Paradyn Parallel Performance Tools

User’s Guide

Release 2.1
May 1998

Paradyn Project

Computer Sciences Department
University of Wisconsin
Madison, Wl 53706-1685
paradyn@cs.wisc.edu

User’s Guide 5/5/98

I O YT YT USSR 1-1..
1.1 Release NOtes (VEIrSION 2.1) ..ccccoeieiieiiieeeeeee et e et a e e e e e aeees 1-2
1.2 Supported hardware and software platforms ..., 1-3
1.3 Other documentation: ManUAISuuuuuiiiiiiiieeeeeeiee e e e e e e e e e eeees 1-5
1.4 Other documentation: Technical PAPErsScovviiiiiiiiiiiiiieie e 1-6
1.5 Contacting the Paradyn deVelOpers ..o 1-7
2 RUNNING PAradyN.......cuueiiiiiiiiiiiiieeeee ettt 3 2
2.1 OVerview Of Major STEPSccvvviiiiiiiiiiiii e e e e e e e e ettt s e e e e e e e e e e e e eeeeaeeeeaaane 2-1
2.2 Setting up Paradyn and the Paradyn daemonseiiiiiiineeieeieiieeceeeiiiiiens 2-1
2.3 Preparing your application Programceceeeeeeeeeeeaaaeeaissaiiseeeeeeeeeeeeeeeeeens 2-3
2.4 RUNNING Paradynooueiiiiiiie s e e e e e e e e aeees 2-4
2.5 Running applications with Paradyn ... 2-6
2.5.1 DefiniNg @ NEW PrOCESSccciiiiuiiiiiiiiiiiiiiiieieeeeee e e e e e e e e e e e e s s assieeeeeenes 2-6
2.5.2 AHaching 10 @ PrOCESScccoiiiiiiieeiiiicee e 2-8
2.6 ArCHITECIUIAl ISSUBS ...coeiiiiiiiiiiiiiie et e e e e e e e e s 2-10
2.6.1 Y0 = U £ RS 2-10
2.6.2 RS/6000 running IBM AIX Version 4.1cccccoeeeeeeivieieeiiiiceenn 2-11
2.6.3 PVM oot 2-12
2.6.4 WINAOWSNT .o e e e e e e e e e e e e e e eeees 2-13
3 Main CONLIOI WINGOW ...ccoeiieieiieii ettt e e e e e e e e e e e e s s s s bbb e e e e e eeaaaaeeeeeeas 3-1
3.1 Main MENUDAT ... 3-1
3.1.1 1= 0 0= o 1 3-1
3.1.2 Y] (U] 0 I 1 11 1 PP 3-1
3.1.3 PRase MeNU ... 3-2
3.1.4 ViSi MEeNU/DULIONuiiiiiii i 3-2
315 HEIP MENU e a e e 3-2
3.2 SHAUS HINES ... e e e e e et 3-3
G TG T = 1111 (0] L PSP 3-3
4 TUNADIE CONSLANTS.......coiiiiiiiiti e e e e e e e e aaeeeesd N I 4
N R O 1= V1 RSP 4-1
4.2 User Tunable CONSIANTSoovvviiiiiiiiiiiiie e e et e s e e e e e e e e e aeeeeeeennnnes 4-2
4.3 Developer Tunable CONSLANTScccooieiiiiiiiiiiceeece e 4-2
5 SEIECHNG FEBSOUITES. .. oottt e e e e e e e e e et e et a e e e e e e e e e e e eeeeeeeeeeennnnnns 5-1.........
5.1 Resources (The “Where” AXIS)coooiiiiiiiiiiiiiiiiie ettt 5-1
5.2 The Where AXIS diSPIAYuuuuiiiiiiiiie e 5-3
5.3 How to select foci using the WHhere AXISccciiiiiiieeiiiieeee e 5-4
5.4 The Where AXIS GUI ...ccooiiiiiieiiiisss ettt e e s s e e e e e e e e e e e eeeeanennnnnes 5-5
B SeIECHNG MEIIICS ... i e e e e e e e e e e e e eaeeanen 6-1.......
6.1 HOW 0 SEIECE MELIICS ...t e e e e e e e e e e e e eeeaeenne 6-1
6.2 MEtrC DESCIIPLIONS ...eeeiiiiiiiiiiieie ettt e 6-2
7 CONIOIING VISIS....ciiiiieeeiiieeeeeee sttt s e e e e e e e e e e e e e e eeeeenssenanans 7-1....
A0 S = 1 4 1 o SRR PPPPPPRRPPR 7-1
S (o] o] o] [T PP TR PP 7-2
8 PRASES. ..ttt — 8-1..
8.1 Starting @ NEW PREASE ...t a e e 8-1
8.2 Visualizations and PRASESuuuuiiiiiiiiiiiee ettt a s e e e e e e e e e e e e eeeeeeeeennnnes 8-1
8.3 The Performance Consultant and phasescccccceeiiiiiiiiiiiiiiccee e 8-1

User’'s Guide May 5, 1998 Release 2.1

9 Performance CONSUIANT..........coiieiieeeee e et e e e e e e e e e s e e e esb e e e eaaneees 9-1
9.1 The W3 SearCh MOUEIooiviiiiiiiieie et e e e e e eaa e eens 9-1
9.1.1 TRE WRY AXIS ettt 9-2
9.1.2 The Search Strategyooooiiiiiiiiiiiiiie e 9-3
9.2 Running the Performance Consultantccccooiiiiiiiiiiciiieee e, 9-4
9.2.1 The Performance Consultant WiNAOWccccoviiiiiiiiieeiiiieeeeiieeee, 9-4
9.2.2 Starting and Stopping @ SEArchcccccccciiiiiiii 9-5
9.2.3 The Search History Graph displayccccvviiiiiiiiiiiiiiiei e 9-6
9.3 INterpreting the reSUILSueie e 9-7
9.4 Customizing the Search ParametersS ... 9-13
10 Standard ViSi MOAUIESoiiii e e e e e e e e eeaad =1 10
10.1 TimMe HIStOQIAM VST ...uuuiiiiiieiee et e e e e et ee et e e e e e e e e e e e eaeeees 10-1
O 2 A Yo 1T FoT 1 0 1= 1 10-2
O D0 V1YLV 1 1= o U 10-2
10.1.3 Panning and ZOOMINGcuuuuuuumiiiiiaaeeee e eeeeeeeeeiieeieeas e e e e e e e e e eeeas 10-3
O T2 = 7T (o] o = U S/ [10-5
10.2.1 Changing metrics and foci being viewedccccovvriiiciiieeeennn. 10-6
10.2.2 VIEWING TALA ...evveeiiiiiiieieeeee et e e e e 10-6
O TR T 1= o] (ST 1 [10-7
O T 20 R Vo 1o T F3 4 1 1= 1 TR 10-7
J10.3.2 VIBW MENU .eoieiiiieeii et e e e e e e et e e e e e e s e e e e eaneas 10-8
O TR I I =T = 1T T/ [10-10
11 Paradyn Configuration LANQUAGEccoeiiiiiiiiiiiiiiiiiee e e e e e e e e e e e e eaes 11-1
0 O A A] 7= 1 o o T 11-1
2 W) Loz Y I od0 1 1Y/ = 1 1 ([11-1
11.3 LangUAQE SITUCTUIEcoveiiiiiiie ettt e et e et e e e et e e e et e e e anans 11-2
R B F= U= 0 g o] g o (=] 1T V11T 11-3
11.5 ProcCess AefiNItIONcuiieeiiiiiiii ettt et e e et e e e s e e e e e e a e s eaeeraneaeas 11-4
11.6 Tunable constant definitionNcoiiiiiiiiiiiie e e 11-5
R A Y 1Y 0 (=Y 111 o R 11-6
IO S T o (o U o [0 1= 1 1) o 11-6
11.9 Metric DescCription LANQUAGJEuuuuiiiiiieiieeeeeeee ettt s s s e e e e e e e e e e e eeeeeenannnnnns 11-7
11.9.1 Metric defiNItiONcveeeiieii e 11-8
S T2 Y Y4 = o] (= 11-9
I T T Y/ o T S UPTRUPPRPPN 11-9
11.9.4 Predefined variables ... 11-11
11.9.5 RESOUICE lISIS .uiiirniiiiiiie it e et e e et e et e e eaaeees 11-11
I N T O 0 53 1 =1 0| 11-12
11.9.7 Metric defiNItiONScovniii i eaas 11-14
11.9.8 MEtriC StAtEMENTScevniiiiiiiiei e e e eaas 11-15
11.9.9 MELriC EXPreSSIONS ...ccevviieiiiiiiiiiiiiiee e e e e e e e e e e e e e e e et a e e e e e aaaaaaas 11-15
IO I O T U T 1o o= | 11-17
11.9.11 INStrumentation rEQUESTScevriiiiiiiieeeeeeieiie it e e 11-17
11.9.12 INStrumentation COUEiiivvniiiiii i 11-18
11.9.13 Interaction of constraints and MEetriCSccoevevvviiieiiiieeeeiiieeeeeieeeee 11-19
11.9.14 A complete eXample ... 11-19

User’s Guide

May 5, 1998 Release 2.1

Page -iii

1 Overview

Figure 1: Platforms on which Paradyn (User Interface and Visualizers) can run 1-4
Figure 2: Platforms on which Paradyn can monitor application programscccc........ 1-4
Figure 3: Summary of Paradyn capabilities by platform (v2.0 vs. 2.1)ccooiiiiiivvririnnne. 1-4
2 Running Paradyn

Figure 4: Files needed t0 run Paradyncccuuuiiiiiiiiiiiiieeiiee e 2-2
Figure 5: Environment variables used when running Paradynccccoovvviiciiiiiieee e, 2-2
Figure 6: Modifying application Makefile to link for Paradyn (generic example). 2-4
Figure 7: Starting Paradynuueiiiiiiiiiiiiieieiie e e e e e 2-5
Figure 8: Defining a new application PrOCESScccoiiiiiiiiiiiiiiiieie e 2-6
Figure 9: Paradyn ready to run the applicationccccoooiiiriiiiiiii e 2-7
Figure 10: Specifying a proCess t0 attach t0.ooiiiiiiiiiiiiiiiii e 2-9
Figure 11: Attach COMPIELEAovveeeiiiii e e e e e e 2-9
Figure 12: Sample Makefile for X86-SOlariS. ... 2-10
Figure 13: Example AIX link command line for sequential C programs.ccccuvvveeeeee. 2-11
Figure 14: Example AIX link command for POE MPI programs using the IP adapter.2-12
Figure 15: Example AIX link command for POE MPI programs using the US adapter. ..2-12
Figure 16: Sample Makefile for WINdOWSNT.coooiiiiiiiiiiiiiiiiie e 2-13
3 Main Control window

Figure 17: Paradyn Main Control WINAOWoooiiiiiiiiiiiiiiiiiiiieeeeeee e 3-1
4 Tunable Constants

Figure 18: The Tunable Constants WINGOWueeeiiiiiiiiiiieeeeieei e 4-1
Figure 19: Tunable Constants Descriptions WIiNAOWuuvuiiiiiiiiieeeeeee e 4-2
Figure 20: User-level Tunable CONSTANTScooiiiiiiiiiiiiiiiee e 4-3
Figure 21: Developer-level Tunable Constants. Use at your own risk!ccccoeeeiieeeennnnn. 4-4

5 Selecting resources

Figure 22: Where AXIS WINGOW.coiiiiiiiiiiiiiiieie ettt e e e s s e e e e e e e e e eeeeeas 5-1

Figure 23: Showing all resources in the Where Axis displayccccoovvviviiiiiiiiiiiieeeeeeee, 5-3

Figure 24: A single fOCUS SEIECTIEAcooiiiiii e 5-4
Figure 25: Multiple fOCI SEIECTIONcoooiiiiieeee e 5-5

6 Selecting metrics

Figure 26: MEetriCS dialog DOXoeiiiiiiiiiiiiiiie et 6-1

Figure 27: Metrics dialog box with several metrics selectedccccoeeeeiiiiiiiieiicccen, 6-2

Figure 28: Metrics defined in Paradynooooiiiiiiiiiiie e 6-3
Figure 29: Developer Mode Metrics defined in Paradynccccccvviiiiiiiiiiiiiiieeeeeees 6-7

7 Controlling visis

Figure 30: Paradyn Main Control WINAOWooiiiiiiiiiiiiiiiiiieiieeeeeee e 7-1

Figure 31: Start A Visualization MENUuuiiiiiiiiii e e e e e e e e e e eeeeanaaaens 7-1

User’'s Guide May 5, 1998 Release 2.1

Page -iv

8 Phases

Figure 32: Phase Table DiSPIaYcccoiieiiiiiiiieee e e e e e e e e e 8-1
Figure 33: Time Histogram: Global Phase ... 8-2
Figure 34: Time Histogram: Local Phase (3)cccoociiiiiiiiiiiiiieeeeeee e 8-2
9 Performance Consultant

FIQure 35: THe WY AXIS .oooiiiiiiiiieeee ettt e e e e e e e e e e e eeas 9-2
Figure 36: A sample Performance Consultant WindOWcccceeiiiiiiiieeeiiiiicceee, 9-4
Figure 37: The Performance Consultant’s search Deginsccccueeeeiiiiiiiiiiiiiiiiie 9-6
Figure 38: The Performance Consultant refines bottleneck to CPUbound 9-8
Figure 39: Search History Graph tunable constants for saving screen space 9-9
Figure 40: The Performance Consultant refines bottleneck beyond CPUbound 9-10
Figure 41: The second set of Search History Graph refinementsccccccceeeiiiniiiinnns 9-11
Figure 42: Final Search History Graph bottleneck refinementcccccviiiicceeeennn. 9-12
10 Standard visi modules

Figure 43: Time Histogram with Actions and View menus expandedccccceeeeeeennn. 10-1
Figure 44: Time Histogram with curve selecteduuuiiiiiiiiiiiii 10-2
Figure 45: Time Histogram after smooth and hide options appliedccccociiiiinnnne. 10-3
Figure 46: Zoomed Time Histogram: color and black-and-white modes 10-4
Figure 47: Barchart visualization WINAOWoooiiiiiiiiiiiiiii e 10-5
Figure 48: Barchart showing total ValUESuuuiiiiiiiiiiiiiiiiiie e 10-6
Figure 49: Table visualization WINAOWoooiiiiiiiiiiiiiii e 10-7
Figure 50: Table visualization showing short focus namesccccoiiiiiiiiiiiiieeeee, 10-8
Figure 51: Table visualization with values shown to two significant digits 10-9
Figure 52: 3D Terrain ViSUAlIZAtiONccooooiiiiiiiiiiics e s 10-10
11 Paradyn Configuration Language

Figure 53: LiSt Of MDL KEYWOIUSciiiiiiieiiiiceeeeee st e e e e e 11-2
Figure 54: Predefined variabIeso 11-11
Figure 55: Metric labels. ... 11-14

User’'s Guide May 5, 1998 Release 2.1

Page 1-1

1 OVERVIEW

Paradyn is a tool for measuring the performance of parallel and distributed programs. When ran
with Paradyn, instrumentation is dynamically inserted into the running application program and
its performance is reported in real-time. Paradyn’s features include:

* Run-time program instrumentation: you do not have to modify your source code or use a spe-
cial compiler. Paradyn directly instruments the binary image of your running program.

» Performance data visualizations: Paradyn currently provides visualizations to present perfor-
mance data in time-plots, bar graphs, and tables.

* Automated search for performance bottlenecks: Paradyn’s Performance Consultant has a
well-defined notion of bottlenecks and can control Paradyn’s instrumentation in search of
your bottlenecks.

* Multi-platform support: Paradyn currently can measure programs running on Solaris (SPARC
and x86), AIX & SP2 (RS6000), and WindowsNT (x86).

» Support for heterogeneity: Paradyn can measure programs running on heterogeneous combi-
nations of the above systems.

* The ability to monitor and display performance data, and isolate performance problems to
particular intervals (“phases”) of program execution.

* An open interface for defining new performance metrics: the Metric Description Language
allows the advanced Paradyn user/programmer to define new performance metrics. These
metrics can be based on application specific performance data.

* An open interface for adding new performance visualizations: using Paradyn’s Visilib, pro-
grammers can interface new or existing display routines to Paradyn performance data.

Paradyn differs from many performance tools in that it can decide what performance data to
collect while the program is running. When you select some performance metric to be displayed
for some part of your program, at that moment Paradyn will insert the necessary data gathering
instrumentation into your application program. This method allows you to have direct and
dynamic control over the overhead of data collection (you don’t pay for what you don't use).

A tool based on dynamic instrumentation can control instrumentation overhead and data vol-
ume while still being able to collect information about the time-varying behavior of your applica-
tion program.

Dynamic instrumentation may seem a bit unusual at first. When you (or the Performance Con-
sultant) are not requesting a particular kind of performance data, it is usually not being collected.
This means that there may be intervals of time for which you cannot display data: if you display a
time-plot, there will be gaps in the curves. Paradyn tries to keep you informed of these details, so
that you can use this information to your advantage.

Note this manual contains color figures with detail which may not be easy to distinguish
when printed/viewed in grayscale.

User’'s Guide May 5, 1998 Release 2.1

Page 1-2

1.1 Release notes (version 2.1)

Release 2.1 of the Paradyn Parallel Performance Tools includes both source and binary versions,
and associated manuals. This incremental (minor) release primarily consolidates the preceding
Paradyn 2.0 release of September 1997, deploying advanced functionality to more platforms, and
generally enhancing capabilities, performance and software engineering. Supported platforms are
SPARC & x86 Solaris, x86/WindowsNT and RS6000/AIX (SP2). As of this release, support is no
longer available for SunOS earlier than 5.4 (Solaris 2.4). Some highly optimized code sequences
found in applications compiled under Solaris 2.6 and UltraSPARC may not be recognized as
instrumentable.

A synchronized 1.1 release of the DynInstAPI library which provides a standardized machine-
independent interface to Paradyn’s dynamic instrumentation (run-time code patching) comple-
ments this Paradyn release. Note that while Paradyn and the DyninstAPIl share some common
code, and hence the distribution of the DyninstAPI with Paradyn, they can both be used indepen-
dently of each other.

New features for Paradyn 2.1 include:

» application re-linking requirement removed for SPARC/Solaris
(Paradyn now dynamically loads its run-time instrumentation library and works with unmodi-
fied application executables on SPARC/Solaris and x86/WindowsNT)

» automatic code block identification [on Solaris platforms]
(eliminating the requirement to re-link the application program using explicit code block
markers, now also relevant for x86/Solaris)

* merged processing of statically and dynamically-linked modules [on Solaris platforms]
allowing generalized module and function exclusion

» better handling of optimized code [on SPARC architecture].

* handling of stripped dynamic libraries [under Solaris]

* more powerful, simplified MDL syntax for metric definition

» enhanced metrics for 1/0O in MPI programs [on the SP2]

» scalability to monitor larger numbers of processes

» refined main console user interface

» easier, parameterized source build (with PVM support now a build option)
* many performance improvements, bug-fixes and software revisions.

Further implementation details behind these features (and more) are available in the Paradyn
Developer’'s Guide

New features in release 2.0 of Paradyn included support for MPI within the POE environment
on the SP2, WindowsNT support, shared objects (dynamic linking) on Solaris and WindowsNT,
removing the need to relink programs with the Paradyn run time instrumentation library on
SPARC-Solaris and WindowsNT, and many efficiency improvements. HP-UX was no longer sup-
ported in release 2.0.

User’'s Guide May 5, 1998 Release 2.1

Page 1-3

Paradyn releases attempt to make capabailities available as early as possible on a wide variety
of platforms, however, there are some limitations in the current version:

* Instrumentation of dynamically linked libraries is not supported on AIX.

» AIX application programs that are to be monitored using Paradyn need to be re-linked with
explicit code block markers and Paradyn’s run-time instrumentation library. This link step is
necessary because Paradyn isn’t yet able to dynamically load its instrumentation library under
AlIX, and the peculiar format of libraries makes it difficult to distinguish user and library mod-
ules. Details of this link step are described in Section 2.3 and Section 2.6.2.

» x86/Solaris programs also need to be linked with Paradyn’s run-time instrumentation library.

* Only the Paradyn daemon and runtime libraries are available for x86/WindowsNT. (A Unix
platform must be used for the X11-based Paradyn main control process and visualizations in
conjunction with monitored x86/WindowsNT applications as described in Section 2.6.4.)

» Paradyn currently cannot instrument some threaded applications or applications that share
code space. Paradyn currently does not know about threads. If you use a non-preemptive
thread package, Paradyn will still work; performance data can be attributed to the UNIX pro-
cesses, but cannot be broken-down by thread. If you use any multiprocessing or preemptive
threading package, Paradyn’s instrumentation is likely to misbehave (i.e., we make no guaran-
tees on what will happen).

» Paradyn currently uses 32-bit counters as the basis for some of its instrumentation. For very
frequent events, such as those triggered by hardware counters (such as instruction counters or
memory reference counters), these 32-bit counters will overflow. Future releases will allow
larger counters.

* Instrumentation and monitoring of 64-bit applications is not supported.

* Instrumentation metrics for I1/O are based on the Ws() andwrite() system calls. If
you use read or write for socket operations, these will appear as 1/O. If you use other system
calls that do file I/0, these will not be accounted for.

Most (if not all) of these restrictions will be relaxed in the next major release of Paradyn.

1.2 Supported hardware and software platforms

The Paradyn process (front-end and user interface) can run on any of the types of workstation that
are listed in Figure 1. The workstations and parallel computers on which Paradyn can monitor
programs are listed in Figure 2: Paradyn can also monitor application program running on hetero-
geneous combinations of these platforms.

Paradyn capabilities vary by platform, and these are summarized in Figure 3, along with the
differences between capabilities of release 2.0 and release 2.1.

Application programs written to run with PVM (version 3.x or later) can be measured on
SPARC & x86 Solaris, and AIX systems. You need to use a Paradyn daemon with built-in PVM
support (such as those in the binary releases) for these platforms. MPI programs can only be run
under the POE environment on the SP2.

User’'s Guide May 5, 1998 Release 2.1

Page 1-4

System Identifier Description

sparc-sun-solaris2.4

rs6000-ibm-aix4.1

Solaris operating system version 2.4 or later on SPARC pro
i386-unknown-solaris2.5 Solaris operating system version 2.5 or later on x86 process

AIX operating system version 4.1 or later on RS6000 process

Ce€SSOrsS.

ors.

50I'S.

Figure 1: Platforms on which Paradyn (User Interface and Visualizers) can run

System Identifier Description

sparc-sun-solaris2.4

i386-unknown-solaris2.% Solaris operating system version 2.5 or later on x86 process

rs6000-ibm-aix4.1

i386-unknown-nt4.0 WindowsNT operating system version 4.0 on x86 processors.

Solaris operating system version 2.4 or later on SPARC pro
Users of earlier Solaris/SunOS versions can contact us.

AIX operating system version 4.1 or later on RS6000 procs
also supports the SP2 with the MPL interface in the POE environ-
ment. AlX 3.2 users can contact ugatadyn@cs.wisc.edu

CEeSSOors

ors.

SSOrsS,

Figure 2: Platforms on which Paradyn can monitor application programs

Key:

¥ Support currently under development

% Applications compiled by VC++ only SPARC %86 x86 RS6000
4 Support added in DyninstAPIv1.1 only Solaris Solaris WinNT AIX
& Programs started under SP2 POE only

Front-end/GUI (paradyn & Visis) [] [] [] []
Daemon paradynd & libdyninstRT ') [] [] []a []
DyninstAPI library [] [] [] o []
Shared-objects / dynamic linking [] [] [] []
libdyninstRT as a shared library [] [[] []
Dynamic loading of libdyninstRT C10] [[[] []
Attach to running process(es) [] [] [] [e
Supported parallel execution modes | PVM PVM PVM

MPla

Figure 3: Summary of Paradyn capabilities by platform (v2.0 vs. 2.1)

User’s Guide

May 5, 1998

Release 2.1

Page 1-5

1.3 Other documentation: Manuals

In addition to thidJser’s Guide the following documentation is available for Paradyn:

Installation Guide

The Installation Guide describes how to obtain Paradyn via anonymous ftp and install it on
your system(s). It also describes the minimum operating system and system software version
numbers needed for compatibility with this release of Paradyn.

Tutorial

The tutorial provides a step-by-step example of the use of Paradyn. It walks you through the

main features of starting a program with Paradyn, displaying performance visualizations, and

using the Performance Consultant. The tutorial is intended to show you many of the common

and most useful features, but is not a complete description of Paradyn’s features. This manual
(theUser’s Guidg contains the complete description of Paradyn.

VisiLib Programmer’s Guide

Visilib is the standard API interface for external processes that want to collect performance
data from Paradyn. Paradyn performance visualizations (Time Histogram, Bar Chart, Table
and 3D Terrain) execute as separate processes, using Visilib as their interface to Paradyn.

Visilib provides a simple interface and abstract to the writer of a new performance visualiza-
tion. The library handles the details of communicating with Paradyn, processing incoming
performance data, providing notifications of changes in the data, and clean-up when Paradyn
terminates. Paradyn itself will start the visualization process and provide the user interface for
selecting the data to visualize. The writer of the visualization module is left to concentrate on
the display and graphics aspects.

Developer’'s Guide

This is intended for those who wish to understand the Paradyn source code—whether to just
to browse it or to actually make changes with the intent of rebuilding Paradyn from scratch.

LibThread Programmer’s Guide

Paradyn’s internal design is multi-threaded using a custom thread package designed by the
Paradyn Project. This thread package uses simple message-passing constructs to unify the
actions of waiting for a message from another thread, a message from another UNIX process,
a message from a formatted event stream (such as the X window server), a signal, or file I/O.

This documents the API to libThread and may be useful if you are working on extending or
porting Paradyn, or if you are just looking for a useful thread package. In Paradyn, libThread
often is used with our RPC generator, Igen. A manual is not yet available for Igen.

User’'s Guide May 5, 1998 Release 2.1

Page 1-6

1.4 Other documentation: Technical papers

Following is a bibliography of currently available papers on the technology contained in or related
to Paradyn. These papers can be obtained from the Paradyn Project Web home page.

1.

10.

11.

12.

13.

14.

“The Paradyn Parallel Performance Measurement Tools”, Barton P. Miller, Mark D. Callaghan,
Jonathan M. Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kun-
chithapadam, and Tia NewhalEEE Computei28, 11, (November 1995). Special issue on Parallel
and Distributed Processing Tools.

“An Adaptive Cost Model for Parallel Program Instrumentation” Jeffrey K. Hollingsworth and Barton
P. Miller. EuroPar’'96 ConferengeLyon, France, August 1996. AppearsLdiCS 1123Vol.1, pp. 88-
97, Springer-Verlag.

“Dynamic Program Instrumentation for Scalable Performance Tools”, Jeffrey K. Hollingsworth, Bar-
ton P. Miller, and Jon Cargill&scalable High Performance Computing Conferenteoxville, May
1994.

“Dynamic Control of Performance Monitoring on Large Scale Parallel Systems”, Jeffrey K. Holling-
sworth and Barton P. Millemternational Conference on Supercomputifigkyo, July 19-23, 1993.

“The Paradyn Parallel Performance Tools and PVM”, Barton P. Miller, Jeffrey K. Hollingsworth, and
Mark D. CallaghanEnvironments and Tools for Parallel Scientific Computing J. J. Dongarra and
B. Tourancheau, eds., SIAM Press, 1994.

“Mapping Performance Data for High-Level and Data Views of Parallel Program Performance”, R.
Bruce Irvin and Barton P. Milleinternational Conference on Supercomputiftiladelphia, May
1996.

“A Performance Tool for High-Level Parallel Programming Languages”, R. Bruce Irvin and Barton P.
Miller. Programming Environments for Massively Parallel Distributed SystemsK. M. Decker and
R. M. Rehmann editors, Birkhauser Verlag, pp. 299-314, 1994.

“Optimizing Array Distributions in Data-Parallel Programs”, Krishna Kunchithapadam and Barton P.
Miller. 7th Annual Workshop on Languages and Compilers for Parallel Compudtimara, NY.
August 1994,

“Integrating a Debugger and Performance Tool for Steering”, Krishna Kunchithapadam and Barton P.
Miller. Workshop on Debugging and Performance Tuning for Parallel Computing Sy§tepesCod,
Massachusetts, USA, October 1994,

“What to Draw? When to Draw? An Essay on Parallel Program Visualization”, Barton P. Jdilier.
nal of Parallel and Distributed Computiri$, 2 (June 1993).

“Binary Wrapping: A Technique for Instrumenting Object Code”, Jon Cargille and Barton P. Miller.
SIGPLAN Noticeg7, 6 (June 1992).

“Finding Bottlenecks in Large-scale Parallel Programs”, Jeffrey K. Hollingsworth, August 1994. Uni-
versity of Wisconsin-Madison Computer Sciences Department Technical Report #1243 (Ph.D. The-
sis).

“Performance Measurement Tools for High-Level Parallel Programming Languages”, R. Bruce Irvin,
October 1995. University of Wisconsin-Madison Computer Science Department Technical Report
#1292 (Ph.D. Thesis).

“MDL: A Language and Compiler for Dynamic Program Instrumentation”, Jeffrey K. Hollingsworth,
Barton P. Miller, Marcelo J. R. Goncalves, Oscar Naim, Zhichen Xu and Ling ZRA@J.'97, San
Francisco, California, USA. November, 1997.

User’'s Guide May 5, 1998 Release 2.1

Page 1-7

1.5 Contacting the Paradyn developers

There are various ways to get in touch with us. We are happy to answers questions and appreciate

feedback.

e-mail;

Web:

FTP:

FAX:

Postal:

paradyn@cs.wisc.edu

This is our project e-mail address. Use this address for technical questions or requests.

http://www.cs.wisc.edu/~paradyn

This is our home page. From this page, you can find out how to get a binary or source version
of Paradyn. You can also get updates and news on the current release of Paradyn.

ftp://grilled.cs.wisc.edu/paradyn/

This is our ftp site. In the “paradyn” directory, you will find subdirectories containing the bi-
nary and source versions of the Paradyn release. Make sure to look at the README files!

+1-608-262-9777

Paradyn Project

Computer Sciences Department
University of Wisconsin

1210 W. Dayton Street
Madison, WI 53706-1685
USA

User’'s Guide May 5, 1998 Release 2.1

Page 2-1

2 RUNNING PARADYN

In this section, we describe the steps that you should follow to run Paradyn. First we give you an
overview of the major steps and then we explain each one in detail. For this section, we are
assuming that you have already installed Paradyn as documentedhistéiiation Guide

2.1 Overview of major steps

To run Paradyn, follow the steps:

1. Set up Paradyn and daemons (Section 2YBu need to specify the location of the Paradyn
executable and configuration files and some external libraries.

2. Prepare your application program (Section 2.&enerally Paradyn is able to handle unmodi-
fied executables, however, on some platforms you may need to re-link your application pro-
gram with Paradyn’s run-time dynamic instrumentation library.

3. Run Paradyn (Section 2.4Paradyn has several options that you may use during execution,
such as adding a new process to your application. These options may be specified directly on
the command line or in a Paradyn configuration file for the application.

Sections 2.2 through 2.4 explain these steps in more detail.

2.2 Setting up Paradyn and the Paradyn daemons

Paradyn has two main parts: the Paradyn front-end and user interface (“paradyn”) and the Paradyn
daemons (“paradynd”), which are the agents that run on each remote host where your application
program is running. Paradyn contains the user interface that allows you to display performance
visualizations, use the Performance Consultant to find bottlenecks, start or stop your application,
and monitor the status of your application. The Paradyn daemons operate under the control of
Paradyn to monitor and instrument the application processes. Paradyn also uses configuration files
to specify details of Paradyn configuration, instrumentation and application programs. You must
also have Tk and Tcl library files installed to be able to use Paradyn (and to use the Paradyn Win-
dowsNT daemon, a special RPC package is also required).

For the details of installing Paradyn, its daemons, Tk/Tcl and other external software, refer to
the Paradyn Installation Guide

After you have installed Paradyn, you need to specify the location of Paradyn’s executable and
configuration files. The files needed to run Paradyn are listed in Figure 4, along with explanations
of their use. The environment variables that are needed or helpful when running Paradyn are listed
in Figure 5, along with a description of their use.

User’'s Guide May 5, 1998 Release 2.1

Page 2-2

File

Use

paradyn

paradynd

paradyn.rc

.paradynrc

The executable that starts a Paradyn session and provides the main user

interface. There are versions for each supported platform and an
priate version should be placed in a location that will be found by
shell’'s search path (or you can specify the full path name to run it).

The executable for a Paradyn daemon. Versions exist for each
supported target application environments, and an appropriate v

Appro-
your

of the
brsion

should be placed in a location that will be found by your shell’'s search

path (or you can specify the full path name to run it).

Contains crucial information, such as metric and daemon definitions.
The following steps are used to try to find this file (these steps are tried

in listed order):

1. Look in the directory specified by the environment variable

“PARADYN_ROOTor file $PARADYN_ROOT/paradyn.rc .
2. Look in your current working directory for the feradyn.rc

In addition toparadyn.rc , Paradyn will also look in your accounf

home directory for a file nameghradynrc (note the slightly different

form). This file is processed after, and in additiopai@dyn.rc

S

Figure 4. Files needed to run Paradyn

Environment Variable | Use

PARADYN_ROOT

PARADYN_LIB

TCL_LIBRARY
TK_LIBRARY

Paradyn code tree. (Not required if you are running Paradyn
your current working directory or from your home directory.)

instrumentation shared object filébdyninstRT.so.1). It must
specify the full path name of this file:

setenv PARADYN_LIB /usr/home/me/libdyninstRT.so.1

(Note: when running PVM applications, the shared object file |
be in a directory that is readable by any uger.

These environment variables specify the location of the Tcl an
command files needed to implement the basic Tcl/Tk object typ
you have been using a current installed version of Tcl/Tk, you p
bly already have these set. If not, then the instructions iRdha-
dyn Installation Guidedescribe how to reset them.

Specifies the location of tiparadyn.rc configuration file. In source
code distributions of Paradyn, it is also used to locate the root of the

from

Used on SPARC-Solaris platforms to specify the Paradyn runitime

nust

d Tk
es. If
oba-

User’s Guide

Figure 5: Environment variables used when running Paradyn

May 5, 1998 Release

2.1

Page 2-3

2.3 Preparing your application program

Paradyn is able to instrument unmodified binaryuf) files, though currently only on SPARC-
Solaris and x86/WindowsNT platforms: future releases will extend this capability to other plat-
forms. Where re-linking is required, step through the following items:

1. To allow Paradyn to insert instrumentation into your application, you need to link Paradyn’s
run-time instrumentation libraryi{dyninstRT.0) with your application. (This step is not
needed on the x86/WindowsNT and SPARC/Solaris platforms wiheyenstRT.dll or
libdyninstRT.s0.1 is loaded dynamically after the application starts.)

2. Generally there is no more need to link your application with the special code block markers
DYNINSTstartCode.o ~ and DYNINSTendCode.o which used to help Paradyn identify your
application code in the finalout file, and distinguish system libraries which generally
weren’t instrumented. Undesired libraries, modules and functions can generally now be con-
veniently excluded from instrumentation usingexeclude specification in one of your Para-
dyn configuration files (e.g., searadyn.rc for exclusion of the standard C run-time library,
libc). Note that instrumentation of large libraries often requires considerable resources and
can be fairly slow, therefore it is usually worthwhile explicitly excluding such libraxiBs.
due to the peculiar AIX library structure, it is not generally possible to exclude such libraries
with a single exclude specification, and use of the code blocks to delimit application code of
interest is thereforstill recommended for programs on the AIX platform

3. Use of the compile flag is recommended to generate debugging information which can be
exploited by Paradyn, and theatic (or some equivalent flag) is needed when linking on
platforms where Paradyn cannot currently instrument dynamic libraries (this only applies to
rs6000-ibm-aix4.1).

Figure 6 is an example of how you would modify the link command in your application’s
Makefile to handle the extra link step if required by the current version of Paradyn. If your Make-
file contained the link step shown in Figure 6(a), you would change it as shown in Figure 6(b)

Once you have compiled and linked your application program with Paradyn’s run time instru-
mentation library, you are ready to run Paradyn.

User’'s Guide May 5, 1998 Release 2.1

Page 2-4

OBJECTS = main.o this.o that.o
bubba: ${OBJECTS}
${CC} ${OBJIECTS}\
-Im -lcurses -ltermcap -o bubba

(a) Original link command in the Makefile

OBJECTS = main.o this.o that.o

PARADYN_LIBDIR = $(PARADYN_ROOT)/lib/$(PLATFORM)
PARADYN_LIB = $(PARADYN_LIBDIR/libdyninstRT.so

bubba .pd : ${OBJECTS}
${CC} -g\
$(PARADYN_LIBDIR)/DYNINSTstartCode.o \
${OBJIECTS}\
$(PARADYN_LIBDIR)/DYNINSTendCode.o \
$(PARADYN_LIB)\
-Im -lcurses -Itermcap -o bubba .pd

(b) Modified link command to run application with Paradyn.
Items inBold face are changes (additions)

Figure 6: Modifying application Makefile to link for Paradyn (generic example).
Note: x86/Solaris and AlX actually require different options; see Section 2.6.

2.4 Running Paradyn

At this point, your should be ready to run your application program with Paradyn. You start Para-
dyn by entering the following command:

% paradyn

Several optional command line arguments can be used when invoking Paradyn:

* -f <pcl-configuration-filename>
specifies a file from where Paradyn can read configuration commands (see Section 11);

* -default_host <host name>
specifies the default host where Paradyn should start an application when no host name is
given. (If the-default_host option is not used, the default host is the local host.)

* -x <connect-filename>
specifies a file to which Paradyn daemon start-up information will be written, which may be
used by external programs to explicitly start Paradyn daemons on different hosts which will
connect to this Paradyn front-end. (This file is created if it doesn’t already exist.)

User’'s Guide May 5, 1998 Release 2.1

Page 2-5

Paradyn should start running and display the Paradyn Main Control Window, shown in
Figure 7. This window has five menu optioR#e, Setup, Phase, Visi, andHelp. These options
allow you to:

1. File: At present, the only command in this men&ig Paradyn .

2. Setup: This menu has selections to allow you to describe a new application program to run
(Define a Process , described below), attach to an already-running application program
(Attach to a Process , described below), change Paradyn’s tunable constamiab{e Con-
stants Control , described in Section 4), and start the Performance Consutafurihance
Consultant , described in Section 9).

3. Phase: start and define a new local phase for visualizations and analysis (see Section 8).
4. Visi: start visualizations of your application performance (see Section 7).
5. Help: get additional information about Paradyn.

Additionally, there are four buttons in this windaRwN, PAUSE, SAVE andEXIT. RUN and
PAUSE are disabled when there is no application currently defined. These two buttons allow you
to run or stop execution of your application as you wsstvE will save the current configuration
of Paradyn for future experimentSAVE functionality is currently not implemented. Finally,
EXIT will exit Paradyn, killing the application program if necessary, and end the session.

The Paradyn Main Control Window can contain several status lines. Each status line repre-
sents information about some part of Paradyn or your application. In the initial window, there is a
status line labeled “UIM status”. This line shows the current state of Paradyn’s User Interface
Manager (“ready” in this case).

Paradyn Main Control v2.1
Jara
File Setup Phase Visi Help | Vi

UIM status : ready

N | st | |

Figure 7: Starting Paradyn

User’'s Guide May 5, 1998 Release 2.1

Page 2-6

2.5 Running applications with Paradyn

There are two ways to give Paradyn an application program to monitor: defining a new process to
start, and attaching to an already-running process. These two methods are described below.

2.5.1 Defining a new process

One way to measure a program with Paradyn is to select the Ogfion A Process from
theSetUp menu. A new window appears, as shown in Figure 8.

Define A Process

User: |
Host: |

Diirectory: |f‘pr’p aradyn/applications/sequential/bubba

Daemon: ~ pvmd 4 defd ~ winntd ~ mpid

Command: Ibubba.pd exampled| |

ACCEPT | CANCEL |

Figure 8: Defining a new application process

From this window, you can specify the following parameters:

1. User. This is your login name on the host on which Paradyn will run your application process.
If you leave this field blank, the login will default to your current login name.

2. Host: This is the name of the host on which Paradyn will run your application. If you leave
this field blank, it will default to the host specified with thefault_host command line
option to paradyn, or to the current host (the one on which the Paradyn front-end is running),
if the option-default_host is not used.

3. Directory: Paradyn runs paradynd and your application as follows. First, it performs a remote
login operation using the “User” and “Host” fields specified above. The current directory (on
the remote machine) at this point is the root directory—not usually where your application
program resides. The “directory” entry box allows you to specify a directory to change to
before executing the command specified in the “Command” entry box. The allowed syntax is
familiar in Unix: the path specified may start with a slash (/") (specifying an absolute path
name, starting from the file system root directory), or it may start with a tilde (“~") followed
by a user name (specifying a path name rooted at the specified user’s home directory). A tilde
not followed by a user name is the same as a tilde followed by the current user name.

4. Command: The command that will start this instance of your application program. If the
Directory entry has been filled in, the command is executed with the current directory set to
the specified path. If the Directory entry is left blank, then the command will be executed with
the current directory set to the home directory of the specified user.

User’'s Guide May 5, 1998 Release 2.1

Page 2-7

5. Daemon This option allows you to specify which Paradyn daemon to run. For most uses, the

default daemon (“defd”) is appropriate; for PVM applications, you should select “pvmd”. If
you specify additional daemons in the Paradyn configuration file, they will appear here.

Once you have made your selections, clickhocept and Paradyn will start the application

program and initialize it. When the status of the Paradyn window is like that in Figure 9, the pro-
gram is ready to run and be measured.

a s~ wDn

CFara
File Setup Phase Visi Help VI
UIM status : ready

Applicaticn nams : program: foo, machinhe: {(local], user: (sgelf)l, daemcon: defd
Application status

Data Manager : raady

ProCcessas : FID=19271

I beauforc : PID=19271, ready.

| o | | | s | | |

Figure 9: Paradyn ready to run the application

The window in Figure 9 shows several new status lines with the following information:

Application nameThis is the name of the application progrdoo (), the host machine where
it has been started (if remote), the user identifier which it is running as (if different), and the
type of daemon which is monitoring defd).

Application statusThis is the overall application status (eitR&USEDor RUNNING.
Data Manager This is the status of Paradyn’s Data Manager.
ProcessesThis is the process identifier of the controlling process in your application.

beaufort There is one status line on each host or node on which you are running your applica-
tion; here there is the status line for host “beaufort”. It shows the current status of your appli-
cation process on this host/node.

Notice that since you have defined a new process the RUN button is enabled and you are ready

to run and measure your program!

The information in the “Define a Process” window can be stored in a Paradyn Configuration

Language (PCL) file. In this file, the user can specify information such as: user application, new
visualizations to be added to the system, new metrics, and additional paradyn daemons. The com-
plete details of the Paradyn Configuration Language are given in Section 11.

As a simple example, if we want to run an application called “bubba”, a file called “bubba.pcl”

User’'s Guide May 5, 1998 Release 2.1

Page 2-8

might contain:

process bubba {
dir “/p/paradyn/applications/sequential/bubba”;
command “bubba.pd example.dat;
daemon defd,;

}

and the command to automatically start Paradyn with this application would be like this:
% paradyn -f bubba.pcl

This command tells Paradyn to run the application “bubba” in the directory specified by “dir”
using the command line specified by “command” with the Paradyn daemon specified by “dae-
mon” (defd or default daemon in this case).

2.5.2 Attaching to a process

Sometimes, defining a new process from Paradyn as shown in the previous sub-section is not con-
venient. The main limitation of defining a new process is that a new process is launched every
time you run Paradyn (and killed every time you exit Paradyn). Many programs you may wish to
measure are not amenable to starting up and shutting down every time you wish to measure them.
Typically these are server-type programs, which are meant to run for an indefinite amount of time.
In such cases, it is more convenient to attach to an already-running program when you wish to
measure it with Paradyn, and to detach from it when you exit Paradyn.

Attaching to a running process is not yet implemented for processes running on AIX/SP2. In
addition, Paradyn currently does not detach from the application when you exit Paradyn; as when
a new process has been defined and started by Paradyn, Paradyn kills the application it is moni-
toring and all its processes when it exits. These limitations will be removed in a future release.

To attach to a running process, choaséach to a Process from theSetup menu of the Para-
dyn main window. A dialog box (Figure 10) will appear.

The User, Host, andDaemon items have the same meaning as in Section 2.5.1. The most
important box isPid, where you specify the process identifier of the process (omdie
machine) you wish to attach to. Theecutable file item lets you specify a full pathname to the
executable file corresponding to the process id. The Paradyn Daemon needs to find the executable
file on disk in order to extract symbols (procedures, modules) that will go ¢otleeportion of
the Paradynvhere Axis . Obtaining symbols from the executable file is also done when defining a
new process (Section 2.5.1). However, it can be burdensome to enter the full path name of a pro-
cess that you want to attach to; it is possible that you might not even know the disk directory from
which it was launched. Therefore, if you leave Hsecutable file item blank, the Paradyn Dae-
mon will make an effort to locate its value automatically. (It obtains the program name by examin-
ing the process’ first argumenigv[o] . It then looks in several directories for this program
name; it searches the process’ current directory and all itemsRaATHsenvironment variable.

For those interested, further technical details on how attach is performed can be found in the sep-
arateParadyn Developer’s Guidglf Paradyn reports that it cannot locate the executable file, you
will have to enter the full path name in thescutable file field.

User’'s Guide May 5, 1998 Release 2.1

Page 2-9

Attach to a Process

User: |naim
Host: Ibeaufortl
Executable file: |fpfparadynfdevelopmentr‘naimr‘appsffoofsparc—sun—solaris 24
Fid: |19351

Daemon: ~ pymd ¥ defd ~ winntd ~ mpid

Entering a pid is mandatory,

Enter the full path to the executable in "Executable file”, It will be used just to parse the symbol table,
Paradyn tries to determine this information automatically, so you can usually leave "Executable file” bl

After attaching: | ~ Pause application || # Run application || ~ Leaveasis

ATTACH | CANCEL |

Figure 10: Specifying a process to attach to.

The Paradyn daemon can attach to a process, whether it is currently running or stopped. After
it has attached, you may wish to have the daemon automatically pause or run the application. To
do this, choose eith@ause application 0r Run application items from the dialog box. The default
IS Leave as is , which detects whether the program was running or stopped at the time of attach.
Note that the process is necessarily paused for a short time while the Paradyn daemon initializes it
(parses its symbol table, parses any shared libraries it has been linked with, etc.)

When you have entered the desired parameters, cliskTacH to perform the attach opera-
tion. When ready, the Paradyn main window should look like Figure 11.

Paradyn Main Control vz
ﬁra
Vi

File Setup Phase Visi Help |
TIM status : ready
Lhpplication name : program: JpSparadyvn/development/haimfappss/ioo/sparc-sun-so
Application status : RUNNING
Data Managosr : ready
ProCoSgos = FID=19351
I boauforc : application running

| PAUSE | SAVE | EXIT |

Figure 11: Attach completed

User’'s Guide May 5, 1998 Release 2.1

Page 2-10

2.6 Architectural issues

Certain platforms require slight modifications to the procedures discussed above. In this subsec-
tion, we describe each of them in turn.

2.6.1 Solaris

On SPARC-Solaris and x86-Solaris platforms we support instrumenting shared objects (dynami-
cally-linked libraries). Dynamic executables are executables that are linked with shared object
files, and are the default output generated by the link-editor, therefore no special flags are needed
to create dynamic executables. On the SPARC-Solaris platform, Paradyn’s run-time instrumenta-
tion library is a shared objedibflyninstRT.so.1) which is dynamically loaded at run-time,

and does not need to be linked with the executable file. Figure 6 shows a sample makefile for
SPARC-Solaris. Linking on x86-Solaris currently requires a static version of the Paradyn run-time
instrumentation library lipdyninstRT.so) and some additional librariesocket and nsl).

Figure 12 shows a sample Makefile for x86-Solaris

OBJECTS = main.o this.o that.o
PARADYN_LIBDIR = $(PARADYN_ROOT)/lib/$(PLATFORM)
PARADYN_LIB = $(PARADYN_LIBDIR)/libdyninstRT.o
bubba.pd: ${OBJECTS}

CC -XS -g \

${OBJIECTS}\

$(PARADYN_LIB) \

-Im -lcurses -ltermcap \

-Isocket -Insl \

-0 bubba.pd

Linking an application to run with Paradyn.
Items inBold face show the changes for x86-Solaris.

Figure 12: Sample Makefile for x86-Solaris.

On both platforms, shared objects will show up on the Paradyn Where axis and performance
data can be collected for functions from shared objects. Also, the Performance Consultant will
include functions in shared objects in its search for bottlenecks. TheeM@iide option can be
used to specify shared objects and/or functions from shared objects that should not be included in
the Performance Consultant’s search. This is discussed in more detail in Section 11.8.

Finally, when using the Sun C or Fortran compilers, you should also specis thogtion
together withg . The-g option alone will direct the compiler to place debugging information in
the object files.¢ files), but it will not place the debugging information on the executable
(a.out) file. You must use thes option so that the compiler will add the debugging information
to the a.out file. Thexs option is not needed if you are using gcc.

User’'s Guide May 5, 1998 Release 2.1

Page 2-11

2.6.2 RS/6000 running IBM AlX version 4.1

When linking AIX programs, two additional options (beyond those shown in Figure 6) need to be
present. The first is the link flagnoobjreorder. If you forget this flag, you will be reminded

with an error window when paradyn tries to run this program. Note that this flag needs to be inter-
preted by the AIX linker, but is unknown to most compilers. Different compilers pass arguments
to the linker differently. In some, if the argument isn’t understood by the compiler, it gets passed
to the linker automatically. On others, a specific prefix flag is needed to tell the compiler “this is a
linker option; don't try to interpret it.” For example, when linking using the GNU gcc or g++ com-
pilers, preface the option witllinker to get:

-Xlinker -bnoobjreorder

The second AlX-specific option is needed to ensure that Paradyn’s runtime libtgny (
instRT.0) gets linked properly. Compared to traditional UNIX linkers, the AIX linker is unusu-
ally aggressive in optimization. One optimization is the removal of code that is not called
elsewhere in the binary. Since the routinesibityninstRT.o are called only by paradynd’s
dynamic (runtime) instrumentation, by default, the AIX linker will unfortunately leave out the
contents ofibdyninstRT.o0 . What is needed is a way to force the linker to include certain rou-
tines and variables. In the AIX linker, this is done with thiE:<filename> option, where
<filename> is a text file containing a list of functions and/or variable names. We have provided
such a file for you in the AIX ftp distribution; the file is calle¥dNINST_EXPORTSAssuming
you have installed this file in the same directoryit@gninstRT.o, the following should be
added to your link line:

-bE:$(PARADYN_LIBDIR)/DYNINST_EXPORTS

Of course, if necessary, preface this option with whatever is required by your compiler to pass it
verbatim to the linker; e.gXlinker , as above.

Three examples of AIX link command lines are given in the figures below. Figure 13 shows
the link command line that may be used for sequential C programs. Figure 14 shows the link com-
mand line for a MPI program running under the POE environment on an RS/6000 workstation
cluster or SP/2. Figure 15 shows the link command line for a POE MPI program using the fast US
switch network adapter on an SP/2. The link command lines for Fortran programs are similar,
except thatlxIfo0 (and maybe alsoxlf) are appended at the end of the command line. The
exact link command line you need may vary, but, if possible, we recommend you maintain the
link command line components in the relative order shown in the figures. For instance, try to place
-lc ahead of the other s.

Ccc -g -bnso -bnoobjreorder -bl:/lib/syscalls.exp \
-bE:$(PARADYN_LIBDIR)/DYNINST_EXPORTS -0 segProg \
$(PARADYN_LIBS)/DYNINSTstartCode.o \
$(OBJIECTS) \
$(PARADYN_LIBS)/DYNINSTendCode.o \
$(PARADYN_LIB) -lc

Figure 13: Example AlX link command line for sequential C programs.

User’'s Guide May 5, 1998 Release 2.1

Page 2-12

Id -bpT:0x10000000 -bpD:0x20000000 -btextro \
-bnodelcsect -bnso -bl:/lib/syscalls.exp \
-bE:/usr/lib/libg.exp -bnoobjreorder -H4 \
-bE:$(PARADYN_LIBDIR)/DYNINST_EXPORTS -0 IPmpiProg \
lusr/lpp/ppe.poe/lib/crt0.0 \
$(PARADYN_LIBS)/DYNINSTstartCode.o \
$(OBJECTS) \
$(PARADYN_LIBS)/DYNINSTendCode.o \
$(PARADYN_LIB) -lIc -Ig -Im\
-L/usr/Ipp/ppe.poe/lib -Ippe -Impi -lvtd \
-L/usr/Ipp/ppe.poe/lib/ip -Impci

Figure 14: Example AlX link command for POE MPI programs using the IP adapter.

Id -bpT:0x10000000 -bpD:0x20000000 -btextro \
-bnodelcsect -bnso -bl:/lib/syscalls.exp \
-bE:/usr/lib/libg.exp -bnoobjreorder -H4 \
-bE:$(PARADYN_LIBDIR)/DYNINST_EXPORTS -0 USmpiProg \
-bl:/usr/Ipp/ssp/css/libus/fs_ext.exp \
lusr/lpp/ppe.poe/lib/crt0.0 \
$(PARADYN_LIBS)/DYNINSTstartCode.o \
$(OBJIECTS) \
$(PARADYN_LIBS)/DYNINSTendCode.o \
$(PARADYN_LIB) -lc -Ig -Im\
-L/usr/Ipp/ppe.poe/lib -Ippe -Impi -lvtd \
-L/usr/Ipp/ppe.poe/lib/us -Impci

Figure 15: Example AlX link command for POE MPI programs using the US adapter.
2.6.3 PVM

For the PVM message passing system, the procedure of linking the application program with
Paradyn is the same. However, one of the following two steps is necessary in order for the PVM
system to fingharadynd and your application:

1. If you can modify the director§PVM_ROOT/bin/$PVM_ARCH you can copy or linkara-
dynd and your application into this directory.

2. If you cannot modify the directoryPVM_ROOT/bin/$PVM_ARCH you can create a local
directory $SHOME/pvm3/bin/$PVM_ARCH and copy or linkparadynd and your application
into this directory. This works because PVM will look for the executables first in
$PVM_ROOT/bin/$PVM_ARCH and then it will check for a loca$HOME/pvm3/bin/
$PVM_ARCHiIirectory. This is clumsy, but it is caused by the way PVM currently works.

PVM is freely available by anonymous ftpregtlib2.cs.utk.edu (cd pvm3get indeX or at
http://netlib2.cs.utk.edu/pvm3/index.html . Paradyn currently supports PVM ver-
sion 3.3.

User’'s Guide May 5, 1998 Release 2.1

Page 2-13

2.6.4 WindowsNT

Currently only the Paradyn back-end is ported to the WindowsNT environment on x86 processors.
That means that you need to run the Paradyn graphical front end on some other platform (Solaris
or AlX). The way Paradyn works in WindowsNT is similar to other platforms, however there are

a few small differences.

On Windows NT the run-time instrumentation libraliydyninstRT.dll) is loaded dynam-
ically, so there is no need to re-link your application with this library. However you must have
libdyninstRT.dll in a directory that is listed in your “path” environment variable, so that it can
be found by the dynamic linker.

Paradyn needs symbolic debug information, so you must compile your application with
debugging information enabled. We currently only handle COFF symbols, so you must also direct
the compiler and linker to generate a COFF symbol table (CodeView format is not supported).
The option to enable COFF symbol table will depend on the compiler used. For the Microsoft
compiler this option i$z7 . You must also direct the linker to generate symbolic information in
the symbol file. The optiongiebug and debugtype:coff must be passed to the linker.
Figure 16 shows a sample Makefile for the Microsoft Visual C++ compiler.

CC=cl/z7
OBJECTS = main.obj this.obj that.obj

bubba.exe: $(OBJECTS)
link -out:bubba.exe -debug -debugtype:coff\
$(OBJECTS)

Figure 16: Sample Makefile for WindowsNT.

Paradyn needs to instrument some system libraries (in partieuter32.dil), and this can
only be done if the symbols for the system libraries are installed. The symbols are available with
the NT disks, and they can be installed by the compilers (e.g. the Microsoft Development Studio
has an option to install the system symbols files).

The files which are needed to run on WindowsNTparadynd.exe (the paradyn daemon),
libdyninstRT.dll (the run-time dynamic instrumentation library), amdrpc.dll (a version
of the Sun RPC library for WindowsNT, included with the Paradyn binary release, which is used
by Paradynd to communicate with the Paradyn front-end). All of these files should be in directo-
ries that are listed on your “path” environment variable.

In order to have a Paradyn daemon started automatically by the Paradyn front-end (as for the
other platforms), you need to have a remote shell daersbd)(running on the WindowsNT
machine(s), and you must be able to execute commands on WindowsNT from the Unix machine
where the Paradyn front-end is running. If you don’t haveshd running on the WindowsNT
machine, you must start the daemon manually. Either refer tex ttommand-line option for
Paradyn to automatically get this information (Section 2.4) or once the Paradyn front-end has
started go the “File” menu and select the option “Daemon start-up info”. In either case you will
get the command you need to type to start a Paradyn daemon on a remote machine. You must start

User’'s Guide May 5, 1998 Release 2.1

Page 2-14

paradynd giving the exact arguments shown but specifying the appropriate “flavor” (which will be
winnt for WindowsNT): note that for each session the port identifier (and possibly also host
machine) arguments will be slightly different, so you can’t reuse exactly the same command line
for different Paradyn sessions. The command line to start paradynd on WindowsNT will look like:

paradynd -zwinnt -12 -m myhostmachine -p 12345

Once the Paradyn daemon is started, it connects to the existing Paradyn front-end session, and
everything else will work as usual.

Note that Paradyn is currently not expected to work with gcc-compiled application programs.

User’'s Guide May 5, 1998 Release 2.1

Page 3-1

3 MAIN CONTROL WINDOW

In this section we discuss features of the Paradyn main control window (an example is shown in
Figure 17). The Paradyn main window is the interface though which a user can access all parts of
the Paradyn tool. The main window is divided into three sections; the top section contains a menu
bar, the middle section contains a dynamic set of status lines (split into a generic part and a part
for per-process status information which is both resizable and scrollable), and the bottom section
contains a set of menu buttons. We discuss the details of each of these below.

Paradyn Mamm Conirol
P
File Setup Phase Visi Help | i
UIM status : ready
Application nams = program: foo, machine: {locall., user: (sealf)], daemon: defd
Application status
Data Manager = raady
ProCossas = FID=19271
I boaufortc = FID=19271, read:y.

o | | eve| mar)

Figure 17: Paradyn Main Control window

3.1 Main menubar

The menu bar in the Paradyn main control window contains five items; four of these display a
sub-menu when selected, and the other opens a dialog, as follows:

3.1.1 File menu

TheFile sub-menu contains only the one menu iterit:Paradyn . When this item is selected, the
Paradyn process and all currently-associated application, daemon and visualization processes exit.
The same effect can be achieved by clicking orethe button (Section 3.3).

3.1.2 Setup menu

The Ssetup menu contains items to define an application process, to attach to an already-running
application process, to create a Performance Consultant window, to bring up the Tunable Con-
stants dialog, and to bring up the Where Axis display. Selenifige A Process displays the

Define A Process window (this window is shown in Figure 8 in Section 2.5.1). This is a mecha-
nism through which a user can provide information about their application so that Paradyn can
start it. A description of how to use thefine A Process window is given in Section 2.5.1.

Using Define A Process creates (i.e. starts) a new application process, which Paradyn can
begin monitoring right away. Sometimes, however, it is more convenient to ask Paradyn to attach
to an already-running process (supported since Paradyn release 1.2). This is especially useful for

User’'s Guide May 5, 1998 Release 2.1

Page 3-2

server-type processes such as database servers or file servers, for which re-launching every time
you wish to measure with Paradyn would be inconvenient. To attach to an already-running pro-
cess, seledatttach to a Process from theSetup sub-menu. A description of how to usgach to a

Process IS given in Section 2.5.Note that currently, attaching to an already-running process is

only implemented for processes running on Solaris (both SPARC and x86) and x86/WindowsNT.

The Performance Consultant menu item will bring up the Performance Consultant window.
This window provides an interface for the user to start automated performance bottleneck
searches. The Performance Consultant is described in Section 9.

The Tunable Constants menu item will bring up the Tunable Constants dialog, through which
the user can set values for any tunable constants defined in Paradyn. Information about the set of
tunable constants and how they can be modified is given in Section 4.

The Where Axis menu item will bring up the Where Axis display, through which the user
makes resource hierarchy selections. Information about the Where Axis is given in Section 5.

3.1.3 Phase menu

Phases may be started using mhese menu. There are presently four items under this menu:
Start, Start with Perf Consultant , Start with Visis , andStart with Perf Consultant & Visis . Each item

under this menu will create a new phase; they differ in what additional actions they take. The first
item, Start, does nothing additionastart with Perf Consultant ~ will have Paradyn’s Performance
Consultant module (Section 9) commence searching on this phase, as opposed to simply defining
the new phasd\ote: Start with Visis and Start with Perf Consultant & Visis —are not yet imple-
mentedComplete information about phases is provided in Section 8.

3.1.4 Visi menu/button

Visualization processes can be started by selecting them frostail@ Visualization dialog

which appears upon pressing ths& button in the main menubar. A complete description of how

to start a visualization process is given in Section 7.1, and documentation on the standard visual-
ization modules is given in Section 10.

3.1.5 Help menu

TheHelp menu options offers basic information about Paradyn in separate dispastsl Info

has summary information about Paradyn capabilities and supported platforms, along with pointers
to project Web pages and th@adyn@cs.wisc.edu maintainers’ account for further information

or to report problems.icense Info contains a copy of the license agreement governing use of the
Paradyn Parallel Performance Todkelease Info provides information related to the current
Paradyn release (and obtaining other releases). Fineadjon Info displays build/release infor-
mation about the version of Paradyn which is running: it is more detailed than the abbreviated ver-
sion identifier appearing in the upper-right of the display title, and you may be asked to provide
this information when reporting any problems with special versions of Paradyn.

User’'s Guide May 5, 1998 Release 2.1

Page 3-3

3.2 Status lines

The middle section of the Paradyn main window consists of a dynamic set of status lines which
are updated as Paradyn runs and learns about new application processes. Each line displays status
information about some part of Paradyn, the application, or the Paradyn daemons monitoring
application processes.

The main window in Figure 17 contains status lines that were created after a sequential (single
process) application was defined. Some of the status lines contain information about the applica-
tion program, such as its nanfed), the process identifier(s) associated with the application on
the hostPID=19271) and an indented/offset area with status lines for each host machine or pro-
cessor node on which the application is running (in this case, only on onddesfiort).

There are also lines displaying the status of the Ul Manager and Data Maeagdgr).

The indented/offset area grows additional lines as hosts or nodes join the set which constitutes
the application managed by Paradyn. After a certain number of lines is reached, this area no
longer grows automatically and a scrollbar appears in the indent area to manage this region of the
display. If desired, the window can be vertically resized to display more (or all) of the host/node
status lines, or shrunk to display fewer (down to a minimum number which can still be displayed).

3.3 Buttons
There are four buttons at the bottom of the Paradyn main window.

TheRUN andPAUSE buttons allow the user to run or pause execution of the application. When
the application is running, tiRUN button is disabled and tlraUSE button enabled. Conversely,
when the application is paused #rSE button is disabled and timN button enabled. Before
an application has been defined, both buttons are disabled.

TheSAVE button writes the application execution data Paradyn currently maintains to files for
off-line analysis. This is useful for exporting execution data from Paradyn to other analysis tools.

TheEXIT button, when selected, will exit Paradyn and terminate all associated application and
visualization processes.

User’'s Guide May 5, 1998 Release 2.1

Page 4-1

4 TUNABLE CONSTANTS

4.1 Overview

Users can customize Paradyn’s operation thraugable constantdaradyn defines several tun-
able constants that may be altered by the user, ranging in scope from user-interface window layout
issues to tuning the automated search parameters of the Performance Consultant (see Section 9).

Tunable constants are either boolean or floating-point. Paradyn’s tunable constants are listed
in Sections 4.2 and 4.3.

To change the value of a tunable constant, chtwssle Constants Control from theSetup
menu of theParadyn Main Control window. This brings up the window shown in Figure 18. Bool-

1 developeridode
ahrraierg fud Tipes u
showShgEey L]
showShgTips "
hideShgTrueHades J
hideShgF slseMedes i
hilileShglnknoywisblodes
hideShgMeverSeentlodes
hide S ghAstiveMedos i
hideShginectiveldodes
hilleShgShadoeh odes
2arak] imit
midb-servatienTme
siilieint Tene
PC_SyneThreshabd
PC_OPUThreshold

- PC_IThreshokd

j ol T

i & 0@
1 150
i b3

1 [0z

Avccept | Coneel

Figure 18: The Tunable Constants Window

ean tunable constantse(eloperMode, showWhereAxisTips, showShgKey, showShgTips, and so

on throughhideShgShadowNodes in Figure 18) are shown first. The checkbox to the right of a
boolean tunable constant is colored gray if the tunable constant’s setting is false, and blue if the
tunable constant’s setting is true. Floating-point tunable constants appear next. Floating-point tun-
able constants with bounds on their acceptable values have a slider widget in between the name
and the entry field. You can type a new value into the entry field or click the mouse on the slider
and “drag” it to the desired value. The minimum and maximum allowable values are displayed on
the left and right sides of the slider as a convenience.

Changes made to tunable constant values do not take effect until the window is dismissed by
clicking onAccept . Clicking oncCancel will dismiss the window without making any changes.

User’'s Guide May 5, 1998 Release 2.1

Page 4-2

Tunable constant settings remain in effect for the duration of this Paradyn session; that is, until
you explicitly change the value again through this menu or quit the Paradyn process.

Each time a new Paradyn session is started, tunable constants are reset to their default values.
This can be an inconvenience if the default values of certain tunable constants are not to your lik-
ing. The Paradyn Configuration Language (PCL) allows you to create files read by Paradyn on
startup. Among many other things, such files can contain tunable constant settings to your liking.
See Section 11.6 for particulars on how to set tunable constant values in a PCL file.

Under theHelp menu is an entry calleshow Tunable Descriptions . Invoking this menu item
brings up th@unable Descriptions window, giving a concise description of each tunable constant.
An example is shown in Figure 19.

[developerhdady
TN OO SS W Al R CORSTATS.

showdimeressds Tips

1T b, ' wilwers main wrindos will Be drsan
Ll | 1L rebiiei o SheFICATLS er
EHPMIEY . RSN | 0 i), el
prroling. A onibng af islee xaves screen
wiial il

shawShgkey
IT b, W St B ey il b
ST A E Ry (o i frarane)
o thay severnl Backapnoed s et

cobnrn, Halea, sic. A asiling of Tize wrewn
B L

Drismins

Figure 19: Tunable Constants Descriptions Window

4.2 User Tunable Constants

Each tunable constant is classified as eitlser or Developer mode. User tunable constants are
intended for everyday use. User tunable constants are listed in Figure 20.

4.3 Developer Tunable Constants

Developer tunable constants are not intended for everydaif yea.change a developer mode

tunable constant, you are presuming a detailed knowledge of the internal workings of Para-

dyn. We provide no guarantees on how system behavior changes, nor can we offer support if any
developer tunable constant has been altered from its original setting. In addition, developer tun-
able constants are subject to significant change from release to release. Nevertheless, we realize
that some experienced users may benefit by occasional access to these tunable constants.

To access developer tunable constants set the tunable cangt@perMode to true and click
Accept : the Tunable Constants window will re-present itself containing both the user and devel-
oper tunable constants. Setting the tunable congtastioperMode to false will “hide” the devel-
oper tunable constants once again. Developer tunable constants are listed in Figure 21.

User’'s Guide May 5, 1998 Release 2.1

Page 4-3

Tunable Name

Description

showWhereAxisTips (bool)

If true, the Where Axis window is drawn with several user-interface tip
how to select and expand where axis items. Setting to false saves scr¢
estate.

S on
en real

costLimit (float)

Maximum allowable perturbation of the application when running the
formance Consultant (Section 9). Paradyn keeps track of an estimate
extent to which its instrumentation is perturbing the application under
cution; this tunable constant allows users to set a maximum upper-bod
such perturbation, as a percentage of execution time.

Per-
of the
exe-
nd on

minObservationTime (float)

Specifies a lower bound on the time (in seconds) before the Perforr
Consultant will begin using data collected to evaluate hypotheses. Thi
guards against the effects of transient data values at the start of a pha

nance
5 time
5e.

sufficientTime (float)

Specifies the minimum amount of time (in seconds) before the Perforn
Consultant can conclude that a hypothesis is false.

nance

showShgKey (bool)

If true, the Performance Consultant window includes a key to the me
of the node and text colors shown.

aning

showShgTips (bool)

If true, the Performance Consultant window includes a key to relg
mouse functions.

pvant

hideShgTrueNodes (bool)

If true, the Performance Consultant’s Search History Graph (SHG) wi
show true nodes.

| not

hideShgFalseNodes (bool)

If true, the SHG will not show false nodes.

hideShgUnknownNodes (bool)

If true, the SHG will not show nodes which haven't been determined tr
false yet.

ue or

hideShgNeverSeenNodes (bool)

If true, the SHG will not show nodes which it has not begun to evaluatg

yet.

hideShgActiveNodes (bool)

If true, the SHG will not show nodes which are active (instrumented).

hideShglnactiveNodes (bool)

If true, the SHG will not show nodes which are inactive (un-instrumentg

2d).

hideShgShadowNodes (bool)

If true, the SHG will not show shadow nodes.

PC_SyncThreshold (float)

Percentage Performance Consultant uses as threshold for all synch
tion hypotheses (such &xcessiveSyncWaitingTijnd-or example, select
ing 20% here will cause any synchronization-related hypothesis-focu
testing above 0.20 to conclude “true.”

roniza-

5 pair

PC_CPUThreshold (float)

Percentage Performance Consultant uses as threshold for determinin
bottlenecks CPUbound.

g CPU

PC_IOThreshold (float)

Percentage Performance Consultant uses as threshold for determini
blocking time bottleneckskcessivelOBlocking Time

ng 1/10

PC_IOOpThreshold (float)

Number of bytes Performance Consultant uses as threshold for determining

small /O operation bottleneck$§qoManySmalllOOps

developerMode (bool) If set, additional tunable constants and metrics are made available [to the
user. NB: USE AT YOUR OWN RISK!!
Figure 20: User-level Tunable Constants
User’'s Guide May 5, 1998 Release 2.1

Page 4-4

Tunable Name

Description

hysteresisRange (float)

Represents the fraction above and below threshhold that a test should use.

PCprintDataTrace (bool)

If true, the Performance Consultant prints a full trace to stdout of all PC-rg
data events: data arrival at the PC, data values after filtering, etc.

lated

PCprintTestResults (bool)

If true, the Performance Consultant prints data to the console window ever
it computes a result value for an experiment.

y time

PCprintDataCollection
(bool)

If true, the Performance Consultant prints out trace information on PC-inifiated

instrumentation requests and disables.

PCuselndividualThresholds
(bool)

If true, the Performance Consultant will ignore the user-level tunable con
PC_SyncThreshold ,PC_CPUThreshold ,PC_IOThreshold ,PC_IOOpThreshold ,
and use a set of hypothesis-specific developer-level tunable constants inste

stants

ad.

PCprintSearchChanges
(bool)

If true, the Performance Consultant prints data to the console window ever
it draws a conclusion for a hypothesis, or starts or stops an experiment.

y time

PCcollectinstrTimings
(bool)

Times all instrumentation requests, saving resutE8Tresult.out

printChangeCollection
(bool)

If true, the name of each metric/focus pair is printed to the console windo
time it is enabled or disabled.

v any

printSampleArrival (bool)

If true, the arrival of each sample frgmaradynd
window.

is printed out to the consol

[¢)

tclPrompt (bool)

If true, a Paradyn prompt is presented, allowing the user to type in and e
arbitrary Tcl language commands.

xecute

EnableRequestPacketSize
(float)

It represents the length of the packet sent when batching enable reques
default value is 5.

ts. The

highSyncThreshold (float)

If PCuselndividualThresholds is set to true, this will be used as the Performg
Consultant test threshold f&xcessiveSyncWaitingTime

nce

highCPUtoSyncRatio-
Threshold (float)

If PCuselndividualThresholds is set to true, this will be used as the Performa
Consultant test threshold f@PUbound

nce

lockOverhead (float)

If PCuselndividualThresholds is set to true, this will be used as the Performa
Consultant test threshold flackOverhead

nce

minLockSize (float)

If PCuselndividualThresholds is set to true, this will be used as the Perform3
Consultant test threshold forinLockSize

nce

highlOthreshold (float)

If PCuselndividualThresholds is set to true, this will be used as the Performg
Consultant test threshold faxcessivelOBlockingTime

nce

diskBlockSize (float)

If PCuselndividualThresholds is set to true, this will be used as the Performg
Consultant test value f@ooManySmalllOOps

nce

seekBoundThreshold (float)

If PCuselndividualThresholds is set to true, this will be used as the Perform3
Consultant test threshold feeekBound

nce

Figure 21: Developer-level Tunable ConstantdJse at your own risk!

When theDeveloper Mode tunable constant is set, Paradyn makes available a number of addi-
tional “developer-mode metrics” for selection. For further details, see Section 6.

User’s Guide

May 5, 1998 Release

2.1

Page 5-1

5 SELECTING RESOURCES

You specify performance data for Paradyn to collect in two parts: the type of performance data
and the part(s) of the program for which you want this data collected. The parts of your program
are calledesourcedn Paradyn. This section discusses how to select resources. (Section 6.1 dis-
cusses how to selegtetrics—the type of performance data.)

5.1 Resources (The “Where” Axis)

TheWhere Axiss used to describe the parts of your program for which Paradyn can report perfor-
mance data. It is a visual representation of different ways to specify these parts. A simple example
of a Where Axis is given in Figure 22. The Where Axis is used to makesallrcerelated selec-

tions. For example, users will use the Where Axis for adding resources to a visi, and in the future
for manual refinements in the Performance Consultant. This section describes the Where Axis, its
visual representation, and how to make selections.

Window Selections Navigate Ahstractionl

j Whole Program
“Machine ¥ Code
Process
“SyncObject b

=

£ =

Click to select; double-click to expandfun-expand
Shift-double-click to expandfun-expand all subtrees of a node
CtH-double-click to selectfun-select all subtrees of a node

Search: |

Figure 22: Where Axis window.
“Whole Program” has three unexpanded subtrees and one expanded subdtee) (

Before we delve into specific examples of usage, a few definitions are in order:

Resources:

Resources are program components. Examples include modules, procedures, processes, barriers,
locks, processor nodes, and disks. Some of the resource types are common to all programming
platforms. Examples of these common resources include Modules and Procedures. Some
resources are only supported on particular platforms. An example of this type of resource would
be the Barrier synchronization object.

User’'s Guide May 5, 1998 Release 2.1

Page 5-2

Resource Hierarchy:

Paradyn organizes all of a program’s resources into hierarchies (trees). Each hierarchy represents
a broad class of objects in an application. Typically, a parallel program has at least four hierar-
chies:code (under which we have an application’s modules, then individual functiensdss

(under which we have each node in a parallel machiagjine (these are the nodes or hosts in the
parallel or distributed environment), asghcobject (that includes such types as message tags,
semaphores and barriers).

The code hierarchy contains a hierarchical representation of the code which comprises the pro-
gram under examination. It is a two level hierarchy. The code space as a whole is separated into
modules, which represent a high level grouping of program functionality. In general, a module
corresponds to an individual source file in a higher level language, or to a single library. A module
contains all of the functions located in the corresponding original source file (or files, for librar-
ies).

There are a few instances in which the set of modules displayed in the code hierarchy will not cor-
respond exactly to the set of source files and modules linked into the program, as discussed next.

The “DEFAULT_MODULEModule holds all functions which could not be assigned to any other
module, either because the necessary information could not be found, or because the functions are
not rightfully assigned to any of the input files or libraries which make up the given executable.
On most supported platforms, this module should include only functions which are built-in by the
compiler or environment, in the sense that they do not come from any user specified source files or
libraries (e.g., thestart , __ do_global_ctors_aux , and _do_global_dtors_aux func-

tions provided ircrt0 by most Unix C compilers).

Some compiler and linker settings do not generate enough information to resolve functions into
modules: e.g., when compiled/linked without thee’*compilation flag which requests a symbol

table be included in the object/executable for the use of tools such as a debugger. When parsing a
file which does not contain this information, Paradyn assigns all functions to the
“DEFAULT_MODULEIn particular, we are not aware of any compilers and linkers on the AIX
platform which provide the necessary information. As such, when Paradyn is used on AlX, all
functions are generally placed in that module. Note that this affects the MDL “exclude” directive
(Section 11.8).

In Paradyn versions 2.1 and above, it is no longer necessary to explicitly delineate “interesting”
user code witlDYNINSTstartCode andDYNINSTendCode block objects. However, later Para-

dyn versions should still correctly parse executables which have been so built. To maintain com-
patibility with older Paradyn versions, when an application is linked BMNINSTstartCode

and DYNINSTendCode, any statically linked code which is outside of the range delimited by
DYNINSTstartCode andDYNINSTendCode is placed in theDYN_MODULENnodule.

Focus:

A focus is a set of selections from the Where Axis containing exactly one resourceaithm
resource hierarchy. For example, in the Where Axis of Figure 22, a focus might be the set

User’'s Guide May 5, 1998 Release 2.1

Page 5-3

{/Code/Alloc.o, /Machine, /Process, /SyncObject}. The selectioncode/Alloc.o means restrict our perfor-
mance data collection to only the code contained in modlide.o . The selectionmachine

means all machines (nodes) on which your program is runmrgess means all processes in the
program andsyncObject means for all types of synchronization used. If you select the root node in
each hierarchy, this means that Paradyn will collect data for a metric for the whole program (all
nodes, processes, modules, etc.).

Performance data is collected for a particular focus. For example, suppose we made the following
focus selection and requested that CPU time data be collected for thisyfa@esioc.o/xtcCalloc,

/Machine, /Process/psicm.pd.pn{123657_mendota}, /SyncObject}. This selection means “measure the CPU
time spent in functiorxtcalloc while it's being executed on any machine, only when executed by
processsicm.pd.pn{123657_mendota}, and for any type and instance afyacobject.” In this example,

CPU time is anetric Paradyn metrics are functions that describe how the behavior of your appli-
cation program changes over time. Metrics and their selection are presented in Section 6.

5.2 The Where Axis display

Resources for your application program are displayed in the Where Axis display. The resource
hierarchy in Figure 22 is an example of a such a window. Many programs will have hundreds, if
not thousands of resources; displaying the complete tree for all of their hierarchies and their nodes
(as in Figure 23) is cumbersome to the user, who will have difficulty finding desired items.

Window Selections Navigate Abstraction |

I |Who|e Programl
Code'
Alloc.ol ArgList.ol AtomMgr.ol |AuDispose.o| ‘AuFiIeName.o| |AuG

tCalloc | XtMergeArglists | | XmGetAtomName | XauDisposefuth | | XauFilslame | | XauGetBe
tFree *minternAtom
tMalloc _XmintematomandName
tRealloc
7 | e

Click to select; double-click to expandfun-expand
Shift-double-click to expandfun-expand all subtrees of a node
Cir-double-click to selectfun-select all subtrees of a node

Search:
Figure 23: Showing all resources in the Where Axis display

Paradyn allows the user to control how much of the Where Axis is visible at any one time. The
children of a node may be displayed as separate single nodes or be displayed together in a single
listbox The listbox is a compact way of representing many children of a node. For example, in
Figure 22, the root nodevfole Program) has four (yes, four!) child nodes. Three of these nodes
(Machine, Process, andsyncObject) are combined in the blue listbox. The fourth child\dfole Pro-
gram is the salmon colored single nodade.

If the listbox contains a large number of nodes, then it may even have a scroll bar on the side.

User’'s Guide May 5, 1998 Release 2.1

Page 5-4

A triangle beside a node in a listbox means that it is not a leaf node—that the subtree is presently
un-expanded to conserve screen real estate. Double-clicking on such a node will expand it from
the listbox as a single node. This new single node will be salmon colored with a blue listbox
below, containing its child nodes. Thede node in Figure 22 was originally displayed as a node

in the listboxwhole Program. Double-clicking on theode resulted incode being displayed as single

node. Sincecode is not a leaf node, its children (a list of modules) are displayed as a listbox
below.

After expanding a node, the resource desired may still be buried lower in the hierarchy. You
can continue to double-click on appropriate nodes. Shift-double-click on the parent of a listbox
(that is, on a pink node showing a listbox under it) will expalhtistbox items one level.

5.3 How to select foci using the Where Axis

A focus is a selection of one resource from each resource hierarchy. To choose a focus, click the
left mouse button over a resource name, thereby selecting it. Performing this operation on one
resource in each hierarchy selects a single focus. An example of such a selection is shown in
Figure 24. The focus selected in this figure is:

{/Code/anneal.c/a_cost, IMachine/goat, /process, /SyncObject}.

Window Selections Navigate Abstraction |

I Whole Program|

C dl Machi | IF‘ S Object
———__—i) e ﬂ(:l ine I'OTESS yncl JL=
anncalc| [geat | |Eubbapaziorogoat | E
]
B
aneighbar |
| amea
choosepmove
dopmove

7 |~
Click to select; double-click to expandfun-expand
Shift-double-click to expand/un-expand all subtrees of a node

CtH-double-click to selectfun-select all subirees of a node

Search:

Figure 24: A single focus selected

The Where Axis also can be used to select multiple foci at the same time. Multiple selections
are done by making more than one selection in a given hierarchy. The set of foci currently
selected is the cross-product of all resource hierarchy selections. For example, in Figure 25 there
are three resources selected from tbele hierarchy (Code/channel.c, /Code/anneal.c, and
ICode/anneal.c/a_cost), One resource selected from thehine hierarchy fvachine/goat), One resource
selected from therocess hierarchy frocess), and two resources selected from $h&object hier-

User’'s Guide May 5, 1998 Release 2.1

Page 5-5

archy (they aresyncobject and/syncObject/Semaphore). The total number of foci currently selected is
therefore (3x 1 x 1 x 2 = 6). They are:

¢ {/Code/channel.c, /Machine/goat, /Process, /SyncObject}

¢ {/Code/channel.c, /Machine/goat, /Process, /SyncObject/Semaphore}

¢ {/Code/anneal.c, /Machine/goat, /Process, /SyncObject}

¢ {/Code/anneal.c, IMachine/goat, /Process, /SyncObject/Semaphore}

¢ {/Code/anneal.c/a_cost, /Machine/goat, /Process, /SyncObject}

* {/Code/anneal.c/a_cost, /IMachine/goat, /Process, /SyncObject/Semaphore}

Window Selections Navigate Abstraction |

I ‘Whole Programl

Cod | Machi | IP SyncObject
________2 e acl ine rocess yncl jec
Ianneal.c -|

I I E
@ neighbor |
anneal |
choosepmove |
dopmove |

7 =
Click to select; double-click to expandfun-expand
Shift-double-click to expandfun-expand all subtrees of a node
Ctri-double-click to selectfun-select all subtrees of a node

B

Search:

Figure 25: Multiple foci selection
5.4 The Where Axis GUI

Locating a resource

Resource names are sorted in every listbox, to ease locating resources. All sibling expanded sub-
trees are sorted left-to-right on screen. A subtree’s sibling listbox is always leftmost, followed by
its expanded items, if any. If all of a subtree’s children are expanded, then no listbox is drawn.

To quickly locate a resource, you may type a resource prefix into the “Search” entry box at the
bottom of the Where Axis window and press return. This feature finds, expands, and scrolls to the
first resource with that prefix (if any). Continuing to press return will find the next prefix match.
The search wraps around to the beginning when no more matches are found. The search is case-
sensitive.

Selecting a resource

Clicking on a resource name (whether in a listbox or expanded) selects it. Clicking again dese-
lects it. A <ctrl-dbl-click> on the root of an expanded subtree will select all of its children (but not

User’'s Guide May 5, 1998 Release 2.1

Page 5-6

its children’s children; i.e., not recursively). Another <ctrl-dbl-click> deselects the same.

To deselect every node in the Where Axis, chaisar from theSelections menu.

Listbox expansion

As previously mentioned, double-clicking on a non-leaf listbox item will expand it. To
quickly expandall (non-leaf) items of a given listbox, <shift-dbl-click> on the listbox’s parent
node (which is always salmon colored). Another <shift-dbl-click> on the listbox’s parent will un-
expand all children back into the listbox.

The navigate menu

If many Where Axis items have been expanded (e.g. a <shift-dbl-click> on a listbox contain-
ing 100 elements), it may be difficult finding your way around the Where AxisNahgate
menu can help with this. After clicking on any node (whether or not it was a listbox node), the
Navigate menu will contain every ancestor of that node (i.e., its parent, its parent’s parent, and so
on up to the root node). Selecting any item fromi\tiaggate menu will scroll the Where Axis so
the chosen item is visible.

Changing abstractions

All abstractions presently known to the Where Axis will be represented by an entry under the
Abstraction menu. The currently displayed abstraction has a highlighted menu entry. To switch
abstractions, simply choose the appropriate item under this menu. New abstractions—Ilike new
resources—may be reported to the Where Axis at any time. The Abstractions menu is therefore
dynamic.

In the current version of Paradyn, only the Base abstraction is supported.
Scrolling

The Where Axis contains traditional horizontal and vertical scrollbars for navigation. In addi-
tion, the Where Axis may be scrolled by moving the mouse to the center of the window, holding

down the Alt key, and moving the mouse. The mouse pointer will remain fixed, but the Where
Axis will scroll around it.

User’'s Guide May 5, 1998 Release 2.1

Page 6-1

6 SELECTING METRICS

A metric is a time-varying function that quantifies some aspect of program performance. This sec-
tion illustrates the metrics selection process in Paradyn. Section 6.1 describes how to select met-
rics and Section 6.2 describes all the metrics currently defined in Paradyn.

6.1 How to select metrics

When you wish to display or modify performance data, you must select a focus (see Section 5)
and list of metrics. This section discusses how to selettics—the type of performance data.

The Metrics Dialog Box appears when Paradyn needs the user to specify one or more metrics
for some operation. Currently, there is only one place in Paradyn where the Metrics Dialog Box is
used: when choosing metric-focus pairs to add wasia Choosing a set of metric-focus pairs
involves making selection(s) from both the Metrics Dialog Box (for the metrics) and from the
where axis (for the foci). In this section, we will discuss only metric selection; Section 5 describes
in detail how to make focus selections.

A sample metrics dialog box appears in Figure 26. Note that the metrics which appear in the

Saleet Mebrics and Focus{ex) helow

number_of_cpus exec_Lims h_meg byles
paume_Lims EFIG_ofs cp
A Live_piaoesses [ET = cpia_iiclisive
prodicted_cesl BYNE_ Wil ba_wail
abmarved ool mag hyles_ganl b _ops
procadurg_salls mag hyles_pecy ko _bytas
procadur_callad mag hytes

CLEAR CANCEL

Figure 26: Metrics dialog box

dialog box are specific to the platform being run (such as sequential vs. parallel/PVM). In addi-
tion, if thedeveloperMode tunable constant is set (see Section 4.3), the “developer mode metrics”
are also made available. Complete descriptions of the various metrics are provided in Section 6.2;
expert users can use Paradyn Configuration Language’s Metric Description Language (Section)
to add custom metrics.

When the metrics dialog box appears, select one or more metrics from the given list. To select
a metric, simply click the mouse in any checkbox. Selected metrics will have a red square to the
left of the metric name in the dialog box. Figure 27 shows how the metrics dialog box of
Figure 26 would look after the metriesu, msg_bytes_sent , andprocedure_calls were selected.
Clicking on a previously-selected metric will deselect it. Clicking orcttEAR button at the bot-

User’'s Guide May 5, 1998 Release 2.1

Page 6-2

Selecl Meiries and Fosise) below

midimber_of_opis exeo_Lime h_imeg byles
pavse_Lime EFI0_ogE N cpu
BELIVE_processes | mags | epu_imclusive
| pradicted_cest | gync_wail | o _wail
| olsaarved _ceal B mag bhynes sanml e o
B prosodirg_calls | mag hyles pecy o bylas
prosadirs_sallad mag_hytes
ACCEPT CLEAR CANCEL

Figure 27: Metrics dialog box with several metrics selected

tom will deselect all selected metrics.

When done with metric selections, pre€sCEPT or CANCEL. The metrics dialog box will
disappear at that time; it will reappear the next time a metric selection is réquired

6.2 Metric Descriptions

A list of all current metrics is presented in Figure 28. As we have described in the previous
Section, expert users can create their own custom designed metrics using the Paradyn Configura-
tion Language. Most of the metrics that appear in Figure 26 and Figure 27 were created using this
language and are provided within Paradyn. Additionally, an expert user canBeledbper
Mode metrics (Figure 28). Developer mode metrics are mastgrnal metrics or metrics that
have been hard coded into Paradyn, that can be used to monitor Paradyn’s own performance or for
debugging purposes. Developer mode can be selected frofartable Constantsoption of the
Setup menu, as it is illustrated in Figure 18 (Section 4). AffeveloperModeis selected, a
larger list of metrics will appear in the metrics dialog box.

It is important to make a distinction between three types of metocsialized unnormalized
andsampled Normalized metrics are time related metrics that are being computed as a percent-
age (e.g.cpu). Unnormalized metrics are mainly computed using counters jeogedure _calls
and they are usually expressed as a rate (e.g., operations per second). Sampled metrics are like
unnormalized metrics, but the units are not represented as a rate (e.g., operations).

1. This contrasts with th&/here Axisvindow (Section 5), which is kept open because the ability to browse a
program’s resource hierarchy at any time is desirable.

User’'s Guide May 5, 1998 Release 2.1

Page 6-

3

Metric

Description

Units

Visi Axis
Label

active_processes

cpu

cpu_inclusive

exec_time

exec_inclusive

io_bytes

i0_ops

io_wait

Each bin represents the number of proce
active during the corresponding interval
time. Aggregation is the average number
processes active over an interval of time.

Each bin represents the percentage of (
time spent during the corresponding time int
val. Aggregation is total CPU time over
interval.

Same agpu but includes called procedures
the process time calculation.

Each bin represents the elapsed wall clock f
per unit during the corresponding time intery
Aggregation is the sum over the interval.

Each bin represents the elapsed wall clock t
per unit during the corresponding time intery
Aggregation is the sum over the interval. T
difference between exec time and
exec_inclusives thatexec_inclusivencludes
the time spent in calls to other functions (i.e
IS less intrusive thaexec_timg

This metric represents the number of bytes
Input/Output operations. Currently, only “rea

sge®f pro-
afesses
of

LEIPUS
er-
an

ICPUs

imrec time
al.

mgec time
al.
he

, it

fbytes
dread/

and “write” are supported as input/output opewritten

ations both for UNIX and PVM.

Number of Input/Output operations. 10 ope
tions are the same as for bytes

Time spent during Input/Output operations.
operations are the same asitorbytes

ra# 10 ops

ICPUs

operations|

CPUs

CPUs

CPUs

CPUs

bytes

operation

CPUs

*ZJ

User’s Guide

Figure 28: Metrics defined in Paradyn

May 5, 1998

Release 2.1

Page 6-4

Metric

Description

Units

Visi Axis
Label

msgs

pp_msgs

cc_msgs

msg_bytes

msg_bytes recv

The total number of messages sent
received. The unit is operations per unit

ardsgs
afent/recv

time. Aggregation is the sum of all sends and

receives over the time interval.
receives are defined as follows:

UNIX send:*write”
UNIX recv:“read”

PVM send“pvm_send”
PVM recv:“pvm_recv”

Similar tomsgs but it counts the number of

point-to-point messages (only for MPI applica-

tions). Point-to-point communications are
defined as followsvPI__Send,

MPI__Bsend, MPI__Ssend, MPI__Isend,
MPI__Issend, MPI__Recv, MPI__Irecv,
MPI__Sendrecv, MPI_Sendrecv_replace

Similar tomsgs but it counts the number of
collective communications (only for MPI app
cations). Collective communications are
defined as followsviPl__Bcast,

MPI__ Alltoall, MPI1_Alltoallv,

MPI__ Gather, MPI__ Gatherv,

MPI__ Allgather, MPI__ Allgatherv,

MPI__reduce, MPI__ allreduce,
MPI__Reduce_scatter, MPI__ Scatter,

MPI__ Scatterv, MPI__Scan

Send and

#msgs

#msgs

Number of message bytes sent and receivétlytes

Aggregation is the total number of bytes s
and received. Send and receive are define
follows:

UNIX: “read”, “write”
PVM: “pvm_send”, “pvm_recv”

Number of message bytes received per un
time. Aggregation is the total number of byt
received. Message receives are defined ag
msgs

esént/recv
d as

t#fPf msg-

daytes
5 recy

msgs

msgs

msgs

bytes

bytes

User’s Guide

Figure 28: Metrics defined in Paradyn

May 5, 1998

Release 2.1

Page 6-5

Metric Description Units Visi Axis
Label

pp_msgBytesRecy Similar tomsg_bytes_reg¢but only for receive # of msg | bytes
messages involved in point to point communipytes
cations (MPI applications only). These point| tcecv

point communications are defined as folloys:
MPI__Recv, MPI__lIrecv, MPI__Sendrecv,
MPI_Sendrecv_replace.

cc_msgBytesRecy Similar tomsg_bytes_re¢but only for receive| # of msg | bytes
messages involved in collective communicaq bytes
tions (MPI applications only). These collectivaecv
communications are defined as follows:
MPI__Bcast, MPI__Alltoall,

MPI_Alltoallv, MPI__ Gather,

MPI__Gatherv, MPI__Allgather,
MPI__Allgatherv, MPI__reduce,
MPI__allreduce, MPI__Reduce_scatter,
MPI1__Scatter, MPI__ Scatterv,

MPI__Scan .

msg_bytes sent | Number of message bytes sent per unit of tilfe of msg-| bytes
Aggregation is the total number of bytes seriytes
Message sends are defined as for “msgs”. | sent

pp_msgBytesSent| Similar to msg_bytes _senbut only for send # of msg | bytes
messages involved in point to point communipytes
cations (MPI applications only). These point| teent
point communications are defined as folloys:

MPI__Send, MPI__Bsend, MPI__Ssend,
MPI__Isend, MPI__Issend,
MPI__Sendrecv, MPI_Sendrecv_replace

cc_msgBytesSent| Similar tomsg_bytes_serbut only for send | # of msg | bytes
messages involved in collective communicaq bytes
tions (MPI applications only). These collectiyesent
communications are defined as follows:
MPI__Bcast, MPI__Alltoall,

MPI_Alltoallv, MPI__ Gather,

MPI__Gatherv, MPI__ Allgather,

MPI__ Allgatherv, MPI__reduce,
MPI__allreduce, MPI__Reduce_scatter,

MPI1__ Scatter, MPI__ Scatterv,

MPI__Scan .

number_of cpus | Number of CPUs in the system. #CPUs #CPUS

Figure 28: Metrics defined in Paradyn

User’'s Guide May 5, 1998 Release 2.1

Page 6-6

Metric

Description

Units

Visi Axis
Label

observed_cost

pause_time

predicted_cost

procedure_calls

procedure_called

sync_ops

sync_wait

Internal metric: Indicates the effect on th
application from collecting data. Its purpose

ewasted
iSPUs

to check that the overhead of data collection

does not exceed pre-defined levels, and sh
these levels be exceeded, it reports to the hi
level consumers of data.

Each bin represents the fraction of time
which the application program was paused
Paradyn. Maximum value is 1.0. Aggregati
is the total time paused over an interval.

Internal metric : Expected overhead of colleq
ing the data necessary to compute a metric

puld
Jher

ipause-
iyne

on

twasted
oCBUs

particular focus or combination of resourcgs.
The predicted cost is expressed as the per¢ent-

age utilization of CPU.

Each bin represents the number of procedut®f calls
calls per unit during the corresponding time

interval. Aggregation is the total number
procedure calls over an interval.

Same aprocedure_callexcept all child proce
dure calls are included in the count.

The number of synchronization operations
unit of time. Aggregation is the sum. The f
lowing are defined as synchronization ope€
tions:

UNIX: “write”, “read”, “recv”, “recvfrom”,
“select”, “sendmsg”, “send”, “sendto”

PVM: “pvm_send”, “pvm_recv”

The elapsed wall time spent waiting for a s
chronization operation. Aggregation is the s
of all waiting time. The following will be
included in the reported times:

UNIX: “write”, “read”
PVM: “pvm_send”, “pvm_recv”

of

- # of calls

pésync
Dlops
ra-

yI$ync
umait time

CPUs

CPUs

CPUs

operations

operations

operations

CPUs

User’s Guide

Figure 28: Metrics defined in Paradyn

May 5, 1998

Release 2.1

Page 6-7

Metric Description Units Visi
AXxis
Label
bucket_width Internal metric : It is the length of the time intef-seconds | seconds

val represented by each histogram bucket (where
Paradyn stores performance data).

smooth_obs_cost| Internal metric : Thesmooth_obs_cost a better wasted | CPUS
approximation of the current instrumentation co€tiPUs
in the system. It determines a threshold for |the
maximum degree of perturbation cost that the sys-
tem can allow.

Figure 29: Developer Mode Metrics defined in Paradyn

User’'s Guide May 5, 1998 Release 2.1

Page 7-1

7 CONTROLLING VISIS

This section describes how to start and stop visualization processes (known as ‘visis’) from Para-
dyn.

7.1 Starting

A new visualization can be requested by pressingithdutton from the Paradyn main window
menubar (Figure 30), which opens 8tart A Visualization dialog.

Paradyn Main Control 2.1
L
File Setup Phase Visi Help |

OIM status : ready

o el JESE] DI

Figure 30: Paradyn Main Control window

This dialog presents a list of visualizations to choose from as shown in Figure 31. Visualiza-
tions can be started so that they receive either global phase performance data or current phase per-
formance data. The selection in Figure 31 is for a Histogram visualization that will receive
performance data from the global phase of the application’s execution.

Start A Visualization

Barchart.
Histogram
PhaseTable
Table
Terrain

|0 Gilobal Phase Iv Current Phase

Start | Cancel |

Figure 31: Start A Visualization menu

Once a visualization has been defined, metric and focus menuing is usually initiated before
the visualization process is started. Whether or not this menuing is done is determined by the
force flag setting in the PCL entry for this visualization. If the force option is set then the visual-

User’'s Guide May 5, 1998 Release 2.1

Page 7-2

ization process is started without metric and focus menuing. This is typically used for starting
visualizations that do not want to enable data flow before starting. The Phase Table visualization
is an example of one which should have the force option set. For other visualizations, once menu-
ing is done, and at least one metric/focus combination is successfully enabled, the visualization
process is started.

7.2 Stopping

Stopping a visualization process can occur in one of two ways. First, the visualization process has
a menu option to quit that invokes the Visil(hitVisi routine and then exits. The second way to

stop a visualization process is to Kill it (as a Unix process). Paradyn will detect that the process
has exited and take care of disabling data and cleaning up any state associated with the visualiza-
tion process.

User’'s Guide May 5, 1998 Release 2.1

Page 8-1

8 PHASES

Phases in Paradyn are contiguous time-intervals within an application’s execution. There are two
kinds of phases: thglobal phaseandlocal phasesThe global phase starts at the begining of the
program execution and extends to the current time. Local phases are non-overlapping subintervals
of the global phase. When a new local phase is defined in the system, the current local phase ends
and all data collection for the current phase stops. Data collection for the new phase will occur at
a finer granularity than collection for data the global phase. At any time in the program’s execu-
tion, data collection can be enabled for one or both of the the current local phase and the global
phase. Similarly, a Performance Consultant search (Section 9) can be started for the global phase
of an application’s execution, or can be restricted to search over only the current local phase of
execution.

8.1 Starting a new phase

A new local phase can be defined by selectitag under theehase menu of the Paradyn main
window (Section 3) ostart Phase from the Phase Table display menu (Figure 32). When a new
phase is defined, any visualizations defined for the current local phase stop receiving performance
data. Similarly, if the Performance Consultant is active for the current phase, its search ends when
a new phase is defined.

Phase Table
ara

File Start Phase Help |V
Phase Name Start Time End Time
phase_0 0s Z2m2i0s
phase_1 Z2m2ls dm3is
phase_2 dm3is amé2b s
phase_3 amab s

Figure 32: Phase Table Display

8.2 Visualizations and Phases

Visualizations can show data for either the local phase or the global phase. Local phase visualiza-
tions receive and display performance data from the phase’s start time until the phase ends. Typi-
cally, local phase data is collected at a finer granularity than global phase data. Figure 33 shows a
real time histogram visualization that has been defined for the global phase, and Figure 34 shows
one that has been defined for specific phase.

8.3 The Performance Consultant and phases
The Performance Consultant (Section 9) can simultaneously search both the local phase and the

global phase. Complete details are given in the Performance Consultant section; searching on
multiple phases in particular is discussed in that section.

User’'s Guide May 5, 1998 Release 2.1

Page 8-2

Time Histogram Display CF& -
File Actions View .
Phase: Global
operationsfsec CPUs
3000 1 0.7
2500 { 06+
zo00{ 0 M‘ \
04K /N m Lo et e
1500 - b i \b \;\,-\,4‘" 3 rrh'* f [T z
034 ' v r / / 0
| I o
1000 0zl M
00~ gq
0- 0.0 T T T T T T T T T
0:00 1:20 Z2:40 4:00 2:20 640 .00 920 10:40 1200 13:20

Min:sec

cpu <Whole Program: (smoothed)
procedure_calls <Whole Program:= {(smoothed)
PAN

Figure 33: Time Histogram: Global Phase

Time Histogram Display ﬁ .
File Actions View i
Phase: phase_3
operationsfsec CPUs
3000 4 05
2500 -| {
0.4+ At ; F Lk
2000 -| ﬁﬁ‘h’r}“" ! fﬂ{d"b”""'* || ﬁi’m _W’\“k"‘l'vklﬂwmpm‘\ﬁwﬁm
0.3 - o 1
1500 ~ ' L z
f' Rl 0
0.2 -
1000 - [ﬂ
so0{ 017
[}
0- 00— T T T T T T T T T T
5:40 600 620 640 2 FO00 720 740 &00 820 8:40

Min:sec

cpu <Whole Program= (smoothed)
procedure_calls <\Whole Program:= (smoothed})

Figure 34: Time Histogram: Local Phase (3)

User’'s Guide May 5, 1998 Release 2.1

Page 9-1

9 PERFORMANCE CONSULTANT

Paradyn provides many options for selecting and displaying performance information about your
application program. Sometimes these options can be overwhelming. In a large, complex pro-
gram, it can be difficult to know where to start looking for performance problems, and Paradyn’s
Performance Consultant is designed to help. The Performance Consultant (PC) helps identify the
type of performance problems (“why”), where in the program these problems occur (“where”)
and the time during the execution during which the problem occurred (“when”). This “why-

where-when” model of searching for performance problems is called ?t‘(ethounced “W-
cubed”) Search Model and forms the core of the PC.

The PC is automated so that, in its normal mode of operation, you simply tell it to start search-
ing for performance problems. The PC will continually select and refine which performance met-
rics are enabled and for which foci they will be enabled.

In this section, we describe the\Search Model (Section 9.1), the components of the Perfor-
mance Consultant’s window (Section 9.2), how to interpret what the PC tells you (Section 9.3),
and (once you get a bit of experience) how to adjust and fine-tune its operation (Section 9.4).

9.1 The W8 search model

The Performance Consultant automatically locates potential bottlenecks in your code. The PC
describes each bottleneck by statulgy there is a problem (thieypothesis andwherein the
application the problem was found (tleeus see Section)5You can direct the search to find out
when the problem occurred by including either the entire execution or a particular phase of its
execution.

The “Why” Axis: The PC includes the definition of a set of generic performance problems.
These problems, called “hypotheses”, are typically of the form:

PerfMetricX > SpecifiedThreshold

where PerfMetricX is some metric defined in Paradyn (Section6) and the
SpecifiedThreshold is a value that you can set by using a Tunable Constant (Section 4).
The threshold value is typically expressed as a fraction (between 0 and 1) of the execution
time of the application program. Each hypothesis may also contain pruning directives, which
cause some portion of the resource hierarchy to be ignored while searching.

The “Where” Axis: A focus in Paradyn allow you to constrain a performance metric to a particu-
lar subset of program resources. The PC makes step-by-step selections in the Where Axis, as
it tries to isolate the cause of performance problems.

The “When” Axis: The PC can look for performance problems whose effect is large enough to
stand out over the total execution of the application program, or it can look for problems that
stand out during a restricted interval of time. You can associate a PC with each phase
(Section 8). The PC associated with the global phases searches for performance problems that
affect the entire program execution; the PC associated with a local phase searches for prob-
lems that affect (at least) that interval of execution.

User’'s Guide May 5, 1998 Release 2.1

Page 9-2

Depending on the complexity of the application program, i.e., the number of nodes in the
Where Axis for the application, the number of hypothesis/focus pairs that could be explored
might be quite large. On the other hand, the goal is to find the handful of most troublesome bottle-
necks in the application. Any hypothesis/focus pair that doesn’'t exceed the threshold does not
require further attention; realistically, any that exceeds the threshold for only a short interval of
time won't get any attention. For this reason the PC only reports bottlenecks that exist for a signif-
icant portion of the overall phase being tuned.

9.1.1 The Why Axis

The space of all possible hypotheses (such as synchronization-bound, CPU-bound, etc.) is

TopLevelHypothesis

ExcessiveSyncWaitingTime CPUbound ExcessivelOBlockingTime

TooManySmalllOOps

Figure 35: The Why Axis

called the Why Axis. The root hypothesis is the genetevelHypothesis. This hypothesis is
considered true if any hypothesis at the next level is true. Descriptions of the remaining hypothe-
ses follow:

* CPUbound: Compares CPU time to the tunable conste@tCPUThreshold . Searching
through/SyncObject and/Process hierarchies is disabled.

» ExcessiveSyncWaitingTime Compares total synchronization waiting time to the tunable
constantC_SyncThreshold .

» ExcessivelOBlockingTime Compares total I/O waiting time to the tunable constant
PC_lOThreshold . Searching through theyncobject hierarchy is disabled.

 TooManySmalllOOps: Compares average number of bytes per 1/O operation to
PC_lOOpThreshold . Searching through theyncObject hierarchy is disabled.

If a particular hypothesis in the Why Axis tests true, the PC will try to test the children of that
hypothesis next. When the Performance Consultant searches along the Why Axis in this way to
test more detailed hypotheses for a particular focus, we say that a Why Axis refinement has been
made.

User’'s Guide May 5, 1998 Release 2.1

Page 9-3

9.1.2 The search strategy

When a new search is started, the Performance Consultant makes instrumentation requests to
evaluate the topmost levels of the why and where axes; that is, it evaluates each top level hypothe-
sis (CPUBound, SyncWaiting, I0Blocking) for WholeProgram. These particular hypothesis/focus
pairs will continue to be evaluated for the entire phase.

There are two questions of interest here: when is the search expanded, and how is expansion
done? The search is expanded anytirrgpmathesis : focus) pair tests true. The only exception is at
start-up, when an initial set ofypothesis: focus) pairs are enabled. If, at any time, a
(hypothesis : focus) pair (h : f) tests true, then the following hypothesis:focus pairs will be added to
the searchgh : all child foci of WholeProgram), plus (all child hypotheses of h : f). The why axis, and
each of the resource hierarchies, are trees, so refining one step in the search is defined as moving
down along a single edge in either the why axis or one of the resource hierarchies. For example,
from (ExcessivelOBlockingTime : WholeProgram), using the resource hierarchy in Figure 24, the fol-
lowing set of(hypothesis : focus) pairs would be added:

1. One step along the Why Axis:
(TooManySmalllOOps : WholeProgram)

2. One step along the code hierarchy:

(ExcessivelOBlockingTime : bubba.c) (ExcessivelOBlockingTime : channel.c)
(ExcessivelOBlockingTime : graph.c) (ExcessivelOBlockingTime : outchan.c)
(ExcessivelOBlockingTime : partition.c) (ExcessivelOBlockingTime : anneal.c)

3. One step along the machine hierarchy:
(ExcessivelOBIlockingTime : goat)

4. One step along the process hierarchy:
ExcessivelOBlockingTime : bubba.pd(21878_ goat)

All of the new(hypothesis : focus) pairs resulting from this expansion generate instrumentation
requests, and, if possible, data collection begins immediately. However, the total amount of instru-
mentation active at any given time during the tuning session is limited by an internal cost-tracking
system. If the total cost of currently enabled instrumentation for all visualizations and searches
exceeds the cost threshold, n@ypothesis : focus) pairs are queued and activated after some other
instrumentation is disabled.

Each(hypothesis : focus) pair is represented as a node of a directed acyclic graph (DAG), called
the Search History Graph (SHG). The root node of the SHG represents the pair
(TopLevelHypothesis : WholeProgram), and its child nodes represent the list of possible refinements
chosen as described above. If a Shd@e tests false, it is not expanded. After a certain minimum
observation interval, testing on all but the topmost level false nodes is halted. If an already-
expanded node changes from true to false, then testing is halted for all of its children.

User’'s Guide May 5, 1998 Release 2.1

Page 9-4

9.2 Running the Performance Consultant

In this section, we describe how to run the Performance Consultant on an application.
Section 9.2.1 describes the Performance Consultant Window, Section 9.2.2 describes starting and
stopping a search, and Section 9.2.3 provides a detailed description of the Search History Graph.

9.2.1 The Performance Consultant window

The Performance Consultant window may be opened any time after an application has been
defined (see Section 2.4) by chooshegformance Consultant from theSetup menu of Paradyn’s
main window. Figure 36 shows a sample Performance Consultant window.

The Performanos Consuliant Fll |
Searches —————» Searches T,
Menu ___p Cusmend Hisarch: Cidial Phiss
c t h-:htrf:lrl Phasa, L i
urren CiBom] fexiwl Pt s hinn SPrscnes Sy b
Search Lirewfhyprathusas Sesled L e (ode (s bt MPscass Symdige:l J Search Status
3 TopLevelHypothasis
! Search History
Graph
chamels «—
[= 1
I —
- | Node Status
SHG Color Pree—— | e -
Key > W
Fane cmr e mivok ook
Wir i3 Flalimarail Whera fats Faslaneiisesi

Hindd dasn Al and e Bie mosss [0 scrmll freely

e il buil%on on & Do Lo oS&an o nlo on il HelpTIpS

Figure 36: A sample Performance Consultant window

Thesearches menu contains a list of all possible phases on which a search has been requested
or may be started, including the default, “Global”, for whole program searches. If you have not
defined any phases for the application, then you will see only two choices, “Global” and “Cur-
rent.” The currently displayed phase has a blue diamond next to its name; the others have gray
diamonds. Choosing items under this menu allows you to page through the search displays for all
active, paused, and completed searches. When a new phase is defined, the Performance Consult-
ant detects it, and adds the new phase’s name3eaithes menu.

The current Search line gives the name of the currently displayed search phase. At any given
time, it is always the same as #marches menu item having a blue diamond before its name.

User’'s Guide May 5, 1998 Release 2.1

Page 9-5

The Search Status box is a scrolling text display just beneath therent Search line. From
time to time, the Performance Consultant adds some information about the currently displayed
search in this box; examples include when refinements are made, phases end, and unexpected
error conditions occur. As with most items in the Performance Consultant window, the informa-
tion displayed is specific to the currently displayed search; changing searches (by choosing a dif-
ferent item under theearches menu) will show different information.

The Search History Graph Display is the large resizable window below the status box. The
Search History Graph is a compact graphical display of the history of refinements made by the
Performance Consultant. Each search has a distinct Search History Graph; changing searches will
show a different Search History Graph. Section 9.2.3 discusses the Search History Graph in
detail.

TheNode Status displays extra information for a given Search History Graph node. To see the
full description for any node in the SHG display, click the middle mouse button on the node. For
example, the node status line in Figure 40 shows the full hypothesis and focus for the blue node
labeledgoat. For convenience, this line of information will remain present until the next time a
node is clicked on with the middle mouse button. $&ech andPause buttons are described in
Section 9.2.2, where we discuss running the Performance Consultant.

TheSHG Color Key explains the colors and display styles used in the SHG display. We discuss
each key item in Section 9.2.3. To conserve screen space, the SHG Color Key may be removed by
setting the tunable constabwShgKey to false.

Help Tips describe mouse and key presses in the Performance Consultant window. To con-
serve screen space, the help tips may be removed by setting the tunable senetagtips to
false.

9.2.2 Starting and stopping a search

To start the currently displayed search, click ong#ech button in the Performance Consultant
window. The PC directs instrumentation insertion to begin locating application bottlenecks. Note
that the application program must be running for data to be collected for the PC; if the application
has not been started or has been paused, (re-)start it by pressRug\thetton of the Paradyn

Main Window (see Section 2). Current Phase Searches may also be started at the same time a new
phase is defined. To do so, choss&t with Performance Consultant from thePhase menu of
Paradyn’s main window.

ThepPause button stops the Performance Consultant temporarily, and removes all instrumenta-
tion for the particular search displayed. Note that it does not stop the application itself; its only
effect is on the PC’s currently displayed search. To resume a search after pausimgspiess

A search ends when its phase ends; for a current phase, this is when you define the start of a
new phase; for the global phase, it is when the application terminates.

User’'s Guide May 5, 1998 Release 2.1

Page 9-6

9.2.3 The Search History Graph display

As the Performance Consultant searches for bottleneck(s), it leaves a record of its progress in
the Search History Graphlnitially, the Search History Graph contains only a single item:
TopLevelHypothesis. A few moments after the search begins, the Search History Graph will look
like that in Figure 37. The three items within the listbox betopLevelHypothesis are what the

The Performance Consultant f
Searches | Uil

Current 3earch: Global Phase

Initializing Search for Global Phase.

4
j TopLevelHypothesis
VS =

Resume | |

Hever Evaluated
Unknown uninstrumented
False LTS TR RTEiedl; ST Rode
Why Axis Refinement Where Axis Refinement

Hold down Alt and move the mouse to scroll freely
Click middle button on a node to obtain more info on it

Figure 37: The Performance Consultant’'s search begins

Performance Consultant first tests the program for—excessive synchronization waiting time,
excessive 1/0 blocking time, or CPU bound. To use the terminology given above, the Performance
Consultant is presently trying to find aumbhythe program is running slowly, as opposewtere

(what program resource(s)) it is running slowly. Whenever items are added to the Search History
Graph, we say thatr@finemenhas been performed. In this exampl&yhy Axis refinemeifitas

been performed, indicated by the yellow line connectipgevelHypothesis to its descendant list-

User’'s Guide May 5, 1998 Release 2.1

Page 9-7

box. As shown in the window’s key area at the bottom of the Performance Consultant window, a
yellow line is a Why Axis refinement; a purple line is a Where Axis refinement.

Each item in the Search History Graph of Figure 37 has a green background. As shown in the
window’s key area, a green background indicatgsiown status; that is, we do not yet know
whether any oExcessiveSyncWaitingTime, ExcessivelOBlockingTime, Of CPUBound are true or false,
since we have just begun the Performance Consultant’s search. Also, the text of each item in the
listbox has a white foreground. As shown in the window’s key area, white text indicatetsvan
test; that is, the Performance Consultant has instrumented the program to perform the test and is
collecting data for it.

We continue the search until the Performance Consultant has made a further refinement
(Figure 38). First, note that the Performance Consultant has decided that the program is CPU
bound (because cPUbound is drawn with a blue background). The nodes
(ExcessiveSyncWaitingTime : WholeProgram) and (ExcessivelOBlockingTime : WholeProgram) have
both tested false, so their background color is now pink. Although all three of these nodes will
continue to be tested (which we see by the white text), only the true node, CPUBound, has been
expanded to try to further refine the bottleneck. As a result of the search, a listboxcbelew
ound has appeared. The line connect@rRUbound to its children is drawn in purple, since is a
Where Axis refinement. Each item in the listbox contains program resources that are being exam-
ined with theCPUbound hypothesis. The Performance Consultant has decided that the program is
CPU bound; now it's trying to refine the bottleneck to (in this case) a certain maghinex the
source code modulesupba.c, partition.c, etc.).

Double-clicking on a true node (such@®Ubound in Figure 38) collapses the display so its
children are no longer shown. Because it saves screen space, this is useful for traversing large
complex search graphs. In the example of Figure 38, double-clickir@pobound would put
CPUbound into the listbox withExcessiveSyncWaitingTime andExcessivelOBlockingTime. A triangle
will appear next tacPUbound in the listbox to indicate that it has children which are presently
being hidden to save screen space. To expand the node’s children, double-click on the name in the
listbox.

Screen space can be saved in the Search History Graph by hiding certain combinations of
node types. For example, you may wish to view only nodes which the Performance Consultant
has determined to be true bottlenecks (blue nodes). Or, you may wish to show all but those nodes
which have been determinedtto be bottlenecks (pink nodes). There are seven such node char-
acteristics; boolean tunable constants (Section 4) can be set to show or not to show nodes of any
given characteristic. We now briefly describe each node characteristic; they are discussed in more
detail in Section 9.3.

9.3 Interpreting the results

Results may change over time because the Performance Consultant continues running for the
duration of the phase being tuned. Figure 40 shows a search in progress and explains how to inter-
pret the PC display. The Performance Consultant has decided that the program is CPU bound (and
it represents this by presentingPUbound drawn with a blue background). The nodes
(ExcessiveSyncWaitingTime : WholeProgram) and ExcessivelOBlockingTime : WholeProgram) have

User’'s Guide May 5, 1998 Release 2.1

Page 9-8

The Performance Consultant
S
¥

Searches | (4]

Current 3earch: Global Phase

Initializing Search for Global Phase,
CPUbound tested true for /Code, /Machine,/Process fSyncObject
topLevelHypothesis tested true for /Code fMachine, /Process,/SyncObject
4
CPUbound
£ =

Resume | |

Hever Evaluated
Unknown uninstrumented
False LTS TR RTEiedl; ST Rode
Why Axis Refinement Where Axis Refinement

Hold down Alt and move the mouse to scroll freely
Click middle button on a node to obtain more info on it

Figure 38: The Performance Consultant refines bottleneck to CPUbound

both tested false, so their background color is now pink. Although all three of these nodes remain
active, only the true nodepPubound, has been expanded to try to further refine the bottleneck.
Each item in the listbox undePubound contains program resources that have been tested as pos-
sible refinements of therPubound hypothesis. Refinements to two different true nodes (machine
namegoat and source code modupartition.c) have been made. The Performance Consultant is
capable of making an arbitrary number of simultaneous refinements, because multiple hypothesis/
focus pairs may be tested concurrently. For example, in the Search History Graph of Figure 40,
the Performance Consultant will try to make refinements of the two true nodesdselbwund:

goat andpartition.c.

User’'s Guide May 5, 1998 Release 2.1

Page 9-9

Tunable Constant to

Visual representation control display look

Description

1. Gray node background shgHideNeverSeenNodes Nodes that the Performance Consultant has not yet
examined.

2. Green node backgroundshgHideUnknownNodes Nodes that the Performance Consultant has not yet
determined to be true or false.

3. Blue node background| shgHideTrueNodes Nodes that the Performance Consultant has dete
mined to be true.

=
1

4. Pink node background| shgHideFalseNodes Nodes that the Performance Consultant has deter
mined to be false.

5. White node text shgHideActiveNodes Nodes with white text are those that are active—the
Performance Consultant has instrumented the prp-
gram and is collecting performance data for it.

6. Black node text shgHidelnactiveNodes Nodes with black text are inactive—the Performarce
Consultant has not instrumented the program to ¢ol-
lect performance data for it.

7. Italicized node text shgHideShadowNodes Nodes with italicized text are shadow nodes; they jare
discussed in Section 9.3.

Figure 39: Search History Graph tunable constants for saving screen space

Two separate search paths may converge through expansion to the same child node. For exam-
ple, the next refinement gbat might bepartition.c, and the next refinement pdrtition.c might be
goat. If so, they would share the same child ngdeubound : /Code/partition.c,/Machine/goat,/Pro-
cess,/SyncObject). The search display does not connect the two different parent nodes to the same
child; instead, it adds a child node for each, where one is a regular node and the other(s) is a copy.
These copies are callstiadow nodedn Figure 40, the regular nodeat has been clicked with
the middle mouse button to provide its details in the information line below the shg, while the list-
box itemgoat underpartition.c is drawn in italics to indicate that it is a shadow node. The color of
a shadow node will be updated to reflect the status of its regular node. Shadow nodes are always
leaf nodes; although the regular node may be expanded in the usual way, the resulting listbox is
not be copied to the shadow nodes. In this example, thegoadanderpartition.c is a shadow
node because it has the same hypothesis/focus qrlbdund : /Code/partition.c,/Machine/goat,/
Process,/SyncObject) as the listbox iterpartition.c undergoat.

Figure 41 shows the contents of the Search History Graph after the next set of refinements are
made. First, the nodeartition.c undergoat has been found true; this is the hypothesis/focus pair
CPUbound : /Code/partition.c,/Machine/goat,/Process,/SyncObject discussed above. This focus can be
read as, “code in modulertition.c when executing on machin@at”. The shadow nodgoat
underpartition.c IS also true; no attempt is made to refine anything beyond it, however, because it's
just a shadow node @trtition.c undergoat. Additionally, the node_makeMG underpartition.c IS
now true. Its hypothesis/focus pair (3PUbound : /Code/partition.c/p_makeMG,/Machine,/Process,/
SyncObiject). Note thap_makeMG has just a single element in the listbox belowdtd), and it's a
shadow node. The hypothesis/focus pair for this node is shown in Figure 41 (i.e., we have clicked
the middle button on that node). It can be read as “fungtierakeMG of modulepartition.c;

User’'s Guide May 5, 1998 Release 2.1

Page 9-10

The Performance Consultant
S
¥

Searches | (1]
Current 3earch: Global Phase

CPUbound tested true for fCode,/Machine /Process, /SyncObject
toplLevelHypothesis tested true for /Code, /Machine,/Process fSyncObject
CPUbound tested true for fCode,/Machinefgoat,/Process,/SyncObject J
CPUbound tested true for fCodefpartition.c, /Machine,/Process fSync Object
4
CPUbound
channel.c
anneal.c A
outchan.c
graph.c
£ =

|CPUhuund::fCude,!Max:hine!guat,!Pmcess,!Syn[: Object

Resume | |

Hever Evaluated
Unknown uninstrumented
False LTS TR RTEiedl; ST Rode
Why Axis Refinement Where Axis Refinement

Figure 40: The Performance Consultant refines bottleneck beyond CPUbound

machinegoat”. This item is a shadow node pfmakeMG, located in the listbox belopartition.c

which is in turn undegoat. Hence, in Figure 41, two searches are in progress. The first has tenta-
tively concluded that a bottleneck exists for moghal@tion.c on machingoat. The other has ten-
tatively concluded that a bottleneck exists for the funggiomakeMG (of modulepartition.c), and

is trying to refine further.

The state of the Performance Consultant after the next (and last) refinement is shown in
Figure 42. In the middle of the figure, we see thatakeMG (underpartition.c, in turn undegoat)
is true. Its hypothesis/focus pair is shown below the Search History Graph (i.e., we have clicked
the middle button on the node). It can be read “fungiiamkeMG of modulepartition.c; machine
goat”. In addition, the shadow nodeat underp_makeMG (in turn undepartition.c) has been set to

User’'s Guide May 5, 1998 Release 2.1

Page 9-11

The Performance Consultant
S
¥

Searches | (4]

Current 3earch: Global Phase

CPUbound tested true for /Code /Machinefgoat,/Process /fSync Object
CPUbound tested true for fCodefpartition.c ,/Machine, /Process,/SyncObject
CPUbound tested true for /Code/partition.c /Machine/goat,/Frocess,/SyncObject J
CPUbound tested true for fCodefpartition.c/p_makeMG,/Machine /Process /SyncObject
4
7 e [CPUbound]
channel.c
ameae | [owbac | [0 [p_makeMG |
outchan.c channel.c p_copy
graph.c anneal.c hah I |
outchan.c redosetmap
graph.c delmem
overap
p_isvalid
p_init
p_hconst
whichset
] p_new
printpart
£ =

|CPUhuund::!Cudefpartjtjun.cfp_makeMG,IMax:hinefguat,!Pmcess,!Sync Object

Resume | |

Hever Evaluated
Unknown uninstrumented
False LTS TR RTEiedl; ST Rode
Why Axis Refinement Where Axis Refinement

Figure 41: The second set of Search History Graph refinements

true, to reflect the change in truth value of the actual node for which it is a marker.

In this example, we are done. The Performance Consultant has found the bottleneck, and will
not refine any further nodes. After a few more moments, the green items (unknown) in the listbox
below partition.c will turn pink (false); though we do not show a picture of it here. The Perfor-
mance Consultant will continue to re-evaluate all true nodes and top level hypotheses so that a
change in application behavior will update the search.

All nodes which are true (blue) at the end of the search indicate hypothesis/focus pairs that

User’'s Guide May 5, 1998 Release 2.1

Page 9-12

The Performance Consultant
S
¥

Searches | (4]

Current 3earch: Global Phase

CPUbound tested true for fCodefpartition.c, /Machine,/Process fSync Object

CPUbound tested true for fCodefpartition.c /Machinefgoat,/Process /Sync Object

CPUbound tested true for fCodefpartition.cfp_makeM G, /Machine,/Process,/SyncObject
CPUbound tested true for fCodefpartition.c/p_makeM G, /Machinefgoat,/Process, /Sync Object J

j | BT
CPUbound
1 gour [parttion.|
|| | bubbac p_makeMG
g channel.c p_copy
|| |annearc [PmakemG! T
= | outchan.c redosetmap
graph.c delmem
overap
p_isvalid
p_init
— p_hconst
whichset
/I =

|CPUhuund::!Cudefpartjtjun.cfp_makeMG,IMax:hinefguat,!Pmcess,!Sync Object

Resume | |

Hever Evaluated
Unknown uninstrumented
False LTS TR RTEiedl; ST Rode
Why Axis Refinement Where Axis Refinement

Figure 42: Final Search History Graph bottleneck refinement

have remained true for a significant portion of the phase searched. The PC refines all true nodes to
as specific a focus as possible; in some cases the focus will be refined down to the leaf level of the
resource hierarchies, but in others the bottleneck is spread across some number of foci and so
refinement stops earlier. For example, total CPU time for a module may exceed the current
PC_CPUThreshold , but the module may contain a number of functions with roughly equal CPU
times. If no single function exceeds the threshold, refinement will terminate at the module level.

Whenever a node tests true, a note is added teetheh Status Box near the top of the win-
dow. At any time during your tuning session you may scroll through this list to see a history of test

User’'s Guide May 5, 1998 Release 2.1

Page 9-13

results.

It is possible for the Performance Consultant to report false negatives: that is, it may fail to
detect bottlenecks in the code for any of the following reasons: you start a search after the behav-
ior has started and ended; you perform a search on a phase that contains several distinct behav-
ioral phases, so no individual bottleneck occurs throughout the entire phase; or the bottleneck is of
relatively short duration, relative to the length of the phase being tested. The PC may fail to com-
pletely refine a given bottleneck, if the individual refinement changes from false to true after the
PC has tested and found it false.

9.4 Customizing the search parameters

The Performance Consultant has several kinds of controls that you can set to customize its search
operation. These controls are tunable constants that set the threshold for deciding when a perfor-
mance problems exists. Setting the tunable constants is easily done following the instructions in
Section 4.

Several user-level tunable constants are currently defined to control the search:
PC_CPUThreshold , PC_SyncThreshold , PC_lOThreshold , andPC_lOOpThreshold . For example, if
PC_CPUThreshold is set to 0.3 (30% of the phase), then any focus with CPU time greater than
30% of the phase’s elapsed time will be reported as a bottleneck. Other tunable constants control
the sensitivity of the hypothesis testing.

The tunable constants determine the thresholds used for testing hypotheses:
PC_CPUThreshold : used for hypothesiSPUbound
PC_SyncThreshold : used for hypothesdsxcessiveSyncWaitingTime
PC_lOThreshold : used for hypothesiExcessivelOBlockingTime

PC_lOOpThreshold : used for hypothesiBooSmalllOOps

These tunable constants determine search parameters:

minObservationTime: all tests will be continued for at least this interval of time before any conclu-
sions are drawn. This protects against transitory effects at the start of a phase.

costLimit : determines an upper bound on the total amount of instrumentation that can be active at
a given time while the application runs. A low value permits less concurrent instrumentation,
so the search may proceed more slowly but perturbation of the application will also be lower.
A high value increases perturbation, which may result in less accurate values for all visualiza-
tions as well as the Performance Consultant.

User’'s Guide May 5, 1998 Release 2.1

Page 10-1

10 STANDARD VISI MODULES

Paradyn provides an open interface to its performance data. All visualization mokilgsiig

Paradyn are external processes that use the Paradyn-provided library and remote procedure call
interface VisiLib) to access performance data in real time. Existing visualizations can be easily
added to Paradyn by modifying them to use VisiLib routines to access Paradyn performance data.
Paradyn currently has visis for a time-histogram, bar chart, table and 3-d terrain visualization.
These visualizations are described in the following sections, and the VisiLib library is described

in a separate document, MisiLib Programmer’s Guide

10.1 Time Histogram visi

The time-histogram visualization plots performance data for metric/focus pairs over time.
Figure 43 shows a time-histogram with thetions andView menu expanded. It shows three
curves corresponding to three enabled metric/focus pairs. The time axis begins at the start time for
the phase over which the data is being displayed (in this case the data is displayed for the global
phase which begins at time 0). The time-histogram can display myH#xes. In Figure 43 there

Time Histogram Display ﬁ =
File Actions View W
New Curve(s) || Smooth Curves(s) [¢: Global
Delete Curve(s) | Unsmooth Curve(s) L
Keep on Exit | | Hide Curve
000 || Show Curve
1 osd| BWIColor Toggle |. . i it o AP [
so00| “° | Refresh Display I-'I'M ‘{‘MI i wji‘ ity P "* w"
5000 g : I iy it
ol Hi I
| £
3000 4 041 0
0
20004 | , M
1000 -
0- 0.0 T T T T T T T T T
0 20 40 60 &0 100 120 140 160 180 200

Seconds

cpu <Whole Program:
cpu <fCode/partition.c:
procedure_calls <Whole Program:=

Figure 43: Time Histogram with Actions and View menus expanded

are twoy-axes displayed; the rightmost one corresponding to the metric “CPU utilization”, and
the leftmost corresponding to the metric “Procedure Calls”. iaotis is labeled with the units
in which its corresponding metric is measured. JHagis labels can be seen in Figure 43.

Time-histogram is launched by choosing Histogram fromsthe A Visualization dialog pro-
duced by pressing thasi button in the Paradyn Main Control window. A dialog box with a list of
all visis known to Paradyn is brought up; choose Histogram andaciekt .

User’'s Guide May 5, 1998 Release 2.1

Page 10-2

10.1.1 Actions menu

The Actions Menu contains options which when selected invoke calls to the paradyn main pro-
cess. A set of curves can be deleted by first selecting a set of curve labels from the legend in the
lower left of the display and then choosing teatete Curve(s) option. Figure 44 shows an exam-

ple of selecting a curve label. If tibelete Curve(s) option was selected next, this would make a

call to the paradyn process to disable data collection for the metric “CPU Utilization” and focus
“Code/partition.c” for this visualization process. The visualization display would then remove the
label and curve associated with this disabled metric/focus pair.

TheAdd Curve(s) menu option, if selected, makes a menuing request to the paradyn process.
The paradyn process will display metric and focus menus for the user to select new curves to add
to the time-histogram visualization.

TheKeep on Exit menu options, if selected, will keep the time-histogram visualization process
running when the Paradyn process exits. The default behavior is that visualization processes exit
when the Paradyn process exits.

Time Histogram Display ﬁ ra
File Actions View v
Phase: Global
callsPerSecond CPUs &
5000 4 1.0
4000 | 0.8 -
3000 { 0.6 -
z
2000 4 0.4 0
0
10004 02 M
0- 0.0 T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200

Seconds

cpu <Whole Program= {smoothed

cpu <fCodefpartition.c> (smoothed)

procedure_calls <Whole Program= (smoothed)
PAN

Figure 44: Time Histogram with curve selected

10.1.2 View menu

The View Menu contains options to change the way the curves are displayed by the visualization.
These changes are local to the visualization process, and thus do not call any VisiLib routines. By
selecting a curve label(s), and one of the menu options, a user can invoke the selected action on
the selected curve(s).

A smoothed curve is one that shows the effects of passing a filter over the data to remove
spikes from the curve. Figure 44 shows the results of invokingrtheth Curve(s) menu option

User’'s Guide May 5, 1998 Release 2.1

Page 10-3

on the three curves. The original curve data can be re-displayed by selecting a set of curves and
choosing theJnsmooth Curve(s) menu option. Figure 43 shows the unsmoothed curves.

Hiding a curve deletes the curve from the display, but does not cause a disable data collection
action in the paradyn process; data continues to be sent for the hidden curve, it is just not dis-
played. A hidden curve is indicated by its lack of a curve line color label. Figure 45 shows the
results of hiding the “CPU </Code/partition.c>" curve. To re-display this curve, the user would
select the curve’s label and chooseghew Curve(s) menu option.

Time Histogram Display ﬁ -
File Actions View yﬂ"
Phase: Global
callsPerSecond CPUs i
20004 1.0
4000 4 0.8 4
30004 0.6
£
20004 0.4 O
(0
10004 02 M
0- 0.0 T T T T T T T T T
0 20 40 60 il 100 120 140 160 180 200

Seconds

cpu =VWhole Program= (smoothed)

cpu </Code/partition.c> {Smoothed}

procedure_calls <\Whole Program: {smoothed)
PAN

Figure 45: Time Histogram after smooth and hide options applied

TheBWwiColor Toggle menu option alternately displays a black-and-white or a color version of
the real-time histogram. Figure 46 shows the color and black-and-white versions of the same
curves. Therefresh Display menu option redraws the entire histogram display.

10.1.3 Panning and zooming

The scroll bars at the bottom and right of the time-histogram allow the interval of time displayed

in the histogram window to be adjusted. The zoom bar can be adjusted to get a more detailed view
of a particular time interval along tixeaxis. As the zoom bar is moved upwards, the percent of

the totalx-axis displayed decreases. Also, once the zoom bar has been moved, the pan bar can be
used to change the time interval that is currently being displayed in the window. Figure 46 shows
the time-histogram with a zoomed and panned view.

User’'s Guide May 5, 1998 Release 2.1

File Actions View

Time Histogram Display

Page 10-4

i

Phase: Global

callsPersecond CPUs

1.0 S

0.8 -

0.6 -

0.4 -

0.2 4

0.0 -

1.0

0.8 -

0.6 -

0.4

0.2 4

0.0

R

TooM

a0

T T
30 100

Seconds

cpu <Whole Program= {smoothed)

cpu <fCodefpartition.c> (smoothed)
procedure_calls <Whole Program: (smoothed)
PAN

110

120

File Actions View

Time Histogram Display

Phase: Global

callsPersecond CPUs

1.0

0.8 4

0.6 +

0.4 4

0.2

0.0-

1.0

0.8 4

06]

0.4 4

0.2

0.0

1]

cpu <Whole Program: (Smoothed}

------------------------- cpu </Codelpartition.c> (smoothed)
procedure_calls <\Whole Program= (smoothed)

User’s Guide

£
0
O
M
T I I
90 100 110 120
Ieconds
PAN
B
Figure 46: Zoomed Time Histogram: color and black-and-white modes
May 5, 1998 Release 2.1

Page 10-5

10.2 Barchart visi

Barchart is an external visualization module that enables many metric-focus pairs to be viewed in
real time. Barchart receives its data throughwuiselib. The visi lib is described in théisiLib
Programmer’s Guidewe do not discuss it further here.

Figure 47 shows the Barchart window. The vertical axis contains the names of all foci selected
for viewing. There are also a certain number of metrics currently selected for viewing; they (along
with a range of values) are displayed in the horizontal axis. Note that each metric has its own
color; this helps identify the bars emanating horizontally next to each focus.

Barchart is designed to view many metric/focus pairs. In Figure 47, there are seven foci and
two metrics, leading t@ x 2 = 14 metric/focus pairs. Barchart can easily handle far more; it is
not unusual to display 30 or more foci, and five or more metrics. This contrasts with the Histo-
gram visi (see Section Figure 47:), which is restricted to eleven metric/focus pairs at a time. On
the other hand, Barchart has no way to show how metric/focus pairs change over time.

m.:-l
LT T
hid] £ -
m;-_
wilchan e -
piﬁln.:--
J wnres T
— un i -
o [H in

Figure 47: Barchart visualization window

Barchart is launched by choosing it from thart A Visualization dialog produced by pressing the
Visi button in the Paradyn Main Control window. A dialog box with a list of all visis known to
Paradyn is brought up; choose Barchart and eléckpt .

A dialog box containing all metrics known to Paradyn will appear. Paradyn is asking you to select
some initial metric-focus pair(s) for the Barchart. Choose metric(s) by selecting desired check-
boxes in the metrics dialog bbxChoose foci by selecting desired resources in the Where Axis
window? The metric-focus pairs generated will be the cross-product of the foci and metrics.

At this point, the Barchart window (as in Figure 47) should appear, with the metrics and foci you
selected. If Paradyn is running an application, data should begin appearing immediately.

1. For details on selecting metrics, refer to Section 6.
2. For details of focus selection, and the Where Axis in general, refer to Section 5.

User’'s Guide May 5, 1998 Release 2.1

Page 10-6

10.2.1 Changing metrics and foci being viewed

You must specify an initial metric/focus set when launching a barchart. You may later add as
many more metric/focus pairs as desired (duplicates will be correctly filtered). To do this, choose
Add Bars from the Barchart'actions menu. The interface for adding metrics and foci at this point

is the same as upon startup; you will be shown the metrics dialog box for choosing metrics, and
the where axis for choosing foci.

You may delete foci by clicking on their names and choosiilgte Selected Foci from the
Actions menu.

10.2.2 Viewing data

Values being viewed in a Barchart are, by default, current. Each time a screenful of new data
arrives (from Paradyn), Barchart immediately displays the most recent values, thereby overwrit-
ing the previous screenful of data, which is lost foréver

There are two other ways of viewing data. Underbe menu, we could choose to viewer-

age values. In this case, what we see on the screen will be the average (over time) of all values
collected by this instantiation of Barchart. After a short time, the bars will probably setting down
to a steady state; this is to be expected when viewing average values. The third way of viewing
data is to viewrotal values . This causes the bar values to monotonically increase over time.
Figure 48 shows a Barchart, otherwise similar to that of Figure 47 Tetithinstead ofCurrent

Fila Acibans View

Phasa: (i
.h

=

] a

Figure 48: Barchart showing total values

values displayed. Note that the metric units (the lower left corner of Figure 48) changes accord-
ingly, and that the metric bounds (the lower right part of Figure 48) adjust accordingly.

3. To get a feeling for metric/focus pair changes over time, try the Histogram visi (Section Figure 47:) instead of Bar-
chart.

User’'s Guide May 5, 1998 Release 2.1

Page 10-7

10.3 Table visi

Like the Time Histogram (Section Figure 47:) and Barchart (Section 10.2), Table is a Paradyn
visualization module (visi) that receives its data throughvisielib (described in the document
VisiLib Programmer’s Guid¢ interface.

Figure 49 shows the Table window. The columns are metrics; the rows are foci. Note that

Fila Acilans View

= Aol
Pl ekl

§ motive processes opu esgo fime procedure calls
rperatiens PU= = Rl

ICode/snnenle I 0 DR T
CadinBiilslia.c] o a L]
Ca-de'tRimnnel, o] n L] []
Codeigraphe] [REC T REE] [
Cosiltouk efan, .] [i] a []
et e’p arti ten. o i L RE L R] E4E.
JCaadpipartliben, clp makebbS I LNEE S RE R FOAE]

~ Whale Program | B O 11942

= T

Figure 49: Table visualization window

there are two lines describing each metric: the first name (in blue) is the metric name; the line
below it (in black) gives the metric’s units.

Like Barchart, Table uses screen real estate efficiently—it can show many metric-focus pairs
at a time. For example, Figure 49 has four metrics and eight foci for a tdtal ®f= 32 metric-
focus pairs. It is reasonable for a Table to show hundreds of metric/focus pairs at a time. However,
like Barchart, Table cannot show how metric/focus pair values are changing over time.

Table is launched from th&art A Visualization dialog resulting from pressing thesi button
in the Paradyn Main Control window menubar. A dialog with a list of all visis known to Paradyn
is brought up; chooseble and clickAccept .

A dialog box containing all metrics known to Paradyn will appear (see Section 6). Paradyn is
asking you to select some initial metric-focus pair(s) for the Table. Choose metric(s) by selecting
desired checkboxes in the metrics dialog box. Choose foci by selecting desired resources in the
Where Axis window (see Section 5). The metric-focus pairs generated will be the cross-product of
the foci and metrics.

At this point, the Table window (as in Figure 49) should appear, with the metrics and foci you
specified. If the application is running, data should begin appearing immediately.

10.3.1 Actions menu
Launching Table requires an initial metric/focus set to be specified. However, you may later add

or delete metric-focus pairs as desired (when adding, duplicate pairs will be correctly filtered). To
add metric-focus pairs, choosed Entries from Table’sActions menu. The interface for adding

User’'s Guide May 5, 1998 Release 2.1

Page 10-8

metric/focus pairs is the same as when starting Table (Section 10.3); choose entries from the met-
rics dialog box and the Where Axis window.

Deletion in Table can take 3 forms; you can delete a focus (an entire row of the table), a metric
(an entire column of the table), or a single metric-focus pair (a single cell of the table) with one
delete operation. First you select what to delete by clicking once with the left mouse button on the
appropriate item. To delete a focus, click on the focus name itself on the left side of the table; the
entire row will become highlighted. To delete a metric, click on the metric name itself at the top of
the table; the entire column will become highlighted. To delete an individual metric/focus pair,
click on the cell value; it will become highlighted. Once you have selected an item, the second
entry of theActions menu (namedelete Selected Focus (entire row) , Delete Selected Metric
(entire column) , Or Delete Selected Cell , as appropriate) will become active. Choose that menu
item to perform the deletion.

10.3.2 View menu

Long vs. short names

Focus names can be displayed in long form (éGpde/anneal.c) or in short form (e.g.,
anneal.c). To toggle between the long and short forms, choesgNames from Table’sview

menu. The default is to show long names. Figure 50 shows the equivalent of Figure 49 with short
instead of long names..

Fila Actons View
- e

§ setlve processes opu eWes Hime proceduare aalls
RS Pk Mk aparalianatuen

anneal.o {] ¥ DI GE.E
bihlia, g L]]] n
ahanrela 1 L] L] o
grapke] D1ESs Daa [EF]
[T TR 1 L] L o
parikion.a 1 L% 0EeEd 245 A
r_inaka®ad 1 BI%E 0V Fa A

— Whale Program 1 s A 1,m|m2

=, I

Figure 50: Table visualization showing short focus names

Current vs. average vs. total values

By default, Table cells are “current”: As soon as a screenful of new data arrives from Paradyn,
Table redraws the cells with the new values. As with Barchart, there are two other ways to view
data. Under th&iew menu, we could choose to viewerage values. In that case, metric/focus
pair values shown will be the average (over time) of all values collected by this instantiation of
Table. After a short time, the values shown will probably settle down to a steady state; this is to be
expected when viewing averages. The third way of viewing dataais/alues . This causes the

User’'s Guide May 5, 1998 Release 2.1

Page 10-9

bar values to monotonically increase over time.

Sorting metrics

By default, Table displays the columns (metrics) in the order in which they were added. To
sort them by name, choosert Metrics (ascending) from Table’sview menu. To change back to
the default, chooseon't Sort Metrics from Table’sview menu.

Sorting foci

By default, Table displays the rows (foci) in the order in which they were added. To sort by
name, choossBort Foci (ascending) from Table’s View menu. Note that sorting foci is sensitive to
the current setting afong Names in theview menu: if long focus names are displayed, sorting is
according to these long names; if short focus names are displayed, sorting is according to the
short names.

There is another way to sort foci: by value. ChoositrgFoci By Values (of Selected Metric)
effectively turns Table into a profiler; whenever a screenful of new data arrives from Paradyn, the
foci (rows) are reordered to match the new values. When vieduimgnt Values , rows can seem
to jump around so quickly that they are difficult to read. Sorting foci by value clearly works best
when viewingAverage Values Or Total Values , which reach a steady state quickly.

In order to sort foci by value, Table needs to know which metric to sort by. To give an exam-
ple, sorting the foci of the table in Figure 50 would yield very different orderings between the foci
procedure_calls andcpu. In the formergraph.c has a higher value thaartition.c ; not so the lat-
ter.

Significant digits

Individual metric/focus pairs are floating point values. You can change the number of signifi-
cant digits in which these values are viewed by choosing the desired item undewthenu.
Figure 50 is shown to five significant digits. Figure 51 shows the same table with two significant
digits. Scientific notation is used when necessary.

Fila Actlans View

§ sefive procEsses opu esee_time procedure calls
mnneal.o i o eiria 5&
hiahilia, & L] n o o
ahaneela 1 n o o
grapkus L] s [B} 5. ae
otz b 1 n n n
parikion.a 1 i3 0z L hasi
jr_inakelan i LRE] 1A 2

— Whale Program 1 nn 1 I fu=1

= T

Figure 51: Table visualization with values shown to two significant digits

User’'s Guide May 5, 1998 Release 2.1

Page 10-10

10.4 3D Terrain visi

Like all the previous visis,Terrain is a Paradyn visualization module (visi) that receives its data
through the visi lib (described in the docum¥isiLib Programmer’s Guidg interface. The Ter-

rain visualization displays data in 3D, allowing the performance data to be analyzed sising a
face rather than curves or bars. This visualization can be particularly useful when we want to
compare a particular metric for different foci (like the example shown below in Figure 52, which
displays CPU time for machines “beaufort”, “cham” and “poona”).

J0-Histogram Display

T foge LB dhagme | Troim 51 JLIKD tags

Figure 52: 3D Terrain visualization

User’'s Guide May 5, 1998 Release 2.1

Page 11-1

11 PARADYN CONFIGURATION LANGUAGE

The Paradyn configuration language (PCL) is used for defining daemons, processes, and visis, set-
ting value of tunable constants, and defining new metrics. Paradyn reads commands from one or
more of the following files (in this order):

1. a file named®PARADYN_ROOT/paradyn.rc , wherePARADYN_ROOIB a shell environ-
ment variable defining a path, or if this file is not found, a file ngpaeddyn.rc in the
current working directory (see Section 2.2, and alsd’tradyn Installation Guidé;

2. afile name@HOME/.paradynrc in the user's home directory;

a configuration file given as a command line argument to Paradyn with theption (e.g.
“paradyn -f foo .

The remainder of this chapter describes the syntax and semantics of the Paradyn configuration
language.

11.1 Notation

We use an extended-BNF (EBNF) notation to describe the syntax of the language. Nonterminal
symbols in the grammar are writtenitalics, terminal symbols (tokens) wurier , and reserved
keywords and symbols are writtenlkoldface

In the description of the grammar the symbol ::= is used to introduce the definition for a non-
terminal symbol, a vertical bar | represents a choice, braces {} represent zero or more repetitions,
and brackets [] are used to represent an optional item. Parentheses are used for grouping.

11.2 Lexical conventions

The tokens of the language are identifiaten(), integer (hteger), floating-point Eloat), and

string 6tring) constants, and the reserved keywords and symbols enumerated below. White
spaces, tabs, newlines, and comments are ignored, except to separate tokens. A comment is
started by the characters. All characters from thé¢ until the first newline are considered as

part of the comment and are ignored.

Identifiers are a sequence of letters, digits, and underscore, starting with a letter. Identifiers are
case sensitive and may be of arbitrary length. Predefined identifiers start with a $ (dollar) sign.

Some identifiers are reserved for use as keywords and cannot be used in any other way.
Figure 53 is a list of all keywords in the language (all keywords are case sensitive, except for
“true” and “false”). The four words “setCounter”, “addCounter”, “subCounter”, “functionCall”
are obsolete, but they are reserved so that MDL can detect an old configuration file.

There are six words: “readAddress”, “readSymbol”, “startProcessTimer”, “stopProcess-

Timer”, “startWallTimer”, “stopWallTimer”, which are not keywords, but are considered as Para-
dyn standard function calls. See Section 11.9.10 for an explanation of their meanings.

User’'s Guide May 5, 1998 Release 2.1

Page 11-2

$arg $return addCounter
aggregateOperator append avg

base Call command
constraint constrained counter

daemon default derived
developer dir EventCounter
exclude false flavor

float force foreach
functionCall host if

is in int

items library limit

list max metric

min mode module
name normal normalized
postinsn prelnsn prepend
procedure process processTimer
replace resourceList SampledFunction
setCounter string style
subCounter sum true
tunable_constant units unitsType
unnormalized user Visi

void wallTimer

Figure 53: List of MDL keywords

There are three types of constants: strings, integers, and floating-point. A string is a sequence
of zero or more characters (not containing a newline or a double quote) surrounded by double
guotes. (Note that the usual expansion of control characters does not apply, e.g. “\n” is a string
containing two characters, a ‘\" and a ‘n’, not a string containing the newline character.)

Integer and floating-point constants are unsigned and defined as:
Integer =digit { digit }
Float ::=Integer . Integer
The following operators are currently supported. More operators may be added in the future.

&=++=--=/*<><=>===1=&&|| () [],. ++

A statement is teminated with a semicolon, and statements are grouped together with curly braces.
Instrumentation code are inside brackets (* and *), see Section 11.9.12.

11.3 Language structure

A Paradyn configuration file consists of a sequence of zero or more definitions of daemons, pro-
cesses, visis, metrics, values for tunable constants, and functions excluded from shared objects.

DefinitionList::= { Definition}

User’'s Guide May 5, 1998 Release 2.1

Page 11-3

Definition::=
DaemonDef
ProcessDef
TunableDef
VisiDef|
ExcludeDet
mdIDef

Each definition introduces a name to an object. The scope of names is global. A name may be
redefined, in which case the new definition replaces the old one. Thus, all references to a redefined
name become a reference to the newest object that is bound to the name, even if the use is made
before the redefinition. However, different types of objects have different name spaces, so a dae-
mon and a process may have the same name, for example. The name and scope rules for metric
definitions differ from the rules for other definitions (see Section for a complete description).

One attribute that can appear in many object definitions is a flavor. Paradyn may have different
versions that are used on different systems. Currently, there are five versions, one for standard
Unix systems, one for Unix systems running PVM, one for MPI, one for WindowsNT and one for
COW (cluster of workstations). Each of these versions is called a Paradyn flavor. A PCL file can
have many object definitions, some of which may make sense only for some flavors of Paradyn.
The flavor of an object tells Paradyn that this object is meaningful only for some subset of the fla-
vors of Paradyn, and that it should be ignored for all of the other flavors. When we run Paradyn
only those objects that are of the same flavor of the Paradyn that is being used are considered. The
others are ignored.

11.4 Daemon definition

DaemonDetf:=daemon Ident { { DaemonField; }

DaemonField:=
command string ; |
dir Ident ;|
user Ident ; |
host string | |
flavor Ident ;

A daemon definition defines a new daemon with a given name. The name is used to identify
the daemon in other PCL definitions, such as the process definition. A daemon definition does not
cause the daemon to be started immediately; the daemon only starts when an application process
that uses that daemon is run.

A daemon definition must include at least one field ¢dframandfield). The remainder fields
are optional. Theommandfield gives the command (that is, the executable file name and com-
mand arguments) that Paradyn uses to start the daemon. The executable path may be a relative
pathname, in which case Paradyn searches for the file like the shell does, using the user's PATH
environment variable on the machine where the daemon will run.

User’'s Guide May 5, 1998 Release 2.1

Page 11-4

The fieldflavor should be one gfvm, unix, winnt, mpi, cow . Defining a daemon to be of
a wrong flavor can have unpredictable results.

Thedir, user andhostfields allow us to specify the directomherethe command is located,
theuser namevhich should be used and tmachinewhere this daemon should run (if it is differ-
ent than the default host), respectively.

Example:

daemon pd_daemon {
command "/u/mjrg/bin/sparc-sun-solaris2.4/paradynd";
flavor unix;

}

This PCL command defines a unix daemon napaedhemon that is started by the command
“ Ju/mjrg/bin/sparc-sun-solaris2.4/paradynd K

Paradyn provides predefined daemaesi andpvmd, that are defined as follows.

daemon defd {
command “paradynd”;
flavor unix;

}

daemon pvmd {
command “paradynd”;
flavor pvm;

}
11.5 Process definition

ProcessDef.=
processident{ { ProcessField }

ProcessField:=
commandstring; |
daemonident; |
hostident; |
userident; |
dir Ident;

A process definition defines an application program to be run by Paradyn. When the user defines a
process to Paradyn (either through a configuration file or with the graphic user interface), Paradyn
starts the necessary daemons, which read symbol table information from the executable file,
inserts the initial instrumentation, and leave the program in a ready to run state. The application
processes can then be run by using the appropriate commands from the Paradyn main menu. A
process definition is equivalent to thefine a Process command in the Paradyn main menu (see
Section 2.4).

A process definition has five fields. The requicedhmand field specifies the command that

User’'s Guide May 5, 1998 Release 2.1

Page 11-5

Paradyn uses to start the process, including the command arguments, if any. Thedaqmuoed

field specifies the daemon that will run that process. The optiosafield specifies the name of

the machine where the process will run. Ifhmast field is present, it will default to the default

host specified with thelefault_host command line option (or the local machine, that is, the
machine on which Paradyn is running, if thefault_host option is not used). The optional

user field specifies the user name (login) under which the process will run. The local user, that is
the user that runs Paradyn, must be authorized to login as the designated user in the designated
host. If nouser field is present, it will default to the same user name under which Paradyn was
started. The optionalir field specifies the working directory for the process. Idmofield is

present, it will default to user’s home directory on the remote machine.

Example:

process foo {
command "/u/mjrg/bin/mp3d argl arg2";
daemon defd,;

}

This example defines a process named foo that is started by the compsamwith argu-
mentsargl arg2 , and is monitored by the daemdsid .

Paradyn only searches for the executable file in the directory specifieddiy fledd. If this
field is not given, then the path to the executable file must be absolute.

11.6 Tunable constant definition

TunableConstant=
tunable_constantTunablelten
tunable_constant {{ Tunablelten} }

Tunableltem:=
string Integer; |
string Float; |
string true; |
string false

A tunable constant definition gives a value for a tunable constant. For a list of all available tunable
constants and their values, see Section 4.

Example:

tunable_constant "minObservationTime" 10.0;
tunable_constant "suppressSHG" false;

In this example, the value of the tunable constambbservationTime is set to 10.0 and the

User’'s Guide May 5, 1998 Release 2.1

Page 11-6

value ofsuppressSHG is set to false. Alternatively, these two commands could be rewritten as:

tunable_constant {
"minObservationTime" 10.0;
"suppressSHG" false;

}
11.7 Visi definition
VisiDef::= visi Ident { { Visiltem} }

Visiltem::=
commandstring; |
dir Ident ;|
user Ident ; |
host string | |
force Integer; |
limit Integer;

A visi definition gives the command that Paradyn uses to start a new visualization module. The
only required field ixommand, which gives the file path (and optional arguments) to the visi
program. Paradyn searches for commands according to the shell rules, using the PATH environ-
ment variableforce is interpreted as a boolean value, and any non-zero value will cause the visi
to start without asking the user for metric selectidingt is an upper bound on the number of
metric/focus pairs that the visi can have enabled at one time. If this field is not specified, or if it
has a non-positive value, then there is no upper balinduser andhost have the same previ-

ously discussed meaning.

Example:

visi Histogram {
command "rthist";

}
11.8 Exclude definition
ExcludeDef:= excludestring;

The exclude definition specifies a shared object or a function from a shared object that cannot be
included in any focus. Performance data cannot be collected from excluded functions or modules.
Also, the Performance Consultant will not search in excluded functions or modules. The string
that specifies the shared object function or shared object to exclude should be of the form
“/Code/shared_library_name/function_name” or “/Code/shared_library_name” (for Paradyn ver-
sions 2.1 and above, or of the form “shared_library _name/function_name” or
“shared_library_name” for versions below 2.1). Modules and functions from a.out files cannot be
excluded.

Paradyn versions 2.1 and above allow exclusion of both statically and dynamically linked
modules and functions. Static and dynamic code is excluded identically, using the mechanism

User’'s Guide May 5, 1998 Release 2.1

Page 11-7

described above. All modules and functions are included (not excluded), unless otherwise speci-
fied, and accordingly all functions, including those in dynamically linked libraries, appear in the
$procedures variable described in “Metric Definition Language” section below. This behavior is
different from that encountered in older versions of Paradyn in which shared object code was
treated differently than statically linked code with respect to exclusion.

The Paradyn Control Language files distributed with releases 2.1 and above have been modi-
fied to take these changes into account. Existing unmodified PCL files should be updated as fol-
lows:

1. Names of excluded modules and functions should be proceedszbdry™

2. All dynamic libraries or functions therein whose members should not be included in $pro-
cedures should be explicitly excluded.

Example (version 2.1 and above):

exclude “/Codel/libc.so.1”; #exclude all functions from libc.so.1
exclude “/Code/libthread.so/read”; #exclude function read from libthread.so

Example (version 2.0 and below):

exclude “libc.so0.1”; #exclude all functions from libc.so.1
exclude “libthread.so/read”; #exclude function read from libthread.so

11.9 Metric Description Language

The metric description language (MDL) is a sub-language of the PCL that is used for defining
new metrics. A metric is a time-varying function that characterizes some aspect of a parallel pro-
gram performance, such as CPU utilization or number of synchronization operations. Metrics can
be computed for the entire program or they can be restricted to program components (called
resources) such as a particular procedure, or a particular processor. Metrics can be computed for
the global phase (from the start of application execution until the present time) or the current
define phase. Phases are described in Section 8.

A list of resources of interest to the user is called a focus. A metric definition provides a tem-
plate (the base metric) that is used to compute the metric, and a list of constraints that are com-
bined with the base metric to restrict it to a particular focus. A constraint defines a flag that is set
whenever a particular resource is active.

For example, consider a metric that counts how many functions are called. The metric declara-
tion must provide code to increment a counter every time a function is called. The constraints for
this metric can provide ways of restricting the computation to a single function, to a single mod-
ule, or to a single process. When combined with a focus, such as function f and process p, the met-
ric will count how many times the function f is called in process p.

If there’s no constraint declaration or replace constraint inside a metric definition, the metric
can only be applied to the whole program.

User’'s Guide May 5, 1998 Release 2.1

Page 11-8

Metric and constraint definitions are not evaluated until there is a request to compute a partic-
ular set of metrics for particular focus. At this time the requested metrics are evaluated, taking as
input the focus. The result of the metric evaluation is a collection of code blocks that are inserted
into the application code to compute the metric. In the remainder of this section, the phrase “met-
ric evaluation time” or “metric insertion time” refer to time a metric is evaluated to generate the
code to be inserted into the application, and “metric execution time” or simply “metric execution”
refer to the time when the generated code is executed.

11.9.1 Metric definition

An MDL definition consists of declarations of one or more MDL objects: resource lists, con-
straints, and metrics:

mdIDef::=
resourcelListDef
constraintDef|
metricDef

Each definition introduces a new object with a given name, which is used for references to that
object. A name may be redefined, in which case the definition of the old object is replaced with
the definition of the new object. The new object is used in all occurrences of the name, including
those that precede the redefinition. Therefore, redefinitions of objects must be done with care, or
unexpected results may occur. For example, the valueo ofit theforeach statement in the
example below is “bar”, because the namgrit has been redefined after the constraint defini-
tion.

User’'s Guide May 5, 1998 Release 2.1

Page 11-9

Example:

resourcelList msgFilt is procedure {
items { "foo" };
library false;
flavor {unix};

}

constraint msgTagConstraint /SyncObject/Message is counter {
foreach func in msgFilt {

prepend prelnsn func.entry (*

if ($arg[1] == $constraint[0])
msgTagConstraint = 1;
*
)

append prelnsn func.return (*

msgTagConstraint = 0;

)
}

resourcelList msgFilt is procedure {
items { "bar" };
library false;
flavor {unix};

}
11.9.2 Variables

There are two classes of variables that can be used in metric descriptions: metric insertion vari-
ables and instrumentation variables. A metric insertion variable is simply a name that is bound to
an object (a list, constraint, or metric). As explained above, the value of these variables can only
be modified by binding the name to a new object. Instrumentation variables are like variables in

an imperative language (that is, they denote a memory location) and can only be used in instru-
mentation blocks, that is, the code to be inserted at the application. Metric insertion variables can
be used at any place in a metric definition, including an instrumentation block. Instrumentation

blocks are delineated in PCL by theand*) tokens.

11.9.3 Types

Instrumentation variables can have one of three types: counter, wallTimer, or processTimer. A
counter is equivalent to an integer variable in imperative languages like C or C++. WallTimer and
processTimer are abstract types used to record time and can only be manipulated with timer spe-
cific functions. A set of predefined functions, that can only be used in instrumentation requests, is
provided for operations with timers: startProcessTimer, stopProcessTimer, startWallTimer, stop-
WallTimer.

Metric insertion variables can have several different types: integer, floating-point, string,
point, procedure, module, memory, and list. The types integer, floating-point, and string have the
usual meaning.

User’'s Guide May 5, 1998 Release 2.1

Page 11-10

Type: Point

A point is an abstract type that represents a well-defined location in an application code
where instrumentation can be inserted (currently available points are function entry, exit, and indi-
vidual call sites).

Type: Procedure

Procedure is a structured type that describes a procedure (function) in the application code:

procedure {
string name;
point list calls;
point entry;
point return;

}

The value of each member is implicitly initialized by Paradyn, and cannot be mowéfis.
is the name of the procedure, as defined in the symbol table in the application program’s execut-
able file.calls is the list of calls made in the procedure c@ey andreturn are the entry and
return points of the procedure.

The dot operator “.” is used to access the value of each member of a structured objects like
procedures and modulesptbc is a procedure object, theroc.name gives the name of the pro-
cedure, angroc.entry gives the entry point of the procedure.

Type: Module

Module is a structured type with two fields that describe the module name and its functions.
The value of these fields is implicitly initialized by Paradyn.

module {
string name;
procedure list funcs;

}
Type: List

The typelist consists of an ordered collection of elements of the same type. The elements of
a list can be accessed sequentially withftineach statement, or one particular element may be
obtained with the subscript operatpr.

Theforeach statement applies a metric statement to each element in a list. For example,

foreach callsite in proc.calls
<< metric statement >>

appliesmetric statement (metric statements are defined in Section 11.9.8) to each element of
the listproc.calls . The expressioproc.calls[1] returns the first element in listoc.calls

User’'s Guide May 5, 1998 Release 2.1

11.9.4 Predefined variables

Page 11-11

MDL provides a number of predefined variables, described in Figure 54.

Variable Name

Type

Explanation

$constraint

$arg

$return

$start

$exit

$procedures
$modules
$machine

$globalld

procedure, module, The list of components in the resource path.

or int

int

int

point

point

procedure list
module list
string

int

Each component can be accessed through an
incremental index, starting from the last ele-
ment; for example $constraint[0] is the last
component, $constraint[1] is the second to
last. Each component can be of a different
type. (see Section 11.9.3).

The list of arguments to a procedure call. A
specific argument can be selected with index-
ing. for examplesarg[2]

The return value of a function.

The entry point of the program (usually
main).

The exit point of the program (e.g.
_exithandle for Solaris).

The list of functions in a module.
The list of modules in a program.
The machine where a program is running.

An unique identifier to a particular metric/fo-
cus/phase combination. It can be used by
metrics that need to maintain extra informa-
tion on a per metric instance basis.

Figure 54: Predefined variables

11.9.5 Resource lists

A resource list statement defines a new MDL variable of type list:

b

resourcelListDef.=
resourcelList Identis ListType{
items { StringList}
flavor { IdentList
library OptLibrary:
}
ListType ::=
string

User’s Guide

May 5, 1998

Release 2.1

Page 11-12

procedure |
module |
float |
int

StringList::=string {,string }
IdentList ::= IDENT { , IDENT }

OptLibrary::=
true | false

The identifier after the keywor@sourcelList gives the MDL variable that will be bound
to the list. ListType specifies the type of the elements of the list. Items give the list of elements.
Library is used when elements are of type procedure, and tells whether the functions in the list are
library functions or not. Flavor gives the Paradyn flavors of this list (e.g., unix or pvm).

The elements of a list can be accessed with the foreach statement, described in Section 11.9.8,
or via indexing (e.gfoo[1]).

Example:

resourcelist generic_lib_pvm is procedure {
items {"write", "read"},
library true;
flavor {pvm};

}

declares a variable generic_lib_pvm, of type procedure list, with two elemeitéts @ndread),
which are library functions. This definition of the variable is valid only for PVM.

11.9.6 Constraints

Constraints provide a mechanism to restrict a metric to a subset of the resources in the resource
hierarchy. A constraint definition declares a new counter instrumentation variable that is concep-
tually a boolean flag. This flag is set whenever a certain resource, such as a function or a module,
is active.

constraintDef.:=
constraint Ident matchPathis default ;
constraint Ident matchPathis counter { metricStm¢

matchPath:={ / Ident }

A constraint definition creates a new constraint with a given name that can be used in several
metrics. ThematchPathspecifies the resources to be constrainetha#dchPathis a sequence of
resource names, with a*used as a delimiter, and it defines a path in the resource hierarchy. The
resource that is constrained is determined by the last element in the path. For example, a path
/SyncObject/Message specifies that the constraint is to children of this path, in this case a partic-

User’'s Guide May 5, 1998 Release 2.1

Page 11-13

ular message class instant®de specifies that the constraint is applied to modules in a pro-
gram. A wildcard, “*”, is used asmatchPathresource name; for examplepde/* specifies that

the constraint is applied to functions in a specific module, which is unknown at the time the con-
straint was created.

At metric insertion time, the selected focus is compared to the matchPath of each constraint in
a metric to determine which constraints to apply. For examplengétehPathhCode matches the
foci /Code/Mod1 and/Code/Mod2 whereModl andMod2 are modules in the application; and, the
matchPath/Code/* matches the fodiCode/Mod1/F1 and/Code/Mod2/F2 modules where1
andr2 are functions in the application.

The predefined variabkzonstraint is initialized at metric insertion time to the list of com-
ponents in focus. If path igode/* , and the foci i3Code/Mod1/F1 and/Code/Mod2/F2 , then
the value of$constraint[0] Is a procedure list with1 andF2, and $constraint[1] is a
module list withMod1 andMod2.

A default constraint defines a constraint that matches some focus. It does not generate any
instrumentation code. Usually, a metric must provide a constraint for each resource that may be
specified in a focus. If there is no constraint that matches a given resource, then the metric will
fail. Default constraints are used in cases where no action is needed to constrain a particular
resource.

Example: a constraint for modules must define a counter that is set to one only if a function in
the module is being executed. The constraint definition must direct Paradyn to insert code to set
the flag to one whenever a function in the module is called, and set it to zero when the function
exits. In addition, we may want to set the flag to zero whenever a function call is made from a
function in the module, and reset it after this that call has returned. In this case, the module would
not be considered active when an external function is called. The definition of this metric is the
following:

01: constraint moduleConstraint /Code is counter {
02: foreach func in $constraint[0].funcs {

03: prepend prelnsn func.entry (*

04: moduleConstraint = 1;

05: *)

06: append prelnsn func.return (*

07: moduleConstraint = 0;

08: *)

09: foreach callsite in func.calls {

10: append prelnsn callsite (*

11: moduleConstraint = 0;
12: *)

13: prepend postinsn callsite (*
14: moduleConstraint = 1;
15: *)

16: }

17: }

18:}

Line 1 in this program declares a constrainduleConstraint , of typecounter , that is to be

User’'s Guide May 5, 1998 Release 2.1

Page 11-14

applied to modules. At metric insertion time, the varigbtastraint[0] will be set to a partic-
ular module in the application (usually selected from the Paradyn where $oas).
straint[0].funcs is the list of all functions in the module. Line 3 says that code to set the flag

should be inserted before the entry point of each function in the module, and line 6 says that code
to reset the flag should be inserted before the return point of each function. Lines 9, 10, and 13 say
that the flag should be set before any call made inside the function, and reset after the call returns.

11.9.7 Metric definitions

metricDef::=
metric Ident {
namestring ;
units Ident;
unitsType (normalized | unnormalized | sampled ;
aggregateOperator (avg | sum | min | max);
style (EventCounter | SampledFunction);
flavor { IdentList } ;
{ mode (developer|normal); }
{ Constraint}
{ counter Ident ; }
base is(counter | processTimer | wallTimer)
{ metricStm¢ ;
}
Constraint::=

constraint Ident ;|
constraint ident { / Ident }is
replace(counter | processTimer | wallTimer)
{ metricStmt} ;
IdentList::=
Ident { ,ldent }

A metric definition defines a new metric with a given internal name (the identifier following
the metric keyword). A metric definition must specify several fields. Thee is a string that
gives the external name of the metric, that is how Paradyn users refer to this Wmetsiand
unitsType specifies the label to be used by Paradyn and visis when displaying values of a metric.
Units can be any string anghitsType must be eithenormalized, unnormalized or sampled
Figure 55 shows how a label is displayed, for each unit type.

Units Type Data label Average label Total label
normalized units units units_seconds
unnormalized units/sec units/sec units
sampled units units units

Figure 55: Metric labels.

User’'s Guide May 5, 1998 Release 2.1

Page 11-15

AggregateOperatorgives the operator used to combine values of the metric for different pro-
cesses to compute a single value. Bhde field specifies how to interpret the metric value. Cur-
rently, only event counter and sampled function metrics are supported. In an event counter metric,
Paradyn samples the value of a metric at periodic intervals, with the difference since the last sam-
ple as the reported value. The sampled function metric, however, does not take the difference. One
example is to use the sampled function metric to measure the memory access patt@avorThe
field gives the flavors of Paradyn for which this metric should be usedndtefield indicates
whether the metric is for developers. The defautignal if this field is not specified.

The rest of the metric definition gives an optional list of constraints that are used to restrict the
metric to specific resources, an optional list of auxiliary counters that can be used in instrumenta-
tion requests, and the template code for the instrumentation code to compute the noetnic. A
straint declaration either gives the name of a constraint defined elsewhere, or defines a
replacement constraint that replaces the base definition of the metric. If a constraint declaration
matches the focus, the constraint is used to restrict the metric to the specified program component.
If a constraint definition (inside a metric definition, this is called replace constraint) matches the
current focus, the constraint replaceslibhsestatement of the metric.

11.9.8 Metric statements

There are four metric statemerfteach statementif statement, single instrumentation request,
and a block of multiple instrumentation requests.

metricStmt:=
foreachident in MetricExpr metricStm{
if MetricExpr metricStm{
InstrRequest
{ { metricStmt} };

Theforeach statement evaluates a metric expression that should evaluate to a list, and applies
a metric statement to each element in the list. It defines a new variable with a name given by
Ident and that has the same type as the elements of the list. The scope of this vanabie-is
Stmt and its value is bound at each iteration to one element of the list.

Theif statement evaluates a metric expression that must be of type integer, and it executes
metricStmif the value is non-zero.

A single instrumentation request defines instrumentation to be added to an application code.
Each instrumentation request will generate a mini-trampoline in the application core.

11.9.9 Metric expressions

MetricExpr::=
Literal |
(1dent) {.Ident H
Call (“Ident” [, ArgLisf]) |
Ident ([ArgList]) |

User’'s Guide May 5, 1998 Release 2.1

Page 11-16

MetricExpr BinOP MetricExpr|
PreUOp MetricExpi
MetricExpr PostUOg
IdentAssignOp MetricExpf
Ident [MetricExpr] |

(MetricExpr)

Literal ::=Integer | string

ArgList::=
MetricExpr { , MetricExpr }
BinOp::=
+| _| /l *l <| >| <= >= == &&l ||
PreUOp::=&| -
PostUOp::= ++

AssignOp:==|+=| -=
More operators will be supported in the future.

A literal is an expression of type integer or string, that has the integer or string literal as its
value. An identifier is an expression that has the type and value of the variable bound to the iden-
tifier. If the identifier is followed by an expression that evaluates to an integer n between brackets,
the identifier must be bound to a list, and the value of the indexed expression is the nth element of
the list. The list elements are numbered from zero, and n must be less than the number of elements
in the list.

If an identifier is followed by a sequence of dots and identifiers, it must be of a structured type
(procedure or module). The second identifier must be the name of a field in the structure. The
value and type of the expression are the value and type of this field.

The arithmetic operators -, *, and/, and the relational operatots>, <=, and>= can be
applied to two binary expressions of type integer or floating-point. The operators have the usual
meaning and associativity rules. Parenthesized expressions may be used to enforce a different
evaluation order. If the two sub-expressions are not of the same type, the values are converted to
floating-point. The logical operatogs (and) and|| (or) can be applied to a pair of integer
expressions. A zero value denotes false, and any nonzero value denotes true.

The & operator returns the address of a variable. The argument reference expression returns
the value of one of the arguments of a function. For exampgle} returns the value of the first
argument. Only the value of arguments passed in registers can be obtained.

User’'s Guide May 5, 1998 Release 2.1

Page 11-17

11.9.10 Function calls

The MetricExpr syntax indicates that an metric expression can be a function call. Usually a
function call is an identifier followed by a list of arguments in parenthesis. If the function name
has conflict with Paradyn’s reserved keywords, the alternative syni@aligfident’[, Arglist])
can be used, with the Ident being the function name. Note that the name must be quoted. The
function name can be any legal identifier. However, there are six words which, although are not
reserved, are treated as Paradyn standard functions if used as function names. The six words are:
“readSymbol”, “readAddress”, “startProcessTimer”, “stopProcessTimer”, “startWallTimer”,
“stopWallTimer”.

The expressiomeadSymbol("sym") returns the integer value stored in a memory location
namedsym, wheresym must be defined in the symbol table of the application. For example. if
_intvar is an integer variable in an application, the expressuusymbol("_intvar") returns
the value of intvar . readAddress returns the integer value at a given address (in base 10),
which must be a valid address for the applicatsbartProcessTimer stopProcessTimey start-
WallTimer, stopWallTimer start and stop recording time into a timer variable.

The maximum number of arguments that can be passed to a function call may be limited (the
limit is architecture dependent, and usually is the maximum number of arguments that can be
passed in registers). The return value of a function is treated as an integer.

11.9.11 Instrumentation requests

An instrumentation request defines a block of instrumentation code to be inserted at a specific
point of an application code:

instrRequest := position where poinf constrained] (* { instrumentationCodég *)
position::=append | prepend

where::= prelnsn | postinsn

point::= metricExpr

Position gives the order in which this instrumentation block will be inserted in the list of
instrumentation blocks for this point, and can be used to control the order of execution of multiple
blocks at a point. If position ippend , then the instrumentation block is inserted at the end of the
list of instrumentation blocks at the point. If positionpispend , the instrumentation block is
inserted as the first block in the list.

Where gives the place where the instrumentation block will be inserted, either before
(prelnsn) or after postinsn) the instruction at the instrumentation point is executed. For exam-
ple, if the point is a call sitggrelnsn specifies that the instrumentation code is to be inserted
before the call is made apdstinsn specifies that it should be inserted after the call returns.

Pointis a metric expression (Section 11.9.9) that must evaluate to a point; it gives the point in

User’'s Guide May 5, 1998 Release 2.1

Page 11-18

a program where instrumentation is to be inserted. Currently, the possible points are function
entry and exit points, and function calls.

Constrained determines if constraints should be applied to this requesin#trainedis not
specified, no constraints will be applied to the request.

11.9.12 Instrumentation code

The instrumentation code gives a list of statements to be inserted at a point. A statement is either
an if statement or a simple instrumentation statement.

instrumentationCode=
if (metricExpr) instrStmt |
instrStmt

The if statement evaluates tineetricExprand if it the result is a nonzero value, then the
instrStmtis executed.

An instrumentation statement is BlietricExprterminated by a semicolon.

The following are examples of valid instrumentation code:
cntr=1;
cntr += foo(cntr);
cntr += Call (“foo”, cntr);
if (readSymbol("_foos") == 1) cntr -= readAddress(123456));
startWallTimer(tmr);
cntr = cntr - $arg[2];

The first example sets the value of count@r to 1.cntr must be a variable of type counter
declared in a constraint declaration, a metric declaration, or a in a counter declaration. The second
example calls a functiofoo in the application code, passing the value of counter as an
argument, and then adds the value returned by this call to ceuamtefoo must be a function
taking one integer argument and returning an integer value, and it must be defined in the applica-
tion’s symbol table.

The third example reads the value of a global varitable (note that if the variable name is
foos it must be referenced &sos) in the application and if the value is equal to 1, subtracts the
integer value at address 123456 in the application address space from eaunt&ihe fourth
example starts recording time in timei , which must be declared in a metric declaration. The
timer will record time until a call tetopwallTimer is made on it. The last example subtracts the
value of the third argument to a function call (the function that is being instrumented) from timer
cntr .

User’'s Guide May 5, 1998 Release 2.1

Page 11-19

11.9.13 Interaction of constraints and metrics

When creating a constraint and metric, one of the things you must do is specify where the primi-
tives (for the constraints) and predicates (for the metrics) are placed. They can go before the
instruction you are placing it at, or after. Then, for each location (prelnsn or postinsn) there is an
ordered list for the instructions; and, you are able to specify if you want to append or prepend the
instrumented code. The following rules, and patterns, should be adopted when doing this

Constraints:
prepend prelnsn func.entry
append prelnsn func.return

Callsites within constraints (if necessary):
foreach callsite in func.calls {
append prelnsn callsite
prepend postinsn callsite

}
Metrics:
foreach func in XXX {
append prelnsn func.entry
prepend prelnsn func.return

}

This is done to make sure the metrics and predicates are checked at a time when all the con-
straints and primitives are set with their correct values. This set of rules and patterns have the con-
straints and primitives be the first thing set when entering a function (prepend prelnsn func.entry)
and then the last thing cleared when returning from a function (append prelnsn func.return).
Along the same lines, the metrics and predicates are the last thing checked when entering a func-
tion (append prelnsn func.entry) and the first thing checked when returning from a function
(prepend prelnsn func.return). For example, if you have a metric M1 using constraint C1, which is
set when your in a specific function and cleared when you leave that function. With these rules
and patterns, C1 will be the first thing set, before M1 is executed at the beginning of the function;
and, at the end of the function M1 will be executed before C1 is cleared again.

11.9.14 A complete example

This section presents a complete metric definition. We will define a metric called SyncWait that
computes the time spent on by an application on synchronization operations. The first step in the
definition of SyncWait is to identify the synchronization operations (functions) of the application.
These depend on the specific system that is being used. For example, for PVM applications, we
can consider the functions pvm_send and pvm_recv as synchronization functions.

Next, we defined a resource list with the synchronization functions.

resourcelList pvm_sync_ops is procedure {
items { “pvm_send”, “pvm_recv" };
flavor { pvm };
library true;

User’'s Guide May 5, 1998 Release 2.1

Page 11-20

To compute the synchronization time we must start a timer every time one of the functions in
pvm_sync_ops is called (lines 2 and 3 in the following code block), and stop the same timer when
the function returns (lines 4 and 5).

01: foreach func in pvm_sync_ops {
02: append prelnsn func.entry constrained

03: (* startwWallTimer(p_syncWait); *)
04: prepend postinsn func.return constrained
05: (* stopWallTimer(p_syncWait); *)
06:}

The complete metric definition must define all of the metric attributes and constraints. The
constraints define how to compute the metric for specific resources, such as a function, or a mod-
ule. To constraint the metric to a function, we need to set a flag when the function is entered (lines
2 and 3 in the code block below), and reset it when the function exits (lines 4 and 5). We also reset
the flag before any function call inside the function, and set it when the call returns (lines 6 to 10).

1: constraint funcConstraint /Code/* is counter {
2 prepend prelnsn $constraint[0].entry

3: (* funcConstraint = 1; *)

4. append postinsn $constraint[0].return

5: (* funcConstraint = 0; *)

6 foreach callsite in $constraint[0].calls {

7 append prelnsn callsite

8 (* funcConstraint = 0; *)

9: prepend postinsn callsite

10: (* funcConstraint = 1; *)
11: }

12:}

We can also define a constraint for message tags, in case we are interested in finding the time
the application is waiting for a particular message tag. At the entry point of each synchronization
function (lines 3 to 5 in the code block below) we must check if the tag of the message (the second
argument in a call to pvm_send or pvm_recv) is equal to the tag specified in the focus (line 4), and
if so set the constraint flag to one (line 5). The flag is set to zero again at the return point of the
function (lines 7 and 8).

1: constraint msgTagConstraint /SyncObject/Message is counter {
foreach func in pvm_sync_ops {
prepend prelnsn func.entry constrained
(* if ($arg[1] == $constraint[0])
msgTagConstraint = 1;
*)
append prelnsn func.return constrained
(* msgTagConstraint = 0; *)

}

BoOooNoahlwn

0:}

Finally we must specify the remaining attributes of the metric, such as the name that will
appear in the Paradyn metric selection métiM SyncWait. The unit is seconds since this
metric measures time, and the unit styleasmalized. Aggregate operator svg, SO when we
aggregate values from different processes, we get the average value. The fhavor is

User’'s Guide May 5, 1998 Release 2.1

Page 11-21

The complete definition of the metric follows. The constransiduleConstraint was
defined in Section 11.9.6.

metric p_syncWait {

User’s Guide

name “PVM SyncWait”;
units Seconds;

unitStyle normalized;
aggregateOperator avg;
style EventCounter;
flavor ={ pvm };

constraint functionConstraint;
constraint moduleConstraint;
constraint msgTagConstraint;

base is wallTimer {
foreach func in pvm_sync_ops {

append prelnsn func.entry constrained (*
startWallTimer(p_syncWait);

*

)

prepend prelnsn func.return constrained (*
stopWallTimer(p_syncWait);

*)

May 5, 1998

Release 2.1

	User’s Guide
	1 Overview
	2 Running Paradyn
	3 Main Control window
	4 Tunable Constants
	5 Selecting resources
	6 Selecting metrics
	7 Controlling visis
	8 Phases
	9 Performance Consultant
	10 Standard visi modules
	11 Paradyn Configuration Language
	1 Overview
	1.1 Release notes (version 2.1)
	1.2 Supported hardware and software platforms
	Figure�1: Platforms on which Paradyn (User Interfa...
	Figure�2: Platforms on which Paradyn can monitor a...
	Figure�3: Summary of Paradyn capabilities by platf...

	1.3 Other documentation: Manuals
	1.4 Other documentation: Technical papers
	1. “The Paradyn Parallel Performance Measurement T...
	2. “An Adaptive Cost Model for Parallel Program In...
	3. “Dynamic Program Instrumentation for Scalable P...
	4. “Dynamic Control of Performance Monitoring on L...
	5. “The Paradyn Parallel Performance Tools and PVM...
	6. “Mapping Performance Data for High-Level and Da...
	7. “A Performance Tool for High-Level Parallel Pro...
	8. “Optimizing Array Distributions in Data-Paralle...
	9. “Integrating a Debugger and Performance Tool fo...
	10. “What to Draw? When to Draw? An Essay on Paral...
	11. “Binary Wrapping: A Technique for Instrumentin...
	12. “Finding Bottlenecks in Large-scale Parallel P...
	13. “Performance Measurement Tools for High-Level ...
	14. “MDL: A Language and Compiler for Dynamic Prog...

	1.5 Contacting the Paradyn developers

	2 Running Paradyn
	2.1 Overview of major steps
	1. Set up Paradyn and daemons (Section�2.2): You n...
	2. Prepare your application program (Section�2.3):...
	3. Run Paradyn (Section�2.4): Paradyn has several ...

	2.2 Setting up Paradyn and the Paradyn daemons
	1. Look in the directory specified by the environm...
	2. Look in your current working directory for the ...
	Figure�4: Files needed to run Paradyn
	Figure�5: Environment variables used when running ...

	2.3 Preparing your application program
	1. To allow Paradyn to insert instrumentation into...
	2. Generally there is no more need to link your ap...
	3. Use of the compile flag -g is recommended to ge...
	Figure�6: Modifying application Makefile to link f...
	Note: x86/Solaris and AIX actually require differe...

	2.4 Running Paradyn
	1. File: At present, the only command in this menu...
	2. Setup: This menu has selections to allow you to...
	3. Phase: start and define a new local phase for v...
	4. Visi: start visualizations of your application ...
	5. Help: get additional information about Paradyn....
	Figure�7: Starting Paradyn

	2.5 Running applications with Paradyn
	2.5.1 Defining a new process
	Figure�8: Defining a new application process
	1. User: This is your login name on the host on wh...
	2. Host: This is the name of the host on which Par...
	3. Directory: Paradyn runs paradynd and your appli...
	4. Command: The command that will start this insta...
	5. Daemon: This option allows you to specify which...

	Figure�9: Paradyn ready to run the application
	1. Application name: This is the name of the appli...
	2. Application status: This is the overall applica...
	3. Data Manager: This is the status of Paradyn’s D...
	4. Processes: This is the process identifier of th...
	5. beaufort: There is one status line on each host...

	2.5.2 Attaching to a process
	Figure�10: Specifying a process to attach to.
	Figure�11: Attach completed

	2.6 Architectural issues
	2.6.1 Solaris
	Figure�12: Sample Makefile for x86-Solaris.

	2.6.2 RS/6000 running IBM AIX version 4.1
	Figure�13: Example AIX link command line for seque...
	Figure�14: Example AIX link command for POE MPI pr...
	Figure�15: Example AIX link command for POE MPI pr...

	2.6.3 PVM
	1. If you can modify the directory $PVM_ROOT/bin/$...
	2. If you cannot modify the directory $PVM_ROOT/bi...

	2.6.4 WindowsNT
	Figure�16: Sample Makefile for WindowsNT.

	3 Main Control window
	Figure�17: Paradyn Main Control window
	3.1 Main menubar
	3.1.1 File menu
	3.1.2 Setup menu
	3.1.3 Phase menu
	3.1.4 Visi menu/button
	3.1.5 Help menu

	3.2 Status lines
	3.3 Buttons

	4 Tunable Constants
	4.1 Overview
	Figure�18: The Tunable Constants Window
	Figure�19: Tunable Constants Descriptions Window

	4.2 User Tunable Constants
	4.3 Developer Tunable Constants
	Figure�20: User-level Tunable Constants
	Figure�21: Developer-level Tunable Constants. Use ...

	5 Selecting resources
	5.1 Resources (The “Where” Axis)
	Figure�22: Where Axis window.
	“Whole Program” has three unexpanded subtrees and ...
	Resources:
	Resource Hierarchy:
	Focus:

	5.2 The Where Axis display
	Figure�23: Showing all resources in the Where Axis...

	5.3 How to select foci using the Where Axis
	Figure�24: A single focus selected
	Figure�25: Multiple foci selection

	5.4 The Where Axis GUI
	Locating a resource
	Selecting a resource
	Listbox expansion
	The navigate menu
	Changing abstractions
	Scrolling

	6 Selecting metrics
	6.1 How to select metrics
	Figure�26: Metrics dialog box
	Figure�27: Metrics dialog box with several metrics...

	6.2 Metric Descriptions
	Figure�28: Metrics defined in Paradyn
	Figure�29: Developer Mode Metrics defined in Parad...

	7 Controlling visis
	7.1 Starting
	Figure�30: Paradyn Main Control window
	Figure�31: Start A Visualization menu

	7.2 Stopping

	8 Phases
	8.1 Starting a new phase
	Figure�32: Phase Table Display

	8.2 Visualizations and Phases
	8.3 The Performance Consultant and phases
	Figure�33: Time Histogram: Global Phase
	Figure�34: Time Histogram: Local Phase (3)

	9 Performance Consultant
	9.1 The W3 search model
	9.1.1 The Why Axis
	Figure�35: The Why Axis

	9.1.2 The search strategy
	1. One step along the Why Axis:
	2. One step along the code hierarchy: ��
	3. One step along the machine hierarchy:
	4. One step along the process hierarchy:

	9.2 Running the Performance Consultant
	9.2.1 The Performance Consultant window
	Figure�36: A sample Performance Consultant window

	9.2.2 Starting and stopping a search
	9.2.3 The Search History Graph display
	Figure�37: The Performance Consultant’s search beg...
	Figure�38: The Performance Consultant refines bott...
	Figure�39: Search History Graph tunable constants ...

	9.3 Interpreting the results
	Figure�40: The Performance Consultant refines bott...
	Figure�41: The second set of Search History Graph ...
	Figure�42: Final Search History Graph bottleneck r...

	9.4 Customizing the search parameters

	10 Standard visi modules
	10.1 Time Histogram visi
	Figure�43: Time Histogram with Actions and View me...
	10.1.1 Actions menu
	Figure�44: Time Histogram with curve selected

	10.1.2 View menu
	Figure�45: Time Histogram after smooth and hide op...

	10.1.3 Panning and zooming
	Figure�46: Zoomed Time Histogram: color and black-...

	10.2 Barchart visi
	Figure�47: Barchart visualization window
	10.2.1 Changing metrics and foci being viewed
	10.2.2 Viewing data
	Figure�48: Barchart showing total values

	10.3 Table visi
	Figure�49: Table visualization window
	10.3.1 Actions menu
	10.3.2 View menu

	Long vs. short names
	Figure�50: Table visualization showing short focus...

	Current vs. average vs. total values
	Sorting metrics
	Sorting foci
	Significant digits
	Figure�51: Table visualization with values shown t...
	10.4 3D Terrain visi
	Figure�52: 3D Terrain visualization

	11 Paradyn Configuration Language
	1. a file named $PARADYN_ROOT/paradyn.rc, where PA...
	2. a file named $HOME/.paradynrc in the user’s hom...
	3. a configuration file given as a command line ar...
	11.1 Notation
	11.2 Lexical conventions
	Figure�53: List of MDL keywords

	11.3 Language structure
	11.4 Daemon definition
	11.5 Process definition
	11.6 Tunable constant definition
	11.7 Visi definition
	11.8 Exclude definition
	11.9 Metric Description Language
	11.9.1 Metric definition
	11.9.2 Variables
	11.9.3 Types
	Type: Point
	Type: Procedure
	Type: Module
	Type: List

	11.9.4 Predefined variables
	Figure�54: Predefined variables

	11.9.5 Resource lists
	11.9.6 Constraints
	11.9.7 Metric definitions
	Figure�55: Metric labels.

	11.9.8 Metric statements
	11.9.9 Metric expressions
	11.9.10 Function calls
	11.9.11 Instrumentation requests
	11.9.12 Instrumentation code
	11.9.13 Interaction of constraints and metrics
	11.9.14 A complete example

