Paradyn Parallel Performance Tools

Tutorial

Release 2.1
May 1998

Paradyn Project

Computer Sciences Department
University of Wisconsin
Madison, Wl 53706-1685
paradyn@cs.wisc.edu

Tutorial

5/5/98

WN -

Table of Contents

o =] 11 T =T =S 4.
Preparing an appliCationcoooi oot a e e e e e a 4
RUNNING the @apPlICALIONccoiieiee e 5
3.1 STAMT PVM et 5
3.2 Start Paradyn and define the application processcccccceeeeeeeiiiiiieeeiiiiiceeen, 5
3.3 Start the appliCatiON PrOCESSuuiiiiiiieeee et 7
VIiewing PerformManCe TALAuuuuuueeiiiiiiiieieieee et r e 9
4.1 Starting a vVisualiZation PrOCESSuuiiiiiiieeeeeeeei it e e e e e e e e e e e e eeeeeernansanaans 9
Running the Performance CONSUIANT..........coooiiiiiiiiiii e 12
5.1 The Performance Consultant WiNAOWoovviiiiiiiiiiiiiiiiieniee e eeeeee e 12
5.2 Starting the SEArCHccooiiiiiec e 12
5.3 \Verifying the Performance Consultant’s reSultSccooeeieiiiiiiiiiiiiiiiiiiiinnn 14
PRIASES. ... e e e e e e e e e e e e e e e et s— 15...

Tutorial May 5, 1998 Release 2.1

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:

Tutorial

List of Figures

Paradyn Main Control WINAOWcooiiiiiiiiiiiiiiiiiiiie e 5
Paradyn base WHhEre AXISccooiiiiieeeeiiiee sttt a e e e e e e eees 6
TheDefine A Process WINAOWiiiiiiiiiiiiiieciciiiiee et e e 7
Paradyn Main Control window after application process is started 8
Where Axis after the application process is startedccccccvvciiiiiiiieeeeeeenn, 8
Selecting a Histogram ViSualizationcouuuuiiuiiiiinnneeee e 9
Metrics menu with “cpu” and “sync_wait” selectedcccccceeeiiiiiiiieeeeennnnn. 10
Histogram of global phase with “cpu” and “sync_wait” for two foci 11
The Performance Consultant WindOWuuueeiiiiiiinniieieeeeeieeceeeeeies 13
The Performace Consultant bottleneck searchccccceeviiiiiiiiiiiiiiiiiiiiinns 14
The Search History Graph showing only TRUE (blue) nodes 15
BarChart visi presenting the performance bottleneck data 16
PhaseTable visi presenting phase durationsccccceevviiiiiniiiiiiiiiiiiieeeeeee 16
Histogram for global phase ... 17
Histogram Of CUIrent Phaseoooiiiiiiiiii e 17

May 5, 1998 Release 2.1

Page 4

1 PRELIMINARIES

This documeritcovers the basics for using Paradyn: how to prepare an application for Paradyn (if
necessary), run it, view its performance data, and run the Performance Consultant to automati-
cally find performance bottlenecks in the application. Several simple example application pro-
grams come with the binary distribution of Paradyn. You can obtain Paradyn and the test
programs (binaries and sources) by anonymous ffjpilted.cs.wisc.edu . For more infor-
mation on obtaining and installing Paradyn, including setting necessary environment variables,
see thdParadyn Installation Guide

The simple test program used as an example in this docupoexd () is a PVM program,
requiring that PVM be installed on your system: if PVM is not installed, the basic form of the
tutorial can be followed with any other subject application, such as the sequential test program
(bubba) or an MPI program (such astwod) where available.

Details of this tutorial apply to a program running on a SPARC Solaris platform, and small
differences will be observed on other platforms. Note, however, that a Paradyn front-end is not yet
available for WindowsNT, therefore while WindowsNT applications can be run and monitored by
Paradyn, this currently requires a Paradyn front-end controlling the session from a Unix worksta-
tion.

This document will not cover all of the features in Paradyn. It is intended to guide you through
a start-to-finish session with Paradyn, using some of the more common features. For a complete
description of the features in Paradyn, sedPdradyn User’s Guide

Further information, including technical papers, manuals and source code, is available from
the Paradyn Project web pages://www.cs.wisc.edu/~paradyn

2 PREPARING AN APPLICATION

To run any of the simple programs that come with the binary distribution of Paradyn, this step can
be skipped. On most platforms Paradyn works with unmodified application binaries, automati-
cally loading the runtime instrumentation librampdyninstRT) as necessary, however, some
platforms still require an extra re-linking step to statically link subject applications with Paradyn’s
runtime instrumentation library (and also possibly to de-limit the application code of interest with
special code block markers). For details, seePtradyn User’s Guidgor any of the Makefiles
provided with the source code for the test programs distributed with Paradyn.

1. Note that some of the color figures in this document may be unclear when printed in
gray-scale.

Tutorial May 5, 1998 Release 2.1

Page 5

3 RUNNING THE APPLICATION

Skip straight to Section 3.2 if you have a non-PVM application, otherwise you first need to start
PVM itself before running Paradyn.

3.1 Start PVM
An example of starting PVM on the hesbcolate is provided below:

%pvm
pvm> add cham
pvm> add beaufort
pvm> conf
3 hosts, 1 data format
HOST DTID ARCH SPEED

chocolate 40000 SUNMP 1000
cham 80000 SUNMP 1000
beaufort c0000 SUNMP 1000

The Paradyn daemopafadynd) and the binary of the applicatigsofato) must also be cop-
ied to the directory where you keep your PVM binaries (ussalyME/pvm3/bin/$PVM_ARCH oOr
$PVM_ROOT/bin/$PVM_ARCH)Y.

% cp paradynd $SHOME/pvm3/bin/$PVM_ARCH
$ cp potato SHOME/pvm3/bin/$SPVM_ARCH

3.2 Start Paradyn and define the application process

The next step is to run Paradyn. This is done by entering the following command:

%paradyn
Paradyn will start running and display the Paradyn Main Control window (Figure 1) and the base
Where Axis window (Figure 2). The status line in the Paradyn Main Control window (labeled

“UIM status”) indicates that Paradyn’s user interface manager is ready. This means that Paradyn
is now ready to loaded and run the subject application program.

Paradyn Main Control
CFHFH‘
File Setup Phase Visi Help ‘

UIN status : ready

Figure 1: Paradyn Main Control window

To describe an application to Paradyn selifine A Process from theSetup menu. This
will cause a dialog to appear that will allow you to specify the parameters that are necessary for
Paradyn to start your application process. This dialog is shown in Figure 3. To describe the appli-

Tutorial May 5, 1998 Release 2.1

Page 6

Window Selections Havigate Ab=traction |
x Whole Program
Code| | Machine| | Process SyncObjectl

BEDUE
M=z Tag
SEMEIE
SpinLock

7 |~

Search: |

Click to select; double-click to expandfun-expand

Shift-double-click to expandfun-expand all subtrees of a node
Cir-double-click to selectfun-select all subtrees of a node
Hold dovsn Alt and move the mouse to scroll freely

Figure 2: Paradyn base Where Axis

cation and its environment to Paradyn, the following should be specifiedDefihe A Process
dialog:

1.

User: The login name on the host on which Paradyn will start the application process. In this
example we left th&Jser field blank, which means that the login will have a value of the
user’s current login name.

Host: The host on which Paradyn will start the application process. A blank value will default
to the current host (the one on which Paradyn is running).

Directory: If the host on which the application is to be started is different from the one on
which the Paradyn process is running, then the current directory on the remote machine is the
home directory of the user specified in teer entry. TheDirectory field allows you to spec-

ify a directory to change to before Paradyn starts the application process. In this example,
Paradyn will change te/pvm3/bin/SUNMP before startingotato .

Command: This entry takes the unix command that will start the application program. In this
example we have entergabtato 5 1000000” , Which specifies the executable fipetato)

with two command line arguments: the number of proces$gearn(d the number of messages
each process will sendo0000).

Daemon: This option allows you to specify which version of the Paradyn daemon to run.
Since this is a PVM application, themd daemon is selected.

Once the fields of theefine A Process window have been filled in, click on thecept but-

ton, and Paradyn will start your application process. This step can take anywhere from several
seconds to several minutes, depending on the size of the application.

Tutorial May 5, 1998 Release 2.1

Page 7

Define A Process

User
Host: chocolate
Directory: |~/pvym3/bin/SUNMP

Daemon: ¢ pvind defd winntd mpid
Command: [potato 5 1000000
ACCEPT CANCEL

Figure 3: The Define A Process window

3.3 Start the application process

After an application has been defined, the Paradyn main window will contain more status lines,
and the Where Axis will contain more entries. The new status lines provide information about
Paradyn and your application process. These are shown in Figure 4 (which shows the Paradyn
Main Control window after it has started running the application).

The following status lines are for the application process:

1. Application name: The name of the application prograpotéto), the name of the machine
(chocolate), the name of the user (self), and the name of the daemon (pvmd)

2. Processes: A list of the process IDs of all the processes in the application. In this example,
there is one pid (7657) corresponding to the process started on host chocolatgotdhen
runs it will spawn processes on the other hosts (cham and beaufort).

3. Application status: The current status of the application program (either RUNNING,
PAUSED, or EXITED).

4. chocolate, beaufort, cham: Status lines for each host. Once the application starts running
these will display the status of each host (running, paused, or exited).

The new status line for the Paradyn processaManager) displays the state of Paradyn’s Data
Manager.

Now that Paradyn has had a chance to look over your program, it is able to add entries to the
Where Axis. The new entries in the Where Axis correspond to resources that can only be obtained
when the application process has been defined and started. These new entries include modules and
procedures in th€ode hierarchy, and process IDs in thecess hierarchy. Figure 5 shows the
new Where Axis with these new resources added. The Process hierarchy contains five new pro-
cesses (one for each PVM spawned process), and the Code hierarchy contains one new entry cor-
responding to a source code module.

Tutorial May 5, 1998 Release 2.1

Page 8

Paradym Main Contral
Pra
File Setup Phase Visi Help | yr

UTIM status = ready
Application namo : program: potato, machine: (locall, user: (=elf], daemon: p
Application status : RUNNING
Data Manager = raady
Proassas = PID=19164

beoauforc = applicatien running

chooolatas = application runhning

= application running

cham
RUN | PATISE | SAVE | EXIT |

Figure 4: Paradyn Main Control window after application process is started

Selections Hawvigate FAbstraction |

j Whole Program

Code Machine Process syncObject

[[
[potatoc polalof2i84s_chacote) |
[
dowork |
w potaof2ssas cham) |
man | potatoiszss beaor) |

stay busy
/N

Search: |

Figure 5: Where Axis after the application process is started

At this point, Paradyn is ready to start running the application. You can now sele&tiNhe
button from the Paradyn Main Control window to start execuiingto , or alternatively first
define some performance measurements and/or views before running it (as described in the fol-
lowing sections). Once execution has commenced?ASE button can be used to temporarily
halt it andRUN will resume execution. Note, however, that execution can only be resumed from
the current point and not from the start (without exiting and restarting Paradyn).

Tutorial May 5, 1998 Release 2.1

Page 9

4 VIEWING PERFORMANCE DATA

Before you run the application process, you may want to start a visualization précestis
application, we will start a time-histogram visualization to view CPU utilization and synchroniza-
tion blocking time for the application. In this section, we describe how to start a visualization pro-
cess, and how to choose the set of metrics and parts of the program that a visualization will
display.

4.1 Starting a visualization process

To start a visualization process, select g option from the Paradyn main window menubar.
This will open theStart A Visualization dialog that allows you to choose a type of visualization
and a phase for the data. Figure 6 shows this dialog with a Histogram visualization selected for
the Global Phase (Section 6 will discuss phases).

Start A Visualization

Barchart
Histogram
PhaszeTable
Table
Terrain

|*0> Global Phase |v Current Phase

Start | Cancel |

Figure 6: Selecting a Histogram visualization

Once the visualization selection has been made, click ofictiept button and Paradyn will
display a metrics menu. This menu, shown in Figure 7, allows you to select the set of metrics to be
displayed by the visualization. In this example, we have selesgted wait(synchronization
blocking time) anctpu (CPU time).

To choose the parts of the program for which the metric will be collected, you select resources
by clicking on nodes in the Where Axis. A focus is a location in the application for which metric
data can be collected. For example, if you select the npotla®{20948 chocolate} and
potato{29948 cham} from the Process hierarchy, you limit data collection to these two processes
(20948 and 29948). If you selguitato.c from the Code hierarchy, you limit data collection to
modulepotato.c . Figure 5 shows the Where Axis with these nodes selected.

Paradyn combines selections from each of the resource hierarchies to dmate @ach
selection further restricts the scope of data collection. If you had made the previous process and

2. Visualization processes do not have to be started now, but doing so before the program starts running will
guarantee that you will get data for the complete execution of the application.

Tutorial May 5, 1998 Release 2.1

Page 10

module selections, then you limit data collection to activity in moghtégo.c only in processes
20948 and 29948. This selection corresponds to two foci: the first focus is when the process
20948 is running in modulpotato.c ; the second focus is when process 29948 is running in
modulepotato.c

If no Where Axis nodes are selected then Paradyn uses the ti¢tfialdtProgram .

Once you have made your selections, click on the Accept button on the metrics menu. Paradyn
will then try to enable data collection for your selection. The selection is expanded to be the cross-
product of metric-focus pairs from the list of metrics and foci selected. For example, if the metrics
CPU andsync_wait , and the resource nodgstato{20948 chocolate} , potato{29948 cham} ,
andpotato.c were selected, then Paradyn would try to enable four metric-focus pairs:

» CPUtime for process 20948 when it is running in moghuleto.c
» CPUtime for process 29948 when it is running in moghuleto.c
* sync_waittime for process 20948 when it is running in moghoteto.c

* sync_waittime for process 29948 when it is running in moghoteto.c

If at least one metric-focus pair was successfully enabled, Paradyn will start the visualization
process and start sending performance data values to the visualization. If there are any metric-
focus pairs that could not be enabled, Paradyn will display a message listing those pairs, and re-
display the metrics menu for you to modify your selection. If this occurs, and you do not want to
try enabling any other metric-focus pairs, you can choos€MNCEL button on the metrics
menu.

Select MMetrics and Focusi{es) below

number_of_cpus exec_time bh_msgz_buyte=
pau=e_time SYNC_ops o cpu
active processes m=gs cpu_inclu=sive
predicted_cost B zync_wait io_wait
oh=erved_co=t m=gz_bytes_=sent io_ops=
procecdure_calls mz=g_byte=s_recw io_bytes
procedure_called m=g_bytes

ACCERT CLEAR CAMCEL

Figure 7: Metrics menu with “cpu” and “sync_wait” selected

The time-histogram shown in Figure 8 is the result of selecting the metrics “sync_wait” and
“‘cpu” from the metrics menu ang@otato{20948 chocolate} , potato{29948 cham} , and
potato.c from the Where Axis.

Once the time-histogram is created, click onRk& button from the Paradyn main window
to start the application process. Performance data will then be sent by Paradyn to the time-histo-
gram. The time-histogram contains several menu options for changing the display of the perfor-
mance data and for changing the set of performance data that is currently being displayed. These
options are described in detail in tharadyn User’s Guide

Tutorial May 5, 1998 Release 2.1

Page 11

Time Histogram Display ﬁ ra
File Actions View -
Phase: Global

CPUs

1.0

0.6 |

0.6 - f fe fh\

Myl MV
LA B
f
0.2 - m '\vaw\‘uf'\w s “\. ".ﬁ“w,j\v }\” L thva"' g
0.0 T T T T T T
0 20 40 El] Bl] 100 12l] 141] 160 180 200
Ieconds
sync wait </Codefpotato.c./Processfpotato{20948 chocolate}> {smoothed)

sync wait <fCodefpotato.c,/Process/potato{29948 cham}> {smoothed)
cpu =fCodefpotato.c,/Process/potato{20948 chocolate}> {smoothed)
cpu <fCodefpotato.c,/Processfpotato{29948 cham}: {(smoothed)

PAHN

Figure 8: Histogram of global phase with “cpu” and “sync_wait” for two foci

Tutorial May 5, 1998 Release 2.1

Page 12

5 RUNNING THE PERFORMANCE CONSULTANT

The Performance Consultant is the part of the Paradyn tool that performs a search for perfor-
mance bottlenecks. It automatically enables and disables instrumentation for specific metric-focus
pairs as the search progresses. The Performance Consultant starts looking for course-grained per-
formance problems and then iteratively tries to refine the search to isolate the performance bottle-
neck to a specific location in the application’s execution. This location is specified as a point in a
three dimensional search space defined by a Why Axis, Where Axis, and When Axis.

5.1 The Performance Consultant window

The Performance Consultant is started by selectingdtiermance Consultant option from the
SetUp menu on the Paradyn main window. Figure 9 shows the Performance Consultant window.
We briefly discuss the parts of the Performance Consultant window below:

1. Searches Menu: Allows you to view search history graphs from different phases.

2. Status line: The status line at the top of the window indicates the phase for which the search is
defined (in this example, the search is defined foGthbieal Phase).

3. Search Text Output: This area is used by the Performance Consultant to print status messages
about the state of the search

4. Search History Graph: This is a graphical representation of the state of the search. Nodes cor-
respond to different points in the search space, and arcs correspond to different refinements
that have been made. Figure 9 shows only the initial negéevelHypothesis .

Buttons: These allow you to start or pause the search.

6. Search History Graph Key: The bottom portion of the window describes how to interpret the
color of the nodes and edges in the search history graph, and how to navigate around the win-
dow.

5.2 Starting the search

The search can be started by clicking on3berch button in the Performance Consultant win-

dow. As the Performance Consultant search proceeds, status information will be printed to the
window, and the search history graph will be updated to reflect the current state of the search. A
Performance Consultant search is either defined over the entire run of the application (the global
phase), or over a specific phase of the application’s execution. In this example we selected the
Search button in the Performance Consultant window to start a global phase search. Figure 10
shows the Performance Consultant window during the bottleneck search.

By looking at the Search History Graph, we can see how the Performance Consultant itera-
tively refines its search to isolate the bottleneck. The first hypothesis the Performance Consultant
tests is whether there is a bottleneck in the whole program, if this is true, then it starts refining the
search. Each level in the search history graph represents a refinement that was made in the search
process. Refinements are only made on hypotheses that test true, and are used to further isolate the
bottleneck to a particular part of the application’s execution. In general the results of the search
can be obtained by following the blue nodes from the root of the search history graph to a leaf
node. Also, by clicking the middle mouse button on any node in the search history graph, you can
see a text string representation of the hypothesis associated with any node in the graph. This string

Tutorial May 5, 1998 Release 2.1

Page 13

e Performance Consultant
ara
T

Searches=s |

Current Search: Global Phase

Initializing Search for Global Phase.
i
5 TopLeveIHypothesisl
i |~
Search I |
Hewver Evaluated
Unknown uninstrumented
False LTS TRLRTREr Tl STdfow refe
VWhy Axis Refinement —— VWhere Axis Refinement

Hold down At and move the mouse to scroll freely
Click middle button on a node to obtain more info on it

Figure 9: The Performance Consultant window

is displayed in the information line below the search history graph. For example, the information
line below the search history graph in Figure 11 shows the hypothesis associated with the bottom-
most nodet in the graph.

Figure 10 shows the search history graph during the search for a bottlempecioin. You
can see that there have been refinements on both the Why and Where axis (these are indicated by
yellow and purple edges in the search history graph). Also, there are nodes representing hypothe-
ses that have tested true (blue nodes), nodes representing hypotheses that have tested false (pink
nodes), and nodes representing hypotheses that have not yet been decided (green nodes).

Figure 11 shows the search history graph after the search has progressed further, and with
only the nodes representing true hypotheses shown. The first hypothesis evaluated to true (the
blue coloredropLevelHypothesis node at the top of the graph). The first refinement was on the
Why axis and resulted in finding that there was a synchronization bottleneck in the application
(the ExcessiveSyncWaitingTime node is true). Next, the synchronization bottleneck was iso-
lated to a specific module in the applicatipotd{to.c) and to a specific type of synchronization
object MsgTag). The fact that these two nodes are siblings indicates that these refinements were
done at the same time. These two nodes were then further refined in parallel. The result is that the
bottleneck is isolated to a specific proceddoevérk) in modulepotato.c , and to a specific mes-

Tutorial May 5, 1998 Release 2.1

Page 14

sage tag (message t&g This means that the Performance Consultant found that there is exces-
sive synchronization waiting time associated with messagé tagoroceduredowork . At this

point, the Performance Consultant was unable to further refine the bottleneck. However, it will
continue to evaluate true nodes in the graph.

The Performance Consultant
ara
"

Searches |

Current Search: Global Phase

ExcessivesyncialtingTime tested true for /Code,/Machine,/Process,/Sync Object/MsgTag

Excessive SynciWaltingTime tested true for /Code/potato.c,/Machine,/Process./Sync Object/MsgTag

ExcessiveSynci/aitingTime tested true for /Code /Machine fProcess /Sync Object/MsyTag/d

ExcessiveSyncWaitingTime tested true for /Codefpotato.cidowork, fMachine,/Process,/SyncObject J

| ExcessiveSyncWaitingTime

146_chocolate} |
147 _chocolate} —
_chocotatey | |- main [dowork |
40 i
149_cham} . I'| potato{z0947_chocolate}
i4_heaufort} o0 polalof20948_chocolate}
S ptatof29%40.chem)
potato{29349_cham
B potato{20948_chocolate} potato{6254_beaufort]
: | otatazssan e :
| potatogzssas cramy :
| otatoeess pcutor .,.
I @nint et ntatni?99:4% cha 2
7 [=

d

Pauze |

Figure 10: The Performace Consultant bottleneck search

5.3 Verifying the Performance Consultant’s results

Typically, after running the Performance Consultant, you would like to see the performance data
corresponding to the bottleneck in the application. To do this, you can start a visualization process
to display performance data. In this example, after running the Performance Consultant, we
started a barchart visualization by choosing BarChart from thstégt A Visualization menu

(like Figure 6). The barchart is shown in Figure 12. It shows that most, if not all, ®frthewait

time for the whole program can be attributed to procedawerk in modulepotato.c ~ (the pink

bars for each focus). It also shows thatdliec_waittime is pretty evenly distributed across all
processes, so it would be unlikely that the Performance Consultant would isolate the synchroniza-
tion bottleneck to a proper subset of the processes.

Tutorial May 5, 1998 Release 2.1

Page 15

The Performance Consultant
ara
Searches | }”T

Current Search: Global Phase

Excessive3ynciWaitingTime tested true for fCodefpotato.cfdowork. fMachine /Process. fSync O
hject

Excessive3ynciWaitingTime tested true for fCodefpotato.c.fMachine,/Process fSync Object/Ms =
g Tagf4

ExcessiveSyncWaiting Time tested true for fCodefpotato.cfdowork, fMachine, fProcess, fSync O i

2 | TopLevelHypothesis |
[ExcessiveSyncWaitingTime |
1
4] satc
1 1
[dowork |

7 [~ =

|Excessive SyncWaiting Time M Code/potato.cfdovork,./Machine /Process./Sync Ohject/Msg Tag/4

| Fau=e |

Figure 11: The Search History Graph showing only TRUE (blue) nodes

%
-B

6 PHASES

In this section we briefly discuss Paradyn’s notion of phases.

Phases are contiguous time-intervals within an application’s execution. There are two types of
phases: global phaseand zero or morwcal phasesThe global phase includes the entire period
of execution, from the start of the application program until the current time. This phase is the
default for the Performance Consultant or any visualization. A local phase restricts performance
information to a particular time interval. A local phase can be started at any time; the local phase
ends when a new local phase is started. This means that, at any given time, you can select perfor-
mance data from the global phase and from the current local phase.

One use of phases in Paradyn is to change the granularity of performance data collection after
the application process has been running for some time. Because Paradyn uses fixed-size data
structures to store performance data, the granularity of performance data becomes more coarse the
longer the application runs. For some applications, the interesting behavior may not occur until
several hours into its execution when the granularity of performance data is large. To obtain per-
formance data at a finer granularity, you can start a new local phase. The data collection at the
start of the new phase will be at the finest granularity supported by Paradyn. We psadhe
program to provide an example of starting an phase part way into the application’s execution.

To start a new phase, first create a phase table visualization by chelessagable from the
Start A Visualization menu. A phase table is shown in Figure 13. Next, click orsthe A

Tutorial May 5, 1998 Release 2.1

Page 16

Barchart Yisualization

Figure 12: BarChart visi presenting the performance bottleneck data

Phase menu option from the phase table’s menu bar. This will cause the phase table to display an
end time for the previous phagthése 0 in the example), and a phase name and phase start time
for the newly created current phapadse_1 and1lm 54s in the example).

Phase Table
ara

File Phase Help | YT
Phase Name Start Time End Time
phase 0 0s MMTmads
phase 1 TTmads

Figure 13: PhaseTable visi presenting phase durations

Once a new phase is started, you can create visualizations to display data from it by clicking
on theCurrent Phase button in the lower right corner of tig&art A Visualization window.
Figure 14 and Figure 15 are time-histograms for the global and current phases respectively..

Tutorial May 5, 1998 Release 2.1

Time Histogram Display ﬁ ra
File Actions View v
Phase: Global
CPUs
6
5 rfx%':ﬂ\"wx\ﬂzm T
4 4
3 - z
0
| O
¢ M
14
L
0 I I I I I I I I I I
0:00 2:40 5:20 8:00 10:40 13120 1600 1840 21:220 2400 26:40

Min:sec

sync wait <Whole Program= (smoothed)
cpu <Whole Program:= (smoothed)

PAN

Figure 14: Histogram for global phase

Time Histogram Display ﬁ -
File Actions View W
FPhase: phase_1

CPUs

B |l' & .

5 - :\«wm.f-\nfkﬁ’a\r‘“kwf’”\f”‘w’ﬂ”\” U M M AN A A

!
4 4
3 - z
o
2 v
1 4
k
0 I | | | | | | | | |
1200 12:20 12:40 1300 13:220 13:40 1400 14220 1440 15:00

Min:sec
sync wait <Whole Program= (smoothed)
cpu <\Whole Program: {smoothed}

Figure 15: Histogram of current phase

Note that the current phase histogram starts at phase_1's start time (11:54) and displays data at
a finer granularity than the same performance data displayed by the global phase histogram

Tutorial May 5, 1998 Release 2.1

	Tutorial
	1 Preliminaries
	2 Preparing an application
	3 Running the application
	3.1 Start PVM
	3.2 Start Paradyn and define the application proce...
	Figure�1: Paradyn Main Control window
	Figure�2: Paradyn base Where Axis
	1. User: The login name on the host on which Parad...
	2. Host: The host on which Paradyn will start the ...
	3. Directory: If the host on which the application...
	4. Command: This entry takes the unix command that...
	5. Daemon: This option allows you to specify which...

	Figure�3: The Define A Process window

	3.3 Start the application process
	1. Application name: The name of the application p...
	2. Processes: A list of the process IDs of all the...
	3. Application status: The current status of the a...
	4. chocolate, beaufort, cham: Status lines for eac...
	Figure�4: Paradyn Main Control window after applic...
	Figure�5: Where Axis after the application process...

	4 Viewing performance data
	4.1 Starting a visualization process
	Figure�6: Selecting a Histogram visualization
	Figure�7: Metrics menu with “cpu” and “sync_wait” ...
	Figure�8: Histogram of global phase with “cpu” and...

	5 Running the Performance Consultant
	5.1 The Performance Consultant window
	1. Searches Menu: Allows you to view search histor...
	2. Status line: The status line at the top of the ...
	3. Search Text Output: This area is used by the Pe...
	4. Search History Graph: This is a graphical repre...
	5. Buttons: These allow you to start or pause the ...
	6. Search History Graph Key: The bottom portion of...
	Figure�9: The Performance Consultant window

	5.2 Starting the search
	Figure�10: The Performace Consultant bottleneck se...
	Figure�11: The Search History Graph showing only T...

	5.3 Verifying the Performance Consultant’s results...
	Figure�12: BarChart visi presenting the performanc...

	6 Phases
	Figure�13: PhaseTable visi presenting phase durati...
	Figure�14: Histogram for global phase
	Figure�15: Histogram of current phase

