Integrating a Debugger and a Performance Tool

for Steering

Krishna Kunchithapadam Barton P. Miller

krishna@cs.wisc.edu bartQcs.wisc.edu

Computer Sciences Department
University of Wisconsin
Madison, WI USA 53706

Abstract

Steering is a performance optimization idiom applicable to many prob-
lem domains. It allows control and performance tuning to take place dur-
ing program execution. Steering emphasizes the optimization and control
of the performance of a program using mechanisms that are external to
the program. Performance measurement tools and symbolic debuggers
already independently provide some of the mechanisms needed to im-
plement a steering tool. In this paper we describe a configuration that
integrates a performance tool, Paradyn, and a debugger to build a steering
environment.

The steering configuration allows fast prototyping of steering policies,
and provides support for both interactive and automated steering.

1 Introduction

Performance optimization is a non-trivial activity that programmers perform.
The canonical performance optimization cycle (Figure 1) can be divided into
four steps:

o Instrumentation and Data Collection: where programmers or tools instru-
ment programs to collect performance data.

o Analysis and Visualization: where programmers use analysis and visual-
ization tools to display and interpret the collected performance data.

Instrumentation Analysis

Data Collection Visualization

e e
—Nodficaiion =\ e
% Reexecution = &= Optimization %
~—— ~————

[0 Stateof the art (automated)
=| Focus of Steering (to be automated)

Figure 1: The Performance Optimization Cycle.

o Optimization: where programmers choose ways to improve the perfor-
mance of their programs.

e Modification: where programmers make optimizations either to the source
code or to running programs.

Many performance tools have been built to assist programmers in automat-
ing the steps of Instrumentation and Data Collection, and Analysis and Visu-
alization. However, programmers for the most part currently use ad-hoc and
manual techniques during the steps of Optimization and Modification. Steering
is an idiom for performance optimization that focuses on the Optimization and
Modification steps of the performance optimization cycle.

Steering is different from adaptive algorithms in that it is an idiom that
emphasizes the external optimization and control of programs. In adaptive
algorithms, programmers write optimization code that is linked with their ap-
plication. At runtime, the optimization code makes performance optimization
decisions and modifies the execution of the application.

In a technique that uses external control, the application does not contain
code that makes optimization decisions. External mechanisms are used to both

make optimization decisions and to modify the application itself to effect any
changes.

The primary advantage of external optimization and control is that it allows
programmers to prototype their optimization policies without going through
the potentially long compilation-reexecution cycle each time the optimization
code needs to be changed. External control also does not preclude the future
inclusion of a suitable optimization policy into the application for production
use.

Even when steering is the performance optimization idiom used by program-
mers, the mechanisms and tools used for steering are often not generic. In this
paper, we show how to combine the mechanisms of a performance tool that
does external measurement of programs and a debugger that provides exter-
nal modification of programs into a steering tool that can be used for external
optimization and control. In addition to the steering configuration, we also iden-
tify a programming model based on the notion of tunable performance knobs
that allows a programmer to separate the functionality of an application from
its optimization. The use of tunable knobs in an application can simplify the
specification and even the automation of performance steering.

1.1 Goals of Steering

Steering includes the set of activities that are performed at program execution
time and that modify the subsequent behavior of the program. Support from
compilers and performance tools can simplify the programmer’s task of steering
a program. For example, compilers may generate data dependence information
into symbol tables that a tool like a debugger can use in modifying a program.
Information about compiler optimizations allows programmers to choose appro-
priate steering modifications for their programs. Performance tools provide a
steering tool with performance data about a program; the steering tool can then
use this information to initiate steering actions when needed.

The steering tool also needs the support of programmers to effect steering
changes to an application. Since steering emphasizes external control, the pro-
grammer needs to indicate to the steering tool what parts of the program should
be modified (and in what manner) to steer a program. Programmers also need
to structure their applications so that steering actions can be specified to a tool
in a generic manner. We design a programming model based on the notion of
tunable performance knobs that allows both external control of an application’s
performance via a steering tool and the simple specification of steering actions

using a predicate-action idiom.

In this paper, we present the design of a generic steering tool by making
use of mechanisms already present in some performance measurement tools
and in symbolic breakpoint debuggers. The mechanisms for steering need to
provide support for when a program should be steered, what should be modified
to effect the steering, and how the change should be made to the executing
program. Performance tools can help answer the when and what questions
while a debugger can help answer the how question. A steering tool that is
built by integrating a performance tool and a debugger can be used for both
interactive and automated performance steering.

A performance measurement tool is used in the Instrumentation and Data
Collection, and Analysis and Visualization steps of the performance optimiza-
tion cycle. The programmer uses the results of the analysis to decide on an
optimization. The steering tool then invokes a symbolic debugger that allows
the programmer to make modifications to an application to effect the steering
changes.

A program needs to be suitably structured for a programmer to be able to
steer its performance. The design of programs for steering (for example, through
the use of tunable performance knobs) is part of our current research, but is
outside the scope of this paper.

1.2 Examples of Steering

There are many examples of performance steering. Some of the techniques
developed for steering are ad-hoc or domain-specific, while others are of wider
applicability. In this section, we will illustrate the technique of steering using a
small set of examples.

Loop convergence control: A simple example of performance steering is in
the domain of numerical computations. An iterative algorithm may use a loop
convergence criteria to terminate. If the convergence threshold can be changed
to improve performance without affecting the correctness of the algorithm, then
the program may dynamically change the convergence criterion for better per-
formance. More importantly, if a large number of iterative algorithms are com-
bined in a multi-stage computation, a faster convergence at an earlier stage even
at the cost of a somewhat poorer solution may be compensated for by a later
stage.

Load balance, degree of parallelism: Load balance is an important deter-
minant of performance in irregular applications[2]. It may also be possible to

modify the performance of an algorithm by changing the amount of parallelism
that is used. A tool that allows a programmer to dynamically create or destroy
threads and to move tasks between different threads can be used to improve the
performance of the application.

Performance knobs in databases: Some database servers are designed to have
a set of tunable performance knobs that control the allocation of resources in
the server[1]. The server periodically executes a tuning algorithm to choose set-
ting for the performance knobs (and hence resource allocations) that improves
the performance of the server or satisfies some goal-requirements of the trans-
actions that arrive at the server. This is an example where the application is
structured to facilitate performance steering by the separation of the functional
and performance code, and by the use of tunable knobs.

Array distributions: The performance of data-parallel programs is sensitive
to the layout of array data across the nodes of a parallel machine[4]. Choos-
ing good data layouts is non-trivial. A tool that measures array data related
communication, presents such communication information to a programmer and
accepts programmer hints for redistributing arrays into a more optimized layout
performs steering. In this application domain, the steering tool needs support
from the compiler and the runtime system. It is also possible for the steering
tool to automate the process of choosing optimized data layouts using knowledge
of the problem domain.

Changing algorithms: It is possible in suitably structured applications to
change algorithms being used at runtime. For example, if a program invokes
an algorithm via a function pointer, a steering tool can be used to change the
function pointer to point to an function that is more suitable for the current per-
formance context. Algorithms can also be changed by loading different dynamic
libraries.

In the next section we describe the mechanisms present in the Paradyn
performance tool that are relevant to performance steering. We then describe
a steering configuration that uses the mechanisms of Paradyn and a symbolic
debugger for performance steering.

2 Paradyn as a Performance Tool

Paradyn[5] is a performance tool based on a novel mechanism for automat-
ing the search for performance bottlenecks and low-overhead instrumentation
techniques[3]. Paradyn is also extensible—any tool external to Paradyn may
access the performance information that Paradyn collects via a well-defined

visualization interface. The combination of the search mechanism, dynamic in-
strumentation, and the visualization interface allows us to use Paradyn as the
performance measurement tool in a steering environment. This section pro-
vides a description of mechanisms of Paradyn that are relevant to performance
steering.

2.1 The Metric-Focus Abstraction

Paradyn models an application as a collection of resources. Any program object
for which performance data can be collected is a candidate resource. Examples
of program resources include processes, machines, procedures, code blocks, vari-
ables, locks, barriers, message tags, memory, caches. Resources are arranged in
hierarchies by resource type. For example, a resource type of Procedure contains
resources corresponding to the different procedures in a program, and each pro-
cedure contains resources corresponding to different code blocks that comprise
the associated procedure. Similarly, a resource type of SyncObject contains re-
source types MessageTag, Barrier, and Lock, each of which contain resources
corresponding to the individual instances of message tags, barriers, and locks
respectively. A focus is a set of resources, one from each resource hierarchy. An
example of a focus is message tag 9999 used in procedure foobar of process 2345
on machine host12.

Performance metrics correspond to numeric values (in suitable units) that
characterize some aspect of the performance of a program. Metrics may be
computed for any valid focus. Examples of metrics include CPU time and
message count.

Paradyn collects and provides performance data in metric-focus combina-
tions. An example of a metric-focus pair is message count for message tag 9999
used in procedure foobar of process 2345 on machine host12. Metric-focus com-
binations are used by Paradyn to guide the search for performance bottlenecks.
External tools also obtain performance data from Paradyn’s visualization inter-
face in terms of metric-focus lists. The steering tool is organized as an external
visualization process that communicates with Paradyn, using the metric-focus
abstraction to present performance data to a user.

2.2 Dynamic Instrumentation

Along with the complexity of characterizing the behavior of a large application
comes the problem of measuring performance data that is needed to perform the
above characterization. As the size and execution-time of a program increases,

so does the volume of performance data that can be collected. It is often not
possible nor profitable to collect comprehensive performance data about a pro-
gram; it is difficult to store large volumes of data and to present them to a user
in a suitable form. Moreover, any software technique for collecting performance
data from an application perturbs the application—the greater the data col-
lected, the larger the potential perturbation. Large instrumentation overhead
may even result in performance data being collected in an environment that no
longer matches that of the uninstrumented program, effectively rendering any
performance measurement and analysis useless.

Paradyn uses dynamic instrumentation to reduce the volume of performance
data that is collected, by postponing performance measurement till the demand
for it arises. Dynamic instrumentation modifies the code and data segments
of an executing program to collect performance metrics for foci. Since the
instrumentation is made at execution time, programmers need not modify their
source code, or use special compiler or linker options to build their binaries.

Paradyn uses dynamic instrumentation in conjunction with its automated
search mechanism to focus instrumentation to restricted parts of a program.
When a program starts to execute, dynamic instrumentation is used to collect
very high-level performance information at a low volume and perturbation over-
head. As the search along metric-focus pairs is refined, dynamic instrumentation
is used to refine (by addition, deletion and modification) the instrumentation in
the application to collect detailed performance data, but for a smaller program
focus. The combination of a refined focus and detailed performance data keeps
the instrumentation overhead and volume of performance information under
control.

Finally, dynamic instrumentation can also measure its own overhead. This
instrumentation overhead is presented as a performance metric to Paradyn’s
search mechanism. This allows the search process to control the amount of
instrumentation added to a program (and the associated overheads) using a
cost model.

A steering tool uses dynamic instrumentation to enable the collection of per-
formance data needed to trigger steering activities, and to disable the collection
of the data at the end of a steering session.

2.3 The Visualization Interface

Performance data that Paradyn (or any performance tool) collects can be used
in many ways. Paradyn uses the data in conjunction with its search mecha-

nism to search for performance bottlenecks. The same performance data can be
visualized in different ways. Rather than provide a fixed set of visualizations,
Paradyn provides access to the performance data it collects via the visualization
interface. Any external process that wishes to consume performance data (not
necessarily for visualization) can initiate the collection (via dynamic instrumen-
tation) of performance data for valid metric-focus lists using this interface.

A steering tool can therefore use this interface to prototype steering policies
without having to modify any code in Paradyn. Such an interface also imposes
minimal restrictions on the structure of the steering tool.

3 The Steering Configuration

The steering configuration that we propose integrates the mechanisms of Para-
dyn and a debugger. Paradyn is used to collect performance data; optionally the
steering tool can also use the performance search mechanisms of Paradyn dur-
ing steering. The command interface of the debugger is used to make changes
to a program and effect steering changes. During a steering session, there is a
transfer of control between Paradyn and the debugger. The steering tool man-
ages the control transfer, but the user of the steering tool needs to specify to
the steering tool when to transfer control from Paradyn to the debugger. The
user hints can be coded into the steering tool or be specified as a set of rules
that are interpreted by the steering tool. The dynamic instrumentation inter-
face of Paradyn requires a small modification to allow a debugger to attach to
a program and perform steering changes.
Figure 2 describes the steering configuration.

3.1 Control of the Steering Tool

The steering configuration above does not include any policies for steering an
application; it is a collection of mechanisms that can be used by the programmer.
The simplest use of the steering tool is for interactive steering. However, the
same configuration can also be used for automated steering.

In interactive steering, Paradyn measures the performance of an application
and searches for types of bottlenecks specified by the programmers. When a
performance bottlenecks is detected, the steering tool alerts the programmer
and transfers control to the debugger. The programmer can then make steering
changes to the application and transfer control back to Paradyn. Alternatively,
the programmer can bypass the search mechanisms of Paradyn and write per-

Dynamic

|
I

Predicate Evaluator : Paradyn Instrumentation Application
|

instrument

get metric

steering changes

Augmented Visi Process program state

Data Path
<——— Control Path

Figure 2: The Steering Configuration.

10

formance search strategies into the steering tool using the performance data
available via the visualization interface of Paradyn.

In automated steering, the programmer provides hints to the steering tool
about what constitutes a performance problem, and how changes should be
made to the application (i.e. what debugger commands should be invoked)
to improve performance. The steering tool can use any algorithm to detect
when the performance problems specified by the programmer occur and then
automatically invoke the steering actions.

4 Conclusions

Performance steering is a runtime-based performance optimization idiom that is
being used in many application domains that emphasizes the external optimiza-
tion and control of programs. A steering tool needs mechanisms to determine
when a program should be steered, what needs to be changed, and how the steer-
ing should be effected. Performance measurement tools and debuggers already
independently provide some of these mechanisms.

Performance measurement tools provide performance data and help answer
the when question. Debuggers provide commands to modify the state of an
executing program. Debugging commands can be used to answer the how ques-
tion. Programmer hints specify what needs to be changed in a program to effect
steering.

We show a steering configuration that combines the use of Paradyn as the
performance measurement tool and any symbolic debugger as the modification
tool. We also suggest a programming model based on tunable performance
knobs that allows steering actions to be specified in a generic manner and sim-
plifies the task of steering programs.

References

[1] Kurt P. Brown, Manish Mehta, Michael J. Carey, and Miron Livny. Towards
Automated Performance Tuning for Complex Workloads. In Proceedings of
the 20th International VLDB Conference, Santiago, Chile, September 1994.

[2] G. Eisenhauer, Weiming Gu, Karsten Schwan, and Niru Mallavarupu.
Falcon-toward interactive parallel programs: The online steering of a molec-
ular dynamics application. In Proceedings of the 3rd International Sym-

[4]

[5]

11

posium on High-Performance Distributed Computing, San Francisco, CA,
August 1994.

Jeffrey K. Hollingsworth, Jon Cargille, and Barton P. Miller. Dynamic Pro-
gram Instrumentation for Scalable Performance Tools. In Proceedings of the
1994 Scaleable Highe Performance Computing Conference, pages 841-850,
Knoxville, TN, May 1994.

Krishna Kunchithapadam and Barton P. Miller. Optimizing Array Distri-
butions in Data-Parallel Programs. In A. Nicolau, D. Gelernter, D. Gross,
and D. Padua, editors, Languages and Compilers for Parallel Computing,
LNCS. Springer-Verlag, 1994.

Barton P. Miller, Jeffrey K. Hollingsworth, R. Bruce Irvin, Jonathan
Cargille, Krishna Kunchithapadam, Karen Karavanic, Tia Newhall, and
Mark Callaghan. The Paradyn Performance Measurement Tools. In Re-
view for the IEEFE special issue on Parallel and Distributed Systems, October
1994.

