
Presented at the Fourth International Symposium on Recent Advances in Intrusion Detection (RAID ‘01).

Evaluating Software Sensors for Actively Profiling
Windows 2000 Computer Users

Jude Shavlik

Computer Sciences Department
University of Wisconsin – Madison

Mark Shavlik
Michael Fahland

Shavlik Technologies
White Bear Lake, MN

{jude, mark, mikef}@shavlik.com

Abstract
We report on a new, on-going intrusion-detection project that empirically investigates the
usefulness of "stealing" a small amount of CPU cycles (1%), main memory (16MB), and disk
memory (100 MB) in order to continually gather and analyze dozens of fine-grained system
measurements, such as network traffic, identity of the current programs executing, and the user’s
typing speed. The underlying scientific hypothesis is that a properly chosen set of measurements
can provide a "fingerprint" that is unique to each user. Hence, such measurements could serve to
help distinguish appropriate use of a given computer from misuse, especially by insiders.

Introduction
In an increasingly computerized and networked world, it is crucial to develop defenses against
malicious insider activity in information systems. One promising approach is to develop
computer algorithms that detect insiders who are inappropriately intruding on the computers of
others. However, intrusion detection is a difficult problem to solve [DARPA99]. System
performance cannot be adversely effected, false positives must be minimized, and intrusions
must be caught (i.e., false negatives must be very low). The current state of the art in intrusion-
detection systems is not good; false positives are much too high and successful detection is
unfortunately too rare.

Intrusion-detection systems (IDS) can either (a) look for known attack patterns or (b) be
“adaptive software” that is smart enough to monitor and learn how the system is supposed to
work under normal operation versus how it works when misuse is occurring [LUNT93]. We are
addressing approach (b). Specifically, we are empirically determining which sets of fine-grained
system measurements are the most effective at distinguishing usage by the assigned user of a
given computer from misusage by other “insiders” [DARPA99; NEUMANN99] within an
organization.

Building on our expertise in Windows 2000 computer security and machine learning, we have
written and are currently extending a prototype anomaly-detection system that creates statistical
profiles of the normal usage for a given computer running Windows 2000. Significant
deviations from normal behavior indicate that an intrusion is likely occurring. For example, if the
probability that a specific computer receives 10 Mbytes/sec during evenings is measured to be

RAID 2001

very low, then when our monitoring program detects such a high transfer rate during evening
hours, it will suggest that an intrusion may be occurring.

This ability to create statistical models of individual computer’s normal usage means that each
computer’s unique characteristics serve a protective role. Similar to how each person’s
antibodies can distinguish one’s own cells from invading organisms, these statistical-profile
programs can, as they gather data during the normal operation of a computer, learn to distinguish
“self” behavior from “foreign” behavior. For instance, some people heavily use the mouse when
interacting with their computer’s interface, while others strongly prefer to use special keyboard
characters like the control key. Should someone leave their computer unattended and someone
else try to inappropriately access their files, the individual differences between people’s
computer usage will mean that our statistical-modeling program will quickly recognize this
illegal access. (Our approach can also be used to detect abnormal behavior in computers
operating as HTTP, FTP, and email servers. However, this project currently focuses on
computers used by humans.)

In addition to determining informative, real-time measurements indicative of insider misuse, a
secondary objective is to determine an effective method for combining the multiple, individual
measurements into a single, composite score whose value is indicative of the current threat of
insider misuse. A third objective is to determine how best to “condition,” in the formal
probabilistic sense, individual measurements on other measured properties. The final objective
is to empirical compare Bayesian networks, neural networks, and decision trees on the task of
using the measured properties to learn accurate formal models for identifying which person is
currently using a given computer.

The ability to detect insider misuse is being evaluated by collecting data from multiple users,
creating user profiles by analyzing “training” subsets of this data, and then experimentally
judging the accuracy of applying these profiles to identify the user that produced each sample set
of “testing” measurements. That is, we empirically judge the ability of induced user profiles to
recognize which specific user produced a given set of measurements. We are measuring the
tradeoff between the recognition and false-positives rates under various experimental conditions.
The key scientific hypothesis being investigated is whether or not creating statistical models of
user behavior can be used to accurately detect insider abuse. We are focusing our algorithmic
development on methods that produce very low false-alarm rates, since a major reason system
administrators ignore IDS systems is that they produce too many false alarms.

Scientific questions being addressed in this project include the following:
• Which system and user measurements are the most informative for recognizing appropriate

use of a computer running Windows 2000?
• What is the best method for combining multiple, individual measurements into a single score

indicative of the current insider threat?
• What are the expected true positive (insider misuse detected) and false positive (“false

alarms”) rates? What does the “tradeoff curve” between true and false positives look like?

Shavlik, Shavlik, & Fahland RAID 2001

• What is the performance of Bayesian networks, neural networks, and decision trees on this
task of learning predictive models from collected statistics?

• What is the computational burden of using gathered statistics to monitor for insider misuse?

We are currently undertaking an extensive empirical study to scientifically answer these
questions, using real users (ten employees at Shavlik Technologies) in the Windows 2000
environment and the well-established experimental methodology of the machine-learning
community.

For each measured system property, we are developing algorithms that choose the three best
other measurements with which to condition the probability distribution for the given
measurement (e.g., CPU cycles used by one’s web browser as a function of overall CPU load,
one’s typing speed, and the time of day). We wish to also determine which subsets of all the
measurements are the most effective. It is likely that having too many measurements will make
it harder to accurately find the “insider intrusion” signal. In addition, reducing the number of
system properties measured will lower the CPU demands of the intrusion-detection system.
Finally, we aim to determine the best method for combining (“fusing”) all the individual
measurements into one composite score, whose value represents the likelihood of an intrusion.

Some of the Windows 2000 Properties We Measure
Our existing program collects real-time information from the following Windows 2000 sources:

• Performance Monitor (Perfmon) data,
• Event Log monitoring, and
• User and computer state information, such as typing rates, network traffic levels,

programs running, and specific system API’s invoked.

Current commercial IDS tools (e. g., from ISS and Kane) monitor either IP packets or log files,
or some combination. Both provide useful information and are key to any IDS system. Our
approach is unique in that it does not depend solely on network traffic levels, which can be
inaccurate during busy times, nor does it depend solely on Event Logs, which can have a time
lag and which do not contain all data-critical IDS information. For example, audit logs may have
data that is too old to do real-time detection. (And system administrators may turn off event
logging to save on performance or disk space without realizing they are severely hindering IDS
systems.) Instead, we focus on effectively utilizing the rich sources of information made
available by an advanced operating system such as Windows 2000, a topic for which we have
some prior experience in a different context [GOECKS2000].

The Windows 2000 Perfmon utility contains a number of very useful security items that are often
overlooked. These items can be accessed quickly. Categories that can be looked at include
Network Performance, Disk Activity, Process Performance, Kernel Usage, and many others.

Event Log monitoring is done on key NT Registry locations, key system files, login
abnormalities, and suspect account changes. In addition, invalid accesses to key files and to
registry entries are monitored.

Shavlik, Shavlik, & Fahland RAID 2001

Using Window 2000’s “hooks” facility, we also intercept keystrokes [MONROSE97] and mouse
events. This allows our IDS to gather statistics on typical usage patterns by each desktop-
computer’s user. We collect statistics on such things as typing speed; usage (if any) of the
numeric keypad; usage of function, cursor, and control keys; and speed of mouse movement.
We hypothesize that all of this keystroke and mouse-usage information allows us to more
accurately recognize cases where someone other than the “owner” of a desktop computer might
be using it, for example if a secretary whose computer is in an open area leaves for lunch or the
day without securing his or her computer.

Other items watched include the running of Windows 2000 Services and common programs,
such as web browsers, Microsoft Office, editors, and program development tools.

Lastly, we monitor the calling of kernel security functions such as those that list the current user
accounts. The calling of such functions is it a highly suspicious activity as it is common for
hackers to do this as part of their attacks.

Some Preliminary Results
Our initial efforts have focused on the data concerning user keystrokes. We briefly report some
preliminary results here; a future report will more precisely and completely describe our
experimental studies. In our first set of experiments we are using ten experimental subjects, who
are all employees of Shavlik Technologies performing their normal everyday activities. We have
implemented an experimental approach that works as follows:

1. Use 50,000 keystrokes for each user to train a separate statistical model for each user. (On

average, users type 5000 keystrokes per working day, so this is about two weeks of activity.)

2. Use another 50,000 keystrokes to tune some parameters (explained further below), separately

for each user. The tuning data is collected from non-overlapping days than those used to
create the training data. (Similarly, the testing data described below also comes from days
separate from those where the training and tuning data were collected.)

3. Use a third set of 30,000 keystrokes as a test set. It is important for proper experimental

methodology that one uses separate data to tune parameter and to estimate future accuracy.
“Tuning on the test set” will usually lead to overestimates of future accuracy.

For each person’s test set, we simulate this person typing on all ten machines. We measure
the fraction of times this typing is viewed as not coming from the owner of this machine (i.e.,
an intrusion was flagged). A flagged intrusion when a person is typing on their own machine
is called a false positive (i.e., a false alarm). Conversely, a flagged intrusion when person X
is typing on person Y’s machine is called a true positive (i.e, a correct alarm). Our goal is to
have a high correct-alarm rate and an very low false-alarm rate, since system administrators
will soon ignore an intrusion-detection system that generates too many false alarms.

Shavlik, Shavlik, & Fahland RAID 2001

The basic algorithm we are currently investigating works as follows:

1. Compute the probability of the last three keystrokes (including the time taken between
keystrokes and the time each key was held down before being released), given the model
learned for the given machine’s normal user.

2. If this probability is lower than some threshold, T, then "mark” this keystroke.
3. If there are more than N marks in the last W keystrokes, raise an alarm.

Our algorithm automatically chooses the T and N settings for each person and for each W, based
on optimizing accuracy on the tuning data set that was mentioned above, while holding the rate
of false alarms to less than one per work day (actually, less than one per 5000 keystrokes, since
that is the average number of keystrokes our users typed per day).

Our current accuracy results on the test data set, as a function of W, appear below. When
measuring accuracies on the testing data, we use non-overlapping windows (of W keystrokes) in
order to reduce the correlation between successive samples.

Window Width (W) Percentage of Intrusions Detected with a
False Alarm Rate of Less Than 1 Per Work Day

 10 17.3%
 20 30.4
 40 53.9
 80 71.2

 160 86.4
 320 94.6
 640 97.4

We are encouraged that we can recognize a sizable fraction of intrusions (defined as user X
typing on user Y’s computer) which such a low false-alarm rate, especially since we are currently
only using in our experiments one type (i.e., keystrokes) of the many types of data we are
collecting. Of course an intruder can do a lot of damage in, say, 160 keystrokes, but we believe
that detecting with large windows can still be useful; it certainly is better than looking at
yesterday’s log files.

Some Related Work
Previous empirical studies have investigated the value of creating intrusion-detection systems by
monitoring properties of computer systems, an idea that goes back at least 20 years
[ANDERSON80]. However, prior work has focused on Unix systems, whereas over 90% of the
world’s computers run some variant of Microsoft Windows. In addition, prior studies have not
looked at as large a collection of system measurements as we are using. For example, Warrender
et al. (1999), Ghosh et al. (1999), and Lane and Brodley (1998) only look at Unix system calls,
whereas Lee et al. (1999) only look at audit data, mainly from the TCP program.

Shavlik, Shavlik, & Fahland RAID 2001

Summary
To recap, the basic plan of our project is as follows:

1. Measure over 300 properties of Windows 2000 usage for various users and for various times

of the day. Save these statistics, labeled by the ID of the user who produced them and by the
time of day.

2. Run extensive empirical studies that use separate training, tuning, and testing sets:

• For each measured system property, choose the three best others with which to condition
the probability distribution for the give measurement (e.g., CPU cycles used by the FTP
program as a function of overall CPU load, user’s typing speed, and the time of day).

• Determine which subsets of all the measurements are the most effective. It is likely that
having too many measurements will make it harder to accurately find the “insider
intrusion” signal. In addition, reducing the number of system properties measured will
reduce the CPU demands of the IDS.

• Determine the best method for combining (“fusing”) all the individual measurements into
one composite score, whose value represents the likelihood of an intrusion.

Our initial studies have only used measurements of users’ keystrokes, including the identity of
the key pressed, the time between successive key presses, and the duration between pressing and
releasing each key. Using only these measurements, we have obtained encouraging results and
currently are extending the set of Windows 2000 measurements used in our algorithms and
experimental studies.

Acknowledgements
This project is supported by DARPA Award F33615-00-C-1745. Any opinions expressed in this
article reflect those of the authors and are not necessarily those of the US Government.

Shavlik, Shavlik, & Fahland RAID 2001

References

[ANDERSON80] J. Anderson, Computer Security Threat Monitoring and Surveillance, J. P. Anderson

Company Technical Report, Fort Washington, PA, 1980.

[DARPA99] Research and Development Initiatives Focused on Preventing, Detecting, and

Responding to Insider Misuse of Critical Defense Information Systems, Workshop
Report, October 1999 (http://www2.csl.sri.com/insider-misuse/).

[GOECKS2000] J. Goecks & J. Shavlik, Automatically Labeling Web Pages Based on Normal User

Actions. Proc. of the Intl. Conf. on Intelligent User Interfaces, New Orleans
(http://www.cs.wisc.edu/~shavlik/abstracts/goecks-iui2000.doc.abstract.html).

[GOSH99] A. Ghosh, A. Schwartzbard, & M. Schatz, Learning Program Behavior Profiles for

Intrusion Detection, USENIX Workshop on Intrusion Detection & Network
Monitoring, April 1999 (ftp://ftp.rstcorp.com/pub/papers/usenix_id99.ps).

[LANE98] T. Lane & C. Brodley, Approaches to Online Learning and Concept Drift for User

Identification in Computer Security, 4th Intl. Conf. on Knowledge Discovery and
Data Mining pp 259-263, 1998, New York
(http://mow.ecn.purdue.edu/~brodley/my-papers/terran-kdd98.ps).

[LEE99] W. Lee, S.J. Stolfo, and K. Mok, A Data Mining Framework for Building Intrusion

Detection Models, Proc. IEEE Symp. on Security and Privacy, 1999
(http://www.cs.columbia.edu/~sal/hpapers/ieee99.ps.gz).

[LUNT93] T. Lunt, A Survey of Intrusion Detection Techniques, Computers and Security 12:4,

pp. 405-418, 1993.

[MONROSE97] F. Monrose and A. Rubin, Authentication via Keystroke Dynamics, 4th Annual

Conference on Computer and Communications Security
(http://avirubin.com/keystroke.ps).

[NEUMANN99] P. Neumann, The Challenges of Insider Misuse, SRI Computer Science Lab

Technical Report, 1999 (http://www.csl.sri.com/neumann/pgn-misuse.html).

[WARRENDER99] C. Warrender, S. Forrest, B. Pearlmutter. Detecting Intrusions using System Calls:

Alternative Data Models. IEEE Symp. on Security and Privacy, pp. 133-145, 1999
(ftp://ftp.cs.unm.edu/pub/forrest/oakland-with-cite.pdf).

Shavlik, Shavlik, & Fahland RAID 2001

http://www2.csl.sri.com/insider-misuse/
http://www.cs.wisc.edu/~shavlik/abstracts/goecks-iui2000.doc.abstract.html
ftp://ftp.rstcorp.com/pub/papers/usenix_id99.ps
http://mow.ecn.purdue.edu/~brodley/my-papers/terran-kdd98.ps
http://www.cs.columbia.edu/~sal/hpapers/ieee99.ps.gz
http://avirubin.com/keystroke.ps
http:/www.csl.sri.com/neumann/pgn-misuse.html
ftp://ftp.cs.unm.edu/pub/forrest/oakland-with-cite.pdf

	Window Width (W) Percentage of Intrusions Detected with a
	False Alarm Rate of Less Than 1 Per Work Day

