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Abstract

Many scientific and industrial problems can be better understood by learning from sam-
ples of the task at hand. For this reason, the machine learning and statistics communities
devote considerable research effort on generating inductive-learning algorithms that try
to learn the true “concept” of a task from a set of its examples. Often times, however, one
has additional resources readily available, but largely unused, that can improve the con-
cept that these learning algorithms generate. These resources include available computer
cycles, as well as prior knowledge describing what is currently known about the domain.
Effective utilization of available computer time is important since for most domains an
expert is willing to wait for weeks, or even months, if a learning system can produce an
improved concept. Using prior knowledge is important since it can contain information
not present in the current set of training examples.

In this thesis, I present three “anytime” approaches to connectionist theory refine-
ment. Briefly, these approaches start by translating a set of rules describing what is cur-
rently known about the domain into a neural network, thus generating a knowledge-based
neural network (KNN). My approaches then utilize available computer time to improve
this KNN by continually refining its weights and topology. My first method, TopGen,
searches for good “local” refinements to the KNN topology. It does this by adding nodes
to the KNN in a manner analogous to symbolically adding rules and conjuncts to an
incorrect rule base. My next approach, REGENT, uses genetic algorithms to find better
“global” changes to this topology. REGENT proceeds by using (a) the domain-specific
rules to help create the initial population of KNNs and (b) crossover and mutation op-
erators specifically designed for KNNs. My final algorithm, ADDEMUP, searches for an
“ensemble” of KNNs that work together to produce an effective composite prediction.
ADDEMUP works by using genetic algorithms to continually create new networks, keeping
the set of networks that are as accurate as possible while disagreeing with each other as
much as possible. Empirical results show that these algorithms successfully achieve each
of their respective goals.
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Chapter 1

Introduction

Many scientific and industrial problems can be better understood by learning from sam-
ples of the task at hand. Thus the machine learning and statistics communities devote
considerable research effort in generating inductive-learning algorithms that try to learn
the true “concept” of a task from a set of its examples (Shavlik & Dietterich, 1990;
Weiss & Kulikowski, 1990). Often, however, one has additional resources readily avail-
able that can improve the concept that these learning algorithms generate. These re-
sources include available computer cycles, as well as prior knowledge describing what is
currently known about the domain. The goal of my thesis revolves around developing
“connectionist” learning systems that are able to effectively use available data, back-
ground knowledge, and computer cycles to generate the most accurate concept possible.

The following example illustrates the importance of this goal. Imagine you are a
geneticist who is interested in finding where genes occur in DNA sequences. Laboratories
throughout the world are producing large volumes of sequenced DNA data (Watson,
1990); however, direct laboratory analysis of this data is difficult and expensive, and you
are therefore finding it impossible to keep up. To help you with this predicament, you
attempt to create an algorithm that can simply look at a DNA sequence and find, with
high certainty, where genes are likely to occur in the sequence.

To generate such an algorithm, you might first try gathering examples of gene and



non-gene sequences from previously studied DNA. You could then apply an inductive-
learning algorithm (e.g., backpropagation, Rumelhart et al., 1986, or C4.5, Quinlan,
1993) on these examples, producing a concept that predicts which ones encode genes.
You would quickly realize that given both the complexity of the problem and the limited
amount of data, the quality of the concepts that typical inductive learners generate are
not correct enough to be fully helpful.

Not to be deterred, you also realize that in addition to the set of data, you have an
expert’s knowledge of what is currently believed to be the important subsequences found
in most genes. You may have tried directly encoding this knowledge in the past, as a
traditional program; however, this knowledge is just not yet correct enough to be useful
by itself. Nonetheless, this partially correct knowledge is a good first approximation and,
as will be seen, can in many cases improve the concept produced by inductive-learning
systems.

By priming the inductive-learning algorithm with your current knowledge, you would
find that you obtained a better concept than before, though still not as good as you
desire. One thing you notice however, is that the learning systems usually generate one
solution (i.e., one concept) then stop. This is disturbing to you, since you work for one
of the larger labs in the world, and have access to a tremendous amount of computer
power. Not only are there a lot of computer cycles available on your site, but your lab
has access to many other computers throughout the world as well. What you desire then,
is an algorithm that can continually improve the quality of its solution as a function of
available computer time. After all, not only would an improved solution make your job
more productive, it would also produce a better understanding of the function of DNA,
which is useful from a scientific point of view,

My thesis focus is to produce learning algorithms that are able to capitalize on all
available resources, not just training data, when inducing their concepts. The particular

type of learning algorithms I focus on are feed-forward neural networks (Hertz et al.,



1991). Neural networks are a general approach that has been applied to a wide vari-
ety of real-world problems (Sejnowski & Rosenberg, 1987; Uberbacher & Mural, 1991;
Pomerleau, 1991; Rost & Sander, 1993) and empirical studies have shown that neu-
ral networks generalize to novel examples as well as, or in some cases better than,
many other common learning algorithms (Atlas et al., 1989; Fisher & McKusick, 1989;
Mooney et al., 1989; Tsoi & Pearson, 1990). Before giving my thesis statement and gen-
eral framework for my algorithms, however, I present a brief overview of learning from

training data, using background knowledge, and exploiting available computer power.

1.1 Using Training Data: Inductive Learning

A system that learns from a set of labeled examples is called an inductive learner (alter-
nately, a supervised, empirical, or similarity-based learner). The output for each labeled
example is provided by a teacher, and the set of examples given to a learner is called the
training set. The task of inductive learning is to generate from the training set a concept
description that correctly predicts the output of all future examples, not just those from
the training set. (I henceforth use the term generalization to mean classification accuracy
on examples not seen during training).

This type of learning encompasses many applications, such as our previously described
task of determining if a gene lies within a particular DNA sequence. In this case, the
representation of each example is the “window” of DNA under consideration. Real-valued
inputs, such as ones that represent the three-dimensional structure of the sequence, may
also be given. The output in this case is whether or not a gene occurs in this region of
DNA.

Several inductive-learning algorithms have been previously studied (Mitchell, 1982;
Breiman et al., 1984; Rumelhart et al., 1986; Quinlan, 1986). These algorithms differ both
in their concept-representation language, and in their method (or bias) of constructing

a concept within this language. These differences are important since they determine



which concepts a classifier will induce. Experimental methods, based on setting aside
a “test set” of instances, judge the generalization performance of the inductive learner
(Weiss & Kulikowski, 1990, Chapter2). The instances in the test set are not used during
the training process, but only to estimate the learner’s predictive accuracy. For further
reading, see Michalski (1983), Shavlik and Dietterich (1990), or Weiss and Kulikowski
(1990).

1.2 Using Background Knowledge: Theory Refine-
ment

An alternative to the inductive learning paradigm is to build a concept not from a set of
examples, but by querying experts in the field and directly assembling a set of rules that
solve the task (i.e., build an ezpert system, Waterman, 1986). A problem with building
expert systems is that the rules derived from the experts (which, following the convention
in the machine learning literature, I refer to as a domain theory from now on) tend to
be only approximately correct. Thus, while the domain theory is usually a good first
approximation of the concept to be learned, inaccuracies are frequently exposed during
empirical testing. Theory-refinement systems (Ginsberg, 1990; Pazzani & Kibler, 1992;
Ourston & Mooney, 1994; Towell & Shavlik, 1994) are systems that go about revising a
domain theory on the basis of a collection of examples. These systems try to improve
the theory by making repairs that minimize changes to the theory, while making it
consistent with the training data. Changes to the initial domain theory should be kept
to a minimum because the domain theory presumably contains useful information, even
if it is not completely correct.

These hybrid learning systems are designed to learn from both theory and data, and
empirical tests have shown them to achieve high generalization with significantly fewer
examples than purely inductive-learning techniques (Pazzani & Kibler, 1992; Ourston &

Mooney, 1994; Towell & Shavlik, 1994). Thus an ideal inductive-learning system must be



able to incorporate any background knowledge that is available in the form of a domain
theory to improve its ability to generalize.

Several theory-refinement systems use neural networks as their inductive-learning
component. These knowledge-based connectionist approaches have been shown to fre-
quently generalize better than many other machine learning systems (Fu, 1989; Towell,
1991; Tresp et al., 1992; Lacher et al., 1992; Mahoney & Mooney, 1994). These systems
proceed by first translating the domain theory directly into a neural network, thereby
determining the network’s topology and initial weight settings. They then refine these
reformulated rules using standard neural-learning techniques such as backpropagation
(Rumelhart et al., 1986).

One of the most successful of these approaches is the KBANN system (Towell, 1991;
Towell & Shavlik, 1994). KBANN is designed for domain theories represented by Prolog-
style, propositional rules. KBANN, and other connectionist theory-refinement systems
that do not alter their network topologies, suffer when given impoverished domain theories
— ones that are missing rules needed to adequately learn the true concept (Opitz &
Shavlik, 1993; Towell & Shavlik, 1994). I cover KBANN and the other theory-refinement
systems in more detail in Section 2.2.1. The main focus of the new algorithms I present in
Chapters 3, 4, and 5 1s how to refine the topology of the knowledge-based neural networks

produced by KBANN.

1.3 Using Available Computer Power: Anytime Learning

As was the case with our hypothetical geneticist above, many domain experts are willing
to wait for weeks, or even months, if a learning system can produce an improved theory.
This, coupled with the fact that computing power is rapidly growing, illustrates the
importance of developing “anytime” learners that are able to trade off the expense of large
numbers of computing cycles for gains in predictive accuracy. Dean and Boddy (1988)

defined the criteria for an anytime algorithm to be: (a) the algorithm can be suspended



and then resumed with minimal overhead, (b) the algorithm can be stopped at any time
and return an answer, and (c) the algorithm must return answers that improve over
time. While these criteria were created for planning and scheduling algorithms, I believe
machine learning researchers should create anytime algorithms for inductive learning as
well.} Such learning algorithms should produce a good concept quickly, then continue to
search the space of available concepts, reporting the new “best” concept whenever one
is found.

Most standard inductive learners such as backpropagation (Rumelhart et al., 1986)
and ID3 (Quinlan, 1986), however, are unable to continually improve their answers (at
least until they receive additional training examples). In fact, if run too long, these
algorithms tend to “overfit” the training set (Holder, 1991). Overfitting occurs when the
learning algorithm produces a concept that captures too much information about the
training examples, and not enough about the general characteristics of the domain as a
whole. While these concepts do a great job of classifying the training instances, they do
a poor job of generalizing to new examples — our ultimate measure of success. To help
illustrate this point, consider the typical regression case shown in Figure 1. Here, fitting
noisy data with a high-degree polynomial is likely to lead to poor generalization. To
avoid overfitting, many algorithms employ some form of Occam’s Razor (Blumer et al.,
1987) by preferring simple descriptions over complex ones, even if the simple one does
not fit the training set as accurately.

The framework I use for making my algorithms anytime learners is quite simple. I
spend my computer time considering many different possible concept descriptions, scoring
each possibility, and always keeping the description (or set of descriptions) that score best.
My framework is anytime with respect to the scoring function. Assuming the scoring
function is accurate, then as long as I am considering a wide range of “good” possibilities,
the quality of my final concept should continually improve; however, since the scoring

function is only an approximate measure of generalization, there is no guarantee that

My use of the term anytime learning differs from that of Grefenstette and Ramsey (1992); they use
it to mean continuous learning in a changing environment.
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Figure 1: This is a classical regression example where a smooth function (the solid curve)
that does not fit all of the noisy data points (the x’s) is probably a better predictor than
a high-degree, polynomial (the dashed curve).

generalization will not decrease over time. The detailed description of how I apply this

framework to neural networks is presented next.

1.4 Thesis Statement

As motivated in the previous three sections, an ideal inductive-learning algorithm should
be able to prime its learning with what is currently known about the domain, and then
be able to continually improve its concept description over time. Figure 2 illustrates the
framework of the three new learning algorithms I introduce in this thesis.

My algorithms start by having the KBANN algorithm translate the domain theory
directly into a neural network. Given the proven effectiveness of this method, this gives
a good initial guess for an appropriate network topology and weight settings. I then
train this network with standard learning techniques (Rumelhart et al., 1986) and score

it according to its estimated generalization ability. I set aside a walidation set? for use

2A walidation set is a subset of the training instances that is set aside before training. The validation
set is not seen by the learning algorithm during training, but is instead used to judge generalization
performance after training. The validation set is distinct from a test set often used by machine learning
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Figure 2: Framework for the learning algorithms I introduce in this thesis.

by my scoring function (future scoring functions I plan to investigate are discussed in
Section 7.2.1). By using neural networks, my algorithms are incremental in that they can
revise their existing concept as new data arrives, rather than having to restart training
from the beginning.

As stated above, while KBANN gives a good initial guess for an appropriate network
topology, this network needs to be refined to ensure appropriate corrections to the do-
main theory can be made. My algorithms continually create new networks by altering
or combining previously trained networks. The current best network (or set of networks)
is always output to allow an anytime approach to learning. While many authors have
addressed creating and training knowledge-based neural networks (KNNs), few have ad-
dressed the highlighted portion of Figure 2 — how should we best search the space of
possible KNN topologies. This is the major focus of this thesis.

The three algorithms I present in this thesis are created with this framework in mind
and mainly differ in their approach of searching through the space of possible KNN topolo-
gies. My first algorithm, TopGen (Topology Generator), modifies KBANN’s topology by

continually adding new nodes to the network in a manner analogous to adding rules and

researchers; the validation set is part of the training set.



conjuncts to a symbolic rule base. My second approach, REGENT (REfining, with Ge-
netic Evolution, Network Topologies), considers a broader range of network topologies
than TopGen. It does this by translating the domain theory into a “population” of net-
works, then uses genetic algorithms (Holland, 1975; Goldberg, 1989) to continually create
new networks. My final algorithm, ADDEMUP (Accurate anD Diverse Ensemble-Maker
giving United Predictions), searches for a set of accurate and diverse KNNs; to produce
an overall prediction that is the weighted combination of the prediction of each network
in the set. All of these algorithms address the following, which is the main statement
made by this dissertation:

Thesis: An effective learning system must be able to take advantage of all available
resources to improve the quality of the concept it generates. These resources include
training data, available computer time, and background knowledge describing what is
currently known about the domain. An ideal learning system, then, should be able prime
its learning with the background rules, and be able to continually itmprove its concept over

time using the set of training data.

1.5 Thesis Overview

The rest of this dissertation motivates, describes, and empirically tests the three new
connectionist learning systems (TopGen, REGENT, and ADDEMUP) that I propose in

this thesis. The remaining chapters are organized as follows:

e In Chapter 2, I start by giving an overview of feed-forward neural networks. In
particular, I focus on current techniques for training these networks, as well as the
importance of finding a good topology. This is followed by an explanation of how
background knowledge can be incorporated into neural networks. Specifically, I

concentrate on the KBANN system, describing its strengths and weaknesses.

e [ present my first approach, TopGen, in Chapter 3. TopGen heuristically searches
the possible expansions of a KNN, guided by the domain theory, the network, and
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the training data. It does this by dynamically adding hidden nodes to the neural
representation of the domain theory in a manner analogous to adding rules and
conjuncts to the domain theory. Experiments indicate that TopGen is able to
heuristically find effective places to add nodes to the KNN and verify that new

nodes must be added in an intelligent manner.

Chapter 4 presents my second approach, REGENT, which uses genetic algorithms
to broaden the type of networks seen during its search. It does this by using (a) the
domain theory to help create an initial population and (b) crossover and mutation
operators specifically designed for KNNs. Experiments indicate that REGENT is

able to significantly increase generalization compared to KBANN and TopGen.

I present my last approach, ADDEMUP, in Chapter 5. This algorithm works by
using genetic algorithms to directly search for an accurate and diverse set of trained
KNNs to be used in a neural-network ensemble — an ensemble is a set of separately
trained networks whose predictions are combined through some weighting scheme;
such approaches have proven effective at substantially increasing generalization
(Hansen & Salamon, 1990; Perrone, 1992; Wolpert, 1992). Experiments show that
ADDEMUP is able to effectively incorporate a domain theory to help generate a set

of networks that are more accurate than several existing approaches.

Chapter 6 reviews additional related work not covered in previous chapters, while
Chapter 7 presents a summary of the contributions of my work, as well as limitations
and future research to the framework of this thesis as a whole. Limitations and
future work specific to each learning algorithm are presented at the end of that

algorithm’s chapter.

Appendix A presents the problem domains that I used to test my algorithms.
These domains consist of an artificial chess-related domain, four real-world Human-
Genome Project domains, and finally another real-world domain, from NYNEX

Corporation, for diagnosing faults in a telephone loop.



Chapter 2

What is a Knowledge-Based Neural

Network?

The learning method I concentrate on in this thesis is that of neural networks (Hertz
et al., 1991). Specifically, my algorithms translate a given domain theory directly into
a neural network, then continually improve this knowledge-based network over time. Be-
fore presenting my three approaches, I give a high-level overview of neural networks,
including what they are, how they are trained, and important issues pertaining to
their generalization performance. I then give a brief history of “connectionist” theory-
refinement systems. In particular, I concentrate on the KBANN system (Towell, 1991;
Towell & Shavlik, 1994), giving an brief overview of this algorithm and its strengths,

before illustrating one of its weaknesses.

2.1 Introduction to Artificial Neural Networks

A neural network consists of nodes interconnected by weighted links. In this thesis,
I focus only on feed-forward neural networks — networks that propagate a set of input
signals, representing an example’s feature values, forward into a set of output signals that

serve as the network’s prediction. Figure 3 shows an example of such a network. The

11
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Figure 3: A “standard” feed-forward neural network.

network’s connectivity may be arbitrary and there need not be the notion of a “layered”
network, but there cannot be cycles in a feed-forward network. Nodes that are neither
input nor output nodes are called hidden nodes (since they are not seen by the outside
environment); their sole function is to help map input values to output values.

Signals are propagated forward through a network by multiplying the output of a
node (called the node’s activation) by the weight of outgoing links. These signals serve
as part of the input to recipient nodes; more specifically, the input of a node is the sum
of the incoming signals plus a learnable bias term:

neti = Z Wi G4 + 92 y (1)
J

where net; is the input to node %, w;; is the arc weight from node j to node %, a; is
the activation of node j, and 6; is the “bias” term for node i. The bias is similar
in function to a threshold, and can be learned just like any other weight. Each non-
input node maps its real-valued input (net;) to a real-valued activation (a;) using a
function called the activation function. Most network training techniques require that
the derivative of the activation function exist. Also, this activation function cannot
be just a linear function, since this type of function can only model “linear-separable”

concepts.! The most commonly used nonlinear and differentiable activation function is

LA linear-separable concept in an n dimensional input space is one where a single n — 1 dimensional
hyperplane can separate the positive instances from the negative instances.
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the sigmoid function:
1

aQ; = —————.
v 1 + e—neti

(2)
This activation function “squashes” a node’s input to an activation value that is between
0 and 1.

Once we decide on an activation function, the topology of a network (i.e., the connec-
tivity of the nodes) and the weight values on these connections determine the function
of the network. Many authors have developed learning rules for finding an appropriate
set of weight values for a fixed topology. While I present a brief overview of the most

relevant of these learning rules next, one may refer to Rumelhart et al. (1986), Hertz et

al. (1991), or Rumelhart et al. (1995) for further reading.

2.1.1 Training a Neural Network

Most neural-network learning rules are gradient methods that work by first propagating
a training example’s inputs forward through the network, then comparing the activation
of the output nodes with the corresponding “target” values of the training example. The
error between the two is then propagated back through the network, and the weights in
the network are changed to reduce this error. Figure 4 shows an example of this process.

The most commonly used learning rule is backpropagation, which is the one I use in
this thesis. It has been discovered, then re-discovered, several times (Bryson & Ho, 1969;
Werbos, 1974; Rumelhart et al., 1986). Backpropagation changes weights in the network

according to the derivative of an “error function,” E, with respect to each weight:

oF oF onet; <8E da; ) Onet; )

Ow;; - onet; % Ow;; ~ \ Oag; % onet; Ow;;
The first term, 0F/da;, depends of the error function E (explained below) and can be
directly calculated for output nodes; however, since there is no specific target activation
for hidden nodes, the error for these nodes must be determined recursively in terms of

the error of the nodes to which it directly connects (0E/0net;) and the weights of those

connections. Thus this error is “back propagated” in the following fashion for hidden
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Figure 4: Training a neural network. The network’s input nodes are set to the corre-
sponding values of the training instance (1, 0, 1 in this case). These values are propagated
forward through the network, creating an activation of 0.8 at the output node. This acti-
vation is compared to the target value of 1, and the error between these two is propagated
back through the network. Finally, the weights in the network are changed to reduce this

error.
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node i:
oF Z oF % 8ak % (4)
= — X — Wi | -
0a; p Oa,  Onety, k
Because we wish to reduce error, the magnitude of the actual weight change is:
E
Aw”(t) =-—nX + a X Aw”(t — 1), (5)
6w1~j

where the scalar 7 is the learning rate, and o x Aw;;(t — 1) is the momentum term
(Rumelhart et al., 1986). The momentum term, similar to that of conjugate gradient’s
(Fletcher, 1987, Chapter 4), helps prevent the updates from oscillating wildly, encourag-
ing changes that are made in the direction of the average downhill force. The momentum
parameter, o, should be between 0 and 1; I use the commonly chosen value of 0.9.

One can view backpropagation as a gradient method in “weight” space — the space
spanned by the free parameters in the networks, namely its weights and biases. In online
learning, the error for a single training example is decreased at each step; however, there
is no guarantee that the error of the overall objective function on all training examples
also decreases during this step. Thus online backpropagation is not true gradient descent,
rather it should be viewed as a nonmonotone perturbed gradient algorithm (Mangasarian
& Solodov, 1994). Batch learning, on the other hand, only updates the weights after all
training examples have been presented and can thus be viewed as pure gradient descent;
however, online learning has proven to be a more accurate training method (LeCun &
Bengio, 1995). Also, Mangasarian and Solodov (1994) proved that, under certain natural

assumptions, online backpropagation converges.

Error Functions

Naturally, the 0F/0a; term for the output nodes depends on the error function, E, being
minimized. Our task now is to find the appropriate error function for the problem we
are trying to solve. To develop the basis for an appropriate error function, I follow the
discussion in Rumelhart et al. (1995). I start by assuming that our goal is to find the

weights that are the most probable explanation of our data. One can express this goal
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in the form of Bayes’ Theorem:

P(DIN)P(N)

P(NID) = =55 ©

where D represents the observed data, and N represents the network with specified
weights and biases. We then take the log of this probability, since sums are easier to
work with than products and we can maximize a probability by maximizing its log.

Taking the log of Equation 6 produces:
In P(N|D) =In P(D|N)+In P(N)—In P(D). (7)

The last term can be disregarded since it is independent of the network and all we
are concerned with is the most probable network. The first term, the accuracy term,
measures how well the network accounts for the data. The second term is a measure of
the prior probability of the network. It is common to concentrate only on the first term;
however, I will return to the importance of the second term later.

To maximize [nP(D|N), we need to know the distribution that the network’s outputs
are to learn. Table 1 shows three probability distributions that are commonly assumed
in practice, and their appropriate error functions (Rumelhart et al., 1995). The first
column, the Gaussian case, assumes that the network models a regression task and that
the noise is normally distributed about the predicted values. The negative of the log of
this probability gives us an error function, E, that is proportional to squared error. This
is backpropagation’s original, and still most common, error function. The activation
function of the output nodes in this case was originally assumed to be the sigmoidal
function (Rumelhart et al., 1986); however, given the Guassian assumption of error,
Rumelhart et al. (1995) show it makes more sense to have the output node’s activation
be a linear function of its net input. (Note the activation function for the hidden nodes
is still commonly the sigmoidal function.) Making this assumption gives us the simple
update rule, OF /Onet; = t; — a;.

Another common application for networks is to learn a binary output for each input
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Table 1: Error functions for back propagation. This table, derived from Rumelhart
et al. (1995), gives the appropriate error function (E), activation function (a;) for the
output nodes, and two relevant derivatives from Equation 3 for three commonly assumed
probability distributions. All summations range over all the output nodes.

Gaussian Binomial one-of-\N
FE % Z(tz — ai)2 — Z[tz lTL(CLZ) =+ (1 — tz) ln(l — al)] — th ln(az)
1 eneti
a; net; 1+ e—netl Z enetj
_OoF ‘_a ti—a 4
Oa; e a;(1—a;) a;
OF
_anetz tz — Q; tz — Q; ti — Q;

vector. The appropriate interpretation of the error in this case is the binomial distribu-
tion, which leads to the cross-entropy error function. Notice that choosing the sigmoid
activation function with this interpretation also has the appealing result that the error
for an output node (0E/0net;) is simply t; — a;.

A widely used specialization of the binomial is the “one-of-N” classification task.
In this case, the output for the correct class is a one, while all other outputs are zero.
Rumelhart et al. (1995) suggest choosing the activation for the output nodes to be the

normalized exponential:
eﬂfiti

e ®)

They show that this activation is the generalization of the sigmoid (Equation 2) to the

a; =

one-of-N task. By carefully choosing the normalized exponential to be the activation
function of our output nodes, the error for the output node whose value should be 1 is
again simply ¢; —a;. Towell (1991) found that picking the appropriate error and activation

function is especially important with “knowledge-based” neural network (described later
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in this chapter).

Avoiding Overfitting

Generally, with each pass that our learning algorithm takes through the training set, the
more accurately our network classifies these training instances. As with most inductive-
learning algorithms (see Section 1.1), neural networks suffer from the problem of “over-
fitting” if the network learns the training instances too precisely (Holder, 1991; Weigend,
1993). In this case, the network does a good job of learning the training data, but does
poorly on yet unseen cases; we do not consider a network to have truly learned a function
until it performs well on these unseen instances. Combating the problem of overfitting
has been the focus of many researchers.

One simple approach to prevent overfitting is to stop training before overfitting has
occurred (Holder, 1991; Weigend et al., 1990). Although neural networks tend to have
a large number of potential parameters, Weigend (1993) showed the various weights and
hidden nodes in a network try to minimize the same error early during training, and
are thus mostly functional duplicates of each other. Only as training progresses do the
nodes start to diverge in their function. Therefore, the effective number of parameters
is initially small, then increases during training. In fact, if training is stopped at the
appropriate time, large networks tend to do as well as small, even “optimally” sized,
networks (Weigend, 1993). The winner on one dataset at The Santa Fe Time Series
Prediction and Analysis Competition (Weigend & Gershenfeld, 1992), for instance, had
a network with more potential parameters than training instances (Wan, 1993).

One approach to stop training at the right moment is to use a validation set (Weigend
et al., 1990). This set is part of the training instances, but is not used during the training
of the network. Instead, one uses the validation set to estimate the performance of
the network, and training is stopped when the performance of the validation set starts
to decrease. Drawbacks of using a validation set are that the size of the training set

is decreased; its effectiveness can be sensitive to the particular stopping criteria used
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(Weigend et al., 1990); and it can be a noisy estimator of future performance (MacKay,
1992).

Above, I focused on the accuracy term, InP(D|N) of Equation 7; I now switch to
the prior-probability term, nP(N), while again following the discussion in Rumelhart
et al. (1995). We can potentially avoid overfitting by selecting an appropriate prior. In
this case, we modify the weights of the networks with respect to the derivatives of both
terms, not just the accuracy term. Therefore, the new weight-update rule is:

d(nP(DIN)) | 9(InP(N))

Bwij 8wz~j

where 7 is the decay rate for the prior term. (I set v to be 0.01 X 7 in this thesis.) Since
previously E = —InP(D|N), this update rule is the same as Equation 5, except for the
added prior term.

Perhaps the most common prior term takes the form of weight decay (Hinton, 1986).
If we assume our weights are independently drawn from a normal distribution about zero,

we can write this prior-probability distribution as:

P(N) = exp (_M) . (10)

Taking the derivative of the log of P(NN) we get:
I(InP(N)) _ wy

dwy ot (11)
What this term does, then, is penalize large weights. The most likely network will be
the one with the smallest weights that best classifies the data.

This decay term suffers, however, in that it prefers two smaller weights over one large
weight (Nowlan & Hinton, 1992). For example, if a node receives input from two highly
correlated nodes, it would prefer two connections with weights (w/2) over the similarly
behaved weights of w and 0 (since (w/2)? + (w/2)* < w? + 0?). Thus this prior does
not eliminate weights, as we would prefer following Occam’s Razor. Instead of drawing

weights from a single distribution about zero, a similar idea is to draw them from either

a uniform distribution between +o5 or a normal distribution about zero. This has the
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effect of eliminating small weights by decaying them toward zero, while mostly leaving
large weights alone. Weigend et al. (1990) express this distribution as:
(wij/07)?
P(N)=exp |- —2 | . (12)
[ ; 14+ (?Uij/O'%)Q
Taking the derivative of the log of P(NN) we get:

OUnP(N) _ o5 wy (13)

0 w;; ot (o3 + w%)2
I use this form of weight decay in this thesis; however, I decay weights back to their initial
value, rather than toward zero (see Section 3.1.3). I do this since some of the weights
correspond to rules in a domain theory (as explained later in this chapter), and decaying

weights toward their initial value helps prevent unnecessary changes to the domain theory

(Shavlik, 1994).

2.1.2 Finding an Appropriate Network Topology

While Weigend (1993) showed that large networks with many parameters can generalize
as well as small networks if training is stopped in time, his experiments only involved
standard single-hidden-layer networks. In general, the generalization ability of a network
depends on finding a good, domain-dependent topology (Baum & Haussler, 1989; Tishby
et al., 1989) and, since I use the gradient-descent method of backpropagation learning, a
good set of initial weight settings.

One approach for finding an appropriate network topology, called network-growing
algorithms, attempts to start with a small network and gradually grow it to the appro-
priate size. A number of researchers (Ash, 1989; Hanson, 1989; Wynne-Jones, 1991) have
investigated networks that add new nodes within a single hidden layer in the course of
learning. Although a single layer of hidden nodes can approximate any Boolean as well
as any continuous function, they are incapable of creating higher-order features that may

aid learning (Hertz et al., 1991). Also, as indicated above, the number of hidden nodes
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in single-hidden-layer networks does not matter as much as does finding a good point to
stop training.

There have also been attempts to build multi-layered networks while learning pro-
gresses. Frean (1990) proposed the upstart algorithm, which adds two nodes to each
node that has a high estimated error, one designed to correct false-positives and one de-
signed to correct false-negatives. Mezard and Nadal (1989) proposed a tiling algorithm
that starts from the bottom and works upwards, with each successive layer correcting
the errors of the previous layer. The cascade-correlation algorithm (Fahlman & Lebiere,
1989) builds a hierarchy of hidden nodes in a cascaded manner, where each new node
receives activation from all input nodes and all previously added hidden nodes.

Another approach is to start with a large network, then prune unimportant connec-
tions during training. Weight-pruning techniques differ from weight decay in that they
initially train the network, remove unimportant weights, then train further this reduced
network. This train-prune cycle repeats until training-set error starts to increase. A
naive method to pruning is to assume low-weighted links are unimportant. Le Cun et
al. (1989) and Hassibi and Stork (1992), however, use second-order gradient informa-
tion to estimate the importance of each weight. Other methods (Hanson & Pratt, 1988;
Chauvin, 1988; Mozer & Smolensky, 1989) try to remove unimportant nodes and their
associated weights.

A final approach to finding an appropriate topology is to mount a “richer” search
than hillclimbing through the space of topologies. This requires a method for searching
through the topology space, as well as a function that can evaluate each topology. Such
a search can be done using genetic algorithms (Goldberg, 1989; Harp et al., 1989; Miller
et al., 1989; Oliker et al., 1992). In Chapter 4, I propose a method for using a genetic
algorithm to refine the topology of knowledge-based neural networks. 1 introduce these

types of neural networks next.
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2.2 Overview of Knowledge-Based Neural Networks

Many researchers have proposed architectures for combining both symbolic and neural
approaches to artificial intelligence. Neural networks have many advantages that make
them attractive for complex, imprecise, and noisy problems — they generalize well to
novel examples, are applicable to a wide variety of real-world problems, have high noise
tolerance, and degrade gracefully in proportion to system damage. Symbolic methods,
on the other hand, have advantages that make them attractive to problems that require
explanation and understanding — their rules are generally intelligible to a human, back-
ground knowledge can be encoded in an easily manipulative form, and they allow easy
control of information flow (Bookman & Sun, 1993).

Both neural and symbolic techniques have their disadvantages as well. Neural net-
works usually produce concepts that are hard to understand, their generalization perfor-
mance can depend on finding a good domain-specific topology and initial weight settings,
and training the network is a difficult task that can be time consuming. Alternately,
symbol-processing systems usually generalize poorly on complex, imprecise problems, do
not handle noisy data well, and do not gracefully degrade with a slight change of concept
(Bookman & Sun, 1993).

An architecture that can incorporate both symbolic and neural methods can poten-
tially produce a better system than either individually (Fu, 1989; Towell, 1991; Lacher
et al., 1992; Mahoney & Mooney, 1994). Ideally, such a system should have the best
of both worlds. It would be applicable to a wide variety of complex and noisy, real-
world problems, and should still be able to naturally incorporate prior expert knowledge,
while producing human-understandable concepts. There are many proposed methods
for combining symbolic and connectionist learning; however, in this thesis I concentrate
only on the popular approach shown in Figure 5 (Shavlik, 1994). The three steps in
this framework are somewhat independent, and various portions have been addressed by
several researchers; I focus on the largely ignored, but important, second step of refining

a “knowledge-based” neural network’s topology.
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Figure 5: One approach for combining symbolic and neural learning.

As in my framework presented in Section 1.4, Figure 5’s framework starts by trans-
lating the domain theory, represented by a set of symbolic rules, directly into a neural
network. This translation process, which is explained in the next section, determines
the initial weight settings and topology of the network. Hence these learners address
the hard problem of finding a good domain-specific topology and initial weight settings
by using prior knowledge of what is currently known about the domain. The resulting
network is called a knowledge-based neural network (KNN).

These systems next refine the weights of the KNN by using standard neural-learning
techniques. This type of refinement has been shown to be successful for a wide variety
of domains; however, it is limited in the types of refinements that it can make. As I
will illustrate in the next section, training the network without dynamically refining its
topology does not allow the network to introduce new rules to the symbolic rule base. It
only allows the re-weighting of the antecedents of existing rules. Being able to dynamically
refine the topology of a KNN is a major focus of this thesis.

While the KNNs increase in generalization over standard neural networks is useful in
and of itself, it is still desirable to understand what it is that the network has learned.
The last step in this framework, then, is to extract humanly understandable rules that
describe the function of the network. Several researchers have proposed methods for
extracting rules from standard neural networks (Sestito & Dillon, 1990; Fu, 1991; Craven
& Shavlik, 1994b). While this is a difficult problem, it is less daunting with KNNs since
they usually obey two assumptions that allow them to be interpretable: (a) the meaning

of its nodes does not significantly shift during training, and (b) almost all the nodes are
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either fully active or inactive. In fact, Towell and Shavlik (1993) presented an algorithm,
called NorM, that is effectively able to extract rules from KNNs.

Many systems, designed for different types of rule bases, have been successfully
implemented within this framework. For instance, systems have been designed for
Prolog-style proposition rules (Towell & Shavlik, 1994), probabilistic rules (Fu, 1989;
Mahoney & Mooney, 1994), finite-state grammars (Omlin & Giles, 1992; Maclin & Shav-
lik, 1993), mathematical equations (Roscheisen et al., 1991; Scott et al., 1992), state-
ments in an imperative programming language (Maclin & Shavlik, 1994), and finally
fuzzy-logic rules (Berenji, 1991; Masuoka et al., 1990). As stated before, many of these
approaches have been shown to generalize better than other learning systems. The reason
for much of this success has been attributed to the domain theory (a) suggesting poten-
tially useful intermediate terms and (b) focusing attention on relevant inputs (Shavlik,
1994). Given the good initial weight settings, KNNs have also been shown to train
faster than standard neural networks (Oliver & Schneider, 1988; Shavlik & Towell, 1989;
Berenji, 1991).

2.2.1 The KBANN Algorithm

As a reminder, the goal of this thesis is to generate a learning algorithm that is able to
effectively use the available data, computer time, and background knowledge to generate
the best concept possible. My approach is to follow the first step of Figure 5 of translating
the domain theory into an initial guess for an appropriate network topology (using the
KBANN algorithm), then continually refine this topology to find the best network (or set
of networks) for my concept. This section explains the KBANN algorithm.

KBANN works by translating a domain theory consisting of a set of propositional rules
directly into a neural network (see Figure 6). Figure 6a shows a Prolog-like rule set that
defines membership in category a. Figure 6b represents the hierarchical structure of these
rules, with solid lines representing necessary dependencies and dotted lines representing

prohibitory dependencies. Figure 6¢ represents the network KBANN creates from this
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a:— b, notc.
b:-d,fg.
b:—d, notf,i.

c:-h,j k.

(@)

Figure 6: KBANN’s translation of a knowledge base into a neural network. Panel (a)
shows a sample propositional rule set in Prolog (Clocksin & Mellish, 1987) notation,
panel (b) illustrates this rule set’s corresponding dependency tree, and panel (c) shows
the resulting network created by KBANN’s translation.

translation. It sets the biases so that nodes representing disjuncts have an output near
1 only when at least one of their high-weighted antecedents is satisfied, while nodes
representing conjuncts must have all of their high-weighted antecedents satisfied (i.e.,
near 1 for positive links and near 0 for negative links). Otherwise activations are near
0. KBANN creates nodes b1 and b2 in Figure 6¢ to handle the two rules deriving b in
the rule set. The thin lines in Figure 6¢ represent low-weighted links that KBANN adds
to allow these rules to add new antecedents during backpropagation training. Following
network initialization, KBANN uses the available training instances to refine the network
links. Refer to Towell (1991) or Towell and Shavlik (1994) for more details.

KBANN has been successfully applied to many real-world problems, such as the con-
trol of a chemical plant (Scott et al., 1992), protein folding (Maclin & Shavlik, 1993),
finding genes in a sequence of DNA (Opitz & Shavlik, 1993; Towell & Shavlik, 1994),
and ECG patient monitoring (Watrous et al., 1995). In each case, KBANN was shown to
produce improvements in generalization over standard neural networks for small num-
bers of training examples. In fact, Towell (1991) favorably compared KBANN with a

wide variety of algorithms, including purely symbolic theory-refinement systems, on the



26

promoter and splice-junction tasks that I use as testbeds in this thesis.

2.2.2 Limitations of KBANN

While training the KBANN-created network alters the antecedents of existing rules, it
does not have the capability of inducing new rules. For instance, KBANN is unable to
add a new rule for inferring b in Figure 6’s example. To help illustrate this point, consider
the following example. Assume that the correct version of Figure 6a’s domain theory also

includes the rule:
b:-notd, e, g.

Although I trained the KBANN network shown in Figure 6¢ with all possible examples of
the correct concept, it was unable to completely learn the conditions when a is true.

Towell (1991) showed, with real-world empirical evidence (the DNA promoter do-
main), that because KBANN is unable to induce new rules, its generalization performance
suffers when given “impoverished” domain theories — theories that are missing rules or
antecedents needed to adequately learn the true concept. While real-world domains are
clearly useful when exploring the utility of an algorithm, they are difficult to use in
closely controlled studies that examine different aspects of an algorithm. An artificial
domain, however, allows one to know the relationship between the theory provided to
the learning system and the correct domain theory. Thus I repeat Towell’s experiments
using an artificial domain, so that I can more confidently determine how much KBANN
suffers when given impoverished domains.

My artificial domain is derived from the game of chess. The concept to be learned is
those board configurations where moving a king one space forward is illegal (i.e., the king
would be in check). To make the domain tractable, I only consider a 4x5 subset of the
chess board (shown in Figure 7). The king is currently in position ¢l and the player is
considering moving it to position ¢2 (which is currently empty) and thus wants to know

if this is a legal move. Pieces considered in this domain are a queen, a rook, a bishop,
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Figure 7: The 4x5 subset of a chess board used to investigate a weakness of KBANN. The
king is currently on position c¢1, and will be moved to position ¢2 if this is a legal move.
This move is illegal if the king would be in check on position c2.

and a knight for both sides. (Appendix A contains a detailed description of the rule set
defining this domain.)

In order to investigate the types of corrections at which KBANN is effective, I ran ex-
periments where I perturbed the correct domain theory in various ways, then gave these
incorrect domain theories to KBANN. I perturbed the domain theory in four different
ways: (a) adding an antecedent to a rule, (b) deleting an antecedent from a rule, (c)
adding a rule, and (d) deleting a rule. This perturbation was done by scanning each an-
tecedent (rule), and probabilistically deciding whether to add another antecedent (rule),
delete it, or leave it alone.

I created a new rule by first setting its consequent to be the consequent of the scanned
rule. I then added from two to four randomly chosen antecedents, since the number
of antecedents of each rule in the correct rule base also ranged from two to four. I
added antecedents to both newly created and existing rules by randomly selecting from
the consequents below the rule? as well as the input features. When deleting rules, I
considered only rules whose consequent was not that of the final conclusion. Finally, after

I deleted antecedents, if a rule’s consequent does not appear in another rule’s antecedent

2A consequent is “below” a rule if it has a longer path to the target node (i.e., the final conclusion)

in the rule base’s dependency tree (e.g., see Figure 6b).
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list (and is not the final conclusion), then this rule was deleted as well. I did this because
it is unlikely that a domain expert would provide undefined intermediate conclusions in
a domain theory.

Figure 8 shows the test-set error (i.e., error measured on a set of examples not seen
by the learning algorithm) that results from perturbing the chess domain in each of these
four ways. This error is the average of five runs of five-fold cross validation (Stone, 1974;
Breiman et al., 1984) Each five-fold cross validation is run by first splitting the data into
five equal-sized sets. Then, five times one set is held out while the remaining four are
used to train the system. The held-out set is used to measure test-set performance of
KBANN’s final concept, thus giving an estimate of its generalization performance. I ran
multiple (five) cross-validation experiments in order to dampen fluctuations due to the
random partitioning of the data, and to judge the statistical significance of the results.

Figures 8a and 8b demonstrate that KBANN is effective at correcting spurious addi-
tions to the domain theory; however, Figures 8c and 8d show that KBANN’s generaliza-
tion degrades rapidly when rules and antecedents are deleted from the domain theory.
KBANN’s high error rate in Figure 8d is partially due to the fact that when I deleted
antecedents, I also deleted rules whose consequent no longer appeared in another rule’s
antecedent list (unless it was the final conclusion, illegal-move). As a point of com-
parison, my theory-corruption algorithm deleted 26% of the rules when it removed 50%
of the antecedents.

These artificial-domain results strengthen Towell’s (1991) findings on real-world do-
mains that while KBANN is effective at removing extraneous rules and antecedents, its
generalization ability suffers when rules or antecedents are missing. The reason for this
behavior results from the fact that KBANN is unable to modify its topology; thus, if
many rules are missing, KBANN has to compress all required rules into few hidden nodes,
perhaps beyond its capacity. An ideal algorithm, therefore, must be able to dynamically
expand the topology of its KNN during training. This is the focus of the next chapter.
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Figure 8: Impact on generalization of perturbing four different ways the correct chess-
like domain theory. In all graphs, the top line (labeled domain theory), is the test-set
error of the domain theory given to KBANN, while the bottom line (labeled KBANN)
is the test-set error of KBANN after backpropagation training. The test-set errors were
obtained from five runs of five-fold cross validation.



Chapter 3

Expanding Knowledge-Based Neural
Networks

I'indicated in Chapter 2 that connectionist theory-refinement systems produce knowledge-
based neural networks that have been shown to frequently generalize better than many
other inductive-learning and theory-refinement systems. I also demonstrated, however,
that if these systems do not dynamically alter the topology of their networks during
training, then they are restricted in the types of refinements they can make to the domain
theory. Thus with sparse domain theories, generalization suffers, and the original rules
must be significantly altered in order to account for the training data. While it is clearly
important to classify the examples as accurately as possible, changes to the initial domain
theory should be kept to a minimum because the domain theory presumably contains
useful information, even if it is not completely correct. Hence, the goal in this chapter is
to expand, during the training phase, knowledge-based neural networks so that they are
able to learn the training examples without needlessly corrupting their initial rules.

My first algorithm, TopGen (Topology Generator), heuristically searches through
the space of possible expansions of a knowledge-based network, guided by the symbolic
domain theory, the network, and the training data. It does this expansion by adding

hidden nodes to the neural representation of the domain theory. More specifically, it first

30
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uses a symbolic interpretation of the trained network to help locate the primary errors
of the network, and then adds nodes to this network in a manner analogous to adding
rules and conjuncts to a propositional rule base. I show that adding hidden nodes in
this fashion synergistically combines the strengths of refining the rules symbolically with
the strengths of refining them with backpropagation. Thus, TopGen mainly differs from
other network-growing algorithms (Fahlman & Lebiere, 1989; Mezard & Nadal, 1989;
Frean, 1990) in that it is specifically designed for knowledge-based neural networks.
TopGen tries to effectively use available computer time by employing a beam search,
rather than a faster hill-climbing algorithm, to better find a good network topology.
Finding such a topology allows increased generalization, provides the network with the
ability to learn without overly corrupting the initial set of rules, and increases the inter-
pretability of the network so that efficient rules may be extracted. Section 3.3 presents

evidence for these claims.

3.1 The TopGen Algorithm

As stated above, the focus of TopGen, is to be able to introduce new rules into a
knowledge-based neural network. It introduces new rules by heuristically searching
through the space of possible ways of adding nodes to the network, trying to find the net-
work that best refines the initial domain theory (as measured using “validation sets”!).
Briefly, TopGen looks for nodes in the network with high error rates, and then adds new
nodes to these parts of the network.

Table 2 summarizes the beam-search-based TopGen algorithm. TopGen uses two
validation sets, one to evaluate the different network topologies, and one to help decide
where new nodes should be added (it also uses the second validation set to decide when

to stop training individual networks). TopGen uses KBANN’s rule-to-network translation

!TopGen splits the training set into a set of training instances and two sets of validation instances.
Note that the instances in these three sets are separate from a test set that experimenters commonly set
aside to test the generalization performance of a learning algorithm.
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Table 2: The TopGen algorithm.

TopGen:

GOAL: Find the network best describing the domain theory and training set.

. Disjointly separate the training set into a training set and two validation sets

(validation-set-1 and validation-set-2).

Train, using backpropagation, the initial network produced by KBANN’s rules-to-
network translation and put on the OPEN list.

Until stopping criterion reached:

(a) Remove the best network, according to validation-set-2, from the OPEN

list.

(b) Use ScoreEachNode to determine the N best places to expand the topology.
(c) Create N new networks, train and put on the OPEN list.
(d)

)

d) Prune the OPEN list to length M.

(e) Report best network seen so far according to validation-set-2.

ScoreEachNode:

GOAL: Suggest good ways to add new nodes using error in validation-set-1.

1.

2.

Temporarily use the threshold (“step”) activation function at each node.
Score each node in the network as follows:

(a) Set each node’s correctable-false-negative and correctable-false-
positive counters to 0.

(b) For each misclassified example in validation-set-1, cycle through each node
and determine if modifying the output of that node will correctly classify the
example, incrementing the counters when appropriate.

Use the counters to order possible node corrections. High correctable-false-
negative counts suggest adding a disjunct, while high
correctable-false-positive counts suggest adding a conjunct.
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algorithm to create an initial guess for the network’s topology. This network is trained
using backpropagation (Rumelhart et al., 1986) and is placed on an OPEN list. In each
cycle, TopGen takes the best network (as measured by validation-set-2) from the
OPEN list, decides possible ways to add new nodes, trains these new networks, and
places them on the OPEN list. This process is repeated until reaching either (a) a
validation-set-2 accuracy of 100% or (b) a previously set time limit. TopGen reports

the best new network, according to validation-set-2, whenever one is found.

3.1.1 Where Nodes Are Added

TopGen must first find nodes in the network with high error rates.? It does this by scoring
each node (which corresponds to a rule in a symbolic domain theory) using examples from
validation-set-1. By using examples from this validation set, TopGen adds nodes on
the basis of where the network fails to generalize, not where it fails to memorize the
training set.

TopGen makes the empirically verified assumption that almost all of the nodes in a
trained knowledge-based network are either fully active or inactive. Towell (1991), as
well as self-inspection of my networks, has shown this to be a valid assumption. The
reason for this is that the network’s weights are large and, hence, the nodes are usually
operating in the “flat” portions of their activation function. By making this assumption,
each non-input node in a TopGen network can be treated as a step function (or a Boolean
rule) so that errors have an all-or-nothing aspect, thus concentrating topology refinement
on misclassified examples, not on erroneous portions of every example.

TopGen keeps two counters for each node, one for false negatives and one for false
positives, defined with respect to each individual node’s output, not the final output.
An example is considered a false negative if it is incorrectly classified as a negative

example, while a false positive is one incorrectly classified as a positive example. TopGen

’It is important to note that methods for finding nodes with high error rates are just heuristics to
help guide the search of where to add new nodes; TopGen is able to backtrack if a “bad” choice is made
since it uses beam search.
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increments counters by recording how often changing the “Boolean” value of a node’s
output leads to a misclassified example being properly classified. That is, if a node is
active for an erroneous example and changing its output to be inactive results in correct
classification for the example, then the node’s false-positives counter is incremented.
TopGen increments a node’s false-negatives counter in a similar fashion. By checking for
single points of failure, TopGen looks for rules that are near misses (Winston, 1975).

After the counter values have been determined, TopGen sorts these counters in de-
scending order, breaking ties by preferring nodes farthest from the output node. TopGen
then creates N new networks, where each network contains a single correction (as deter-
mined by the first N sorted counters). The larger the value for N, the more “breadth”
TopGen has in its search. (I set N to two in this thesis.) Section 3.1.2 details how
the nodes are added, based on the counter type (i.e., a false-negative or false-positive
counter) and node type (i.e., an AND or OR node).

I also tried other approaches for blaming nodes for error, but they did not work as
well on my testbeds. One such method is to propagate errors back by starting at the
final conclusion and recursively considering an antecedent of a rule to be incorrect if
both (a) its consequent is incorrect and (b) the antecedent does not match its “target.” I
approximate targets by starting with the output node, then recursively considering a node
to have the same target as its parent, if the weight connecting them is positive, or the
opposite target, if this weight is negative. While this method works for symbolic rules,
TopGen suffers under this method because its antecedents are weighted. Antecedents
with small-weighted links are counted as much as antecedents with large-weighted links.
Because of this, I also tried using the backpropagated error to blame nodes, however
backpropagated error becomes too diffuse in networks having many layers, such as the

ones often created by TopGen.
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3.1.2 How Nodes Are Added

Once TopGen estimates where it should add new nodes, it needs to know how to add
these nodes. TopGen makes the assumption that when training one of its networks, the
meaning of a node does not shift significantly. Making this assumption allows us to alter
the network in a fashion similar to refining symbolic rules. Towell (1991) demonstrated
that making a similar assumption about KBANN networks was valid.

Figure 9 illustrates the possible ways TopGen adds nodes to one of its networks.
In a symbolic rule base that uses negation-by-failure (Rich, 1983, Chapter 5). one can
decrease false negatives by either dropping antecedents from existing rules or adding new
rules to the rule base. I showed (in Section 2.2.2) that KBANN is effective at removing
antecedents from existing rules, but is unable to add new rules. Therefore, TopGen adds
nodes, intended for decreasing false negatives, in a fashion that is analogous to adding a
new rule to the rule base. If the existing node is an OR node, TopGen adds a new node
as its child (see Figure 9a), and fully connects this new node to the input nodes. When
the existing node is an AND node, TopGen creates a new OR node that is the parent of
the original AND node and another new node that TopGen fully connects to the inputs
(see Figure 9c); TopGen moves the outgoing links of the original node (A in Figure 9c)
to become the outgoing links of the new OR node.

In a symbolic rule base, one can decrease false positives by either adding antecedents
to existing rules or removing rules from the rule base. In Section 2.2.2, I demonstrated
that KBANN can effectively remove rules, but it is less effective at adding antecedents
to rules and is unable to invent (constructively induce, Michalski, 1983) new terms as
antecedents. Thus TopGen adds new nodes, intended to decrease false positives, in
a fashion that is analogous to adding new constructively induced antecedents to the
network. Figures 9b and 9d illustrates how this is done (analogous to Figures 9a and 9c
explained above). These mechanisms allow TopGen to add to the domain theory rules
whose consequents were previously undefined.

TopGen handles nodes that are neither AND nor OR nodes by deciding if such a node
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Figure 9: Possible ways to add new nodes to a knowledge-based neural network (arcs
indicate AND nodes). To decrease false negatives, we wish to broaden the applicability of
the node. Conversely, to decrease false positives, we wish to further constrain the node.

is “closer” to an AND node or an OR node. An AND node has an activation near 1 only
when all of its high-weighted antecedents are correctly activated (i.e., near 1 for positive
links and near 0 for negative links). When this happens the node’s weighted input will
be approximately the sum of the positive links; otherwise, one of the antecedents will be
incorrectly activated and the input will be less than this. Therefore, an AND node’s bias
must be slightly less than the sum of its positive incoming weights. Alternately, an OR
node has an activation near 1 as long as at least one of its high-weighted antecedents is
correctly activated. When all the antecedents are incorrectly activated, the node’s input
is the sum of the high-weighted negative links; otherwise, at least one of the antecedents
is correctly activated and the input will be greater than this. Therefore, an OR node’s
bias must be slightly greater than the sum of its negative incoming weights. Thus, if
a node’s bias is closer to the summed positive weights than to the summed negative

weights, I consider it an AND node; otherwise, I consider it an OR node.
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3.1.3 Additional Algorithmic Details

After new nodes are added, TopGen must retrain the network. While I want the new
weights to account for most of the error, I also want the old weights to change if necessary.
That is, I want the older weights to retain what they have previously learned, while at
the same time move in accordance with the change in error caused by adding the new
node. In order to address this issue, TopGen multiplies the learning rates of existing
weights by a constant amount (I use 0.5) every time new nodes are added, producing an
exponential decay of learning rates. (In backpropagation, each inter-node link can have
its own learning rate.)

I also do not want to change the domain theory unless there is considerable evidence
that it is incorrect. That is, there is a trade-off between changing the domain theory and
disregarding the misclassified training examples as noise. To help address this, TopGen
uses a variant of weight decay (Hinton, 1986). Weights that are part of the original
domain theory decay toward their initial value, while other weights decay toward zero.

My weight-decay term, then, decays weights as a function of their distance from their
initial values and is a slight variant of the term proposed by Weigend et al. (1990) - see
Equation 12 in Section 2.1.1 for more details. I express this distribution as follows:

(wij - wim’tij)Q
1+ (wi; — winitij)2

P(N)=exp |-

1j

(I set 01 and oy in Equation 12 to 1 in this thesis.)

3.2 Example of TopGen

To help illustrate TopGen’s method for adding rules, I return to the example given in
Section 2.2.2. Assume we are given the domain theory in Figure 10a (this is a repeat of
Figure 6 in Section 2.2.1). I indicated in Section 2.2.2 that if the correct “target” theory

we are trying to learn should have also included the rule:

b:-notd,e,g.
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a:— b, notc.
b:-d,fg.
b:—d, notf,i.

c:-h,j k.

(@)

Figure 10: KBANN’s translation of a knowledge base into a neural network. Panel (a)
shows a sample propositional rule domain theory in Prolog (Clocksin & Mellish, 1987)
notation, panel (b) illustrates this rule set’s corresponding dependency tree, and panel
(c) shows the resulting network created from KBANN’s translation. (This is a repeat of
Figure 6 in Section 2.2.1.)

then KBANN is unable to completely learn when a is true. TopGen, however, is able to
learn this concept; it begins by training the KBANN network, obtaining little improve-
ment to the original rule base. It then proceeds by using misclassified examples from
validation-set-1 to find places where adding nodes could be beneficial, as explained
below.

Consider the following positive example of category a, which is incorrectly classified

by the domain theory,
“dANeNfAgGA-"hATTATNE.

While node ¢ (from Figure 10c) is correctly false in this example, node b is incor-
rectly false. B is false since both b1 and 62 are false. If b had been true, this exam-
ple would have been correctly classified (since c is correct), so TopGen increments the
correctable-false-negative counter for b. TopGen also increments the counters of
b1, b2, and a, using similar arguments.

Nodes a, b, b1, and b2 will all have high correctable-false-negative counters after

all the examples are processed. Given these high counts, TopGen considers adding OR
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nodes to nodes a, bl, and b2, as done in Figure 9c, and also considers adding another
disjunct, analogous to Figure 9a, to node b. Any one of these four corrections allows
the network to learn the target concept. Since TopGen breaks ties by preferring nodes

farthest from the output node, it prefers b1 or b2.

3.3 Empirical Results

In this section I test TopGen on five domains: the artificial chess-related domain intro-
duced in Section 2.2.2, and four real-world problems from the Human Genome Project.

(Refer to Appendix A for more information on these domains.)

3.3.1 Chess Results

In Section 2.2.2, T showed that KBANN’s generalization suffered when it was given a
domain theory where rules or antecedents were deleted from the correct theory. In this
section, I test TopGen’s performance on these two cases to see how well it addresses these
limitations of KBANN.

To help test the efficiency of TopGen’s approach for choosing where to add hidden
nodes, I also compare its performance with a simple approach (referred to as Strawman
hereafter) that adds one layer of fully connected hidden nodes “off to the side” of the
KBANN network. (Strawman is similar to Fletcher and Obradovic’s algorithm, which I
further discuss in Section 6.1.1.) Figure 11 illustrates the topology of such a network.
The topology of the original KBANN network remains intact, while I add extra hidden
nodes in a fully connected fashion between the input and output nodes. If a domain
theory is impoverished, it is reasonable to hypothesize that simply adding nodes in this
fashion would increase performance. Strawman trains 50 different networks (using weight
decay), ranging from 0 to 49 extra hidden nodes and, like TopGen, uses a validation set
to choose the best network.

My initial experiment addresses the generalization ability of TopGen when given
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Figure 11: Topology of the networks used by Strawman.

domain theories that are missing rules or antecedents. Figure 12 reports the test-set
error when I randomly delete rules and antecedents from the chess domain theory (see
Section 2.2.2 for details on how I generated these domain theories). The plotted results
are the averages of five runs of five-fold cross-validation.

The top horizontal line in each graph results from a fully connected, single-layer, feed-
forward neural network. For each fold, I trained various networks containing up to 100
hidden nodes and used a validation set to choose the best network. This line is horizontal
because the networks do not use any of the domain theories. Graphing this line gives a
point of reference for the generalization performance of a standard neural network; thus,
comparisons to knowledge-based neural networks show the utility of being able to exploit
the domain theory.

The next two curves in each graph report KBANN’s and Strawman’s performance;
notice that Strawman produced almost no improvement over KBANN in either case.
Finally, TopGen, the bottom curve in each graph, had a significant increase in accuracy,
having an error rate of about half that of both KBANN and Strawman. Like Strawman,
TopGen considered 50 networks during its search. As a point of comparison, when 50%
of the rules were deleted, TopGen added 22.4 nodes on average, while Strawman added
22.2 nodes; when 50% of the antecedents were deleted, TopGen added 21.2 nodes, while

Strawman added 5.1 nodes.
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Figure 12: Test-set error of four learners on the chess problem. In both graphs, the
Y-axis is the mean test-set error obtained from five runs of five-fold cross validation.
One-tailed, pairwise t-tests indicate that the difference between TopGen and KBANN
and the difference between TopGen and Strawman are significant at the 95% confidence
level at all nonzero percentages, except when 6% of the rules were deleted.
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Domain-Theory Corruption

As stated earlier, it is important to correctly classify the examples while deviating from
the initial domain theory as little as possible. Since the domain theory may have been
inductively generated from past experiences that are not present in our current set of
training instances, one should deviate from the meaning of this theory as little as possible.
Therefore, I measure semantic distance, rather than syntactic distance, when deciding
how far a learning algorithm has deviated from the initial domain theory. Also, syntactic
distance is difficult to measure, especially if the learning algorithm generates rules in
a different form than the initial domain theory. However, one can estimate semantic
distance by considering only those examples in the test set that the original domain
theory classifies correctly. Error on these examples indicates how much the learning
algorithm has corrupted correct portions of the domain theory.

Figure 13 shows accuracy on the portion of the test set where the original domain
theory is correct. When the initial domain theory has few missing rules or antecedents
(less than 15%), neither TopGen, KBANN, nor Strawman overly corrupt this domain the-
ory in order to compensate for these missing rules; however, as more rules or antecedents
are deleted, both KBANN and Strawman corrupt their domain theory much more than

TopGen does.

3.3.2 DNA Results

I also ran TopGen on four problems from the Human Genome Project. Each of these
problems aid in locating genes in DNA sequences, and are described in more detail
in Appendix A. Briefly, the first domain, promoter recognition, contains 234 positive
examples, 4,921 negative examples, and 31 rules. The second domain, splice-junction
determination, contains 3,190 examples distributed among three classes, and 23 rules.
The third domain, ribosome binding sites (RBS), contains 366 positive examples, 1,511
negative examples, and 17 rules. Finally, the last domain, transcription termination sites,

contains 142 positive examples, 5,178 negative examples, and 61 rules.
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Figure 13: Error rate of the various learners on the subset of the test set where the
corrupted domain theory is correct. In both graphs, the Y-axis is the mean test-set error
obtained from five runs of five-fold cross validation. Pairwise, one-tailed t-tests indicate
that TopGen differs from both KBANN and Strawman at the 95% confidence level when
more than 12.5% of the rules or antecedents are deleted.
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Figure 14: Error rates on four Human Genome problems.

My first experiment addresses the test-set accuracy of TopGen on these domains.
The results in Figure 14 demonstrate that TopGen generalizes better than does both
KBANN and Strawman. These results are averages of five runs of five-fold cross-validation,
where TopGen and Strawman consider 30 networks during their beam search. Pairwise,
one-tailed #tests indicate TopGen differs from both KBANN and Strawman at the 95%
confidence level on all four domains, except with Strawman on the promoter domain.

Table 3 shows that TopGen and Strawman added about the same number of nodes on
all domains, except the terminator dataset. On this dataset, adding nodes off to the side
of the KBANN network, in the style of Strawman, usually decreases accuracy. Therefore,
whenever Strawman picked a network other than the KBANN network, its generalization
usually decreased. Even with Strawman’s difficulty on this domain, TopGen was still

able to effectively add nodes to increase performance.
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Table 3: Total number of nodes added (on average).

Domain TopGen | Strawman
RBS 8.2 8.0
Splice Junction 4.0 5.2
Promoters 4.4 5.0
Terminators 9.4 1.2

Considering a Large Number of Networks

Given the lengthy training times of each network in the above results, TopGen only
considers 30 networks during its search. In order to trace the behavior of TopGen as
it considers even more networks, I decrease the training time of each network by using
only a subset of the possible examples, then increase TopGen’s search to 500 networks.
(Given the size of KBANN’s terminator network, I was still unable to use this domain.)
The reduced splice-junction domain contains 1,200 examples distributed equally among
three classes. I then randomly selected a subset of the negative examples for the other
two domains so that they contained a 3-to-1 ratio of negative-to-positive examples. Thus
the reduced promoter domain contains 702 negative examples, while the reduced RBS
domain contains 1,098 negative examples.

Given the smaller datasets, keeping two validation sets from the training data can
severely hinder the generalization ability of each network since few instances remain to
train these networks. Therefore, I ran each algorithm without using validation-set-1.
Instead, I avoided overfitting by only training each network for a few (e.g., about ten)
epochs, and estimated the error of each node based on the training set. (To check the
validity of this approach, I also ran TopGen using both validation sets, but as expected,
generalization suffered; however, if enough data is available, one should keep both sets.)
Note that it is harder for TopGen to reduce KBANN’s error on smaller datasets, since
a larger percentage of the training set must be set aside to ensure each network can be
accurately scored.

Figure 15 gives the test-set error of TopGen as it searches through the space of
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network topologies. The results are from a ten-fold cross validation. The horizontal line
in each graph results from the KBANN algorithm. Even though KBANN considers only
one network, I drew a horizontal line for the sake of visual comparison. While TopGen
is still able to improve KBANN on these reduced datasets, its improvement is primarily

limited to the first 50 networks considered.

3.4 Discussion of TopGen

Towell (1991) has demonstrated that KBANN generalizes better than many machine learn-
ing algorithms on the promoter and splice-junction domains, including purely symbolic
approaches to theory refinement. Yet, even though a domain expert (M. Noordewier)
believed the four Human Genome domain theories were large enough for KBANN to
adequately learn the concepts, TopGen is able to effectively add new nodes to the cor-
responding network. The effectiveness of adding nodes in a manner similar to reducing
error in a symbolic rule base is verified with comparisons to a naive approach for adding
nodes. If a KBANN network, resulting from an impoverished domain theory, suffered
only in terms of capacity, then adding nodes between the input and output nodes would
have been just as effective as TopGen’s approach to adding nodes. The difference be-
tween TopGen and this naive approach (Strawman) is particularly pronounced on the
terminator dataset.

TopGen has a longer runtime than KBANN; however, TopGen tries to continually
improve the quality of its solution over time, and can produce its currently best answer
whenever one is needed. TopGen’s runtime is dominated by the training process of each
network; thus, TopGen’s runtime is longer than KBANN’s by approximately the number
of networks it considers during its search. If a quick answer is needed, TopGen just
degenerates to the KBANN algorithm.

With the reduced DNA datasets, I showed that while TopGen initially decreases

generalization error, improvements are primarily limited to the first few (i.e., 50) networks
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Figure 15: Error rates on the three reduced Human Genome problems.
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considered in the search. Therefore, TopGen is not so much an “anytime” algorithm,
but rather is a first step towards one. This is mostly due to the fact that TopGen
only considers larger networks that contain the original KBANN network as subgraphs;
however, as one increases the number of networks considered, one should also increase
the variety of networks considered during its search. In fact, broadening the range of
networks considered during the search is the major focus of the next chapter. It is
important to note, though, that TopGen is effective in its initial refinements, and should
therefore be considered as an initial method for any system that attempts to broaden

TopGen'’s search.

3.5 Future Work on TopGen

While I present future work within the general framework of my thesis in Chapter 7,
I give future plans specific to TopGen here. One such direction is testing new ways of
adding nodes to the network. Newly added nodes are currently fully connected to all the
input nodes. Other possible approaches include: adding them to only a portion of the
inputs; adding them to nodes that have a high correlation with the error; adding them
to the next “layer” of nodes.?

Another area of future work includes extensively testing other approaches for locating
error. Even though this is only a heuristic to help guide the search, a good heuristic will
allow more efficient search of the hypothesis space. Methods of using the back-propagated
error as well as symbolic techniques for determining error have been tested, but did not
improve performance, for reasons explained in Section 3.1.1. A future research direction
includes trying variants of these techniques.

As indicated in Section 2.2, it is desirable to understand what network has learned.

Therefore, future work is to use a rule-extraction algorithm (Fu, 1991; Towell & Shavlik,

3 Although one can define layer many different ways, I define a node’s layer to be the longest path
from it to an output node.
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1993; Craven & Shavlik, 1994b) to measure the interpretability of a refined TopGen net-
work. I hypothesize that TopGen builds networks that are more interpretable than naive
approaches of adding nodes, such as the approach taken by Strawman. Trained KBANN
networks are interpretable because (a) the meaning of its nodes does not significantly
shift during training and (b) almost all the nodes are either fully active or inactive (Tow-
ell & Shavlik, 1993). Not only does TopGen add nodes in a symbolic fashion, it adds
them in a fashion that does not violate these two assumptions. I discuss this in more

detail in Section 7.2.4.

3.6 Wrap-up

TopGen, my new algorithm that I presented in this chapter, heuristically searches through
the space of possible expansions of the original network, guided by the symbolic domain
theory, the network, and the training data. It does this by adding hidden nodes to
the neural representation of the domain theory, in a manner analogous to adding rules
and conjuncts to the symbolic rule base. Experiments indicate that TopGen is able
to heuristically find effective places to add nodes to the knowledge bases of four real-
world problems, as well as an artificial chess domain. Therefore, TopGen is successful
in overcoming KBANN’s limitation of not being able to dynamically add new nodes. In
doing so, my system increases KBANN’s ability to generalize and learn a concept without

needlessly corrupting the initial rules. (Versions of this chapter were previously published

in Opitz and Shavlik, 1993, 1995a, 1995b.)



Chapter 4

Genetically Refining
Knowledge-Based Neural Networks

I demonstrated in Section 2.2.2 that the generalization performance of a knowledge-based
neural network (KNN) suffers hen created from a domain theory that is missing rules
needed to adequately learn the true concept. Last chapter, I directly addressed this
problem with TopGen, a beam-search-based method that heuristically searches for good
places to add rules to the neural representation of the provided domain theory. I showed
that while TopGen is initially effective at adding nodes, its increase in generalization
primarily occurs in the first few networks considered. This behavior largely results from
the fact that TopGen only generates networks that are erpansions of the original KNN;
thus, if one has time to consider a large number of networks, one should also increase
the variety of networks they consider. In this chapter, I present a second algorithm,
REGENT (REfining, with Genetic Evolution, Network Topologies), that addresses this
limitation by using genetic algorithms (GAs) to broaden the type of topologies that
TopGen considers during its search. In doing so, REGENT is able to consider both larger
and smaller refinements of the original KBANN network.

GAs are a logical choice for broadening a search since they have been shown to be

efficient in their use of global information (Holland, 1975; Goldberg, 1989; Koza, 1992).

50
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REGENT proceeds by first trying to generate, from the domain theory, a diversified initial
population. It then produces new candidate networks via variants of the genetic opera-
tors of crossover and mutation that were specifically designed for KNNs. For instance,
REGENT’s crossover operator tries to maintain the rule structure of the crossed-over net-
works, while its mutation operator uses TopGen’s method for adding new nodes to a
KNN. Experiments reported in this chapter show that REGENT is able to better search
for network topologies than is TopGen if it has time to consider many candidate networks.

Before I present the REGENT algorithm, however, I give a short overview of GAs. 1
first explain their motivation and give a high-level overview of how they work. I then
briefly explain the predominant theory of why GAs work as well as they do. Those
already familiar with GAs should skip to Section 4.2.

4.1 Introduction to Genetic Algorithms

Genetic algorithms are based on the theory of Darwinian evolution (Darwin, 1859).
Briefly, the evolutionary process occurs when there is a population of self-reproducing
individuals that differ in their ability to survive. Each individual has chromosomes that
make up its structure and behavior. Fitter individuals (i.e., individuals that are best able
to perform tasks needed in the environment) survive longer and reproduce at a higher
rate. Over a period of time and many generations, the population as a whole contains

more individuals whose chromosomes are descended from fit relatives.

4.1.1 How Genetic Algorithms Work

GAs as a method of machine learning began in the 1960’s with John Holland (1975).
The key idea behind GAs centers around selective breeding of a set of individuals that
comprise a population. This population is usually kept at a fixed size N and, as I will
soon address, it is important to maintain “diversity” within the population to ensure

a broad search of the space of possible individuals. In the spirit of “survival of the
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Population (t) Population (t+1)

# | Individua | Fitness # | Individua | Fitness

1 01100 12 —— mutate#l —— 1| 01110 14

2| 11000 24 .2/ 10000 16

crossover #2, #4 <

3|/ 00101 5 ~3] 11101 29

4|1 10101 21 reproduce#4 —— 4| 10101 21
Average Fitness= 15.5 Average Fitness = 20.0

Figure 16: An example of one generation in a standard GA. A population of four individu-
als is reproduced, through fitness-proportional reproduction, to create another population
of four individuals.

fittest,” individuals are picked proportional to their fitness to create offspring which will
be inserted into a new population (possibly replacing members of the current population).
Figure 16 presents an example of one generation of this process. The size of the
population in this case is four, and the genetic operators of crossover, mutation, and
reproduction (explained below) produce the next generation of individuals. In “classical”
GAs, the individuals in the population are represented as fixed-length strings of binary
digits (e.g., Figure 16 has a bit-string whose length is five). This bit string is the analogy
of chromosomes in living organisms and is the blueprint for the construction of that
individual. While designing a good bit-string representation for a problem allows one
to use existing genetic operators, some problems, such as finding real-valued weights for
a neural network, may not be conducive for such a representation. In these cases, it is
often better to design problem-specific genetic operators for a different representation.
While the genotype of an individual is the bit-string that is manipulated during the
genetic process, the phenotype is the personification of the individual. This phenotype is
problem dependent, and once it has been defined, one must define a method for testing

it to determine its fitness. The fitness of each individual in Figure 16 is simply defined
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crossover point

Z5

Parents 1]1 101

Children 10000 11101

Figure 17: An example of the “classical” crossover operator.

to be the binary encoding of that individual. Therefore the fittest possible individual in
this case is comprised of all ones and has a fitness of 31.

An individual’s fitness determines the expected number of offspring it will conceive.
The classical way of proportionally picking individuals to breed is through “roulette
wheel” selection. An individual is allocated a slot on the wheel that has a width pro-
portional to its fitness. Parents are selected from the population by spinning the wheel.
Thus highly fit individuals are more likely to be chosen during each spin.

The most common operators for creating a new generation of individuals are repro-
duction, crossover, and mutation. Reproduction works by simply copying an individual
to the next generation, and is used in the cases like Figure 16 where each generation is
a distinctly different population. An alternate approach (which I use in this thesis) is
to keep one fixed-sized population. This is done by continually creating new members
with the crossover and mutation operators, and replacing existing members of the pop-
ulation with the new individuals. Many replacement strategies, such a simply replacing
the lowest-fit individual, have been proposed (Goldberg, 1989).

Figure 17 illustrates the typical crossover operator for fixed-length bit strings (these
are the individuals crossed over in Figure 16). Crossover works by first picking two
parents at random proportional to their fitness. A cut-point is then randomly picked for

each parent and two children are created, each obtaining one segment from each parent.
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Mutation is an operator designed to add new genetic traits to a population. For
instance, it is possible that no members of a population contain a desirable bit value
in a particular location. Since the crossover operator only combines two member of a
population, it has no way of introducing new bits. For instance, there is no way to
crossover two members of Figure 16 to generate an individual that has a one in the third
bit. Mutation is typically a secondary operation that is only sparingly used (Goldberg,
1989).

4.1.2 Why Genetic Algorithms Work

The power of genetic search lies in its continual recombination of good building blocks.
The underlying assumption is that fit individuals are made from good parts. If a par-
ticular combination of attributes is repeatedly found in highly fit individuals, we begin
to think that this combination is at least partly responsible for this performance. The
same is true for combinations repeatedly found in low-fit individuals. Genetic algorithms,
then, are the embodiment of this intuitive approach for finding the attribute combinations
responsible for good behavior in complex non-linear systems.

Holland (1975) mathematically showed the power of GAs with his Schema Theorem.
A schemata is a string consisting of the original alphabet, augmented by the “don’t care”
symbol (*). For instance, two strings contain the schema “1 1 *10” - “1 101 0” and
“11110.” Different schemata have varying impact on the fitness of the strings which

€1k kK X X would

contain them. In our example, the strings containing the schema
always be more fit than the strings containing the schema “0 * * * *” We therefore
expect “1 * * * *” t4 become more prominent in our population over time.

Briefly, the Schema Theorem states that, due to fitness-proportional reproduction,
GAs perform near optimal exploration of all schemata partitions simultaneously. For in-
stance, with second-order schemata (i.e., two bits are defined), there are four partitions.

When deciding from which of these partitions to choose the next string in our search,

there is a trade-off between continued exploration and greedy exploitation. We want
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to emphasize the partition where the average fitness of previously considered strings is
highest, while at the same time continuing exploration in the other partitions. Fitness-
proportional reproduction optimally allocates future individuals from all schema parti-
tions simultaneously, based on the mean and variance of past fitnesses. Operators such as
crossover and mutation do provide minor disruptions to this optimality, however (Gold-
berg, 1989).

Initially, it was thought (Liepins & Vose, 1990; Wilson, 1991) that GAs would per-
form well on any problem where there was little deception — problems where low-order
schemata give misleading information about the probable average fitness of higher-order
refinements. For instance, this could happen if the partition containing the optimal indi-
vidual also contained many unfit individuals. Later, however, Forrest and Mitchell (1993)
showed that GAs perform poorly on complex problems where the basic building blocks
consist of many (four or more) bits, or where the basic blocks get split during crossover.
Seeding the initial population with a domain theory (as REGENT does) can help define
the basic building blocks for these problems. Holland (1975), Goldberg (1989), and Koza
(1992) provide further reading on GAs.

4.2 The REGENT Algorithm

My new algorithm, REGENT, tries to broaden the types of networks that TopGen consid-
ers with the use of GAs. I view REGENT as having two phases: (a) genetically searching
through topology space, and (b) training each network using backpropagation. REGENT
uses the domain theory to aid in both phases. It uses the theory to help guide its search
through topology space and to give a good starting point in weight space.

Table 4 summarizes the REGENT algorithm. REGENT first sets aside a validation set
(from part of the training instances) for use in scoring the different networks. It then
perturbs the KBANN-produced network to create an initial set of candidate networks.

Next, REGENT trains these networks using backpropagation and places them into the
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Table 4: The REGENT algorithm.
GOAL: Search for the best network topology describing the domain theory and data.

1. Set aside a validation set from the training instances.

2. Perturb the KBANN-produced network in multiple ways to create initial networks,
then train these networks and place them into the population.

3. Loop forever:

(a) Create new networks using the crossover or mutation operator.

(b) Train these networks with backpropagation, score with the validation set, and
place into the population.

(c) If a new network is the network with the lowest validation-set error seen so
far (breaking ties by preferring the smallest network), report it as the current
best concept.

population. In each cycle, REGENT creates new networks by crossing over and mutating
networks from the current population that are randomly picked proportional to their
fitness (i.e., validation-set correctness). It then trains these new networks and places
them into the population. As it searches, REGENT keeps the network that has the lowest
validation-set error as the best concept seen so far, breaking ties by choosing the smaller
network in an application of Occam’s Razor. A parallel version trains many candidate
networks at the same time using the Condor system (Litzkow et al., 1988), which runs
jobs on idle workstations.

A diverse initial population will broaden the types of networks REGENT considers
during its search; however, since the domain theory may provide useful information
that may not be present in the training set, it is still desirable to use this theory when
generating the initial population. REGENT creates diversity about the domain theory by
randomly perturbing the KBANN network at various nodes. REGENT perturbs a node by
either deleting it, or by adding new nodes to it in a manner analogous to one of TopGen’s

four methods for adding nodes. (If there are multiple theories about a domain, all of
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them can be used to seed the population.)

4.2.1 REGENT’s Crossover Operator

REGENT crosses over two networks by first dividing the nodes in each parent network
into two sets, A and B, then combining the nodes in each set to form two new networks
(i.e., the nodes in the two A sets form one network, while the nodes in the two B sets form
another). Table 5 summarizes REGENT’s method for crossover and Figure 18 illustrates
it with an example. REGENT divides nodes, one level' at a time, starting at the level
nearest the output nodes. When considering a level, if either set A or set B is empty, it
cycles through each node in that level and randomly assigns it to either set. If neither set
is empty, nodes are probabilistically placed into a set. The following equation calculates
the probability of a given node being assigned to set A:
Yjea lwjil
Yjealwiil + Xjep lwjil’

Prob(node i € setA) = (14)

where j € A means node j is a member of set A and wj; is the weight value from
node % to node j. The probability of belonging to set B is one minus this probability.
With these probabilities, REGENT tends to assign to the same set those nodes that are
heavily-linked together. This helps to minimize the destruction of the rule structure of
the crossed-over networks, since nodes belonging to the same syntactic rule are connected
by heavily-linked weights. Thus, REGENT’s crossover operator produces new networks
by crossing-over rules, rather than simply crossing-over nodes.

REGENT must next decide how to connect the nodes of the newly created networks.
First, a new network inherits all weight values from its parents that connect two nodes
that either it inherited, or are input or output nodes. It then adds low-weighted links
between unconnected nodes on consecutive levels. Finally, it adjusts the bias of all AND
or OR nodes to help maintain their original function. For instance, if REGENT removes

a positive incoming link for an AND node, it decrements the node’s bias by subtracting

1Recall that a node’s level is defined as the longest path from it to an output node.
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Table 5: REGENT’s method for crossing over networks.

Crossover Two Networks:

GOAL: Crossover two networks to generate two new network topologies.
1. Divide each network’s hidden nodes into sets A and B using DivideNodes.

2. Set A forms one network, while set B forms another. Each new network is created
as follows:

(a) A network inherits weight wj; from its parent if nodes 7 and j either are (i)
also inherited or (ii) input or output nodes.

(b) Link unconnected nodes between levels with near-zero weights.

(c) Adjust node biases to keep original AND or OR function of each node (see text
for explanation).

DivideNodes:

GOAL: Divide the hidden nodes into sets A and B, while probabilistically
maintaining each network’s rule structure.

While some hidden node is not assigned to set A or B:

(i) Collect those unassigned hidden nodes whose output is linked only to either
previously-assigned nodes or output nodes.

(ii) If set A or set B is empty:
For each node collected in part (i), randomly assign it to set A or set B.
Else
Probabilistically add the nodes collected in part (i) to set A or set B.
Equation 14 shows the probability of being assigned to set A.
The probability of being assigned to set B is one minus this value.
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Figure 18: REGENT’s method for crossing over two networks. The hidden nodes in each
original network are divided into the sets A and B; the nodes in the two A sets form
one new network, while the nodes in the two B sets form another. Grey lines represent
low-weighted links that are added to fully-connect neighboring levels.

the product of the link’s magnitude times the average activation (over the set of training
examples) entering that link. REGENT increments the bias for an OR node by a similar

amount when it removes negative incoming links.

4.2.2 REGENT’s Mutation Operator

REGENT mutates networks by applying a variant of TopGen. REGENT uses TopGen’s
method for incrementing the false-negatives and false-positives counters for each node.
REGENT then adds nodes, based on the values of these counters, the same way TopGen
does. Since neural learning is effective at removing unwanted antecedents and rules from
KNNs (see Section 2.2.2), REGENT only considers adding nodes, and not deleting them,
during mutation. Thus, this mutation operator adds diversity to a population, while still
maintaining a directed, heuristic-search technique for choosing where to add nodes; this
directedness is important because I currently am unable to evaluate more than a few

thousand possible networks per day.
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4.2.3 Additional Detalils

REGENT adds newly trained networks to the population only if their validation-set cor-
rectness is better than or equal to an existing member of the population. When REGENT
replaces a member, it chooses the member having the lowest correctness (ties are broken
by choosing the oldest member). Other techniques (Goldberg, 1989), such as replacing
the member nearest the new candidate network, can promote diverse populations; how-
ever, I do not want to promote diversity at the expense of decreased generalization. As a
future research topic, I plan to investigate incorporating diversity-promoting techniques
once I am able to consider tens of thousands of networks.

REGENT can be considered a Lamarckian?, genetic-hillclimbing algorithm (Ackley,
1987), since it performs local optimizations on individuals, then passes the successful
optimizations on to offspring. The ability of individuals to learn can smooth the fitness
landscape and facilitate learning (Hinton & Nowlan, 1987). Thus, Lamarckian learning
can lead to a large increase in learning speed and solution quality (Farmer & Belin, 1992;

Ackley & Littman, 1994).

4.3 Experimental Results

In this section, I test REGENT on three real-world problems from the Human Genome
Project. I first directly compare REGENT with TopGen. I then investigate adding ran-
domly created networks to REGENT’s initial population. Finally, I examine the utility of
REGENT’s genetic operators.

I ran REGENT on three of the Human Genome Project problems presented in Ap-
pendix A. In order to track the behavior of REGENT over many generations, I use the
reduced datasets from Section 3.3.2 for all experiments in this chapter. As a reminder,

the reduced promoter domain contains 234 positive examples, 702 negative examples,

2Lamarckian evolution is a theory based on the inheritance of characteristics acquired during a
lifetime.
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and 31 rules. The reduced splice-junction domain contains 1,200 examples distributed
equally among three classes, and 23 rules. Finally, the reduced ribosome binding sites
(RBS) domain, contains 366 positive examples, 1,098 negative examples, and 17 rules.
All results in this chapter are from a ten-fold cross validation; in each fold, REGENT is

run with a population size of 20.

4.3.1 Generalization Ability of REGENT

This section’s experiments compare the test-set accuracy (i.e., generalization) of REGENT
with TopGen’s. Figure 19 shows the test-set error of KBANN, TopGen, and REGENT as
they search through the space of network topologies. The horizontal line in each graph
results from the KBANN algorithm. As was the case in the previous chapter, I drew a
horizontal line for the sake of visual comparison. The first point of each graph, after one
network is considered, is nearly the same for all three algorithms, since they all start with
the KBANN network; however, TopGen and REGENT differ slightly from KBANN since
they must set aside part of the training set to score their candidate networks. Notice that
TopGen stops improving after considering 10 to 30 networks and that the generalization
ability of REGENT is better than TopGen’s after this point.

Figure 20 presents the test-set error of TopGen and REGENT after they each consider
500 candidate topologies. The standard neural network results are from a fully-connected,
single-layer, feed-forward neural network; for each fold, I trained various networks con-
taining up to 100 hidden nodes and used a validation set to choose the best network. My
results show KBANN generalizes much better than the best of these standard networks,
thus further confirming KBANN’s effectiveness in generating good network topologies.
While TopGen is able to improve on the KBANN network, REGENT is able to signifi-
cantly decrease the error rate over both KBANN and TopGen.

Table 6 contains the number of hidden nodes in the final networks produced by
KBANN, TopGen, and REGENT. The results demonstrate the REGENT produces net-

works that are larger than both KBANN’s and TopGen’s networks (even though TopGen
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Figure 19: Error rates on the three reduced Human Genome problems.
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Figure 20: Error rates after TopGen and REGENT each consider 500 networks. Pairwise,
one-tailed t-tests indicate that REGENT differs from both KBANN and TopGen at the
90% confidence level.

Table 6: Number of hidden nodes in the networks output by KBANN, TopGen, and
REGENT. The columns show the mean number of hidden nodes found within these
learning algorithm’s networks. Standard deviations are contained within parentheses; I
do not report the standard deviation for KBANN since there is only one network.

Domain KBANN | TopGen REGENT
RBS 18 | 421 (9.3) | 70.1 (25.1)
Splice Junction 21 284 (4.1) | 324 (12.2)
Promoters 31 40.2 (3.3) | 74.9 (38.9)

only adds nodes during its search). While REGENT’s networks are larger, it does not
necessarily mean that they are more “complex.” I inspected sample networks and found
that there are large portions of the network that are either not used (e.g., they are
insignificantly small) or are functional duplications of other groups of hidden nodes.
One could prune weights and nodes during REGENT’s search; however, such prun-
ing can prematurely reduce the variety of structures available for recombination during
crossover (Koza, 1992). Real-life organisms, for instance, have superfluous DNA that
are believed to enhance the rate of evolution (Watson et al., 1987; Suzuki et al., 1989).

However, while pruning network size during genetic search may be unwise, one could
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prune REGENT’s final network using Hassibi and Stork’s (1992) Optimal Brain Surgeon
algorithm. This post-pruning process may increase the future classification speed of the

network, as well as increase its comprehensibility (see Section 7.2.4 for more details).

4.3.2 Including Non-KNNs in REGENT’s Population

The correct theory may be quite different from the initial domain theory. Thus, in this
section I investigate whether one should include, in the initial population of networks, a
variety of networks not obtained directly from the domain theory. Currently, REGENT
creates its initial population by always perturbing the KBANN network. To include net-
works that are not obtained from the domain theory, I first randomly pick the number
of hidden nodes to include in a network, then randomly create all of the hidden nodes
in this network. I do this by adding new nodes to a randomly picked output or hidden
node using one of TopGen’s four methods for adding new nodes (refer to Figure 9 in
Section 3.1.2). Adding nodes in this manner creates random networks whose node struc-
ture is analogous to dependencies found in symbolic rule bases, thus creating networks
suitable for REGENT’s crossover and mutation operators.

Table 7 shows the test-set error of REGENT with various percentages of KNNs present
in the initial population. The first row contains the results of running REGENT with a
purely random initial population (i.e., the population contains no KNNs). The second
row lists the results when REGENT creates half its population with the domain theory,
and the other half randomly. Finally, the last row contains the results of seeding the
entire population with the domain theory.

The results demonstrate that including, in the initial population, networks that were
not created from the domain theory increases REGENT’s test-set error on all three do-
mains. This occurs because the randomly generated networks are not as correct as the
KNNs, and thus offspring of the original KNN quickly replace the random networks.
Hence, diversity in the population suffers compared to methods that start with a whole

population of KNNs. Assuming the domain theory is not “malicious,” it is therefore
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Table 7: Test-set error after considering 500 networks. Pairwise, one-tailed t-tests indi-
cate that running REGENT with 100% KNNs differs from 0% KNNs at the 95% confidence
level on all three domains; however, given the inherent similarity and lengthy run-times
of these algorithms, the difference between the runs of 50% and 100% KNNs is not
significant at this level.

RBS Splice Junction | Promoters
0% KNN 9.7% 6.3% 5.1%
50% KNN 8.6% 4.3% 4.6%
100% KNN 8.2% 4.1% 4.2%

better to seed the entire population from the KBANN network. Should the domain the-
ory indeed be malicious and contain information that promotes spurious correlations in
the data, it would then be reasonable to randomly create the “whole” population. Thus
running REGENT both with and without the domain theory allows one to investigate the

utility of that theory.

4.3.3 Value of REGENT’s Mutation

Typically with GAs, mutation is a secondary operation that is only sparingly used; how-
ever, REGENT’s mutation is a directed approach that heuristically adds nodes to KNNs
in a provenly effective manner (i.e., it uses TopGen). It is therefore reasonable to hy-
pothesize that one should apply the mutation operator more frequently than traditionally
done in GAs. The results in this section test this hypothesis.

Figure 21 presents the test-set error of REGENT with varying percentages of mutation
(versus crossover) when creating new networks in step 3a of Table 4. Each graph plots
four curves: (a) 0% mutation (i.e., REGENT only uses crossover), (b) 10% mutation,
(¢) 50% mutation, and (d) 100% mutation. Performing no mutation tests the value of
using only crossover, while 100% mutation tests the efficacy of the mutation operator
by itself. Note that 100% mutation is just TopGen with a different search strategy;
instead of keeping an OPEN list, a population of KNNs are generated and members of
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Figure 21: Error rates of REGENT with different fractions of mutation verses crossover
after considering 500 networks. Given the inherent similarity of the algorithms, and the

limited number of runs due to computational complexity, the results are not significant
at the 95% confidence level.
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the population are improved proportional to their fitness. The other two curves (10% and
50% mutation) test the synergy between the two operators. Performing 10% mutation
is closer to the traditional GA viewpoint that mutation is a secondary operation, while
50% mutation means that both operations are equally valuable. (Previous experiments
in this chapter used 50% mutation and 50% crossover.)

The results illustrate the synergy that exists between the two operations. Except
for the middle portion of the promoter domain, the results show that, qualitatively,
using both operations at the same time is better than using either operation alone. In
fact, equally mixing the mutation and crossover operator is better than the other three
curves on all three domains once REGENT has considered 500 networks. This result is

particularly pronounced on the splice-junction domain.

4.3.4 Value of REGENT’s Crossover

REGENT tries to cross over the rules in the networks, rather than just blindly crossing
over nodes. It does this by probabilistically dividing the nodes in the network into two
sets where nodes belonging to the same rule tend to belong to the same set. In this
section, I test the efficacy of REGENT’s crossover by comparing it to a variant of itself
where it randomly assigns nodes to two sets (rather than using DivideNodes in Table 5).

Table 8 contains the results of this test after 250 networks were considered. In the first
row, REGENT-random-crossover, REGENT randomly breaks its hidden nodes into two
sets, while in the second row, REGENT assigns nodes to two sets according to Table 5. In
both cases, REGENT creates half its networks with its mutation, and the other half with
crossover. Although the differences are not statistically significant, the results suggest
that keeping the rule structure of the networks intact during crossover is important;
otherwise, the basic building blocks of the networks (i.e., the rules) get split during
crossover, and studies have shown the importance of keeping intact the basic building

blocks during crossover (Goldberg, 1989; Forrest & Mitchell, 1993).
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Table 8: Test-set error of two runs of REGENT: (a) randomly crossing over “nodes” in the
networks, and (b) one with crossing over “rules” in the network (defined by Equation 14).
Both runs considered 250 networks and used half crossover, half mutation. The results are
not significant at the 95% confidence level since there is only a slight difference between
the learning algorithms and long run-times limited runs to a 10-fold cross validation.

Promoters | Splice Junction | RBS
REGENT-random-Crossover 4.6% 4.7% 9.1%
REGENT 4.4% 4.1% 8.8%

4.4 Discussion of REGENT

Previously I stated that KBANN has been shown to generalize better than many other
machine learning algorithms on the promoter and splice-junction domains (the RBS
dataset did not exist then). Despite this success, REGENT is able to effectively use avail-
able computer cycles to significantly improve generalization over both KBANN and last
chapter’s improvement to KBANN, the TopGen algorithm. REGENT reduces KBANN’s
test-set error by 12% for the RBS domain, 22% for the splice-junction domain, and 33%
for the promoter domain; it reduces TopGen’s test-set error by 10% for the RBS domain,
17% for the splice-junction domain, and 21% for the promoter domain. Also, REGENT’s
ability to use available computing time is further aided by its being inherently parallel,
since I can train many networks simultaneously.

Further results show that REGENT’s two genetic operators complement each other.
The crossover operator considers a large variety of network topologies by probabilistically
combining rules contained within two “successful” KNNs. Mutation, on the other hand,
makes smaller, directed improvements to members of the population, while at the same
time adding diversity to the population by adding new rules to the population. Equal
use of both operators allow a wide variety of topologies to be considered, while at the
same time being able to make incremental improvements to members of the population.

Since REGENT considers many networks, it can select a subset of the final population

of networks and then combine (e.g., take the weighted average) the output of these
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networks at minimal extra cost. Hansen and Salamon (1990), among many others, have
shown that using such a collective decision strategy improves generalization over a single
network. As an initial test, I combined the predictions of all 20 networks in REGENT’s
final population by taking the weighted-average of each network (as determined by its
fitness). Simply combining the networks in this fashion produced test-set errors of 7.9%
on the RBS domain, 3.8% on the splice-junction domain, and 3.9% on the promoter
domain (compared to the errors of 8.2%, 4.1%, and 4.2% respectively of the best network
kept by REGENT). Previous work, though, has shown that an ideal ensemble is one
where the networks are both accurate and make their errors on different parts of the
input space (Hansen & Salamon, 1990; Krogh & Vedelsby, 1995). Creating such a set of
KNNs is the focus of the next chapter.

4.5 Future Work on REGENT

While I present future work specific to REGENT in this section, future work within the
general framework of my thesis is presented in Chapter 7. Since REGENT is searching
through many candidate networks, it is important to be able to recognize the networks
that are likely to generalize the best. I currently use a validation set; however, MacKay
(1992) has shown that a validation set can be a noisy estimate of the true error. Also, as
I increase the number of networks searched, REGENT may start selecting networks that
overfit the validation set. In fact, this may be a possible explanation for the occasional
upward trends in test-set error, from both TopGen and REGENT, in Figure 19. Future
work, then, is to investigate selection methods that do not use a validation set, which
would also allow REGENT to use all the training instances to train the networks. Such
techniques are discussed in more detail in Section 7.2.1.

Often times, there are multiple, even conflicting, theories about a domain. Future

work, then, is to investigate ways of using all of these domain theories to seed the initial
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population. Although the results in Section 4.3.2 show that including randomly gener-
ated networks degrades generalization performance, seeding the population with multiple
approximately correct theories should not degrade generalization, assuming the networks
will have about the same initial correctness. Thus REGENT should be able to naturally
combine good parts of multiple theories. Also, for a given domain theory, there are
many different but equivalent ways to represent that theory using a set of propositional
rules. Each representation leads to a different network topology, and even though each
network starts with the same theory, some topologies may be more conducive to neural

refinement.

4.6 Wrap-up

In this chapter I presented a new algorithm, REGENT, that uses a specialized genetic
algorithm to broaden the types of topologies considered during its search. Experiments
indicate that REGENT is able to significantly increase generalization over Chapter 3’s
TopGen algorithm; hence, my new algorithm is successful in overcoming TopGen’s lim-
itation of only searching a small portion of the space of possible network topologies. In
doing so, REGENT is able to generate a good solution quickly, by using KBANN, then is
able to continually improve this solution as it searches concept space. Therefore, one can
view REGENT as an anytime learner, which makes effective use of problem-specific knowl-
edge and available computing cycles. (Versions of this chapter was previously published

in Opitz and Shavlik, 1994a, 1994b.)



Chapter 5

Generating Knowledge-Based

Neural-Network Ensembles

Many researchers have shown that simply averaging (possibly in a weighted manner) the
output of many classifiers can generate more accurate predictions than that of any of the
individual classifiers (Clemen, 1989; Granger, 1989; Zhang et al., 1992; Wolpert, 1992;
Breiman, 1994). In particular, combining the predictions of separately trained neural
networks (commonly referred to as a neural-network ensemble) has been demonstrated
to be particularly successful (Lincoln & Skrzypek, 1989; Perrone, 1992; Alpaydin, 1993).
Both theoretical (Hansen & Salamon, 1990; Krogh & Vedelsby, 1995) and empirical
(Hashem et al., 1994; Maclin & Shavlik, 1995) work has shown that a good ensemble is
one where the networks are both accurate and make their errors on different regions of the
input space. In this chapter, I present an improvement to Chapter 4’s REGENT algorithm,
called ADDEMUP (Accurate anD Diverse Ensemble-Maker giving United Predictions),
that uses genetic algorithms to generate an ensemble of knowledge-based neural networks
(KNNSs) that are as accurate as possible, while at the same time having minimal overlap
on where they make their error.

Previous work on ensembles has either focussed on combining the output of multiple

trained networks or only ndirectly addressed how we should generate a good set of
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networks. Traditional ensemble techniques generate their networks by randomly trying
different topologies, initial weight settings, or parameters settings; or they use only a part
of the training set (Hansen & Salamon, 1990; Alpaydin, 1993; Breiman, 1994; Krogh &
Vedelsby, 1995; Maclin & Shavlik, 1995). The goal of these approaches is to produce
networks that disagree on which inputs they make their errors (I henceforth refer to
diversity as the measure of this disagreement). I propose instead to actively search for
a good set of networks. The key idea behind my approach is to use available computer
cycles to consider many networks, keeping a subset of the networks that minimizes my
objective function consisting of both an accuracy and a diversity term.

ADDEMUP proceeds by first creating an initial set of neural networks, then continually
produces new individuals by using the crossover and mutation operators. Currently
ADDEMUP uses REGENT to create its networks; though its basic framework can be
extended to incorporate other learning algorithms. As I discussed in Chapter 4, one could
simply use REGENT’s final population as an ensemble; however, ADDEMUP extends this
approach by carefully defining the overall fitness of an individual to be a combination
of accuracy and diversity. Also, ADDEMUP actively tries to generate good candidates
by emphasizing the current population’s erroneous examples during backpropagation
training. Experiments reported herein demonstrate that ADDEMUP is able to generate a
more effective set of networks for its ensemble than is REGENT.

When initializing ADDEMUP’s population, one can either randomly create the net-
works, or create them with KNNs. Creating the initial population with KNNs allows
ADDEMUP to have highly correct networks in its ensemble; however, since in this case
each network is translated from the same domain theory, we do not expect there to be
much disagreement among the networks. The alternative of randomly generating the
initial population of network topologies trades off the overall accuracy of each single
network for more disagreement between the networks. Experiments in this chapter also
show that creating an ensemble of KNNs is more effective than randomly initializing the

population for the domains considered in this thesis.
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Before presenting the ADDEMUP algorithm, I give a brief introduction and theoretical
overview of neural-network ensembles. I then use this theory to motivate the implemen-

tation details of ADDEMUP.

5.1 The Importance of an Accurate and Diverse En-
semble

Figure 22 illustrates the basic framework of a neural-network ensemble. Each network in
the ensemble (network 1 through network N in this case) is first trained using the training
instances. Then, for each example, the predicted output of each of these networks (o;
in Figure 1) is combined to produce the output of the ensemble (6 in Figure 1). Many
researchers (Lincoln & Skrzypek, 1989; Alpaydin, 1993; Hashem et al., 1994; Krogh &
Vedelsby, 1995) have demonstrated the effectiveness of combining schemes that are simply
the weighted average of the networks (i.e., 6 = Y ;cy w; - 0; and > ;cy w; = 1), and this
is the type of ensemble that I focus on in this chapter. An alternate approach is to
have each network only learn a particular subtask (or correction). This has proven to
be effective (Jacobs et al., 1991; Baxt, 1992; Nowlan & Sejnowski, 1992; Drucker et al.,
1992); however, the literature cited above has shown that the ensemble approach is also
effective and general, and thus deserves further investigation.

Combining the output of several networks is useful only if there is disagreement on
some inputs. Obviously, combining several identical networks produces no gain. Hansen
and Salamon (1990) proved that for a neural-network ensemble, if the average error rate
for a pattern is less than 50% and the networks in the ensemble are independent in the
production of their errors, the expected error for that pattern can be reduced to zero
as the number of networks combined goes to infinity; however, such assumptions rarely
hold in practice.

Krogh and Vedelsby (1995) later proved that the ensemble error can be divided into

a term measuring the average generalization error of each individual network and a term
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Figure 22: A neural-network ensemble.

called diversity! that measures the disagreement among the networks. Formally, they

define the diversity term, d;, of network ¢ on input z to be:
di(z) = [0i(w) — 6(x)]". (15)
The quadratic error of network ¢ and of the ensemble are:
6i(z) = [oi(z) — f(2)], (16)
e(z) = [6(z) — f(2)], (17)

respectively, where f(z) is the target value for input z. If we define E, FE;, and D, to be

the averages, over the input distribution, of e(z), €(x), and d(z) respectively, then the

ensemble’s generalization error consists of two distinct portions:
E=FE—-D, (18)

where E (= Y; w;E;) is the weighted average of the individual networks’ generalization

error and D (= ¥, w;D;) is the weighted average of the diversity among these networks.

'Krogh and Vedelsby referred to this term as ambiguity.
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What the equation shows then, is that an ideal ensemble consists of highly correct net-
works that disagree as much as possible. Creating such a set of networks is the focus of

this chapter.

5.2 The ADDEMUP Algorithm

Table 9 summarizes my algorithm, ADDEMUP, that uses genetic algorithms to generate
a set of neural networks that are accurate and diverse in their classifications. ADDEMUP
starts by creating and training its initial population of networks. It then creates new net-
works by using standard genetic operators, such as crossover and mutation. ADDEMUP
trains these new individuals, emphasizing examples that are misclassified by the current
population, as explained below. It adds new networks to the population and then scores
each population member with respect to its classification accuracy and diversity. AD-
DEMUP normalizes these scores and then defines the fitness of each population member
to be:

Fitness; = Accuracy; + X Diversity; = (1 — E;) + A D;, (19)

where A defines the tradeoff between accuracy and diversity. Finally, ADDEMUP prunes
the population to the N most-fit members, which it then defines to be its current ensem-
ble, then repeats this process.

I define my accuracy term, 1 — F;, to be network ¢’s validation-set accuracy (or
training-set accuracy if a validation set is not used), and I use Equation 15 over this
validation set to calculate my diversity term, D;. I then separately normalize each term
so that the values range from 0 to 1. Normalizing both terms allows A to have the same
meaning across domains.

Since it is not always clear at what value one should set A, I have therefore developed
some rules for automatically adjusting A. First, I never change A if the ensemble error
Eis decreasing while I consider new networks; otherwise I change A if one of following

two things happen: (a) population error E is not increasing and the population diversity
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Table 9: The ADDEMUP algorithm.

GOAL: Genetically create an accurate and diverse ensemble of networks.
1. Create and train the initial population of networks.
2. Until a stopping criterion is reached:

(a) Use genetic operators to create new networks.
(b) Train the new networks using Equation 20 and add them to the population.

(c) Measure the diversity of each network with respect to the current population
(see Equation 15).

(d) Normalize the accuracy scores and the diversity scores of the individual net-
works.

Calculate the fitness of each population member (see Equation 19).
Prune the population to the N fittest networks.
Adjust A (see the text for an explanation).

Report the current population of networks as the ensemble. Combine the
output of the networks according to Equation 21.

D is decreasing; diversity seems to be under emphasized and I increase \, or (b) F is
increasing and D is not decreasing; diversity seems to be over-emphasized and I decrease
A. (I started A at 0.1 for the results in this chapter.)

A useful network to add to an ensemble is one that correctly classifies as many ex-
amples as possible, while making its mistakes primarily on examples that most of the
current population members correctly classify. I address this during backpropagation
training by multiplying the usual error function by a term that measures the combined

population error on that example:

[t(k) — a(k)]%, (20)

Cost = Z —=

keT

where t(k) is the target and a(k) is the network activation for example £ in the training
set T. Notice that since the network is not yet a member of the ensemble, 6(k) and E

are not dependent on this network; my new term is thus a constant when calculating the
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derivatives during backpropagation. I normalize ¢(k)—6(k) by the current ensemble error
E so that the average value of my new term is around 1 regardless of the correctness
of the ensemble. This is especially important with highly accurate populations, since
t(k) — 6(k) will be close to 0 for most examples, and the network would only get trained
on a few examples. The exponent ,\LH represents the ratio of importance of the diversity
term in the fitness function. For instance, if A is close to 0, diversity is not considered
important and the network is trained with the usual cost function; however, if A is large,
diversity is considered important and my new term in the cost function takes on more
importance.

I combine the predictions of the networks by taking a weighted sum of the output of
each network, where each weight is based on the validation-set accuracy of the network.
Thus I define my weights for combining the networks as follows:

1—-E;

=S iEy (21)

w;

While simply averaging the outputs can generate a good composite model (Clemen, 1989),
I include the predicted accuracy in my weights since one should believe accurate models
more than inaccurate ones. I also tried more complicated models, such as emphasizing
confident activations (i.e., activations near 0 or 1), but they did not improve the results

on my testbeds.

5.3 Experimental Results

I ran ADDEMUP on NYNEX’s MAX problem set and on the three “reduced” Human
Genome Project DNA domains (recognizing promoters, splice-junctions, and ribosome-
binding sites - RBS). The reduced DNA datasets are described in Section 3.3.2, and are
also used in Chapter 4. As with the previous chapters, I use the reduced datasets to allow
the algorithms to consider many networks during their search. Each of these datasets is

accompanied by a domain theory; refer to Appendix A for more details on these tasks.
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My experiments in this chapter measure the test-set error of ADDEMUP on these
tasks. All results presented are from a ten-fold cross validation. Within each fold, I
held out 10% of the training instances to be used as a validation set if needed. Each
ensemble consists of 20 networks, and the REGENT and ADDEMUP algorithms considered

250 networks during their genetic search.

5.3.1 Generalization Ability of ADDEMUP

In this section, I divide my experiments into two classes: (a) the algorithms randomly
create the topology of their networks, and (b) they utilize the domain theory to create
their networks. Using KNNs allows one to have in his or her ensemble highly correct net-
works that tend to agree. The alternative of randomly generating the network topologies
thus trades off the overall accuracy of each single network for more disagreement between
the networks.

As a point of comparison, I include the results of running Breiman’s (1994) bagging
algorithm both on the KBANN network, and on randomly created, single-hidden-layer
networks. I also tried other ensemble approaches, such as randomly creating varying
multi-layer network topologies and initial weight settings, but bagging did significantly
better on all datasets (by 15-25% on all three DNA domains). Bagging is a “bootstrap”
(Efron & Tibshirani, 1993) ensemble method that trains each network in the ensemble
with a different partition of the training set. It generates each partition by randomly
drawing, with replacement, N examples from the training set, where N is the size of
the training set. Breiman (1994) showed that bagging is effective on “unstable” learning
algorithms where small changes in the training set result in large changes in predictions.
Earlier, Breiman (1984) studied instability, and claimed that neural networks and decision

trees are unstable, while k-nearest-neighbor methods are stable.
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Table 10: Test-set error from a ten-fold cross validation. Table (a) shows the results from
running three learners without the domain theory; Table (b) shows the results of running
three learners with the domain theory. Pairwise, one-tailed t-tests indicate that ADDEMUP
in Table (b) differs from the other algorithms in both tables at the 95% confidence level,
except with REGENT in the splice-junction domain.

| Standard neural networks (no domain theory used) |

Promoters | Splice Junction | RBS | MaAx

best-network 6.6% 7.8% 10.7% | 37.0%
bagging 4.6% 4.5% 9.5% | 35.7%
ADDEMUP 4.6% 4.9% 9.0% | 34.9%

(a)

‘ Knowledge-based neural networks (domain theory used) ‘

Promoters | Splice Junction | RBS | MAX

KBANN 6.2% 5.3% 9.4% | 35.8%
KBANN-bagging 4.2% 4.5% 8.5% | 35.6%
REGENT-best-network 4.4% 4.1% 8.8% | 35.9%
REGENT-combined 3.9% 3.9% 8.2% | 35.6%
ADDEMUP 2.9% 3.6% 7.5% | 34.7%

(b)

Generating Non-KNN Ensembles

Table 10a presents the results from the case where the learners randomly create the
topology of their networks (i.e., they do not use the domain theory). Table 10a’s first
row, best-network, results from a single-layer neural network where, for each fold, I
trained 20 networks containing between 0 and 100 (uniformly) hidden nodes and used a
validation set to choose the best network. The next row, bagging, contains the results
of applying the bagging algorithm to standard, single-hidden-layer networks, where the
number of hidden nodes is randomly set between 0 and 100 for each network. The results
confirm Breiman’s prediction that bagging would be effective with non-KNNs because of

the “instability” of standard neural networks. That is, a slightly different training set
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can produce large alterations in the predictions of the networks, thereby leading to an
effective ensemble.

The bottom row of Table 10a, ADDEMUP, contains the results of a run of ADDEMUP
where its initial population (of size 20) is randomly generated using REGENT’s method
for creating networks when no domain theory is present (refer to Section 4.3.2 for more
details). Even though ADDEMUP trains each network with the same training set, it
still produces results comparable to bagging. The results show that on these domains
combining the output of multiple trained networks generalizes better than trying to
pick the single-best network. Pairwise, one-tailed #-tests indicate that both AppeEmup
and bagging differ from best-network at the 95% confidence level on all four domains;

however, the differences between ApbEMUP and bagging are not significant.

Generating KNN Ensembles

While the previous section shows the power of a neural-network ensemble, Table 10b
demonstrates ADDEMUP’s ability to utilize prior knowledge. Again, each ensemble con-
tains 20 networks. The first row of Table 10b contains the generalization results of the
KBANN algorithm, while the next row, KBANN-bagging, contains the results of the en-
semble where each individual network in the ensemble is the KBANN network trained on
a different partition of the training set. Even though each of these networks start with
the same topology and “large” initial weight settings (i.e., the weights resulting from
the domain theory), small changes in the training set still produce significant changes
in predictions. Also notice that on all datasets, KBANN-bagging is as good as or better
than running bagging on randomly generated networks (i.e., bagging in Table 10a).
The next two rows result from the REGENT algorithm. The first row, REGENT-best-
network, contains the results from the single best network output by REGENT, while
the next row, REGENT-combined, contains the results of simply combining, using Equa-
tion 21, the networks in REGENT’s final population. Last chapter, I showed the effective-

ness of REGENT-best-network, and comparing it with the results in Table 10a reaffirms
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this belief. Notice that simply combining the networks of REGENT’s final population
(REGENT-combined) decreases the test-set error over the single-best network picked by
REGENT.

Appemup, the final row of Table 10b, mainly differs from REGENT-combined in two
ways: (a) its fitness function (i.e., Equation 19) takes into account diversity rather than
just network accuracy, and (b) it trains new networks by emphasizing the erroneous
examples of the current ensemble. Therefore, comparing ADDEMUP with REGENT-combined
helps directly test ADDEMUP’s diversity-achieving heuristics. The results in Table 10b

show that ADDEMUP is able to generate a more effective ensemble than the other learners.

5.3.2 Lesion Study of ADDEMUP

In this section, I perform a lesion study? on ADDEMUP’s two main diversity-promoting
components: (a) its fitness function (i.e., Equation 19) and (b) its reweighting of each
training example based on ensemble error (i.e., Equation 20). Table 11 contains the
results for this lesion study. The first row, REGENT-combined, is a repeat from Table 10b,
where I simply combined the networks of REGENT’s final population. The next two rows
are “lesions” of ADDEMUP. The first, ADDEMUP-weighted-examples, is ADDEMUP with
only reweighting the examples during training, while the second, ADDEMUP-fitness, is
ADDEMUP with only its new fitness function. The final row of the table, ADDEMUP-DOth,
is ADDEMUP with both its fitness function and its reweighting mechanism (i.e., a repeat
of AppEMuP from Table 10b).

The results show that, while reweighting the examples during training usually helps,
ADDEMUP gets most of its generalization power from its fitness function. Reweighting
examples during training helps create new networks that make their mistakes on a dif-
ferent part of the input space than the current ensemble; however, these networks may
not be as correct as training on each example evenly, and thus may be deleted from the

population without an appropriate fitness function that takes into account diversity.

2A lesion study is a well-defined study aimed at testing one particular aspect of an algorithm.
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Table 11: Test-set error on the lesion studies of ADDEMUP. Due to the inherent similarity
of each algorithm and the lengthy run-times limiting the number of runs to a ten-fold
cross-validation, the difference between the lesions of ADDEMUP is not significant at the
95% confidence level.

Promoters | Splice Junction | RBS

REGENT-combined 3.9% 3.9% 8.2%
ADDEMUP-weighted-examples 3.8% 3.8% 7.8%
AppEMUP-fitness 3.1% 3.7% 7.4%
ApDEMUP-both 2.9% 3.6% 7.5%

5.4 Discussion of ADDEMUP

The results within each of this chapter’s table show that combining the output of multiple
trained networks generalizes better than trying to pick the single-best network, verifying
the conclusions of previous work (Lincoln & Skrzypek, 1989; Hansen & Salamon, 1990;
Mani, 1991; Perrone, 1992; Alpaydin, 1993; Breiman, 1994; Hashem et al., 1994; Krogh &
Vedelsby, 1995; Maclin & Shavlik, 1995). When generating KNN ensembles, since every
network in the population comes from the same set of rules, we expect each network to
be similar. Thus the magnitude of the improvements of the KNN ensembles, especially
KBANN-bagging and REGENT-combined, comes as a bit of a surprise. REGENT, however,
does create some diversity during its search to ensure a broad consideration of the concept
space (Holland, 1975; Goldberg, 1989). It does this by randomly perturbing the topology
of each knowledge-based neural network in the initial population and it also encourages
diversity when creating new networks during the search through its mutation operator.

While REGENT encourages diversity in its population, it does not actively search for a
diverse population like ADDEMUP. In fact the single best network produced by ADDEMUP
(5.1% error rate on the promoter domain, 5.3% on the splice-junction domain, and 9.1%
on the RBS domain) is distinctively worse than REGENT’s single best network (4.4%,
4.1%, and 8.8% on the three respective domains). Thus, while too much diversity does not

allow the population to find and improve the single best network, the results in Table 10b
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show that more diversity is needed when generating an effective ensemble. There are two
main reasons why I think the results of ADDEMUP in Table 10b are especially encouraging:
(a) by comparing ADDEMUP with REGENT-combined, I explicitly test the quality of my
fitness function and demonstrate its effectiveness, and (b) ADDEMUP is able to effectively
utilize background knowledge to decrease the error of the individual networks in its
ensemble, while still being able to create enough diversity among them so as to improve

the overall quality of the ensemble.

5.5 Future Work on ADDEMUP

While I present future work specific to ADDEMUP in this section, Chapter 7 contains
the limitations and future plans to the general framework of my thesis. (The work
in Chapter 7 includes: new techniques for scoring each network; applying my anytime
framework to other types of learning algorithms; translating new types of domain theories
other than propositional rules; and finally, extracting humanly understandable rules from
the final network, or set of networks, output by my algorithms.)

My first planned extension (specific to ADDEMUP) is to investigate new methods
for creating networks that are diverse in their classification. While ADDEMUP currently
tries to generate such networks by reweighting the error of each example, the lesion
study showed that ADDEMUP gets most of its increase in generalization from its fitness
function. One alternative I plan to try is the bagging algorithm. Breiman (1994) showed
that bagging is effective if the learning algorithm is unstable. Therefore, given the variety
of topologies ADDEMUP considers during its search, bagging may be able to further
improve ADDEMUP’s generalization. I therefore plan to use bootstrapping to assign
each new population member’s training examples. Moreover, rather than just randomly
picking these training instances, I plan to also investigate the utility of more intelligently
picking this learning set. For instance, one could emphasize picking examples the current

ensemble misclassifies.
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Several authors have shown that simply averaging the output of many classifiers im-
proves generalization (Clemen, 1989; Lincoln & Skrzypek, 1989; Mani, 1991); however,
many other authors have shown that intelligently setting the combining weights improves
generalization even more (Zhang et al., 1992; Alpaydin, 1993; Hashem et al., 1994). Fu-
ture work, then, is to investigate intelligent methods for setting these weights. Currently,
ADDEMUP combines each network in the ensemble by taking the weighted average of
the output of each network, where each weight is set to the validation-set accuracy of
the network. One approach I plan to implement is a proposed method by Krogh and
Vedelsby (1995) that tries to optimally find the settings that minimize the ensemble gen-
eralization error in Equation 18. They do this by turning the constraints into a quadratic
optimization problem. Thus, while ADDEMUP searches for a set of networks that mini-
mize Equation 18, this approach searches for a way to optimally combine the set for this
equation.

As stated earlier, the framework of ADDEMUP and the theory it builds upon can
be applied to any inductive learner, not just neural networks. Future work then, is
to investigate applying ADDEMUP to these other learning algorithms as well. With
genetic programming (Koza, 1992), for instance, I could translate perturbations of the
domain theory into a set of dependency trees (see Figure 6b), then continually create new
candidate trees via crossover and mutation. Finally, I would keep the set of trees that
are a good fit for my objective function containing both an accuracy and diversity term.
By implementing ADDEMUP on a learner that creates its concepts faster than training
a neural network, I can better study various issues such as finding good ways to change
the tradeoff between accuracy and diversity, investigating the value of normalizing the

fitness and diversity terms, and finding the appropriate size of an ensemble.
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5.6 Wrap-up

My new algorithm, ADDEMUP, uses genetic algorithms with a novel fitness function to
search for a correct and diverse ensemble of knowledge-based neural networks. It does
this by using Chapter 4’s REGENT algorithm to collect a set of KNNs that best fits an
objective function that measures both the accuracy of a network and the disagreement of
that network with respect to other members in the set. Experiments demonstrate that my
method is able to find an effective set of KNNs for its ensemble. ADDEMUP showed sta-
tistically significant improvements in generalization over (a) the single best network seen
during the search, (b) a previously proposed ensemble method called bagging (Breiman,
1994) applied to both randomly generated networks and the KBANN network, (c) simply
combining REGENT’s population, and (d) a run of ADDEMUP where it randomly created
the network topologies of its initial population. In summary, ADDEMUP is successful in

generating a set of KNNs that work well together in producing an accurate prediction.



Chapter 6

Additional Related Work

The work presented in this thesis is related to several research areas. While I have
presented background and related work when appropriate throughout this manuscript,
I give additional related work here. Although I do not re-address previously reviewed
work, I do provide “back-pointers” to these discussions.

I have broken this chapter into three main sections: (a) theory-refinement algorithms,
(b) methods for automatically finding suitable neural-network topologies, and (c) tech-
niques for combining the predictions of multiple classifiers. Within each section, I give
a brief overview of that area while discussing how that work relates to my algorithms.

Throughout, I also give detailed descriptions of the most closely related systems.

6.1 Theory Refinement

The first related-work area I cover is that of theory refinement. I gave a terse introduction
of theory refinement in Section 1.2. In this section, I break theory-refinement systems
into two categories: (a) those that first convert a domain theory into a neural network
and then refine this network, and (b) those that refine a domain theory directly in its

initial symbolic (“rule-like”) form.
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6.1.1 Connectionist Theory-Refinement Techniques

I gave an overview of connectionist theory-refinement systems in Section 2.2. As stated in
that section, connectionist theory-refinement systems have been developed to refine many
types of rule bases. For instance, a number of systems have been proposed for revising
certainty-factor rule bases (Fu, 1989; Lacher et al., 1992; Mahoney & Mooney, 1993),
finite-state automata (Omlin & Giles, 1992; Maclin & Shavlik, 1993), and mathematical
equations (Roscheisen et al., 1991; Scott et al., 1992). Most of these systems work by
first translating the domain knowledge into a neural network, then modifying the weights
of this resulting network.

Of these systems, KBANN (Towell, 1991) is the most obviously related work. All three
of my algorithms use KBANN to translate a propositional domain theory into a network,
thus determining the initial topology and weight settings of this network. My systems
then go on to refine the topology of this network. While I have already described KBANN

in detail in Section 2.2.1, I present three other systems closely related to my work next.

Fletcher and Obradovic’s Algorithm

Like my algorithms, Fletcher and Obradovic (1993) also present an approach that adds
nodes to a KBANN network. Their system constructs a single layer of nodes, fully con-
nected between the input and output nodes, off to the side of KBANN in a style similar
to Chapter 3’s Strawman algorithm. They generate new hidden nodes using a variant
of Baum and Lang’s (1991) constructive algorithm. Baum and Lang’s algorithm first
divides the feature space with hyperplanes. They find each hyperplane by randomly
selecting two points from different classes, then localizing a suitable split between these
points. Baum and Lang repeat this process until they generate a fixed number of hy-
perplanes. Fletcher and Obradovic then map each of Baum and Lang’s hyperplanes
into one new hidden node, thus defining the weights between the input layer and that
hidden node; therefore, the number of hyperplanes generated determines the number of

additional hidden nodes they add to the side of KBANN. During training, Fletcher and
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Obradovic change only the weights between the new hidden layer and the output layer.

Fletcher and Obradovic’s approach differs from Strawman mainly in the training of
the network, as well as the fact that they only consider one possible expansion to the
network. Their algorithm does not change the weights of the KBANN portion of the
network, so modifications to the initial rule base are solely left to the constructed hidden
nodes. Thus, their system does not take advantage of KBANN’s strength of removing

unwanted antecedents and rules from the original rule base.

The DAID Algorithm

The DAID algorithm (Towell & Shavlik, 1992) is an extension to KBANN that uses the
domain theory to help train the KBANN network. As demonstrated in Section 2.2.2 and
in Towell and Shavlik (1994), KBANN is more effective at dropping antecedents than
adding them. DAID addresses this limitation by trying to find potentially useful inputs
features not mentioned in the domain theory. It does this by backing-up errors to the
lowest level of the domain theory, then computing correlations with the features. DAID
then increases the weight of the links from the potentially useful input features based on
these correlations.

DAID mainly differs from my algorithms in that it does not refine the topology of
the KBANN network. Thus, while DAID addresses KBANN’s limitation of not effectively
adding antecedents, it is still unable to introduce new rules or constructively induce new
antecedents (refer to Section 3.1.2 for details how my algorithms are able to do this).
DAID will therefore suffer with impoverished domain theories. Also notice that since
DAID is an improvement for training KNNs, my algorithms can use DAID to train each

network they consider during their search (however, I have not done so).
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The RAPTURE Algorithm

RAPTURE (Mahoney & Mooney, 1993) is designed for domain theories containing prob-
abilistic rules. Like most connectionist theory-refinement systems, RAPTURE first trans-
lates the domain theory into a neural network, then refines the weights of the network with
a modified backpropagation algorithm. An improved version of RAPTURE (Mahoney &
Mooney, 1994), however, is able to dynamically refine the topology of its network. It does
this by using the UPSTART algorithm (Frean, 1990) to add new nodes to the network.
Aside from being designed for probabilistic rules, RAPTURE differs from the frame-
work of my algorithms in that it adds nodes with the intention of completely learning the
training set, not generalizing well. Thus, while RAPTURE hillclimbs until the training set
is learned, my algorithms continually search topology space looking for a network that
minimizes validation-set error. Also, RAPTURE initially only creates links that are spec-
ified in the domain theory, and only explicitly adds links through ID3’s (Quinlan, 1986)
information-gain metric. My algorithms, on the other hand, fully connect consecutive
layers in their networks, allowing each rule the possibility of adding antecedents during

training.

6.1.2 Symbolic Theory-Refinement Systems

Additional work related to mine includes purely symbolic theory-refinement systems that
modify the domain theory directly in its initial form. Systems such as FocL (Pazzani
& Kibler, 1992) and FORTE (Richards, 1995) are first-order, theory-refinement systems
that revise predicate-logic theories. One drawback to these systems is that they currently
do not generalize as well as connectionist approaches on many real-world problems, such
as the DNA promoter task (Cohen, 1992).

REGAL (Giordana & Saitta, 1993; Giordana et al., 1994) is an example of a first-
order, theory-refinement system that uses genetic algorithms to help refine an incomplete
or inconsistent domain theory. Their system works by first using an automated theorem

prover to recognize unresolved literals in a proof, then uses genetic algorithms to induce
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corrections to these literals, one at a time. My systems, on the other hand, use genetic
algorithms (along with neural learning) to refine the whole domain theory at the same
time.

Several systems, including mine, have been proposed for refining propositional rule
bases. Early such approaches could only handle improvements to overly specific theories
(Danyluk, 1989) or specializations to overly general theories (Flann & Dietterich, 1989).
Later systems such as RTLS (Ginsberg, 1990), DucTOR (Cain, 1991), EITHER (Ourston
& Mooney, 1994), PTrR (Koppel et al., 1994), and Tccr (Donoho & Rendell, 1995)
were later able to handle both types of refinements. I discuss the EITHER system as a

representative of these propositional systems next.

The EITHER Algorithm

EITHER has four theory-revision operators: (a) removing antecedents from a rule, (b)
adding antecedents to a rule, (c¢) removing rules from the rule base, and (d) inventing
new rules. EITHER uses these operators to make revisions to the domain theory that
correctly classify some of the previously misclassified training examples without undoing
any of the correctly classified examples. EITHER uses inductive learning algorithms to
invent new rules; it currently uses ID3 (Quinlan, 1986) as its induction component.

Even though my algorithms add nodes in a manner analogous to how a symbolic
system adds antecedents and rules, my underlying learning algorithm is “connectionist.”
Towell (1991) showed that KBANN was superior to EITHER on the promoter task, and my
algorithms outperform KBANN. KBANN’s power on this domain is largely attributed to
its ability to make “fine-grain” refinements to the domain theory (Towell, 1991). Because
of EITHER’s difficulty on this domain, Baffes and Mooney (1993) presented an extension
to it called NEITHER-MOFN that is able to learn M-of-N rules — rules that are true if M
of the N antecedents are true. This improvement generated a concept that more closely
matches KBANN’s generalization performance.

While we want to minimize changes to a theory, we do not want to do it at the expense
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of accuracy; however, Donoho and Rendell (1995) demonstrate that most existing theory-
refinement systems, such as EITHER, suffer in that they are only able to make small,
local changes to the domain theory. Thus, when an accurate theory is significantly far in
structure from the initial theory, these systems are forced to either become trapped in a
local maximum similar to the initial theory, or are forced to drop entire rules and replace
them with new rules that are inductively created purely from scratch. My algorithms do
not suffer from this in that they translate the theory into the less restricting representation
of neural networks (Donoho & Rendell, 1995). Also, REGENT and ADDEMUP are able

to further reconfigure the structure of the domain with genetic algorithms.

6.2 Finding Appropriate Network Topologies

My second area of related work covers techniques that attempt to find a good domain-
dependent topology by dynamically refining their network’s topology during training.
Many studies have shown that the generalization ability of a neural network depends on
the topology of the network (Baum & Haussler, 1989; Tishby et al., 1989). When trying
to find an appropriate topology, one approach is to construct or modify a topology in
an incremental fashion. This can be done by starting with too many nodes and weights,
then taking some away; or starting with too few and adding some more.

Algorithms that start with too many parameters, then remove nodes and weights dur-
ing training are called network-shrinking algorithms, while algorithms that start with too
few parameters, then add nodes and weights during training are called network-growing
algorithms. I gave an overview of these algorithms in Section 2.1.2. The most obvious
difference between my approaches and these algorithms is that mine use domain knowl-
edge and symbolic rule-refinement techniques to help determine their network’s topology.
A second difference is that these other algorithms restructure their network based solely
on training set error, while my approaches use a separate validation set. Finally, my

approaches use either beam search or genetic algorithms, rather than hillclimbing, when
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determining where to add nodes.
Instead of incrementally finding an appropriate topology, one can mount a “richer”
search than hillclimbing through the space of topologies. I cover one such approach that

involves combining genetic algorithms and neural networks next.

Combining Genetic Algorithms and Neural Networks

Genetic algorithms have been applied to neural networks in two different ways: (a) to
optimize the connection weights in a fixed topology, and (b) to optimize the topology of
the network. Techniques that solely use genetic algorithms to optimize weights (Whitley
& Hanson, 1989; Montana & Davis, 1989) have performed competitively with gradient-
based training algorithms; however, one problem with genetic algorithms is their ineffi-
ciency in fine-tuned local search, thus the scalability of these methods are in question
(Yao, 1993). Kitano (1990b) presents a method that combines genetic algorithms with
backpropagation. He does this by using the genetic algorithm to determine the starting
weights for a network, which are then refined by backpropagation. REGENT and AD-
DEMUP differ from Kitano’s method in that they use a domain theory to help determine
each network’s starting weights and genetically search, instead, for appropriate network
topologies.

Most methods that use genetic algorithms to optimize a network topology are similar
to my algorithms in that they also use backpropagation to train each network’s weights.
Of these methods, many directly encode each link in the network (Miller et al., 19809;
Oliker et al., 1992; Schiffmann et al., 1992). These methods are relatively straightforward
to implement, and are good at fine tuning small networks (Miller et al., 1989); however,
they do not scale well since they require very large matrices to represent all the links
in large networks (Yao, 1993). Other techniques (Harp et al., 1989; Kitano, 1990a;
Dodd, 1990) only encode the most important features of the network, such as the number
of hidden layers, the number of hidden nodes at each layer, etc. These indirect encoding

schemes can evolve different sets of parameters along with the network’s topology and



93

have been shown to have good scalability (Yao, 1993). Some techniques (Koza & Rice,
1991; Oliker et al., 1992) evolve both the architecture and connection weights at the same
time; however, the combination of the two levels of evolution greatly increases the search
space.

REGENT and ADDEMUP mainly differ from genetic-algorithm-based training meth-
ods in that my algorithms are designed for knowledge-based neural networks. Thus my
algorithms uses domain-specific knowledge and symbolic rule-refinement techniques to
aid in determining the network’s topology and initial weight setting. REGENT also dif-
fers in that it does not explicitly encode its networks; rather, in the spirit of Lamarkian
evolution, it passes trained network weights to offspring. A final difference is that most of
these other algorithms restructure their network based solely on training-set error, while

my algorithms minimize validation-set error.

6.3 Combining the Predictions of Multiple Networks

A final area related to my work is techniques that save multiple trained networks, then
uses a collective decision strategy to classify examples. I break these methods into two
groups: (a) neural-network ensembles — methods like ADDEMUP that train each network
to learn the entire task, then combine their predictions with a weighting function that is
independent of the current input, and (b) mixtures of experts — methods that train each
network to learn a specific subtask, then gate the network predictions with a function

that depends on the input.

6.3.1 Neural-Network Ensembles

The idea of using an ensemble of networks rather than the single best network has been
proposed by several people (Lincoln & Skrzypek, 1989; Hansen & Salamon, 1990; Mani,
1991; Wolpert, 1992; Alpaydin, 1993; Hashem et al., 1994). I presented a framework for

these systems along with a theory of what makes an effective ensemble in Section 5.1.
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Lincoln and Skrzypek (1989), Mani (1991) and the forecasting literature (Clemen, 1989;
Granger, 1989) indicate that a simple averaging of the classifiers generates a very good
composite model; however, many later researchers (Wolpert, 1992; Zhang et al., 1992;
Perrone, 1992; Alpaydin, 1993; Hashem et al., 1994) have further improved generalization
with voting schemes that are complex combinations of each classifier’s output.

Hansen and Salamon (1990) showed that generalization increases, when combining
multiple neural networks, if the networks are independent in their error. Krogh and
Vedelsby (1995) later proved that the ensemble generalization error can be minimized by
finding a set of accurate networks that disagree as much as possible. Most approaches,
however, fail in that they do not actively try to generate such a set of networks. These
approaches either randomly create their networks (Lincoln & Skrzypek, 1989; Hansen
& Salamon, 1990), or indirectly try to create diverse networks by training each network
with dissimilar learning parameters (Alpaydin, 1993), different network architectures
(Hashem et al., 1994), various initial weight settings (Maclin & Shavlik, 1995), or separate
partitions of the training set (Breiman, 1994; Krogh & Vedelsby, 1995). Unlike ADDEMUP
however, these approaches do not directly address how to generate such networks that are
optimized for the ensemble as a whole. One method that does actively create members

for its ensemble, however, is called boosting, which I describe next.

Boosting

Shapire (1990) describes a method, called the boosting algorithm, for converting a learner
that is guaranteed to always perform slightly better than random guessing into one that
achieves arbitrarily high accuracy. The boosting algorithm first trains a classifier with
a set of training examples, then collects an approximately equal number of correct and
incorrect examples produced by the first hypothesis and then uses them to generate a
second hypothesis. Finally, examples where the first and second hypotheses disagree are
used to train a third hypothesis, which breaks ties during classification. This algorithm

can be recursively called until a predefined accuracy is reached.
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Drucker et al. (1992) applied boosting to neural networks to improve their error
rate on a handwritten-digit-recognition task. A problem with the boosting algorithm,
however, is that with a finite amount of training examples, unless the first network has
very poor performance, there may not be enough examples to generate a second or third
training set. For instance, if a KBANN network is trained with 3,000 examples from one
of the DNA tasks and it reaches 95% correct, you would need 30,000 examples to find an
appropriate training set for the second network. Even more examples would be needed
to generate a third training set.

Drucker et al. (1992) addressed this problem with a method that generates new data
by deforming existing two-dimensional pixel arrays (e.g., by slightly rotating or shifting
the images); however, it is less clear how one would create new data on non-image
tasks, such as my DNA domains. In contrast, ADDEMUP trains multiple networks with
the whole training set, and keeps the set of networks that best fit its criteria of being
accurate and diverse. Therefore, ADDEMUP works well on domains, such as the DNA

tasks, that are limited in data.

6.3.2 Mixtures of Local Experts

An alternate approach to the ensemble framework is to train individual networks on a
subtask, and to then combine these predictions with a “gating” function that depends
on the input. Jacobs et al.’s (1991) adaptive mixtures of local experts, Baxt’s (1992)
method for identifying myocardial infarction, and Nowlan and Sejnowski’s (1992) visual
model all train networks to learn specific subtasks. The key idea of these techniques is
that a decomposition of the problem into specific subtasks might lead to more efficient
representations and training (Hampshire & Waibel, 1989).

Once a problem is broken into subtasks, the resulting solutions need to be combined.
Jacobs et al. (1991) propose having the gating function be a network that learns how
to allocate examples to the experts. Thus the gating network allocates each example

to one or more experts, and the backpropagated errors and resulting weight changes
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are then restricted to these networks (and the gating function). Tresp and Taniguchi
(1995) propose a method for determining the gating function after the problem has been
decomposed and the experts trained. Their gating function is an input-dependent, linear-
weighting function that is determined by a combination of the networks’ variance on the
current input with the likelihood that these networks have seen data “near” that input.

Although the mixtures of experts and ensemble paradigms seem very similar, they
are in fact quite distinct from a statistical point of view. The mixtures-of-experts model
makes the assumption that a single expert is responsible for each example. In this case,
each expert is a model of a region of the input space, and the job of the gating function is
to decide from which model the data point originates. Since each network in the ensemble
approach learns the whole task rather than just some subtask and thus makes no such
mutual exclusivity assumption, ensembles are appropriate when no one model is highly

likely to be correct for any one point in our input space.

6.4 Summary of Related Work

In this chapter, I broke previous work related to my thesis into three sections. The first of
these was theory refinement. My work differs from most connectionist theory-refinement
systems in that it is able to effectively modify its topology during training, and the few
systems that are able to modify their topology do so in a greedy fashion, whereas I
continually consider new candidate topologies using beam search. Besides the choice of
inductive-learning component, my work differs from purely symbolic refiners in that it
effectively considers changes other than small, local corrections to a domain theory.

I next reviewed methods that dynamically try to find appropriate domain-dependent,
neural-network topologies. The framework for my algorithms is distinct in that it is
designed for knowledge-based neural networks. Also, my systems attempt to minimize
validation-set error, rather than training-set error.

The final area of related work I presented involves combining multiple classifiers.
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ADDEMUP differs from most of these approaches in that it actively searches for a good
set of classifiers to combine. Also, I have demonstrated that my approach can effectively
utilize prior knowledge.

In summary, my algorithms differ from the above mentioned work in that my ap-
proaches are “anytime” learners that continually search, in a non-hillclimbing manner,
for improvements to the domain theory. Thus, my work is unique in that is provides a
connectionist approach that attempts to effectively utilize available background knowl-

edge and available computer cycles to generate the best concept possible.



Chapter 7

Conclusions

The central point of this thesis is that an effective learning system must be able to take
advantage of all available resources to improve the quality of the concept it generates.
The learning algorithms presented here take a step toward this goal. In particular, they
utilize background knowledge by translating a theory describing what is currently known
about the domain directly into a knowledge-based neural network (KNN). They then
continually refine this network over time, keeping the best network (or set of networks)
as their concept.

Before presenting limitations to my thesis, it is necessary to understand its contri-
butions. I therefore present a list of these contributions next. I then discuss current
limitations of my algorithms, while presenting future work I plan to pursue that address

these limitations. Finally, I give concluding remarks.

7.1 Contributions

Along with presenting and supporting my thesis statement, there were other contributions
of this thesis as well. I start by describing the main contribution associated with each
learning system, then state other notable contributions presented in this thesis. The

following briefly lists each learning system’s main contribution:

98
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o TopGen provides a way to “quickly” alter a KNN during training. TopGen does this
by first using a symbolic interpretation of the trained network to help locate primary
errors of the network, then adds new nodes to this network in a manner analogous
to adding rules and conjuncts to a symbolic rule base. The lesson learned is that
one should overcome weaknesses inherent in neural refinement of a rule base (e.g.,
inadequate adding of new rules and antecedents to a propositional rule base), by
altering a KNN’s topology in a manner that exploits the strengths of symbolically
refining that same rule base (e.g., suggesting new places to create new rules or

antecedents).

e REGENT searches a “broader” range of KNN topologies than TopGen, and finds
better networks if given time to consider many possibilities. REGENT generates
new KNNs by using the genetic operators of crossover and mutation. Studies with
REGENT teach us that the crossover operator should try to cross over the rules
within a network, rather than just blindly crossing over nodes, and that mutation

should be a directed operator that adds new nodes in an intelligent manner.

e ADDEMUP provides a method for searching for a good “ensemble” of KNNs. Pre-
vious work has shown us that a good ensemble is one where the networks are not
only accurate, but are diverse in terms of their classification error. ADDEMUP
provides a mechanism for generating such a set of networks. The domain theory
helps create accurate networks, while ADDEMUP’s fitness function, along with other
diversity-promoting techniques, helps create the needed disagreement among these

networks.

While the above contributions describe the main goal addressed by each learning
algorithm presented in this thesis, there were other notable contributions as well. The

following is a list of the most significant of these contributions:

e Carefully controlled experiments on a chess-related domain illustrates the perils of

connectionist theory-refinement systems that do not alter their KNN’s topology
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during training. In particular, such systems are restricted in the types of refine-
ments they can make to the theory. Hence when given impoverished domain the-
ories, generalization suffers and the systems must significantly alter their original
rules during training (which makes subsequent rule extraction, Towell and Shavlik,

1993, much harder).

e This thesis demonstrates the importance of anytime learning. Most current learn-
ing algorithms provide only one answer then stop; however, I obtained improved
concepts by developing algorithms that are able to produce a good concept quickly,
then are able to continually search concept space, reporting the new best concept

whenever one is found.

e In theory refinement, it is desirable to be able to correctly classify the examples
while deviating from the initial domain theory as little as possible. This is important
since the initial theory sums up past experience that may not be present in our
current data. In Section 3.3.1, I presented a method for measuring how much the
meaning of the rules had changed during learning. This corruption is estimated
by measuring the error on the set of examples in the test set that the original
domain theory classifies correctly. Previous measurements have dealt with syntactic
difference (such as counting the number of changed antecedents) rather than the

more informative semantic difference.

7.2 Limitations and Future Work

Since a research project is rarely (if ever) “complete,” I next present possible future
research directions. While I have given suggestions for future work specific to each
learning algorithm along the way (Sections 3.5, 4.5, and 5.5), in this section I concentrate
on the limitations and suggested improvements to the framework of these systems as a

whole.
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7.2.1 Network-Scoring Functions

Because my algorithms consider many neural-network topologies during their search, it
is important to be able to recognize the networks that are likely to generalize the best to
future examples. With this in mind, future work is to develop and test different network-
evaluation functions. My current evaluation function is to use a validation set (described
in Section 2.1.1); however, validation sets have several drawbacks. First, keeping aside
a validation set decreases the number of training instances available for each network.
Second, the performance of a validation set can be a noisy approximator of the true error
(Weigend et al., 1990; MacKay, 1992). Finally, as I increase the number of networks
considered, my algorithms may start picking networks that overfit the validation set. In
fact, results in Section 4.3 show that overfitting may start to occur after as few as 500
networks.

To avoid the problem of overfitting the data, a common regression trick is to have
a cost function that includes a “smoothness” term along with the error term. The best
function, then, will be the smoothest function that also fits the data well. How much
importance is placed on either term is called the bias/variance tradeoff (Geman et al.,
1992). High belief in the bias (or smoothness) will produce an answer that is smooth,
but may not fit the data well. Low belief in the bias, on the other hand, may produce
an answer that is complex, but fits the data well.

For neural networks, one can add to the estimated error a smoothness component
that is a measure of the complexity of the network. The complexity of the network
cannot simply be estimated by counting the number of possible parameters, since there
tends to be large duplication in the function of each weight in a network, especially early
in the training process (Weigend, 1993). Note that the standard weight-decay terms
(Rumelhart et al., 1995) would be insufficient as smoothness terms, since these terms
only take into account the distribution of the weights and ignore functional duplication.

Two techniques that try to take into account the effective size of the network are Gen-

eralized Prediction Error (Moody, 1991) and Bayesian methods (MacKay, 1992). These
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techniques use only training examples when predicting generalization error. Therefore,
my algorithms would be able to use the entire training set to train each considered
network. Future work, then, is to investigate utilizing these techniques as appropriate
scoring functions for KNNs.

Quinlan and Cameron-Jones (1995) propose adding an additional term to the accu-
racy and smoothness term that takes into account length of time spent searching. They
coin the term “oversearching” to describe the phenomenon where more extensive search-
ing causes lower predictive accuracy. Their claim is that oversearching is orthogonal
to overfitting, thus these complexity-based methods alone cannot prevent oversearch-
ing. As I increase the number of networks I consider during a search, I too may start

oversearching, and thus plan to investigate adding an oversearching term as well.

7.2.2 Anytime Learning

As stated in Section 1.3, it is advantageous for a learner to be able to continually improve
its answer over time. In this thesis, I demonstrated three connectionist approaches that
are successful in being able to utilize available computer cycles to improve the quality of
their answers. Another future direction, then, is to extend other learning algorithms to
also have an anytime aspect.

In order to make other learning algorithms anytime in nature, they must be able
to consider a wide variety of plausible concepts. Decision trees (Breiman et al., 1984;
Quinlan, 1993), for instance, are generally greedy in their selection of picking splits for a
node. A wide variety of possible splits may be considered at each node, but once a split is
made it generally never gets undone. One possible extension is to introduce backtracking
into the splits or use “lookahead search.”

Also, different decision-tree algorithms vary on the types of splits they consider, as
well as the criterion they use for judging the local effectiveness of each split. As I showed
with TopGen, if one has time to consider many possible solutions, then it is important to

be able to consider a wide variety of solutions as well. Extrapolating this idea to decision
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trees, one could generate a population of diverse decision trees, then create new trees
through the genetic operators of mutation and crossover. Turney (1995), for instance,
proposed a method for genetically optimizing a bit-string encoding a “bias” for generating
a decision tree. This bias term contained such parameters as cost of classification error
and level of pruning. While Turney (1995) only tried to optimize one tree, a set of
accurate and diverse decision trees can be kept for a decision-tree ensemble.

The same idea can be extended to theory-refinement systems as well. As stated in
Section 6.1.2, most current symbolic theory-refinement systems are trapped in the initial
structure of the domain theory. Extending these algorithms by using the ideas presented

in this thesis could help overcome this difficulty.

7.2.3 New Types of Domain Theories

It is often the case that domain theories contain rules other than the propositional
rules assumed in this thesis; however, as indicated earlier, many authors have already
proposed methods for translating varying types of domain theories into neural net-
works. These include finite-state automata (Omlin & Giles, 1992; Maclin & Shavlik,
1993), push-down automata (Das et al., 1992), fuzzy-logic rules (Masuoka et al., 1990;
Berenji, 1991), probabilistic rules (Fu, 1989; Mahoney & Mooney, 1994), mathematical
equations (Roscheisen et al., 1991; Scott et al., 1992), and other types of rules. My anal-
ysis of propositional-rule KNNs can easily be converted to these other types of rule bases
as well. For instance, these algorithms will also suffer if they do not refine their topology
during training. Nodes should be dynamically added in a manner that addresses refine-
ments that are symbolically meaningful and useful, but hard for the network’s training
algorithm to do. Also, genetic algorithms can refine the network’s topology by designing
operators that keep intact the dependencies of the rules. Finally, a good ensemble can
be generated with an appropriate fitness function that also takes into account diversity

among the networks.
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One type of language worthy of more investigation is predicate logic. While proposi-
tional logic is unable to perform quantification, predicate logic can represent real-world
facts as statements and can thus quantify these facts. Currently with my systems, if a
domain theory is presented in predicate logic, it must be translated into propositional
logic before translation. This translation can be done in finite domains by determining
the possible values for each variable in each rule (i.e., as defined by the inputs to the net-
work). However, because a single first-order rule may map to many propositional rules
over a set of inputs (variable-bindings), information is lost, such as which nodes and
weights correspond to the same first-order rule. One may use weight sharing (Rumelhart
et al., 1986) to cluster these weights, however these weights would then be unable to split
into different clusters during training.

The information contained in predicate-logic rules can be applied to knowledge-based
neural networks in two ways: (a) helping to decide where and how to add hidden nodes,
and (b) helping to train a network. Figure 23a shows a predicate-logic rule, its cor-
responding propositional rules as defined by the network’s possible inputs, and finally
the corresponding network obtained from the propositional rules. Assume the initial do-
main theory contains only this predicate-logic rule, and the final concept we are trying
to learn, shown in Figure 23b, contains another predicate-logic rule. Notice that when
dealing with proposition rules, my algorithms must add and correctly learn three new
nodes, even though these additions correspond to adding only one predicate-logic rule.
If an algorithm knew that it needed to correct false-negatives for the predicate-logic rule
a, it could add all three nodes at once, in the appropriate places. The learning algorithm
can cluster weights that correspond to the same variable in a predicate-logic rule us-
ing ideas similar to soft-weight sharing (Nowlan & Hinton, 1992), thus allowing weights
to dynamically change clusters during training. One remaining difficulty is recursion;
however, one can handle recursion by either unrolling the recursive rule to a predefined
depth, or by using a “recurrent” network (Hertz et al., 1991) containing feedback links

that create loops in the network.
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a :— b(X), not c(X-1).
a :— b(X), not c(X-1). a - c(X), d(X).

Valid argumentsfor b() and c(): 1, 2, 3. | Valid argumentsfor b(), c(), and d(): 1, 2, 3.

a - b(2), not c(1).

a:— b(2), not c(1). a = b(3), not c(2).
a:—c(1), d().
a :— b(3), not c(2). a—c(2), d(2).
a - c(3), d(3).
a a

.
Y

oo dbdodboo| odbd
b(1) c(1) d(2) b(2) c(2) d(2) b(3) c(3) d(3) b(1) c(1) d(2) b(2) c(2) d(2) b(3) c(3) d(3)

(@) (b)

Figure 23: Part (a) shows a predicate-logic rule, the corresponding propositional-logic
rules, and the neural network obtained from the propositional rules. Part (b) is the same
as part (a) with an additional predicate-logic rule. Each layer is fully-connected to the
next layer; however, lightly-weighted links are not shown.
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7.2.4 Interpreting Knowledge-Based Neural Networks

The final step of the connectionist theory-refinement framework presented in Section 2.2 is
to understand what it is that the networks have learned. Future work, then, is to extract
from trained networks human-comprehensible symbolic rules that are in a form similar
to the initial rule set (Sestito & Dillon, 1990; Fu, 1991; Towell & Shavlik, 1993). One
rule-extraction method designed specifically for KNNs is the NOFM algorithm (Towell
& Shavlik, 1993). Since KBANN only adds and subtracts antecedents from existing rules,
extracting rules from KBANN networks is relatively straight forward; however, it is more
difficult to extract rules from neural networks that have not been initialized with a domain
theory (Fu, 1991; Craven & Shavlik, 1993). This difficulty results from the large number
of nearly uniformly distributed weights that are associated with each node. For this
reason, refining the topology of the KBANN network complicates rule extraction.

My first algorithm, TopGen, tries to overcome this complication by adding nodes to
the network in a way that is similar to adding rules and conjuncts to the rule base. Towell
and Shavlik (1993) showed that KNNs are interpretable because (a) the meaning of their
nodes does not significantly shift during training, and (b) the output of each node is
nearly binary. Not only does TopGen currently add nodes in a symbolic fashion, it adds
them in a fashion that does not violate these two assumptions. I therefore hypothesize
that TopGen builds networks that are more interpretable than naive approaches of adding
nodes, such as the approach taken by Section 4’s Strawman algorithm.

My second algorithm, REGENT, may significantly alter the topology of KBANN’s
network and create large, seemingly complex networks; however, the underlying structure
of the networks REGENT considers is mostly made up of domain-theory rules. That is,
the output of most of the nodes will continue to be nearly binary. Thus, REGENT’s
networks should be more interpretable than standard neural networks.

My final approach, ADDEMUP, saves an ensemble of networks as its final conclusion.

Extracting rules directly from the network weights in an ensemble would be a daunting
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task. Craven and Shavlik (1994b), however, present an approach that views rule ex-
traction as a learning problem. The target concept in this case is the function of the
network, and since the network can be queried, the learning algorithm has access to ad-
ditional examples outside the training set. Because they treat the network as a black
box, their algorithm is applicable to extracting rules from an ensemble as well. One
potential drawback of this approach is that the extracted rules may be in a form that is
not similar to the initial domain theory; however, one could “prime” the rule-extraction
learner with this domain theory and cast the problem as a theory-refinement technique
(i.e., the learner could be Pazzani and Kibler’s (1992) FocL, or Ourston and Mooney’s

(1994) EITHER).

7.3 Concluding Remarks

This dissertation describes three learning systems (TopGen, REGENT, and ADDEMUP)
that use the resources of data, available computer cycles, and background knowledge to
learn their concepts. These algorithms are unique in that they attempt to be “anytime”
learners that continually improve the quality of their concept over time.

Each of these algorithms start by directly translating a theory describing what is
currently known about the domain into a neural network. The algorithms then search
for refinements to this “knowledge-based” network’s topology that produce a more ap-
propriate network (or set of networks). Results show that these algorithms are successful
at achieving their intended goal. TopGen finds good “local” refinements to the topology,
REGENT finds better “global” changes to this topology, and ADDEMUP finds a “set” of
networks that are effective in producing a combined prediction.

These algorithms are but a first step toward realizing the goal of fully being able to
utilize all available resources to improve the quality of the concept an inductive learner
generates. The hope is that this work is successful in spawning other machine learning

researchers to join me in producing anytime-learning, theory-refinement systems.



Appendix A

Experimental Data Sets

I tested my algorithms on six domains: an artificial chess-related domain, four real-world
Human Genome problems, and one real-world expert system that diagnoses faults in a
telephone loop. The domain theories and datasets for these tasks are explained in this
appendix. The domain theories are presented in Prolog notation (Clocksin & Mellish,

1987) that is extended at times (as explained below).

A.1 A Chess Sub-Problem: An Artificial Domain

While real-world domains are clearly useful in exploring the utility of an algorithm,
they are difficult to use in closely-controlled studies that examine different aspects of
an algorithm. An artificial domain allows me to determine the relationship between the
theory provided to the learner and the correct domain theory. My artificial domain is
derived from the game of chess and defines board configurations where moving a king
one space forward is legal (i.e., the king would not be in check). Figure 24 shows the 4x5
subset of the chess board used. The player is considering moving the king from position
cl to position c2. Possible pieces include a queen, a rook, a bishop, and a knight for
both sides. Each instance is generated by randomly placing a subset of these pieces on

the remaining board positions. For example, a queen of the opposing team occupying
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a4 | b4 | c4 | d4d | &4
a3 | b3 | c3 | d3
EMPTY
a2 | b2 | c2 | d2 | e
<N

al

bl @ di | el

Figure 24: Portion of the chess board covered by the domain theory.

position b4, and a bishop from the player’s team occupying position d3 would comprise
one instance of a legal move. The dataset contains 1,500 legal moves and 1,500 illegal
ones.

The target domain theory contain 26 propositional rules and is presented in Table 12.
The rules are broken into three parts: (a) in check diagonally by the queen or bishop,
(b) in check horizontally or vertically by a queen or rook, and (c) in check by a knight.
Some rules require a space to be empty between a piece’s position and position ¢2 (where
the player wants to move the king). For instance, if a queen of the opposite color is at
position c4, then space ¢? must be empty in order for it to be able to put the king in

check.

A.2 Finding Genes in DNA Sequences

The next four domains are important subproblems in the computer analysis of DNA
sequences. DNA is a linear sequence of four “nucleotides” — adenine, guanine, thymine,
and cytosine — that are commonly abbreviated by the letters A, G, T, and C. Genes
are subsequences of DNA that serve as blueprints for proteins, which in turn provide
most of the structure, function, and regulatory mechanisms of cells and are thus the
key building blocks of organisms. Researchers are currently sequencing large volumes of
DNA; however, biologist are only able to study small sections of DNA at a time. Thus,
the Human Genome Project (Cooper, 1994) will produce long runs of DNA that have not
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Table 12: Domain theory for the artificial chess problem. The OR in the following rules
means that only one of the two antecedents needs to be satisfied in order for the rule to
be satisfied. For instance, the first diagonal_check rule can be split into two equivalent
rules where one ule contains queen(a4) and the other contains bishop(a4).

illegal move :- diagonal_check.
illegal move :- parallel_check.
illegal move :- knight_check.
diagonal_check :- [queen(a4) OR bishop(a4)], opponent(a4), empty(b3).
diagonal_check :- [queen(e4) OR bishop(e4)], opponent(ed), empty(d3).
diagonal_check :- [queen(b3) OR bishop(b3)], opponent(b3).
diagonal _check :- [queen(d3) OR bishop(d3)], opponent(d3).
diagonal_check :- [queen(bl) OR bishop(bl)], opponent(bl).
diagonal _check :- [queen(dl) OR bishop(d1)], opponent(dl).
parallel check :- [queen(c4) OR rook(c4)], opponent(c4), empty(c3).
parallel check :- [queen(c3) OR rook(c3)], opponent(c3).
parallel check :- [queen(a2) OR rook(a2)], opponent(a2), empty(b2).
parallel check :- [queen(b2) OR rook(b2)], opponent(b2).
parallel check :- [queen(d2) OR rook(d2)], opponent(d2).
parallel check :- [queen(e2) OR rook(e2)], opponent(e2), empty(d2).
knight_check :- knight(b4), opponent(b4).
knight_check :- knight(d4), opponent(d4).
knight_check :- knight(a3), opponent(a3).
knight_check :- knight(e3), opponent(e3).
knight_check :- knight(al), opponent(al).
knight_check :- knight(el), opponent(el).
empty(b3) :- not queen(b3), not rook(b3), not bishop(b3),
not knight(b3).
empty(c3) :- not queen(c3), not rook(c3), not bishop(c3),
not knight(c3).
empty(d3) :- not queen(d3), not rook(d3), not bishop(d3),
not knight(d3).
empty(b2) :- not queen(b2), not rook(b2), not bishop(b2),
not knight(b2).
empty(d2) :- not queen(d2), not rook(d2), not bishop(d2),
not knight(d2).
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RNA-polymerase DNA

l pd

AGGTCTTTAACGCACTTGCCAGT
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UUAACGCACUUGCCAGU
/
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/
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Figure 25: The process of gene expression. This process consists of two phases: (a) tran-
scription - when the enzyme RNA-polymerase transcribes a DNA sequence into mRNA,
and (b) translation - when the ribosome molecule reads the mRNA stand and assembles
a protein chain.

been analyzed biologically. It is therefore imperative to develop automated techniques
that are able to find where genes occur in these unanalyzed sequences.

Figure 25 illustrates the process of gene expression. This process is broken into two
phases: transcription and translation. Transcription happens when the enzyme RNA-
polymerase transcribes DNA into an RNA molecule called messenger RNA (mRNA). The
enzyme does this by first binding to a DNA sequence, called a promoter, that precedes
the gene. It then transcribes the DNA sequence into a similar RNA sequence, except
that the nucleotide thymine is replaced with the nucleotide uracil (U). Translation occurs
when the ribosome molecule reads the mRNA strand and assembles a protein chain.

One common approach to finding genes is called search-by-signal (Stormo, 1987).
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Figure 26: Representing a search-by-signal classification task in a neural network. The
input to the neural network is a subsequence (called a window) of DNA, and the classifi-
cation task is to learn when the signal its learning to recognize is present at the reference
point.

This approach works by trying to indirectly find genes through specific signals that are
associated with gene expression. Not only are these signal detections important for
finding genes, they are important in their own right to understand the mechanisms of
gene expression. Figure 26 illustrates how I represent the search-by-signal problems in
a neural network. The network is given a fixed-length window of DNA with the task
of deciding if the desired signal is located at a fixed location in the window. A trained
network can then scan a DNA sequence, finding potential points of interest.

The following sections describe four search-by-signal domains that are important in
finding genes: (a) promoter sites, (b) splice-junction sites, (c) ribosome-binding sites,

and (d) transcription-termination sites. See Craven and Shavlik (1994a) for more details
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about these tasks. An expert (M. Noordewier) generated all four of the datasets and
domain theories from the biological literature. Before I present these domains, however,

I describe relevant notation.

A.2.1 Notation

The domain theories presented in this section use a special notation for specifying loca-
tions in a DNA sequence. In this notation, each location is numbered with respect to a
fixed, biologically meaningful reference point. Negative numbers are locations preceding
the reference point, while positive numbers are locations that follow this point. The

following is an example:

Location number: -3 -2 -1 +1 +2 +3

Sequence: A T A (reference point) C G A

Note that the biological literature does not use a position zero.
DNA nucleotides are often grouped into the following biologically meaningful hierar-

chy:

x (any)

7\

(purine) R Y (pyrimidine)
/N /N
T C

A G

Rules in the following domain theories refer to a string of nucleotides that must occur
relative to a location number. For instance, @—39“RA” means that at location —39 there
is an A or G, and at location —38 there is an A. Also, in the following theories I follow

biological convention and use a W to represent A or T, and an M to represent A or C.
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Some domain theories contain M-of-N rules (i.e., a rule’s consequent is true if at least

M of the rule’s N antecedents are satisfied). These rules are of the form:
consequent :- M of (antecedent-list).

For example, “T :- 2 of @-39‘AGT’.” means the consequent, T, is considered true if
at least two of the three antecedents (i.e., location —39 is an A, location —38 is a G, and

location —37 is a T) are satisfied.

A.2.2 Promoter Sites

The first domain is that of recognizing promoter sites in a sequence of E. coli DNA.
As stated above, promoters are short DNA sequences where the RNA-polymerase binds
to the DNA. This site is located just “upstream” from where transcription begins; thus
locating promoters helps locate genes.

This dataset contains 234 positive examples, and 4,921 negative examples. The ref-
erence point in this case is the transcription-initiation site. The input consists of 57
sequential nucleotides, starting at location —50 and ending at location +7. The negative
examples are generated from a (putative) promoter-free head of the phage lambda that
is 4977 bases long.

The approximately correct domain theory shown in Table 13 contains 31 rules that
M. Noordewier extracted from the biological literature. Briefly, these rules are charac-
terized by a region rich with A and T from locations —39 to —35, the sequence CTTGACA
starting at location —37, and finally another region rich with A and T directly preceding
the reference location. The five promoter rules differ (a) in the type of nucleotides lo-
cated near position —30 and (b) in the exact location of where the sequence TATAAT
begins. The domain theory is overly specific; it correctly classifies all the negative
examples, but only classifies two of the positive examples correctly. Nonetheless, the

rules do capture significant information about promoters. This domain is available at

the University of Wisconsin Machine Learning (UW-ML) site via the World Wide Web
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Table 13: Domain theory for finding promoters. Refer to Section A.2.1 for an explanation
of the notation of the rules as well as the meaning of the letters other than A, G, T, and

C. Lines that start with % are comments.

% The five promoter rules differ in their spacing between their —35 and —10 regions.

promoter

promoter :
promoter :
promoter :
promoter :

% Look for mostly A’s and T’s from —39 to —35, and most of CTTGACA at —37.
:= 4 of Q-39="WWWWW".

:— 6 of @-37="CTTGACA".

bend

minus_35

% Homo-dinucleotides (RR/YY) pack differently than hetero-dinucleotides (RY/YR).
short_spacer

long_spacer

homonuci
homonuc3
homonucb
homonuc?7

heteronucl :
heteronuc3 :
heteronuch :
heteronuc7 :

:— bend, minus_35,
bend, minus_35, short_spacer,

bend, minus_35,

bend, minus_35, long_spacer,
bend, minus_35, long-spacer,

:= 3 of (homonucl, homonuc2, homonuc3, homonuc4,
homonuc5, homonuc6, homonuc7, homonuc8).

:— 3 of (heteronucl, heteronuc2, heteronuc3, heteronuc4,
heteronuc5, heteronuc6, heteronuc7, heteronuc8).

©-30="RR".
©-28="RR".
0-30="YY".
0-28="YY".
©-30="RY".
0-28="RY".
©-30="YR".
©-28="YR".

short_spacer,

minus_10_15, melt.
minus_10_16, melt.

minus_10_17, melt.

homonuc?2
homonucé4
homonucé
homonuc8

heteronuc?2 :
heteronuc4 :
heteronucé :
heteronuc8 :

minus_10_18, melt.
minus_10_19, melt.

©-29="RR".
@-27="RR".
@-29="YY".
@-27="YY".
@-29="RY".
@-27="RY".
@-29="YR".
@-27="YR".

% Look for a close match to the sequence TATAAT near the —10 region.

minus_10_15 :
minus_10_16 :
minus_10_17 :
minus_10_18 :
minus_10_19 :

% Look for mostly A’s and T’s directly preceeding the site, for thermodynamic reasons.

5 of @-11="TATAAT".
5 of @-12="TATAAT".
5 of Q@-13="TATAAT".
5 of @-14="TATAAT".
5 of @-15="TATAAT".

melt :- 13 of Q@-15="WWWWWWWWWWWWWWWWWWWWWW" .
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(http://www.cs.wisc.edu/ shavlik/uwml.html) or anonymous ftp (ftp.cs.wisc.edu,
then cd to machine-learning/shavlik-group/datasets).

Note that this dataset and domain theory are a larger version of the one that appears
in Towell (1991) and Towell and Shavlik (1994), which is the original promoter domain
found in the UW-ML site and the University of California-Irvine (UCI) Machine Learning
Repository. One can access the UCI repository via the web (http://www.ics.uci.edu/
"mlearn/MLRepository.html) or ftp (ftp.ics.uci.edu, then cd to pub/machine-learn-
ing-databases). This testbed was donated to the UCI repository by Noordewier and
Shavlik on June 30, 1990. It contains 14 rules and 106 instances, half of which are

positive. These positive instances are a subset of the 234 instances used in this thesis.

A.2.3 Splice-Junction Sites

The second domain involves splice-junction sites. In eukaryotic organisms (i.e., organisms
that have cell nuclei), sections of the mRNA are spliced out before translation. Figure 27
illustrates the splicing process. The sections of the mRNA that are translated to proteins
are called exons, while the sections that are splice out are referred to as introns. Splice
junctions are the boundaries between the introns and exons. There are two types of splice
junctions: (a) acceptors, which are the intron/exon boundaries, and (b) donors, which
are the exon/intron boundaries.

The dataset consists of 3,190 examples containing 751 acceptors, 745 donors, knd 1694
negative examples (Towell, 1991). The positive examples are all the documented “split”
genes described as complete from the primate gene entries in release 64.1 of Genbank
(Burks, 1990)." Each example is 60-nucleotides long, with the center being the reference
point for the existence of a splice junction; thus, the numbering for the location of each
nucleotide range from —30 to +30. The negative examples were randomly generated

from windows of these sequences containing neither acceptor nor donor sites. Since the

1One can access Genbank via the web (http://genbank.bio.net/) or anonymous ftp
(genbank.bio.net).
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Acceptors Donors
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Exon Exon MRNA after splicing

Figure 27: An illustration of the splice-junction process in eukaryotic organisms. Sections
of the mRNA called introns ( “intervening sequences”) are spliced out, while the remaining
sections called exons (“expressed sequences”) are translated to a gene.

RNA is complementary to the DNA, the input sequences are defined in terms of the
corresponding DNA nucleotides, per biological convention.

The domain theory contains 23 rules and is shown in Table 14. As with the previous
section, M. Noordewier created this domain theory from the biological literature. Briefly,
the domain theory specifies that both acceptors and donors are characterized by a generic
sequence near the site, as well as a rule that makes sure that the site is not near the end
of a gene. The end of a gene is signified by the sequence of nucleotides TAA, TAG, and
TGA, which are called stop codons,? Acceptors also contain the constraint that there be
a pyramidine-rich region (i.e., a region consisting mainly of C and T) preceding its site.

The rules correctly classify 60% of the examples; however, since the rules tend to be
overly specific, most of the correctly classified examples are negative examples. In fact,
the rules only correctly classify 40% of the acceptors and 3% of the donors. The domain
theory and dataset was donated by Towell, Noordewier, and Shavlik on January 1, 1992
to the UCI repository, and is also available at the UW-ML site (see the previous section

for a description of how to access these sites).

2Codons are a string of three consecutive nucleotides that encode a single amino acid.
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Table 14: Domain theory for finding splice junctions. Refer to Section A.2.1 for an
explanation of the notation of the rules as well as the meaning of the letters other than
A, G, T, and C.

donor :- @+3="MAGGTRAGT", not E/I-stop.
acceptor :- pyramidine-rich, @-3="YAGG", not I/E-stop.

% Make sure that the donor is not near the end of a gene (signified by the stop

% codons TAA, TAG, and TGA).

E/I-stop :— ©-3="TAA". E/I-stop :- @-4="TAA". E/I-stop :- @-5="TAA".
E/I-stop :- @-3="TAG". E/I-stop :- Q@-4="TAG". E/I-stop :- @-5="TAG".
E/I-stop :— @-3="TGA". E/I-stop :- @-4="TGA". E/I-stop :- @-5="TGA".

% Look for a region rich with T’s and C’s between locations +15 and +6.
pyramidine-rich :- 6 of Q@+15="YYYYYYYYYY".

% Make sure that the acceptor is not near the end of a gene (signified by the stop

% codons TAA, TAG, and TGA).

I/E-stop :- @+1="TAA". I/E-stop :- @+2="TAA". I/E-stop :- ©@+3="TAA".
I/E-stop :- @+1="TAG". I/E-stop :- @+2="TAG". I/E-stop :- Q+3="TAG".
I/E-stop :- @+1="TGA". I/E-stop :- @+2="TGA". I/E-stop :- ©@+3="TGA".

A.2.4 Ribosome-Binding Sites

The third domain is the task of being able to recognize a ribosome-binding site (RBS).
As previously shown in Figure 25, RBSs are sites where the mRNA and ribosome bind to
each other, and these sites precede where mRNA is translated into proteins. As stated is
Section A.2, the ribosome is a complex molecule that reads the mRNA strand to produce
the protein’s chain of amino acids.

The dataset contains 366 positive examples and 1,511 negative examples. Each in-
stance contains a sequence of 49 nucleotides with the point of reference being a ribosome-
binding site. The inputs start at location —25, and since there is no location zero, end
at location +24. The negative examples are generated from a head of the phage lambda
that is 1559 bases long and not known to include a ribosome-binding site. With an input
window size of 49 bases, 1511 (partially overlapping) negative examples can be generated.
As is the case with the splice-junction domain, the input sequences are defined in terms

of the DNA nucleotides rather than the corresponding RNA nucleotides.
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Table 15: Domain theory for finding ribosome-binding sites. Refer to Section A.2.1 for
an explanation of the notation of the rules and Section A.2.4 for a brief explanation of
this theory.

rbs :- tetranucleotide, start-codon.
tetranucleotide :- agga-region.
tetranucleotide :- gagg-region.

% Look for the start codon ATG from locations +13 to +8.

start-codon :- ©+13="ATG". start-codon :- Q@+12="ATG".
start-codon :- ©@+11="ATG". start-codon :- ©@+10="ATG".
start-codon :- Q@+9="ATG". start-codon :- @+8="ATG".

% Look for the sequence AGGA near the reference point.

agga-region :- @+2="AGGA". agga-region :- @+1="AGGA".
agga-region :- @-1="AGGA". agga-region :- @-2="AGGA".
% Look for the sequence GAGG near the reference point.

gagg-region :— @+2="GAGG". gagg-region :— Q@+1="GAGG".
gagg-region :- @-1="GAGG". gagg-region :- @-2="GAGG".

Table 15 shows the domain theory, extracted from the biological literature by M.
Noordewier. It contains 17 rules which say that a ribosome-binding site contains two
parts: (a) either the sequence AGGA or the sequence GAGG near the site, and (b) the start
codon ATG beginning 8 to 13 nucleotides before the site. The rules correctly classify about
41% of the positive, and 99% of the negative instances (87.3% overall accuracy). This
domain theory and dataset are also available at the UW-ML site. (See Section A.2.2 for

details on how to access this site.)

A.2.5 Transcription-Termination Sites

The final domain is recognizing transcription-termination sites. Both the transcription
and translation processes contain sites where the synthesis of either RNA or proteins
is stopped. The translation-termination sites contain specific, known codons (called
stop codons) that signal the ribosome to release the mRNA chain; finding these sites is

therefore trivial. Finding the short DNA sequences that cause the transcription process
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Figure 28: Illustration of a valid transcription-terminator site according to the domain
theory in Tables 16 and 17.

to terminate, however, is reasonably complex and only partially understood. As with
the previous three DNA domains, M. Noordewier also created this section’s dataset and
domain theory.

The dataset contains 142 positive examples and 5,178 negative examples. The positive
examples where taken from the file “gbbct.seq” in release 60 of Genbank (Burks, 1990).
The sequences are 50 nucleotides long, spanning from location —20 to location 4+30. The
point of reference in this case is transcription-termination sites. The negative examples
were generated from sections of a lambda DNA (sequence locations 1-1505 and 44,780-
48,502 of Genbank entry LAMCG) known not to contain transcription-termination sites.

Tables 16 and 17 show the 61 rules that make up the domain theory. According
to this theory, there are four main parts that make up a transcription-termination site:
(a) a region rich with A and T upstream from the “stem” of the terminator, (b) a stem
of GC-rich self-complimentary nucleotides of length about seven, (c) a “loop” centered
about the termination site that is either four or five nucleotides long, and (d) a sequence
of thymines (T) following the stem. Figure 28 illustrates this concept.

Like the promoter theory, this domain theory is also too specific; however, in this case
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Table 16: Part 1 of the domain theory for finding transcription-termination sites; see
Table 17 for the remainder of this theory. Section A.2.1 contains an explanation of the
notation of the rules, as well as the meaning of the letters other than A, G, T, and C. Lines
that start with % are comments.

% A terminator is assumed to consist of four regions: (a) an upstream region, (b) a

% stem, (c) a loop, and (d) a run of T. The loop consists of four to five nucleotides.

% While a loop of five nucleotides does not require special constraints, four nucleotides
% is not favorable for a loop and does require some constraints.

terminator :- upstream, stem-odd, polyT.

terminator :- upstream, stem-even, loop-even, polyT.

% This rule encodes the notion that a longer stem is more stable, and the fact that
% the shorter the stem, the higher the GC content should be. The consequent of
% the rule, stem-odd, is true if the sum of the “weighted” true antecedents is greater
% than 6. For instance, stem-odd-1 has a weight of 1.3.
stem-odd :- weighted(6, [stem-odd-1 1.3] [stem-odd-2 1.2]
[stem-0odd-3 1.1] [stem-odd-4 1.0]
[stem-odd-5 0.9] [stem-odd-6 0.8]
[stem-odd-7 0.7]).

% The top of the stem strongly favors a G-C base-pair, while the rest can contain
% a G-C pair or an A-T pair. Since the lenth of the loop is odd, location —n pairs
% with location +(n + 1). For example, location —3 pairs with location +4.

stem-odd-1 :- @-3="G", @+4="C". stem-odd-1 :- @-3="C", @+4="G".
stem-odd-2 :- ©@-4="G", @+5="C". stem-odd-2 :- @-4="C", @+5="G".
stem-odd-3 :- Q@-5="A", @+6="T". stem-odd-3 :- @-5="G", @+6="C".
stem-odd-3 :- @-5="C", Q@+6="G". stem-odd-3 :- @-5="T", Q@+6="A".
stem-odd-4 :- @-6="A", Q@+7="T". stem-odd-4 :- @-6="G", @+7="C".
stem-odd-4 :- Q@-6="C", Q@+7="G". stem-odd-4 :- Q@-6="T", Q@+7="A".
stem-odd-5 :- @-7="G", @+8="C". stem-odd-5 :- @-7="C", @+8="G".
stem-odd-5 :- @-7="A", @+8="T". stem-odd-5 :- @-7="T", Q@+8="A".
stem-odd-6 :- @-8="G", @+9="C". stem-odd-6 :- @-8="C", @+9="G".
stem-odd-6 :- @-8="A", @+9="T". stem-odd-6 :- 0@-8="T", Q@+9="A".
stem-odd-7 :- @-9="G", @+10="C". stem-odd-7 :- @-9="C", @+10="G".

stem-odd-7 :- @-9="A", @+10="T". stem-odd-7 :- @-9="T", @+10="A".
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Table 17: Part 2 of the domain theory for finding transcription-termination sites; Table 16
contains the first half of this theory.

% A region upstream from the site should be rich with A’s and T’s.
upstream :- 7 of Q-17="WWWWWWWWWWW".

% A short loop of four nucleotides prefers one of the following sequences.
loop-even :- @-2="TTCG". loop-even :- Q@-2="GAAA".
loop-even :- Q@-2="TGCG". loop-even :- Q@-2="TTTT".

% As in Table 16, this rule encodes the notion that a longer stem is more stable. Like
% before, the consequent of this rule, stem-even, is true if the sum of the “weighted”
% true antecedents is greater than 6.

stem-even :- weighted(6, [stem-even-1 1.3] [stem-even-2 1.2]
[stem-even-3 1.1] [stem-even-4 1.0]
[stem-even-5 0.9] [stem-even-6 0.8]
[stem-even-7 0.7]).

% The top of the stem strongly favors a G-C base-pair, while the rest can contain
% a G-C pair, or an A-T pair. Since the lenth of the loop is even, location —n pairs
% with location +n. For example, location —3 pairs with location +3.

stem-even-1 :- 0-3="G", 0+3="C". stem-even-1 :- 0-3="C", 0+3="G".
stem-even-2 :- 0-4="G", 0+4="C". stem-even-2 :- 0-4="C", Q@+4="G".
stem-even-3 :- Q@-5="A", Q@+5="T". stem-even-3 :- 0-5="G", @+5="C".
stem-even-3 :- ©@-5="C", 0+5="G". stem-even-3 :- 0-5="T", Q@+5="A".
stem-even-4 :- Q-6="A", 0+6="T". stem-even-4 :- Q@-6="G", @+6="C".
stem-even-4 :- @-6="C", 0@+6="G". stem-even-4 :- Q-6="T", Q@+6="A".
stem-even-5 :- @-7="G", Q@+7="C". stem-even-5 :- Q@-7="C", Q@+7="G".
stem-even-5 :- Q@-7="A", Q@+7="T". stem-even-5 :- Q@-7="T", Q@+7="A".
stem-even-6 :- @-8="G", ©@+38="C". stem-even-6 :- @-8="C", @+3="G".
stem-even-6 :- @-8="A", 0@+8="T". stem-even-6 :- @-8="T", Q@+8="A".
stem-even-7 :- ©@-9="G", 0+9="C". stem-even-7 :- @-9="C", @+9="G".
stem-even-7 :- ©@-8="A", 0+8="T". stem-even-7 :- @-8="T", @+3="A".

% The sequence following the stem should consist of a run of thymine (T).
polyT :- @+9="TTTTT".
polyT :- @+10="TTTTT".
polyT :- @+11="TTTTT".
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no positive examples are correctly classified. Nonetheless, as was the case with the pro-
moters, this theory still contains useful information about the presence of a transcription-

termination site.

A.3 NYNEX’s MAX System: Finding Errors in Tele-
phone Lines

The last domain I used is NYNEX’s MAX system (Rabinowitz et al., 1991). The following
discussion is derived from Rabinowitz et al. (1991) and Provost and Danyluk (1995). MAx
is an expert system that was designed by NYNEX to diagnose the location of customer-
reported telephone problems. Figure 29 illustrates MAX’s task. When a customer calls
with a phone-service problem, a representative invokes a mechanized loop test (MLT)
to create an electronic profile of the voltages and resistances in the loop between the
customer’s telephone and the central office. Next, a primitive rule-based system, called
the screening decision unit (SDU), receives a two-character summary of the MLT, called
a wercode, and makes a decision based on this vercode. In general, the vercode does
not provide enough information to make an accurate decision, so most of the cases are
forwarded to a maintenance administrator (MA). The MA evaluates the MLT and vercode
readings, then decides how the company should dispatch the trouble.

MAX’s job is to emulate the job of a human MA. MAX receives as input the results of
the MLT, the vercode, knowledge about the customer’s line, and general knowledge about
the equipment. Based on this information, MAX makes one of five possible diagnoses:
(a) dispatch repair technician to distribution facilities, (b) dispatch repair technician to
cable facilities, (c) dispatch repair technician to central office, (d) request retest of the
MLT results, or (e) defer to a human MA. The goals of MAX are to shorten the time to
diagnose and fix a trouble; have fewer “handoffs” from person to person when analyzing
and repairing a customer trouble; reduce the number of incorrect dispatches; and finally,

reduce the heavy workload of human MAs at certain sites.
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MAX is currently running in over 55 maintenance centers; however, at each center,
a large number of parameters must be set to customize MAX’s knowledge base to that
center. Setting these parameters can be difficult. In addition, the job of the MA is made
more difficult each year based on the addition of new and non-standard equipment. Thus
the knowledge base of MAX must be periodically updated. Being able to refine MAX’s
knowledge base with a current set of site-specific examples would greatly simplify both
these difficulties.

MAX screens over 10,000 phone-service troubles each day (about 38% of all troubles).
In fact, some NYNEX centers send MAX over 50% of their troubles. Given the large
number of troubles handled by MAX, coupled with the fact that each dispatch usually
takes a highly trained worker at least one hour, even a small improvement in MAX’s
accuracy can be extremely valuable. In fact, for every 1% reduction in dispatch error
rate, $3 million annually is saved by the company (Provost & Danyluk, 1995).

MAX’s current knowledge base consists of about 75 ART-Lisp rules, many of which
involve inequalities. I converted these rules into an equivalent set of 95 propositional,
Prolog-style rules. Due to proprietary reasons, however, I am unable to present this rule
base in my thesis.

The data set I use in this thesis is the “cleaned-up” version of dispatching customer
problems used by Provost and Danyluk (1995). Any instance where the correct dispatch
was deemed as being highly questionable was removed from a larger data set, and the
remaining examples make up this data set. The “target” dispatch for each example is
the trouble reported by the repair technician. The goal of this domain is to learn proper
dispatching of customer problems, and thus one does not have the option of requesting
a retest, or deferring to a human MA. This data set consists of 2,686 examples: 918
dispatches to the distribution facilities, 1,412 dispatches to the cable facilities, and 356
dispatches to the central office. Each example consists of 13 input features. I did not
include the vercode as an input feature, since it is poorly understood and thus does not

allow the possibility of extracting useful information describing the concept description.
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