is called a Paradyn flavor. A PCL fi
have many object definitions, some of which may make sense only for some flavors of Pa
The flavor of an object tells Paradyn that this object is meaningful only for some subset of t
vors of Paradyn, and that it should be ignored for all of the other flavors. When we run Pa
only those objects that are of the same flavor of the Paradyn that is being used are conside
others are ignored.

11.4 Daemon definition

DaemonDef ::= daemon Ident { { DaemonField } }

DaemonField ::=
command string ; |
dir Ident ; |
user Ident ; |
host string ; |
flavor Ident ;

A daemon definition defines a new daemon with a given name. The name is used to i
the daemon in other PCL definitions, such as the process definition. A daemon definition d
cause the daemon to be started immediately; the daemon only starts when an application
that uses that daemon is run.

A daemon definition must include at least one field (thecommand field). The remainder fields
are optional. Thecommand field gives the command (that is, the executable file name and c
mand arguments) that Paradyn uses to start the daemon. The executable path may be a
pathname, in which case Paradyn searches for the file like the shell does, using the user
User’s Guide May 5, 1998 Release 2.1

environment variable on the machine where the daemon will run.

f

,
-

d

efines a
aradyn
le file,

lication
enu. A

ee
Page 11-4

The fieldflavor should be one ofpvm, unix, winnt, mpi, cow . Defining a daemon to be o
a wrong flavor can have unpredictable results.

Thedir , user andhost fields allow us to specify the directorywhere the command is located
theuser name which should be used and themachine where this daemon should run (if it is differ
ent than the default host), respectively.

Example:

daemon pd_daemon {
command "/u/mjrg/bin/sparc-sun-solaris2.4/paradynd";
flavor unix;

}

This PCL command defines a unix daemon namedpd_daemon that is started by the comman
“ /u/mjrg/bin/sparc-sun-solaris2.4/paradynd ”.

Paradyn provides predefined daemons,defd andpvmd, that are defined as follows.

daemon defd {
command “paradynd”;
flavor unix;

}

daemon pvmd {
command “paradynd”;
flavor pvm;

}

11.5 Process definition

ProcessDef::=
processIdent { { ProcessField} }

ProcessField ::=
commandstring; |
daemonIdent; |
host Ident; |
user Ident; |
dir Ident;

A process definition defines an application program to be run by Paradyn. When the user d
process to Paradyn (either through a configuration file or with the graphic user interface), P
starts the necessary daemons, which read symbol table information from the executab
inserts the initial instrumentation, and leave the program in a ready to run state. The app
processes can then be run by using the appropriate commands from the Paradyn main m
process definition is equivalent to theDefine a Process command in the Paradyn main menu (s
Section 2.4).
User’s Guide May 5, 1998 Release 2.1

A process definition has five fields. The requiredcommand field specifies the command that

f
lt
he
l
that is
signated
 was

nable
Page 11-5

Paradyn uses to start the process, including the command arguments, if any. The requireddaemon
field specifies the daemon that will run that process. The optionalhost field specifies the name o
the machine where the process will run. If nohost field is present, it will default to the defau
host specified with the-default_host command line option (or the local machine, that is, t
machine on which Paradyn is running, if the-default_host option is not used). The optiona
user field specifies the user name (login) under which the process will run. The local user,
the user that runs Paradyn, must be authorized to login as the designated user in the de
host. If nouser field is present, it will default to the same user name under which Paradyn
started. The optionaldir field specifies the working directory for the process. If nodir field is
present, it will default to user’s home directory on the remote machine.

Example:

process foo {
command "/u/mjrg/bin/mp3d arg1 arg2";
daemon defd;

}

This example defines a process named foo that is started by the commandmp3d with argu-
mentsarg1 arg2 , and is monitored by the daemondefd .

Paradyn only searches for the executable file in the directory specified by thedir field. If this
field is not given, then the path to the executable file must be absolute.

11.6 Tunable constant definition

TunableConstant ::=
tunable_constantTunableItem |
tunable_constant { { TunableItem } }

TunableItem ::=
string Integer; |
string Float; |
string true; |
string false;

A tunable constant definition gives a value for a tunable constant. For a list of all available tu
constants and their values, see Section 4.

Example:

tunable_constant "minObservationTime" 10.0;
tunable_constant "suppressSHG" false;

In this example, the value of the tunable constantminObservationTime is set to 10.0 and the
User’s Guide May 5, 1998 Release 2.1

s:

e. The
visi
nviron-
e visi
of
or if it

nnot be
odules.
string

e form
 ver-

 or
ot be

inked
Page 11-6

value ofsuppressSHG is set to false. Alternatively, these two commands could be rewritten a

tunable_constant {
"minObservationTime" 10.0;
"suppressSHG" false;

}

11.7 Visi definition

VisiDef::= visi Ident { { VisiItem } }

VisiItem::=
commandstring; |
dir Ident ; |
user Ident ; |
host string ; |
force Integer; |

limit Integer;

A visi definition gives the command that Paradyn uses to start a new visualization modul
only required field iscommand, which gives the file path (and optional arguments) to the
program. Paradyn searches for commands according to the shell rules, using the PATH e
ment variable.force is interpreted as a boolean value, and any non-zero value will cause th
to start without asking the user for metric selections.limit is an upper bound on the number
metric/focus pairs that the visi can have enabled at one time. If this field is not specified,
has a non-positive value, then there is no upper bound.dir , user andhost have the same previ-
ously discussed meaning.

Example:

visi Histogram {
command "rthist";

}

11.8 Exclude definition

ExcludeDef ::= excludestring;

The exclude definition specifies a shared object or a function from a shared object that ca
included in any focus. Performance data cannot be collected from excluded functions or m
Also, the Performance Consultant will not search in excluded functions or modules. The
that specifies the shared object function or shared object to exclude should be of th
“/Code/shared_library_name/function_name” or “/Code/shared_library_name” (for Paradyn
sions 2.1 and above, or of the form “shared_library_name/function_name”
“shared_library_name” for versions below 2.1). Modules and functions from a.out files cann
excluded.

Paradyn versions 2.1 and above allow exclusion of both statically and dynamically l
User’s Guide May 5, 1998 Release 2.1

modules and functions. Static and dynamic code is excluded identically, using the mechanism

 speci-
n the
ior is
e was

n modi-
 as fol-

$pro-

fining
el pro-
cs can
(called
uted for
urrent

 tem-
re com-
t is set

eclara-
nts for
 mod-
the met-

etric
Page 11-7

described above. All modules and functions are included (not excluded), unless otherwise
fied, and accordingly all functions, including those in dynamically linked libraries, appear i
$procedures variable described in “Metric Definition Language” section below. This behav
different from that encountered in older versions of Paradyn in which shared object cod
treated differently than statically linked code with respect to exclusion.

The Paradyn Control Language files distributed with releases 2.1 and above have bee
fied to take these changes into account. Existing unmodified PCL files should be updated
lows:

1. Names of excluded modules and functions should be proceeded by “/Code ”.

2. All dynamic libraries or functions therein whose members should not be included in
cedures should be explicitly excluded.

Example (version 2.1 and above):

exclude “/Code/libc.so.1”; #exclude all functions from libc.so.1
exclude “/Code/libthread.so/read”; #exclude function read from libthread.so

Example (version 2.0 and below):

exclude “libc.so.1”; #exclude all functions from libc.so.1
exclude “libthread.so/read”; #exclude function read from libthread.so

11.9 Metric Description Language

The metric description language (MDL) is a sub-language of the PCL that is used for de
new metrics. A metric is a time-varying function that characterizes some aspect of a parall
gram performance, such as CPU utilization or number of synchronization operations. Metri
be computed for the entire program or they can be restricted to program components
resources) such as a particular procedure, or a particular processor. Metrics can be comp
the global phase (from the start of application execution until the present time) or the c
define phase. Phases are described in Section 8.

A list of resources of interest to the user is called a focus. A metric definition provides a
plate (the base metric) that is used to compute the metric, and a list of constraints that a
bined with the base metric to restrict it to a particular focus. A constraint defines a flag tha
whenever a particular resource is active.

For example, consider a metric that counts how many functions are called. The metric d
tion must provide code to increment a counter every time a function is called. The constrai
this metric can provide ways of restricting the computation to a single function, to a single
ule, or to a single process. When combined with a focus, such as function f and process p,
ric will count how many times the function f is called in process p.

If there’s no constraint declaration or replace constraint inside a metric definition, the m
can only be applied to the whole program.
User’s Guide May 5, 1998 Release 2.1

 partic-
king as
serted
 “met-

e the
tion”

con-

 to that
d with
luding
are, or

ni-
Page 11-8

Metric and constraint definitions are not evaluated until there is a request to compute a
ular set of metrics for particular focus. At this time the requested metrics are evaluated, ta
input the focus. The result of the metric evaluation is a collection of code blocks that are in
into the application code to compute the metric. In the remainder of this section, the phrase
ric evaluation time” or “metric insertion time” refer to time a metric is evaluated to generat
code to be inserted into the application, and “metric execution time” or simply “metric execu
refer to the time when the generated code is executed.

11.9.1 Metric definition

An MDL definition consists of declarations of one or more MDL objects: resource lists,
straints, and metrics:

mdlDef::=
resourceListDef |
constraintDef |
metricDef

Each definition introduces a new object with a given name, which is used for references
object. A name may be redefined, in which case the definition of the old object is replace
the definition of the new object. The new object is used in all occurrences of the name, inc
those that precede the redefinition. Therefore, redefinitions of objects must be done with c
unexpected results may occur. For example, the value offoo at theforeach statement in the
example below is “bar”, because the namemsgFilt has been redefined after the constraint defi
tion.
User’s Guide May 5, 1998 Release 2.1

n vari-
und to
n only

bles in
 instru-
les can
tation

er. A
r and
er spe-
sts, is

, stop-

tring,
ve the
Page 11-9

Example:

resourceList msgFilt is procedure {
items { "foo" };
library false;
flavor {unix};

}

constraint msgTagConstraint /SyncObject/Message is counter {
foreach func in msgFilt {

prepend preInsn func.entry (*
if ($arg[1] == $constraint[0])

msgTagConstraint = 1;
*)
append preInsn func.return (*

msgTagConstraint = 0;
*)

}
}

resourceList msgFilt is procedure {
items { "bar" };
library false;
flavor {unix};

}

11.9.2 Variables

There are two classes of variables that can be used in metric descriptions: metric insertio
ables and instrumentation variables. A metric insertion variable is simply a name that is bo
an object (a list, constraint, or metric). As explained above, the value of these variables ca
be modified by binding the name to a new object. Instrumentation variables are like varia
an imperative language (that is, they denote a memory location) and can only be used in
mentation blocks, that is, the code to be inserted at the application. Metric insertion variab
be used at any place in a metric definition, including an instrumentation block. Instrumen
blocks are delineated in PCL by the(* and*) tokens.

11.9.3 Types

Instrumentation variables can have one of three types: counter, wallTimer, or processTim
counter is equivalent to an integer variable in imperative languages like C or C++. WallTime
processTimer are abstract types used to record time and can only be manipulated with tim
cific functions. A set of predefined functions, that can only be used in instrumentation reque
provided for operations with timers: startProcessTimer, stopProcessTimer, startWallTimer
WallTimer.

Metric insertion variables can have several different types: integer, floating-point, s
point, procedure, module, memory, and list. The types integer, floating-point, and string ha
usual meaning.
User’s Guide May 5, 1998 Release 2.1

 code
d indi-

ode:

execut-

cts like
-

tions.

nts of
be

,

nt of
Page 11-10

Type: Point

A point is an abstract type that represents a well-defined location in an application
where instrumentation can be inserted (currently available points are function entry, exit, an
vidual call sites).

Type: Procedure

Procedure is a structured type that describes a procedure (function) in the application c

procedure {
string name;
point list calls;
point entry;
point return;

}

The value of each member is implicitly initialized by Paradyn, and cannot be modified.Name

is the name of the procedure, as defined in the symbol table in the application program’s
able file.Calls is the list of calls made in the procedure code.Entry andreturn are the entry and
return points of the procedure.

The dot operator “.” is used to access the value of each member of a structured obje
procedures and modules. Ifproc is a procedure object, thenproc.name gives the name of the pro
cedure, andproc.entry gives the entry point of the procedure.

Type: Module

Module is a structured type with two fields that describe the module name and its func
The value of these fields is implicitly initialized by Paradyn.

module {
string name;
procedure list funcs;

}

Type: List

The typelist consists of an ordered collection of elements of the same type. The eleme
a list can be accessed sequentially with theforeach statement, or one particular element may
obtained with the subscript operator[] .

Theforeach statement applies a metric statement to each element in a list. For example

foreach callsite in proc.calls
<< metric statement >>

appliesmetric statement (metric statements are defined in Section 11.9.8) to each eleme
the listproc.calls . The expressionproc.calls[1] returns the first element in listproc.calls .
User’s Guide May 5, 1998 Release 2.1

Page 11-11

11.9.4 Predefined variables

MDL provides a number of predefined variables, described in Figure 54.

11.9.5 Resource lists

A resource list statement defines a new MDL variable of type list:

resourceListDef::=
resourceList Identis ListType {

items { StringList } ;
flavor { IdentList } ;
library OptLibrary:

}

ListType ::=

Variable Name Type Explanation

$constraint procedure, module,
or int

The list of components in the resource path.
Each component can be accessed through an
incremental index, starting from the last ele-
ment; for example $constraint[0] is the last
component, $constraint[1] is the second to
last. Each component can be of a different
type. (see Section 11.9.3).

$arg int The list of arguments to a procedure call. A
specific argument can be selected with index-
ing. for example:$arg[2] .

$return int The return value of a function.

$start point The entry point of the program (usually
main).

$exit point The exit point of the program (e.g.
_exithandle for Solaris).

$procedures procedure list The list of functions in a module.

$modules module list The list of modules in a program.

$machine string The machine where a program is running.

$globalId int An unique identifier to a particular metric/fo-
cus/phase combination. It can be used by
metrics that need to maintain extra informa-
tion on a per metric instance basis.

Figure 54: Predefined variables
User’s Guide May 5, 1998 Release 2.1

string |

ents.
 list are

11.9.8,

esource
ncep-

module,

several

. The
, a path
Page 11-12

procedure |
module |
float |
int

StringList::= string { , string }

IdentList ::= IDENT { , IDENT }

OptLibrary ::=
true | false

The identifier after the keywordresourceList gives the MDL variable that will be bound
to the list. ListType specifies the type of the elements of the list. Items give the list of elem
Library is used when elements are of type procedure, and tells whether the functions in the
library functions or not. Flavor gives the Paradyn flavors of this list (e.g., unix or pvm).

The elements of a list can be accessed with the foreach statement, described in Section
or via indexing (e.g.foo[1]).

Example:

resourceList generic_lib_pvm is procedure {
items {"write", "read"};
library true;
flavor {pvm};

}

declares a variable generic_lib_pvm, of type procedure list, with two elements (write andread),
which are library functions. This definition of the variable is valid only for PVM.

11.9.6 Constraints

Constraints provide a mechanism to restrict a metric to a subset of the resources in the r
hierarchy. A constraint definition declares a new counter instrumentation variable that is co
tually a boolean flag. This flag is set whenever a certain resource, such as a function or a
is active.

constraintDef ::=
constraint Ident matchPathis default ;
constraint Ident matchPathis counter { metricStmt}

matchPath ::= { / Ident }

A constraint definition creates a new constraint with a given name that can be used in
metrics. ThematchPath specifies the resources to be constrained. AmatchPath is a sequence of
resource names, with a “/ ” used as a delimiter, and it defines a path in the resource hierarchy
resource that is constrained is determined by the last element in the path. For example
User’s Guide May 5, 1998 Release 2.1

/SyncObject/Message specifies that the constraint is to children of this path, in this case a partic-

ro-

e con-

raint in

e

-

ate any
ay be

tric will
rticular

tion in
 to set
nction
rom a
 would

 is the
Page 11-13

ular message class instance;/Code specifies that the constraint is applied to modules in a p
gram. A wildcard, “*”, is used as amatchPath resource name; for example,/Code/* specifies that
the constraint is applied to functions in a specific module, which is unknown at the time th
straint was created.

At metric insertion time, the selected focus is compared to the matchPath of each const
a metric to determine which constraints to apply. For example, thematchPath/Code matches the
foci /Code/Mod1 and/Code/Mod2 whereMod1 andMod2 are modules in the application; and, th
matchPath/Code/* matches the foci/Code/Mod1/F1 and /Code/Mod2/F2 modules whereF1

andF2 are functions in the application.

The predefined variable$constraint is initialized at metric insertion time to the list of com
ponents in focus. If path is/Code/* , and the foci is/Code/Mod1/F1 and /Code/Mod2/F2 , then
the value of$constraint[0] is a procedure list withF1 andF2, and $constraint[1] is a
module list with Mod1 and Mod2.

A default constraint defines a constraint that matches some focus. It does not gener
instrumentation code. Usually, a metric must provide a constraint for each resource that m
specified in a focus. If there is no constraint that matches a given resource, then the me
fail. Default constraints are used in cases where no action is needed to constrain a pa
resource.

Example: a constraint for modules must define a counter that is set to one only if a func
the module is being executed. The constraint definition must direct Paradyn to insert code
the flag to one whenever a function in the module is called, and set it to zero when the fu
exits. In addition, we may want to set the flag to zero whenever a function call is made f
function in the module, and reset it after this that call has returned. In this case, the module
not be considered active when an external function is called. The definition of this metric
following:

01: constraint moduleConstraint /Code is counter {
02: foreach func in $constraint[0].funcs {
03: prepend preInsn func.entry (*
04: moduleConstraint = 1;
05: *)
06: append preInsn func.return (*
07: moduleConstraint = 0;
08: *)
09: foreach callsite in func.calls {
10: append preInsn callsite (*
11: moduleConstraint = 0;
12: *)
13: prepend postInsn callsite (*
14: moduleConstraint = 1;
15: *)
16: }
17: }
18: }
User’s Guide May 5, 1998 Release 2.1

Line 1 in this program declares a constraintmoduleConstraint , of typecounter , that is to be

 flag
at code
 13 say
returns.

ing

metric.
Page 11-14

applied to modules. At metric insertion time, the variable$constraint[0] will be set to a partic-
ular module in the application (usually selected from the Paradyn where axis).$con-

straint[0].funcs is the list of all functions in the module. Line 3 says that code to set the
should be inserted before the entry point of each function in the module, and line 6 says th
to reset the flag should be inserted before the return point of each function. Lines 9, 10, and
that the flag should be set before any call made inside the function, and reset after the call

11.9.7 Metric definitions

metricDef ::=
metric Ident {

name string ;

units Ident;

unitsType (normalized | unnormalized | sampled) ;
aggregateOperator (avg | sum | min | max) ;
style (EventCounter | SampledFunction);
flavor { IdentList } ;

{ mode (developer | normal); }
{ Constraint}
{ counter Ident ; }
base is (counter | processTimer | wallTimer)
{ metricStmt } ;

}

Constraint::=
constraint Ident ; |
constraint Ident { / Ident } is
replace (counter | processTimer | wallTimer)
{ metricStmt} ;

IdentList::=
Ident { , Ident }

A metric definition defines a new metric with a given internal name (the identifier follow
the metric keyword). A metric definition must specify several fields. Thename is a string that
gives the external name of the metric, that is how Paradyn users refer to this metric.Units and
unitsType specifies the label to be used by Paradyn and visis when displaying values of a
Units can be any string andunitsType must be eithernormalized, unnormalized or sampled.
Figure 55 shows how a label is displayed, for each unit type.

Units Type Data label Average label Total label

normalized units units units_seconds

unnormalized units/sec units/sec units

sampled units units units
User’s Guide May 5, 1998 Release 2.1

Figure 55: Metric labels.

 pro-
r-

 metric,
st sam-
ce. One
e

ict the
menta-
A
nes a
aration
ponent.
s the

st,

applies
ven by

ecutes

 code.
Page 11-15

AggregateOperator gives the operator used to combine values of the metric for different
cesses to compute a single value. TheStyle field specifies how to interpret the metric value. Cu
rently, only event counter and sampled function metrics are supported. In an event counter
Paradyn samples the value of a metric at periodic intervals, with the difference since the la
ple as the reported value. The sampled function metric, however, does not take the differen
example is to use the sampled function metric to measure the memory access pattern. Thflavor
field gives the flavors of Paradyn for which this metric should be used. Themode field indicates
whether the metric is for developers. The default isnormal if this field is not specified.

The rest of the metric definition gives an optional list of constraints that are used to restr
metric to specific resources, an optional list of auxiliary counters that can be used in instru
tion requests, and the template code for the instrumentation code to compute the metric. con-
straint declaration either gives the name of a constraint defined elsewhere, or defi
replacement constraint that replaces the base definition of the metric. If a constraint decl
matches the focus, the constraint is used to restrict the metric to the specified program com
If a constraint definition (inside a metric definition, this is called replace constraint) matche
current focus, the constraint replaces thebase statement of the metric.

11.9.8 Metric statements

There are four metric statements,foreach statement,if statement, single instrumentation reque
and a block of multiple instrumentation requests.

metricStmt ::=
foreach Ident in MetricExpr metricStmt|
if MetricExpr metricStmt|
InstrRequest|
{ { metricStmt} } ;

The foreach statement evaluates a metric expression that should evaluate to a list, and
a metric statement to each element in the list. It defines a new variable with a name gi
Ident and that has the same type as the elements of the list. The scope of this variable ismetric-
Stmt, and its value is bound at each iteration to one element of the list.

The if statement evaluates a metric expression that must be of type integer, and it ex
metricStmt if the value is non-zero.

A single instrumentation request defines instrumentation to be added to an application
Each instrumentation request will generate a mini-trampoline in the application core.

11.9.9 Metric expressions

MetricExpr ::=
Literal |
(Ident) { . Ident } |
Call (“Ident” [, ArgList]) |
User’s Guide May 5, 1998 Release 2.1

Ident ([ArgList]) |

as its
e iden-
ckets,

ment of
lements

d type
e. The

 usual
different
erted to
r

 returns
t

Page 11-16

MetricExpr BinOP MetricExpr|
PreUOp MetricExpr |
MetricExpr PostUOp |
IdentAssignOp MetricExpr |
Ident [MetricExpr] |
(MetricExpr)

Literal ::= Integer | string

ArgList ::=
MetricExpr { , MetricExpr }

BinOp ::=
+ | - | / | * | < | > | <= | >= | == | && | ||

PreUOp ::= & | -

PostUOp ::= ++

AssignOp ::= = | += | -=

More operators will be supported in the future.

A literal is an expression of type integer or string, that has the integer or string literal
value. An identifier is an expression that has the type and value of the variable bound to th
tifier. If the identifier is followed by an expression that evaluates to an integer n between bra
the identifier must be bound to a list, and the value of the indexed expression is the nth ele
the list. The list elements are numbered from zero, and n must be less than the number of e
in the list.

If an identifier is followed by a sequence of dots and identifiers, it must be of a structure
(procedure or module). The second identifier must be the name of a field in the structur
value and type of the expression are the value and type of this field.

The arithmetic operators+, - , * , and/ , and the relational operators<, >, <=, and>= can be
applied to two binary expressions of type integer or floating-point. The operators have the
meaning and associativity rules. Parenthesized expressions may be used to enforce a
evaluation order. If the two sub-expressions are not of the same type, the values are conv
floating-point. The logical operators&& (and) and|| (or) can be applied to a pair of intege
expressions. A zero value denotes false, and any nonzero value denotes true.

The& operator returns the address of a variable. The argument reference expression
the value of one of the arguments of a function. For example,arg[0] returns the value of the firs
argument. Only the value of arguments passed in registers can be obtained.
User’s Guide May 5, 1998 Release 2.1

lly a
ame

ed. The
re not

ords are:
er”,

ion
e. if

10),

d (the
can be

pecific

t of
ultiple
 the

efore
am-
rted
s.
Page 11-17

11.9.10 Function calls

The MetricExpr syntax indicates that an metric expression can be a function call. Usua
function call is an identifier followed by a list of arguments in parenthesis. If the function n
has conflict with Paradyn’s reserved keywords, the alternative syntax ofCall(“Ident”[,Arglist])
can be used, with the Ident being the function name. Note that the name must be quot
function name can be any legal identifier. However, there are six words which, although a
reserved, are treated as Paradyn standard functions if used as function names. The six w
“readSymbol”, “readAddress”, “startProcessTimer”, “stopProcessTimer”, “startWallTim
“stopWallTimer”.

The expressionreadSymbol("sym") returns the integer value stored in a memory locat
namedsym, wheresym must be defined in the symbol table of the application. For exampl
_intvar is an integer variable in an application, the expressionreadSymbol("_intvar") returns
the value of_intvar . readAddress returns the integer value at a given address (in base
which must be a valid address for the application.startProcessTimer, stopProcessTimer, start-
WallTimer , stopWallTimer start and stop recording time into a timer variable.

The maximum number of arguments that can be passed to a function call may be limite
limit is architecture dependent, and usually is the maximum number of arguments that
passed in registers). The return value of a function is treated as an integer.

11.9.11 Instrumentation requests

An instrumentation request defines a block of instrumentation code to be inserted at a s
point of an application code:

instrRequest : := position where point [constrained] (* { instrumentationCode } *)

position ::= append | prepend

where::= preInsn | postInsn

point ::= metricExpr

Position gives the order in which this instrumentation block will be inserted in the lis
instrumentation blocks for this point, and can be used to control the order of execution of m
blocks at a point. If position isappend , then the instrumentation block is inserted at the end of
list of instrumentation blocks at the point. If position isprepend , the instrumentation block is
inserted as the first block in the list.

Where gives the place where the instrumentation block will be inserted, either b
(preInsn) or after (postInsn) the instruction at the instrumentation point is executed. For ex
ple, if the point is a call site,preInsn specifies that the instrumentation code is to be inse
before the call is made andpostInsn specifies that it should be inserted after the call return
User’s Guide May 5, 1998 Release 2.1

Point is a metric expression (Section 11.9.9) that must evaluate to a point; it gives the point in

nction

s either

he

r
 second

pplica-

s
 the

he
he
timer
Page 11-18

a program where instrumentation is to be inserted. Currently, the possible points are fu
entry and exit points, and function calls.

Constrained determines if constraints should be applied to this request. Ifconstrained is not
specified, no constraints will be applied to the request.

11.9.12 Instrumentation code

The instrumentation code gives a list of statements to be inserted at a point. A statement i
an if statement or a simple instrumentation statement.

instrumentationCode ::=
if (metricExpr) instrStmt |
instrStmt

The if statement evaluates themetricExpr and if it the result is a nonzero value, then t
instrStmt is executed.

An instrumentation statement is anMetricExpr terminated by a semicolon.

The following are examples of valid instrumentation code:

cntr = 1;

cntr += foo(cntr);
cntr += Call (“foo”, cntr);

if (readSymbol("_foos") == 1) cntr -= readAddress(123456));

startWallTimer(tmr);

cntr = cntr - $arg[2];

The first example sets the value of countercntr to 1.cntr must be a variable of type counte
declared in a constraint declaration, a metric declaration, or a in a counter declaration. The
example calls a functionfoo in the application code, passing the value of countercntr as an
argument, and then adds the value returned by this call to countercntr . foo must be a function
taking one integer argument and returning an integer value, and it must be defined in the a
tion’s symbol table.

The third example reads the value of a global variablefoos (note that if the variable name i
foos it must be referenced as_foos) in the application and if the value is equal to 1, subtracts
integer value at address 123456 in the application address space from countercntr . The fourth
example starts recording time in timertmr , which must be declared in a metric declaration. T
timer will record time until a call tostopWallTimer is made on it. The last example subtracts t
value of the third argument to a function call (the function that is being instrumented) from
cntr .
User’s Guide May 5, 1998 Release 2.1

 primi-
ore the
e is an
nd the

he con-
he con-
.entry)
eturn).
 a func-
ction

hich is
 rules

nction;

it that
 in the
tion.
ns, we
Page 11-19

11.9.13 Interaction of constraints and metrics

When creating a constraint and metric, one of the things you must do is specify where the
tives (for the constraints) and predicates (for the metrics) are placed. They can go bef
instruction you are placing it at, or after. Then, for each location (preInsn or postInsn) ther
ordered list for the instructions; and, you are able to specify if you want to append or prepe
instrumented code. The following rules, and patterns, should be adopted when doing this

Constraints:
prepend preInsn func.entry
append preInsn func.return

Callsites within constraints (if necessary):
foreach callsite in func.calls {

append preInsn callsite
prepend postInsn callsite

}
Metrics:

foreach func in XXX {
append preInsn func.entry
prepend preInsn func.return

}

This is done to make sure the metrics and predicates are checked at a time when all t
straints and primitives are set with their correct values. This set of rules and patterns have t
straints and primitives be the first thing set when entering a function (prepend preInsn func
and then the last thing cleared when returning from a function (append preInsn func.r
Along the same lines, the metrics and predicates are the last thing checked when entering
tion (append preInsn func.entry) and the first thing checked when returning from a fun
(prepend preInsn func.return). For example, if you have a metric M1 using constraint C1, w
set when your in a specific function and cleared when you leave that function. With these
and patterns, C1 will be the first thing set, before M1 is executed at the beginning of the fu
and, at the end of the function M1 will be executed before C1 is cleared again.

11.9.14 A complete example

This section presents a complete metric definition. We will define a metric called SyncWa
computes the time spent on by an application on synchronization operations. The first step
definition of SyncWait is to identify the synchronization operations (functions) of the applica
These depend on the specific system that is being used. For example, for PVM applicatio
can consider the functions pvm_send and pvm_recv as synchronization functions.

Next, we defined a resource list with the synchronization functions.

resourceList pvm_sync_ops is procedure {
items { “pvm_send”, “pvm_recv” };
flavor { pvm };
library true;

}

User’s Guide May 5, 1998 Release 2.1

ons in
r when

. The
 a mod-
d (lines
o reset
to 10).

the time
ization
second
4), and
 of the

t will
s

Page 11-20

To compute the synchronization time we must start a timer every time one of the functi
pvm_sync_ops is called (lines 2 and 3 in the following code block), and stop the same time
the function returns (lines 4 and 5).

01: foreach func in pvm_sync_ops {
02: append preInsn func.entry constrained
03: (* startWallTimer(p_syncWait); *)
04: prepend postInsn func.return constrained
05: (* stopWallTimer(p_syncWait); *)
06: }

The complete metric definition must define all of the metric attributes and constraints
constraints define how to compute the metric for specific resources, such as a function, or
ule. To constraint the metric to a function, we need to set a flag when the function is entere
2 and 3 in the code block below), and reset it when the function exits (lines 4 and 5). We als
the flag before any function call inside the function, and set it when the call returns (lines 6

1: constraint funcConstraint /Code/* is counter {
2: prepend preInsn $constraint[0].entry
3: (* funcConstraint = 1; *)
4: append postInsn $constraint[0].return
5: (* funcConstraint = 0; *)
6: foreach callsite in $constraint[0].calls {
7: append preInsn callsite
8: (* funcConstraint = 0; *)
9: prepend postInsn callsite
10: (* funcConstraint = 1; *)
11: }
12: }

We can also define a constraint for message tags, in case we are interested in finding
the application is waiting for a particular message tag. At the entry point of each synchron
function (lines 3 to 5 in the code block below) we must check if the tag of the message (the
argument in a call to pvm_send or pvm_recv) is equal to the tag specified in the focus (line
if so set the constraint flag to one (line 5). The flag is set to zero again at the return point
function (lines 7 and 8).

1: constraint msgTagConstraint /SyncObject/Message is counter {
2: foreach func in pvm_sync_ops {
3: prepend preInsn func.entry constrained
4: (* if ($arg[1] == $constraint[0])
5: msgTagConstraint = 1;
6: *)
7: append preInsn func.return constrained
8: (* msgTagConstraint = 0; *)
9: }
10: }

Finally we must specify the remaining attributes of the metric, such as the name tha
appear in the Paradyn metric selection menu,PVM SyncWait . The unit is seconds since thi
metric measures time, and the unit style isnormalized. Aggregate operator isavg, so when we
User’s Guide May 5, 1998 Release 2.1

aggregate values from different processes, we get the average value. The flavor ispvm.

Page 11-21

The complete definition of the metric follows. The constraintmoduleConstraint was
defined in Section 11.9.6.

metric p_syncWait {
name “PVM SyncWait”;
units Seconds;
unitStyle normalized;
aggregateOperator avg;
style EventCounter;
flavor = { pvm };

constraint functionConstraint;
constraint moduleConstraint;
constraint msgTagConstraint;

base is wallTimer {
foreach func in pvm_sync_ops {

append preInsn func.entry constrained (*
startWallTimer(p_syncWait);

*)
prepend preInsn func.return constrained (*

stopWallTimer(p_syncWait);
*)

}

}
}

■

User’s Guide May 5, 1998 Release 2.1

	User’s Guide
	1 Overview
	2 Running Paradyn
	3 Main Control window
	4 Tunable Constants
	5 Selecting resources
	6 Selecting metrics
	7 Controlling visis
	8 Phases
	9 Performance Consultant
	10 Standard visi modules
	11 Paradyn Configuration Language
	1 Overview
	1.1 Release notes (version 2.1)
	1.2 Supported hardware and software platforms
	Figure�1: Platforms on which Paradyn (User Interfa...
	Figure�2: Platforms on which Paradyn can monitor a...
	Figure�3: Summary of Paradyn capabilities by platf...

	1.3 Other documentation: Manuals
	1.4 Other documentation: Technical papers
	1. “The Paradyn Parallel Performance Measurement T...
	2. “An Adaptive Cost Model for Parallel Program In...
	3. “Dynamic Program Instrumentation for Scalable P...
	4. “Dynamic Control of Performance Monitoring on L...
	5. “The Paradyn Parallel Performance Tools and PVM...
	6. “Mapping Performance Data for High-Level and Da...
	7. “A Performance Tool for High-Level Parallel Pro...
	8. “Optimizing Array Distributions in Data-Paralle...
	9. “Integrating a Debugger and Performance Tool fo...
	10. “What to Draw? When to Draw? An Essay on Paral...
	11. “Binary Wrapping: A Technique for Instrumentin...
	12. “Finding Bottlenecks in Large-scale Parallel P...
	13. “Performance Measurement Tools for High-Level ...
	14. “MDL: A Language and Compiler for Dynamic Prog...

	1.5 Contacting the Paradyn developers

	2 Running Paradyn
	2.1 Overview of major steps
	1. Set up Paradyn and daemons (Section�2.2): You n...
	2. Prepare your application program (Section�2.3):...
	3. Run Paradyn (Section�2.4): Paradyn has several ...

	2.2 Setting up Paradyn and the Paradyn daemons
	1. Look in the directory specified by the environm...
	2. Look in your current working directory for the ...
	Figure�4: Files needed to run Paradyn
	Figure�5: Environment variables used when running ...

	2.3 Preparing your application program
	1. To allow Paradyn to insert instrumentation into...
	2. Generally there is no more need to link your ap...
	3. Use of the compile flag -g is recommended to ge...
	Figure�6: Modifying application Makefile to link f...
	Note: x86/Solaris and AIX actually require differe...

	2.4 Running Paradyn
	1. File: At present, the only command in this menu...
	2. Setup: This menu has selections to allow you to...
	3. Phase: start and define a new local phase for v...
	4. Visi: start visualizations of your application ...
	5. Help: get additional information about Paradyn....
	Figure�7: Starting Paradyn

	2.5 Running applications with Paradyn
	2.5.1 Defining a new process
	Figure�8: Defining a new application process
	1. User: This is your login name on the host on wh...
	2. Host: This is the name of the host on which Par...
	3. Directory: Paradyn runs paradynd and your appli...
	4. Command: The command that will start this insta...
	5. Daemon: This option allows you to specify which...

	Figure�9: Paradyn ready to run the application
	1. Application name: This is the name of the appli...
	2. Application status: This is the overall applica...
	3. Data Manager: This is the status of Paradyn’s D...
	4. Processes: This is the process identifier of th...
	5. beaufort: There is one status line on each host...

	2.5.2 Attaching to a process
	Figure�10: Specifying a process to attach to.
	Figure�11: Attach completed

	2.6 Architectural issues
	2.6.1 Solaris
	Figure�12: Sample Makefile for x86-Solaris.

	2.6.2 RS/6000 running IBM AIX version 4.1
	Figure�13: Example AIX link command line for seque...
	Figure�14: Example AIX link command for POE MPI pr...
	Figure�15: Example AIX link command for POE MPI pr...

	2.6.3 PVM
	1. If you can modify the directory $PVM_ROOT/bin/$...
	2. If you cannot modify the directory $PVM_ROOT/bi...

	2.6.4 WindowsNT
	Figure�16: Sample Makefile for WindowsNT.

	3 Main Control window
	Figure�17: Paradyn Main Control window
	3.1 Main menubar
	3.1.1 File menu
	3.1.2 Setup menu
	3.1.3 Phase menu
	3.1.4 Visi menu/button
	3.1.5 Help menu

	3.2 Status lines
	3.3 Buttons

	4 Tunable Constants
	4.1 Overview
	Figure�18: The Tunable Constants Window
	Figure�19: Tunable Constants Descriptions Window

	4.2 User Tunable Constants
	4.3 Developer Tunable Constants
	Figure�20: User-level Tunable Constants
	Figure�21: Developer-level Tunable Constants. Use ...

	5 Selecting resources
	5.1 Resources (The “Where” Axis)
	Figure�22: Where Axis window.
	“Whole Program” has three unexpanded subtrees and ...
	Resources:
	Resource Hierarchy:
	Focus:

	5.2 The Where Axis display
	Figure�23: Showing all resources in the Where Axis...

	5.3 How to select foci using the Where Axis
	Figure�24: A single focus selected
	Figure�25: Multiple foci selection

	5.4 The Where Axis GUI
	Locating a resource
	Selecting a resource
	Listbox expansion
	The navigate menu
	Changing abstractions
	Scrolling

	6 Selecting metrics
	6.1 How to select metrics
	Figure�26: Metrics dialog box
	Figure�27: Metrics dialog box with several metrics...

	6.2 Metric Descriptions
	Figure�28: Metrics defined in Paradyn
	Figure�29: Developer Mode Metrics defined in Parad...

	7 Controlling visis
	7.1 Starting
	Figure�30: Paradyn Main Control window
	Figure�31: Start A Visualization menu

	7.2 Stopping

	8 Phases
	8.1 Starting a new phase
	Figure�32: Phase Table Display

	8.2 Visualizations and Phases
	8.3 The Performance Consultant and phases
	Figure�33: Time Histogram: Global Phase
	Figure�34: Time Histogram: Local Phase (3)

	9 Performance Consultant
	9.1 The W3 search model
	9.1.1 The Why Axis
	Figure�35: The Why Axis

	9.1.2 The search strategy
	1. One step along the Why Axis:
	2. One step along the code hierarchy: ��
	3. One step along the machine hierarchy:
	4. One step along the process hierarchy:

	9.2 Running the Performance Consultant
	9.2.1 The Performance Consultant window
	Figure�36: A sample Performance Consultant window

	9.2.2 Starting and stopping a search
	9.2.3 The Search History Graph display
	Figure�37: The Performance Consultant’s search beg...
	Figure�38: The Performance Consultant refines bott...
	Figure�39: Search History Graph tunable constants ...

	9.3 Interpreting the results
	Figure�40: The Performance Consultant refines bott...
	Figure�41: The second set of Search History Graph ...
	Figure�42: Final Search History Graph bottleneck r...

	9.4 Customizing the search parameters

	10 Standard visi modules
	10.1 Time Histogram visi
	Figure�43: Time Histogram with Actions and View me...
	10.1.1 Actions menu
	Figure�44: Time Histogram with curve selected

	10.1.2 View menu
	Figure�45: Time Histogram after smooth and hide op...

	10.1.3 Panning and zooming
	Figure�46: Zoomed Time Histogram: color and black-...

	10.2 Barchart visi
	Figure�47: Barchart visualization window
	10.2.1 Changing metrics and foci being viewed
	10.2.2 Viewing data
	Figure�48: Barchart showing total values

	10.3 Table visi
	Figure�49: Table visualization window
	10.3.1 Actions menu
	10.3.2 View menu

	Long vs. short names
	Figure�50: Table visualization showing short focus...

	Current vs. average vs. total values
	Sorting metrics
	Sorting foci
	Significant digits
	Figure�51: Table visualization with values shown t...
	10.4 3D Terrain visi
	Figure�52: 3D Terrain visualization

	11 Paradyn Configuration Language
	1. a file named $PARADYN_ROOT/paradyn.rc, where PA...
	2. a file named $HOME/.paradynrc in the user’s hom...
	3. a configuration file given as a command line ar...
	11.1 Notation
	11.2 Lexical conventions
	Figure�53: List of MDL keywords

	11.3 Language structure
	11.4 Daemon definition
	11.5 Process definition
	11.6 Tunable constant definition
	11.7 Visi definition
	11.8 Exclude definition
	11.9 Metric Description Language
	11.9.1 Metric definition
	11.9.2 Variables
	11.9.3 Types
	Type: Point
	Type: Procedure
	Type: Module
	Type: List

	11.9.4 Predefined variables
	Figure�54: Predefined variables

	11.9.5 Resource lists
	11.9.6 Constraints
	11.9.7 Metric definitions
	Figure�55: Metric labels.

	11.9.8 Metric statements
	11.9.9 Metric expressions
	11.9.10 Function calls
	11.9.11 Instrumentation requests
	11.9.12 Instrumentation code
	11.9.13 Interaction of constraints and metrics
	11.9.14 A complete example

