
ParaP

ynTM

Paradyn Paral le l Performance Tools

Tutorial 5/5/98

Paradyn Project
Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685
paradyn@cs.wisc.edu

Tutorial

Release 2.1
May 1998

Table of Contents

Tutorial May 5, 1998 Release 2.1

1 Preliminaries ..4
2 Preparing an application ..4
3 Running the application ...5

3.1 Start PVM ...5
3.2 Start Paradyn and define the application process ..5
3.3 Start the application process ...7

4 Viewing performance data ...9
4.1 Starting a visualization process ...9

5 Running the Performance Consultant ..12
5.1 The Performance Consultant window ...12
5.2 Starting the search ...12
5.3 Verifying the Performance Consultant’s results ..14

6 Phases...15

List of Figures

Tutorial May 5, 1998 Release 2.1

Figure 1: Paradyn Main Control window ...5
Figure 2: Paradyn base Where Axis ...6
Figure 3: TheDefine A Process window ...7
Figure 4: Paradyn Main Control window after application process is started8
Figure 5: Where Axis after the application process is started ..8
Figure 6: Selecting a Histogram visualization ..9
Figure 7: Metrics menu with “cpu” and “sync_wait” selected10
Figure 8: Histogram of global phase with “cpu” and “sync_wait” for two foci11
Figure 9: The Performance Consultant window ...13
Figure 10: The Performace Consultant bottleneck search ..14
Figure 11: The Search History Graph showing only TRUE (blue) nodes15
Figure 12: BarChart visi presenting the performance bottleneck data16
Figure 13: PhaseTable visi presenting phase durations ..16
Figure 14: Histogram for global phase ...17
Figure 15: Histogram of current phase ...17

yn (if
tomati-
 pro-

e test

iables,

f the
ogram

small
not yet
d by
rksta-

rough
mplete

 from

ep can
mati-
e

dyn’s
t with
Page 4

1 PRELIMINARIES

This document1 covers the basics for using Paradyn: how to prepare an application for Parad
necessary), run it, view its performance data, and run the Performance Consultant to au
cally find performance bottlenecks in the application. Several simple example application
grams come with the binary distribution of Paradyn. You can obtain Paradyn and th
programs (binaries and sources) by anonymous ftp togrilled.cs.wisc.edu . For more infor-
mation on obtaining and installing Paradyn, including setting necessary environment var
see theParadyn Installation Guide.

The simple test program used as an example in this document (potato) is a PVM program,
requiring that PVM be installed on your system: if PVM is not installed, the basic form o
tutorial can be followed with any other subject application, such as the sequential test pr
(bubba) or an MPI program (such asssTwod) where available.

Details of this tutorial apply to a program running on a SPARC Solaris platform, and
differences will be observed on other platforms. Note, however, that a Paradyn front-end is
available for WindowsNT, therefore while WindowsNT applications can be run and monitore
Paradyn, this currently requires a Paradyn front-end controlling the session from a Unix wo
tion.

This document will not cover all of the features in Paradyn. It is intended to guide you th
a start-to-finish session with Paradyn, using some of the more common features. For a co
description of the features in Paradyn, see theParadyn User’s Guide.

Further information, including technical papers, manuals and source code, is available
the Paradyn Project web pageshttp://www.cs.wisc.edu/~paradyn .

2 PREPARING AN APPLICATION

To run any of the simple programs that come with the binary distribution of Paradyn, this st
be skipped. On most platforms Paradyn works with unmodified application binaries, auto
cally loading the runtime instrumentation library (libdyninstRT) as necessary, however, som
platforms still require an extra re-linking step to statically link subject applications with Para
runtime instrumentation library (and also possibly to de-limit the application code of interes
special code block markers). For details, see theParadyn User’s Guide, or any of the Makefiles
provided with the source code for the test programs distributed with Paradyn.

1. Note that some of the color figures in this document may be unclear when printed in
Tutorial May 5, 1998 Release 2.1

gray-scale.

 start

 base
eled
aradyn

ary for
Page 5

3 RUNNING THE APPLICATION

Skip straight to Section 3.2 if you have a non-PVM application, otherwise you first need to
PVM itself before running Paradyn.

3.1 Start PVM

An example of starting PVM on the hostchocolate is provided below:

% pvm
pvm> add cham
pvm> add beaufort
pvm> conf
3 hosts, 1 data format

HOST DTID ARCH SPEED
 chocolate 40000 SUNMP 1000

cham 80000 SUNMP 1000
beaufort c0000 SUNMP 1000

The Paradyn daemon (paradynd) and the binary of the application (potato) must also be cop-
ied to the directory where you keep your PVM binaries (usually$HOME/pvm3/bin/$PVM_ARCH or
$PVM_ROOT/bin/$PVM_ARCH):

% cp paradynd $HOME/pvm3/bin/$PVM_ARCH
$ cp potato $HOME/pvm3/bin/$PVM_ARCH

3.2 Start Paradyn and define the application process

The next step is to run Paradyn. This is done by entering the following command:

% paradyn

Paradyn will start running and display the Paradyn Main Control window (Figure 1) and the
Where Axis window (Figure 2). The status line in the Paradyn Main Control window (lab
“UIM status”) indicates that Paradyn’s user interface manager is ready. This means that P
is now ready to loaded and run the subject application program.

To describe an application to Paradyn selectDefine A Process from theSetup menu. This
will cause a dialog to appear that will allow you to specify the parameters that are necess

Figure 1: Paradyn Main Control window
Tutorial May 5, 1998 Release 2.1

Paradyn to start your application process. This dialog is shown in Figure 3. To describe the appli-

n this
the

fault

e on
e is the

ample,

 this

s

run.

several
Page 6

cation and its environment to Paradyn, the following should be specified in theDefine A Process
dialog:

1. User: The login name on the host on which Paradyn will start the application process. I
example we left theUser field blank, which means that the login will have a value of
user’s current login name.

2. Host: The host on which Paradyn will start the application process. A blank value will de
to the current host (the one on which Paradyn is running).

3. Directory: If the host on which the application is to be started is different from the on
which the Paradyn process is running, then the current directory on the remote machin
home directory of the user specified in theUser entry. TheDirectory field allows you to spec-
ify a directory to change to before Paradyn starts the application process. In this ex
Paradyn will change to~/pvm3/bin/SUNMP before startingpotato .

4. Command: This entry takes the unix command that will start the application program. In
example we have entered“potato 5 1000000” , which specifies the executable file (potato)
with two command line arguments: the number of processes (5), and the number of message
each process will send (1000000).

5. Daemon: This option allows you to specify which version of the Paradyn daemon to
Since this is a PVM application, thepvmd daemon is selected.
Once the fields of theDefine A Process window have been filled in, click on theAccept but-

ton, and Paradyn will start your application process. This step can take anywhere from
seconds to several minutes, depending on the size of the application.

Figure 2: Paradyn base Where Axis
Tutorial May 5, 1998 Release 2.1

 lines,
about
aradyn

ple,

G,

ning

ta

s to the
btained
ules and

ew pro-
ntry cor-
Page 7

3.3 Start the application process

After an application has been defined, the Paradyn main window will contain more status
and the Where Axis will contain more entries. The new status lines provide information
Paradyn and your application process. These are shown in Figure 4 (which shows the P
Main Control window after it has started running the application).

The following status lines are for the application process:

1. Application name: The name of the application program (potato), the name of the machine
(chocolate), the name of the user (self), and the name of the daemon (pvmd)

2. Processes: A list of the process IDs of all the processes in the application. In this exam
there is one pid (7657) corresponding to the process started on host chocolate. Whenpotato

runs it will spawn processes on the other hosts (cham and beaufort).

3. Application status: The current status of the application program (either RUNNIN
PAUSED, or EXITED).

4. chocolate, beaufort, cham: Status lines for each host. Once the application starts run
these will display the status of each host (running, paused, or exited).

The new status line for the Paradyn process (Data Manager) displays the state of Paradyn’s Da
Manager.

Now that Paradyn has had a chance to look over your program, it is able to add entrie
Where Axis. The new entries in the Where Axis correspond to resources that can only be o
when the application process has been defined and started. These new entries include mod
procedures in theCode hierarchy, and process IDs in theProcess hierarchy. Figure 5 shows the
new Where Axis with these new resources added. The Process hierarchy contains five n
cesses (one for each PVM spawned process), and the Code hierarchy contains one new e

Figure 3: The Define A Process window
Tutorial May 5, 1998 Release 2.1

responding to a source code module.

the fol-
y
 from
Page 8

At this point, Paradyn is ready to start running the application. You can now select theRUN
button from the Paradyn Main Control window to start executingpotato , or alternatively first
define some performance measurements and/or views before running it (as described in
lowing sections). Once execution has commenced, thePAUSE button can be used to temporaril
halt it andRUN will resume execution. Note, however, that execution can only be resumed
the current point and not from the start (without exiting and restarting Paradyn).

Figure 4: Paradyn Main Control window after application process is started

Figure 5: Where Axis after the application process is started
Tutorial May 5, 1998 Release 2.1

niza-
 pro-

on will

r.
on
ted for

s to be

ources
etric

sses
to

ss and
Page 9

4 VIEWING PERFORMANCE DATA

Before you run the application process, you may want to start a visualization process2. For this
application, we will start a time-histogram visualization to view CPU utilization and synchro
tion blocking time for the application. In this section, we describe how to start a visualization
cess, and how to choose the set of metrics and parts of the program that a visualizati
display.

4.1 Starting a visualization process

To start a visualization process, select theVisi option from the Paradyn main window menuba
This will open theStart A Visualization dialog that allows you to choose a type of visualizati
and a phase for the data. Figure 6 shows this dialog with a Histogram visualization selec
the Global Phase (Section 6 will discuss phases).

Once the visualization selection has been made, click on theAccept button and Paradyn will
display a metrics menu. This menu, shown in Figure 7, allows you to select the set of metric
displayed by the visualization. In this example, we have selectedsync_wait (synchronization
blocking time) andcpu (CPU time).

To choose the parts of the program for which the metric will be collected, you select res
by clicking on nodes in the Where Axis. A focus is a location in the application for which m
data can be collected. For example, if you select the nodespotato{20948_chocolate} and
potato{29948_cham} from the Process hierarchy, you limit data collection to these two proce
(20948 and 29948). If you selectpotato.c from the Code hierarchy, you limit data collection
modulepotato.c . Figure 5 shows the Where Axis with these nodes selected.

Paradyn combines selections from each of the resource hierarchies to create afocus, each
selection further restricts the scope of data collection. If you had made the previous proce

Figure 6: Selecting a Histogram visualization
Tutorial May 5, 1998 Release 2.1

2. Visualization processes do not have to be started now, but doing so before the program starts running will
guarantee that you will get data for the complete execution of the application.

rocess
 in

aradyn
 cross-
etrics

zation
 metric-
and re-
ant to

” and

e-histo-
perfor-
. These
Page 10

module selections, then you limit data collection to activity in modulepotato.c only in processes
20948 and 29948. This selection corresponds to two foci: the first focus is when the p
20948 is running in modulepotato.c ; the second focus is when process 29948 is running
modulepotato.c .

If no Where Axis nodes are selected then Paradyn uses the defaultWhole Program .
Once you have made your selections, click on the Accept button on the metrics menu. P

will then try to enable data collection for your selection. The selection is expanded to be the
product of metric-focus pairs from the list of metrics and foci selected. For example, if the m
CPU andsync_wait , and the resource nodespotato{20948_chocolate} , potato{29948_cham} ,
andpotato.c were selected, then Paradyn would try to enable four metric-focus pairs:

• CPU time for process 20948 when it is running in modulepotato.c .

• CPU time for process 29948 when it is running in modulepotato.c .

• sync_wait time for process 20948 when it is running in modulepotato.c .

• sync_wait time for process 29948 when it is running in modulepotato.c .
If at least one metric-focus pair was successfully enabled, Paradyn will start the visuali

process and start sending performance data values to the visualization. If there are any
focus pairs that could not be enabled, Paradyn will display a message listing those pairs,
display the metrics menu for you to modify your selection. If this occurs, and you do not w
try enabling any other metric-focus pairs, you can choose theCANCEL button on the metrics
menu.

The time-histogram shown in Figure 8 is the result of selecting the metrics “sync_wait
“cpu” from the metrics menu andpotato{20948_chocolate} , potato{29948_cham} , and
potato.c from the Where Axis.

Once the time-histogram is created, click on theRUN button from the Paradyn main window
to start the application process. Performance data will then be sent by Paradyn to the tim
gram. The time-histogram contains several menu options for changing the display of the
mance data and for changing the set of performance data that is currently being displayed

Figure 7: Metrics menu with “cpu” and “sync_wait” selected
Tutorial May 5, 1998 Release 2.1

options are described in detail in theParadyn User’s Guide.

Page 11

Figure 8: Histogram of global phase with “cpu” and “sync_wait” for two foci
Tutorial May 5, 1998 Release 2.1

perfor-
-focus

ined per-
 bottle-
nt in a

indow.

arch is

essages

es cor-
ements

et the
he win-

-
 to the
arch. A
 global
ted the
ure 10

t itera-
sultant
ing the
e search
olate the

search
 a leaf
ou can
Page 12

5 RUNNING THE PERFORMANCE CONSULTANT

The Performance Consultant is the part of the Paradyn tool that performs a search for
mance bottlenecks. It automatically enables and disables instrumentation for specific metric
pairs as the search progresses. The Performance Consultant starts looking for course-gra
formance problems and then iteratively tries to refine the search to isolate the performance
neck to a specific location in the application’s execution. This location is specified as a poi
three dimensional search space defined by a Why Axis, Where Axis, and When Axis.

5.1 The Performance Consultant window

The Performance Consultant is started by selecting thePerformance Consultant option from the
SetUp menu on the Paradyn main window. Figure 9 shows the Performance Consultant w
We briefly discuss the parts of the Performance Consultant window below:

1. Searches Menu: Allows you to view search history graphs from different phases.

2. Status line: The status line at the top of the window indicates the phase for which the se
defined (in this example, the search is defined for theGlobal Phase).

3. Search Text Output: This area is used by the Performance Consultant to print status m
about the state of the search

4. Search History Graph: This is a graphical representation of the state of the search. Nod
respond to different points in the search space, and arcs correspond to different refin
that have been made. Figure 9 shows only the initial node,TopLevelHypothesis .

5. Buttons: These allow you to start or pause the search.

6. Search History Graph Key: The bottom portion of the window describes how to interpr
color of the nodes and edges in the search history graph, and how to navigate around t
dow.

5.2 Starting the search

The search can be started by clicking on theSearch button in the Performance Consultant win
dow. As the Performance Consultant search proceeds, status information will be printed
window, and the search history graph will be updated to reflect the current state of the se
Performance Consultant search is either defined over the entire run of the application (the
phase), or over a specific phase of the application’s execution. In this example we selec
Search button in the Performance Consultant window to start a global phase search. Fig
shows the Performance Consultant window during the bottleneck search.

By looking at the Search History Graph, we can see how the Performance Consultan
tively refines its search to isolate the bottleneck. The first hypothesis the Performance Con
tests is whether there is a bottleneck in the whole program, if this is true, then it starts refin
search. Each level in the search history graph represents a refinement that was made in th
process. Refinements are only made on hypotheses that test true, and are used to further is
bottleneck to a particular part of the application’s execution. In general the results of the
can be obtained by following the blue nodes from the root of the search history graph to
node. Also, by clicking the middle mouse button on any node in the search history graph, y
Tutorial May 5, 1998 Release 2.1

see a text string representation of the hypothesis associated with any node in the graph. This string

ation
ottom-

icated by
ypothe-
alse (pink
.
nd with
rue (the
 the
cation
iso-
n
s were
 that the
Page 13

is displayed in the information line below the search history graph. For example, the inform
line below the search history graph in Figure 11 shows the hypothesis associated with the b
most node4 in the graph.

Figure 10 shows the search history graph during the search for a bottleneck inpotato . You
can see that there have been refinements on both the Why and Where axis (these are ind
yellow and purple edges in the search history graph). Also, there are nodes representing h
ses that have tested true (blue nodes), nodes representing hypotheses that have tested f
nodes), and nodes representing hypotheses that have not yet been decided (green nodes)

Figure 11 shows the search history graph after the search has progressed further, a
only the nodes representing true hypotheses shown. The first hypothesis evaluated to t
blue coloredTopLevelHypothesis node at the top of the graph). The first refinement was on
Why axis and resulted in finding that there was a synchronization bottleneck in the appli
(the ExcessiveSyncWaitingTime node is true). Next, the synchronization bottleneck was
lated to a specific module in the application (potato.c) and to a specific type of synchronizatio
object (MsgTag). The fact that these two nodes are siblings indicates that these refinement
done at the same time. These two nodes were then further refined in parallel. The result is

Figure 9: The Performance Consultant window
Tutorial May 5, 1998 Release 2.1

bottleneck is isolated to a specific procedure (dowork) in modulepotato.c , and to a specific mes-

xces-

 it will

e data
rocess
nt, we

ll
roniza-
Page 14

sage tag (message tag4). This means that the Performance Consultant found that there is e
sive synchronization waiting time associated with message tag4 in proceduredowork . At this
point, the Performance Consultant was unable to further refine the bottleneck. However,
continue to evaluate true nodes in the graph.

5.3 Verifying the Performance Consultant’s results

Typically, after running the Performance Consultant, you would like to see the performanc
corresponding to the bottleneck in the application. To do this, you can start a visualization p
to display performance data. In this example, after running the Performance Consulta
started a barchart visualization by choosing BarChart from the listStart A Visualization menu
(like Figure 6). The barchart is shown in Figure 12. It shows that most, if not all, of thesync_wait
time for the whole program can be attributed to proceduredowork in modulepotato.c (the pink
bars for each focus). It also shows that thesync_wait time is pretty evenly distributed across a
processes, so it would be unlikely that the Performance Consultant would isolate the synch
tion bottleneck to a proper subset of the processes.

Figure 10: The Performace Consultant bottleneck search
Tutorial May 5, 1998 Release 2.1

pes of
od
is the
mance
 phase
t perfor-

on after
ize data
arse the
r until
in per-
 at the

n.
Page 15

6 PHASES

In this section we briefly discuss Paradyn’s notion of phases.
Phases are contiguous time-intervals within an application’s execution. There are two ty

phases: aglobal phase and zero or morelocal phases. The global phase includes the entire peri
of execution, from the start of the application program until the current time. This phase
default for the Performance Consultant or any visualization. A local phase restricts perfor
information to a particular time interval. A local phase can be started at any time; the local
ends when a new local phase is started. This means that, at any given time, you can selec
mance data from the global phase and from the current local phase.

One use of phases in Paradyn is to change the granularity of performance data collecti
the application process has been running for some time. Because Paradyn uses fixed-s
structures to store performance data, the granularity of performance data becomes more co
longer the application runs. For some applications, the interesting behavior may not occu
several hours into its execution when the granularity of performance data is large. To obta
formance data at a finer granularity, you can start a new local phase. The data collection
start of the new phase will be at the finest granularity supported by Paradyn. We use thepotato

program to provide an example of starting an phase part way into the application’s executio
To start a new phase, first create a phase table visualization by choosingPhase Table from the

Figure 11: The Search History Graph showing only TRUE (blue) nodes
Tutorial May 5, 1998 Release 2.1

Start A Visualization menu. A phase table is shown in Figure 13. Next, click on theStart A

play an
 time

licking
Page 16

Phase menu option from the phase table’s menu bar. This will cause the phase table to dis
end time for the previous phase (phase_0 in the example), and a phase name and phase start
for the newly created current phase (phase_1 and11m 54s in the example).

Once a new phase is started, you can create visualizations to display data from it by c
on theCurrent Phase button in the lower right corner of theStart A Visualization window.

Figure 12: BarChart visi presenting the performance bottleneck data

Figure 13: PhaseTable visi presenting phase durations
Tutorial May 5, 1998 Release 2.1

Figure 14 and Figure 15 are time-histograms for the global and current phases respectively..

s data at
Page 17

Note that the current phase histogram starts at phase_1’s start time (11:54) and display
a finer granularity than the same performance data displayed by the global phase histogram

Figure 14: Histogram for global phase

Figure 15: Histogram of current phase
Tutorial May 5, 1998 Release 2.1

■

	Tutorial
	1 Preliminaries
	2 Preparing an application
	3 Running the application
	3.1 Start PVM
	3.2 Start Paradyn and define the application proce...
	Figure�1: Paradyn Main Control window
	Figure�2: Paradyn base Where Axis
	1. User: The login name on the host on which Parad...
	2. Host: The host on which Paradyn will start the ...
	3. Directory: If the host on which the application...
	4. Command: This entry takes the unix command that...
	5. Daemon: This option allows you to specify which...

	Figure�3: The Define A Process window

	3.3 Start the application process
	1. Application name: The name of the application p...
	2. Processes: A list of the process IDs of all the...
	3. Application status: The current status of the a...
	4. chocolate, beaufort, cham: Status lines for eac...
	Figure�4: Paradyn Main Control window after applic...
	Figure�5: Where Axis after the application process...

	4 Viewing performance data
	4.1 Starting a visualization process
	Figure�6: Selecting a Histogram visualization
	Figure�7: Metrics menu with “cpu” and “sync_wait” ...
	Figure�8: Histogram of global phase with “cpu” and...

	5 Running the Performance Consultant
	5.1 The Performance Consultant window
	1. Searches Menu: Allows you to view search histor...
	2. Status line: The status line at the top of the ...
	3. Search Text Output: This area is used by the Pe...
	4. Search History Graph: This is a graphical repre...
	5. Buttons: These allow you to start or pause the ...
	6. Search History Graph Key: The bottom portion of...
	Figure�9: The Performance Consultant window

	5.2 Starting the search
	Figure�10: The Performace Consultant bottleneck se...
	Figure�11: The Search History Graph showing only T...

	5.3 Verifying the Performance Consultant’s results...
	Figure�12: BarChart visi presenting the performanc...

	6 Phases
	Figure�13: PhaseTable visi presenting phase durati...
	Figure�14: Histogram for global phase
	Figure�15: Histogram of current phase

