cs545, Fall 2012, Homework 2
Total points: 100

Due date: 5pm, Friday, 28th of September

Submission instructions TBD
Late policy: No late homeworks accepted.

You may discuss problems at a high level with classmates, but you must solve and write them up yourselves.

This homework will give you practice coding up simple analyses of text data. Your goal will be to analyze
the Zipfian distributions of word and morpheme frequency across 11 languages: Bulgarian, Czech, English,
Estonian, Farsi, Hungarian, Polish, Romanian, Slovene, Slovak, and Serbian. Corresponding to each lan-
guage is a data file named orwell-xy.txt where ‘Xy’ is a two-letter code for for the language name.
The data consists of translations of Orwell’s novel 1984, and the files use a tab-delimited format with four
columns:

1. Token ID
2. Word token
3. Morphological analysis of token

4. Lemma (morphological root of token)

Notes: Please do no further lowercasing, filtering, or tokenization of the data. The files are encoded in
UTF-8, so make sure to use the appropriate read and write methods.! For linear regression and computing
means and standard deviations, I recommend using the Python numpy library,> and the Python matplotlib
library for making plots.

Question 1

In class we studied the morphological analysis of English using FSA’s. Our first goal is to assess the
morphological complexity of these 11 languages. For each language, find the lemma which has the greatest
number of unique word types. List these lemmas along with the number of words (types, not tokens) that
they take. Which language has the least morphological complexity by this measure?

Let’s continue this analysis. Now for each language, compute the ratio of unique words types to unique
lemma types. This ratio will tell us the average number of word-forms that each lemma can take, giving
another measure of morphological complexity. List the languages along with their ratios. Are these results
roughly consistent with the previous analysis?

1e.g. in Python: codecs.read (.., r’,’utf-8")

2See here for linear regression:
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.lstsqg.html#numpy.linalg.lstsqg
The numpy functions numpy . average and numpy . std compute means and standard deviations of lists.

3The functions I used are:
matplotlib.pyplot.plot,matplotlib.pyplot.clf,andmatplotlib.pyplot.savefig.



Question 2

In this question we will analyze the distribution over word frequencies found in our text and compare it to
the Zipf power law. Recall from class that under the Zipf power law, the frequency of a word is inversely
proportional to it rank (where the rank of the most frequent word is 1, that of the second most frequent word
is 2, that of the third most frequent word is 3, etc):

1

freq(w) = Z- rank(w)k

In this equation, freq(w) = %

classical Zipfian distribution & = 1.

, Z is a normalization constant, and k is a parameter. In the

Write a program that computes the empirical rank and frequency of all the words in each language.

e For each language, create a plot showing the relationship between these two values (rank on the x-axis,
frequency on the y-axis).

e Do the plots look similar? Do they appear to be power laws? If you’ve done this correctly, it should
be very hard to see the graphs and compare them. It will appear that the frequency drops down to
nearly zero very quickly in both cases.

e However, recall from lecture that what distinguishes a power law from an exponential function is that
it has a “fat tail.” Let’s try zooming in on the tail to see this. Again, plot the empirical frequencies,
but this time begin at rank(w) = 300. Do you see the fat tail now?

e An even better way to do this is to plot the log-log graphs (i.e., plot log(freq(w)) on the y-axis and
log(rank(w)) on the x-axis). Do so for each language and show the results. If the frequencies obey a
power law, the log-log plot will be linear, and the negative of the slope will give the value of k in the
Zipf equation above. Do the plots look linear?

Question 3

Finally, let’s estimate the exponent k for each language. To do so, run a least-squares linear regression on
each language’s log-log plot and report the negative of the resulting slopes. Compute and report the mean
and standard deviation of the slopes over the 11 languages. How close are the estimated values of & to the
classical Zipf law (in which £ = 1)? Are the results similar across languages? How do the cross-language
differences in k& compare to the cross-language differences in morphological complexity that we observed
in Question 1?

Now, let’s see how much our estimates of k were skewed by differences in morphological complexity. To
do so, recompute the log-log data but this time use lemma frequency instead of word frequency (no need
to report all the new graphs). Re-estimate the values of k using linear regression, and report the new mean
and standard deviation. Are the new values closer to the classical Zip law of £k = 1? Do the languages now
appear to have more similar frequency distributions?



