
ADAPTIVELY FINDING AND COMBINING FIRST-ORDER RULES

FOR LARGE, SKEWED DATA SETS

by

Louis Tyrrell Oliphant

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2009

c© Copyright by Louis Tyrrell Oliphant 2009

All Rights Reserved

i

To Rebecca, Samuel, Ephraim and Adelaine.

ii

ACKNOWLEDGMENTS

It is said that it takes a village to raise a child. The same canbe said about this dissertation.

There are many people who have helped me throughout my graduate school career. Without their

support and encouragement this dissertation would not exist.

First, I would like to thank my committee: Jude Shavlik, David Page, V́ıtor Santos Costa,

Elizabeth Burnside, and Jerry Zhu. Jerry and I taught Introduction to Artificial Intelligence to-

gether. I appreciated our many meetings discussing the class and I learned a lot from waching him

teach. Jerry has a way of encouraging the students to excel. Ihave met with Beth and David in

our bi-monthly mammography/machine learning group meetings. They have provided insight for

future direction and helped in establishing clear goals andobjectives. V́ıtor has also joined the

group and he has helped me many times with my Yap questions andgetting things running. Jude

has been my advisor. I took Jude’s Machine Learning class my first semester as a graduate student

and at the end of the course he asked me if I would be his research assistant. He has taught me so

much since then. I appreciate his applied approach to machine learning. The skills he has taught

me, including evaluation, paper writing, data set manipulation, and many others, will serve me

well throughout my career. He has also taught me the joy of research. I believe I have caught a

little bit of that and I hope to continue exploring new areas of machine learning.

Many other students in the mammography/machine learning group have helped me. Ryan

Woods has worked on maintaining the University of WisconsinHospital data set which I use in

this dissertation. He has also provided insight in the paperthat we have written together. I have had

many discussions with Houssam Nassif and Jie Liu both research related and otherwise. I appreci-

ate their help and support. Jagpreet Chhatwal and Turgay Ayerhave helped with the conversion of

the mammography data to a standardized format.

iii

I have taken several courses that have helped me with my research in addition to Jude’s Ma-

chine Learning class. David Page teaches a wonderful class on Bayesian Networks and Logical

Models. Mark Craven’s Bioinformatics classes provide insight on sequential models and cluster-

ing techniques. All three of these professors are gifted, exemplary teachers and they stretched my

understanding of Artificial Intelligence in new ways.

There are several other graduate students, post-docs, and professors in the machine learning

group with whom I have worked and had numerous conversations. First and foremost is Mark

Goadrich. Much of this work was done in conjunction with him.I would also like to thank Burr

Settles, Irene Ong, Jan Struyf, Lisa Torrey, Trevor Walker,Jesse Davis, Soumya Ray, Marios

Skounakis, and Sean McIlwain for reading drafts of papers, commenting on presentations, and

providing general support and encouragement.

I would also like to acknowledge financial support for this work. I have been supported

by grant R01 LM07050, grant 1 R01 CA127379, NLM Grant 5T15LM007359-02, NLM Grant

1R01LM07050-01, DARPA Grant F30602-01-2-0571, and Air ForceGrant F30602-01-2-0571.

Finally, I would like to thank Rebecca Oliphant. Of the entirevillage of people who have

supported me through this work she has played the pivotal role. I dedicate this work to her and our

wonderful children.

DISCARD THIS PAGE

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

NOMENCLATURE . xii

ABSTRACT . xiii

1 Introduction . 1

1.1 General Overview .. . 1
1.2 Thesis Statement .. . 2
1.3 Outline . 3

2 Background and Related Work . 5

2.1 Evaluation Metrics and General Methodology 5
2.2 Inductive Logic Programming 8
2.3 Ensemble Methods .. 14
2.4 Modeling Search Space 16

3 Data Sets. 26

3.1 Information-Extraction Data Sets 27
3.1.1 Background Knowledge . 27
3.1.2 Protein Localization Data Set 32
3.1.3 Genetic Disorder Data Set .. . 33

3.2 Mammography Data Sets .. . 34
3.2.1 Mammography Background Knowledge 35
3.2.2 Mammmography Data Set 1 . 36
3.2.3 Mammography Data Set 2 . 38

3.3 Advisor Data Set .. 38

v

Page

4 Gleaning Ensembles of First-Order Rules. 39

4.1 Our Algorithm: Gleaner 39
4.2 Experimental Controls 44

4.2.1 Aleph Ensembles . 44
4.2.2 Single-Theory Ensembles .. . 48
4.2.3 Additional Controls .. 52

4.3 Experimental Results 52
4.3.1 Protein Localization Data Set 53
4.3.2 Genetic Disorder Data Set .. . 59

4.4 Summary . 60

5 Adaptively Searching with Gleaner . 62

5.1 Directed Stochastic Search Algorithm 63
5.1.1 Modeling ILP’s Search Space with Bayesian Networks 64
5.1.2 Training the Model .66
5.1.3 Using the Model to Guide Search .. . 68

5.2 Directed-Search Experiments 70
5.3 Summary . 72

6 Boosting First-Order Rules for Large Skewed Data Sets 73

6.1 PRankBoost–A Modified RankBoost Algorithm 75
6.2 Weak Learners .77
6.3 Calculating AURPC .79
6.4 Experimental Methodology and Results 80
6.5 Additional Experiments with Variations on Weak Learners 82
6.6 Summary . 86

7 Additional Experiments with the Mammography Data Sets. 88

7.1 Improving Predictive Performance 89
7.1.1 Feature Modification Experiment 89
7.1.2 Transferring the Model .. . 93

7.2 Improving Understanding of Malignant Indicators 97
7.2.1 Identifying High Mass Density as a Risk Factor using ILPand Conditional

Probabilities . 97
7.2.2 Surprising Pairs .. 101

7.3 Summary . 105

vi

Page

8 Conclusion . 106

8.1 Contributions .. 106
8.2 Future Work .108
8.3 Final Remarks .110

APPENDICES

Appendix A: Predicates of the Protein-Localization Data Set 123

DISCARD THIS PAGE

vii

LIST OF TABLES

Table Page

2.1 Some standard Prolog and ILP terms and their definitions.. 9

2.2 Covering algorithm for ILP 10

2.3 Top-down search algorithm 12

2.4 Probability distribution for two different populations. Despite having very different
populations the probability vectors are the same. Because ofthe independence as-
sumption, PBIL has no means to distinguish between these two cases. 22

3.1 Descriptions of the data sets used in this thesis. Included are the relation, number of
positive and negative examples, the number of folds used during cross validation, and
the ratio of negatives to positives. 26

3.2 Ontologies and lexicons used in annotating the information extraction data sets. 31

3.3 Main BI-RADS categories for describing findings on a mammogram. 35

3.4 BI-RADS descriptors and patient risk factors used in the mammography data sets. . . 37

4.1 The Gleaner algorithm. 40

4.2 AURPC results on test-set fold 1 of protein-localizationdata set, 25 rules per theory,
50 theories. .47

4.3 Sample rule with 29% recall and 34% precision on test-set1. 54

4.4 AURPC results averaged over five folds on the protein-localization data set for naı̈ve
Bayes, HMM, Aleph Ensembles, Single-Theory Ensembles and Gleaner. For Aleph
Ensembles, Single-Theory Ensembles and Gleaner, the right-most point in the curve
from Figure 4.5 is used. .. . 58

viii

Table Page

5.1 Pseudo-code showing the Rapid Random Restart (RRR) algorithm and my modified
version of RRR. 64

5.2 Pseudo-code showing the construction of a Bayesian network from a bottom clause. . 67

6.1 PRankBoost–A modified RankBoost algorithm for optimizing area under the recall-
precision curve. .. . 76

6.2 Average AUROC and AURPC percentages with standard deviations for several large,
skewed data sets using the RankBoost and PRankBoost.Clause algorithms. Bold in-
dicates statistically significant improvement at 5% confidence level. 81

7.1 Hand-crafted, expert rules used to destinguish malignant findings. 91

7.2 Examples of rules learned by ILP, including the number ofbenign and malignant cases
for which the rule is true. Also shown are the precision and recall for each rule. 100

7.3 The probability of malignancy given individual descriptors. The 10 descriptors with
the highest probability of malignancy are shown. 101

7.4 The top 10 surprising pairs of features. Also shown is theratio between the measured
and predicted conditional probability of malignancy giventhe pair of features, the
number of malignant examples covered, and the number of benign examples covered. . 104

A.1 A list of the argument types used by predicates in the protein-localization data set. . . 124

DISCARD THIS PAGE

ix

LIST OF FIGURES

Figure Page

2.1 Confusion matrix and scoring metrics used throughout this thesis. 6

2.2 Example bottom clause being constructed. The plus sign (+) refers to input variables
and the minus sign (-) refers to output variables. An output variable must first appear
as an input variable earlier in the clause. 10

2.3 Comparing top-down search to Rapid Random Restart’s radial search. For clarity the
heads of rules are not shown. The rule circled in bold is the starting location of each
search. Top-Down search can only add literals to the body of the rule while RRR can
both add literals and remove them from the rule. 13

2.4 Two ways of modeling the objective function over the search space. 17

2.5 Demonstration of a Kriging surface fit to the sample data,with the statistical upper
bound of the standard error of the model. The new sample pointis the one that maxi-
mizes the model plus the standard error. 20

2.6 Graphical structure for generative models that allow pairwise interactions between
variables. The chain structure on the left is used in MIMIC (de Bonet et al., 1997).
The middle is a tree structure used in COMIT (Baluja & Davies, 1997). The right is a
forest structure used in BMDA (Pelikan & M̈uhlenbein, 1999). 23

2.7 Graphical structure for generative models that allow multivariate interactions. The
figure on the left is a Bayesian network created by BOA (Pelikan et al., 1999). The
right figure is a clustering of variables created by ECGA (Harik, 1999). 24

3.1 Example sentence from an abstract in the protein localization domain. The words in
bold font are those appearing in the relation. 27

x

Figure Page

3.2 An annotated sentence fragment divided into phrases. Annotations include phrase
types, part-of-speech information, novel words, capitalized words, alphanumeric words,
words appearing in different dictionaries, and statistically significant words that ap-
pear more frequently in positive sentences than in negativeones. See text for addi-
tional explanation of annotations. 29

4.1 A hypothetical run of Gleaner for one seed and 20 bins on the training set, showing
each considered rule as a small circle, and each bin’s chosenrule as a large circle.
This is repeated forK seeds to gatherB×K rules (assuming a rule is found that falls
into each bin for each seed). 41

4.2 Twenty complete recall-precision curves, one from eachGleaner bin, evaluated on
fold 1 of our protein-localization data set. 42

4.3 AURPC for Aleph ensembles, whereN = 100, with varying number of rules on
protein-localization data set. 48

4.4 Comparison of AURPC for Various Weighting Approaches on the protein-localization
data sets with Error Bars for the Standard Deviation across the Five Folds. 51

4.5 Comparison of AURPC from Gleaner and Aleph ensembles by varying the number of
rules generated on the Protein-Localization data set. 55

4.6 Comparison of RP curves between Gleaner and Aleph Ensembles for various numbers
of rules generated on the Protein-Localization data set. Curves were averaged across
all five folds. .57

4.7 Comparison of AURPC from Gleaner and Aleph ensembles by varying the number of
rules generated on the genetic-disorder data set. 59

5.1 A portion of a Bayesian network built from the literals in abottom clause. The “+”
marks indicate input arguments and the “-” marks indicate output arguments taken
from the user-provided modes. The head literal is not part ofthe Bayes net. Arcs
indicate dependencies between the output variables of one literal and the input vari-
ables of another literal. Dotted arcs are dropped to maintain the acyclic requirement
of Bayesian networks. .. 65

5.2 Node with many arguments. 68

5.3 Comparison on three datasets of AURPC for varying number ofclauses considered
using Gleaner with and without a directed RRR search algorithm. 71

xi

Figure Page

6.1 Area under the recall-precision curve for a path of clauses learned during hill climbing.
The total grayed area is the total AURPC,r. If h(X) :- p(X), q(X,Y) is the most specific
clause in the path to cover an example thenht(x) maps the example to the value (light
gray area / total grayed area). 79

6.2 Learning curves for Freund et al.’s RankBoost algorithm, my PRankBoost.Clause and
PRankBoost.Path algorithms on four large, skewed data sets. Learning curves extend
until 100 weak hypotheses are learned. This makes some curves extend farther than
others. 83

6.3 Two scoring methods for a weak learner. One scoring method (solid curve) used by
the PRankBoost.Path and Mix1 weak learners is based upon the entire trajectory of
rules from the most general rule to the best rule. The second scoring method (dashed
curve) used by the PRankBoost.Clause and Mix2 weak learners is based upon the
single best rule alone. Mix3 alternates between using thesetwo scoring methods. . . . 84

6.4 Learning curves for three models that mix components of PRankBoost.Path and PRank-
Boost.Clause on four large data sets.Mix1 includes clauses as weak learners like
PRankBoost.Clause but scores them like PRankBoost.Path.Mix2 includes entire paths
of clauses as PRankBoost.Path but scores the path like PRankBoost.Clause.Mix3 al-
ternates between the method used in PRankBoost.Path and the one used in PRank-
Boost.Clause. 86

7.1 Recall-Precision curves for the two mammography data sets showing performance
using the original background knowledge and a modified version of the background
knowledge that includes additional predicates. 92

7.2 Recall-Precision curves using the second mammography data set as the test set. The
Transferred Modelis trained only on the first mammography data set. TheSame
Sourcemodel is trained on 9 of the 10 folds of the second set and tested on the re-
maining fold. TheCombined datamodel is trained on all of the first set and 9 of the
10 folds of the second set and tested on the remaining fold. Results are pooled across
folds. 95

7.3 Learning curves using the first mammography data set as the test set. TheCombined
Data Modelis trained on all of the second set and varying numbers of folds of data
from the first set.Same Source ModelandRadiologistdo not vary and are graphed
for comparison. .. 96

DISCARD THIS PAGE

xii

NOMENCLATURE

AUROC Area Under the Receiver Operator Characteristic curve

AURPC Area Under the Recall-Precision Curve

BI-RADS The Breast Imaging Reporting and Data System

FN False Negatives

FP False Positives

FPR False Positive Rate

IE Information Extraction

ILP Inductive Logic Programming

PR Precision-Recall

ROC Receiver Operator Characteristic

TN True Negatives

TP True Positives

TPR True Positive Rate

YAP Yet Another Prolog

xiii

ABSTRACT

Inductive Logic Programming (ILP) is a machine-learning approach that uses first-order logic

to create human-readable rules from a database of information and a set of positive and negative

examples. When working with highly skewed data sets where thenegatives vastly outnumber the

positives, common metrics such as predictive accuracy and area under the receiver-operator char-

acteristic curves (AUROC) do not work well because these metrics count negatives and positives

equally, causing performance on the negative examples to dominate. This thesis explores creating

ensembles of rules to maximize area under the recall-precision curves (AURPC), a much better

metric that focuses specifically on the coverage and accuracy of labeling the positive examples.

I create an ensemble of rules from a wide range of recall values and combine them to maximize

AURPC. My Gleaner algorithm retains a set of rules for each positive seed example where standard

ILP methods keep only a single rule. Gleaning rules from those rules that would normally be

discarded and combining them into a single ensemble shows improved predictive performance

while reducing the number of rules evaluated.

I evaluate several modified search methods for finding sets ofclauses that work well together.

One method applies a probability distribution over the space of rules and stochastically selects rules

more likely to improve Gleaner’s predictive performance. Asecond method follows a boosting

framework and weights examples in order to maximize AURPC. Tying together the method of

combining rules with the search for good candidate rules shows improvement over the standard

Gleaner algorithm.

I apply these first-order ensemble techniques to several data sets from two very different do-

mains. The first data sets come from the Information-Extraction (IE) domain where the task is to

xiv

find specific relationships in text. The next data sets come from the computer-assisted medical-

diagnosis domain. The task is to identify findings on a mammogram as malignant or benign given

descriptors of the findings, patient risk factors, radiologist’s score, and information from any pre-

vious mammograms.

I also include my work with Davis et al.’s SAYU algorithm. I demonstrate methods to im-

prove predictive performance and to increase understanding of malignancy indicators. Inclusion

of additional background knowledge that allows for rules tocontain ranges of values provides for

more complex models that improve predictive performance. Ialso show that transferred models

are able to outperform radiologists at new institutions even when no additional data are available

from the new institution. Finally, first-order rules and probability help in improving understanding

of malignant indicators. I use these techniques to confirm the importance of high mass density

in identifying malignant findings. I also identify surprising pairs of features that perform better

than expected at identifying malignant findings than would be expected by looking at the features

individually.

1

Chapter 1

Introduction

One can organize predictive models built from labeled examples into two categories. The first

utilizes propositional modeling techniques to build a predictive model. The second builds a first-

order logical model from the data. My research falls into this second domain utilizing a logical

modeling technique called Inductive Logic Programming (ILP).

1.1 General Overview

ILP takes a set of positive and negative examples along with background information about

those examples and a set of constraints on what type of rules may be learned. ILP generates a set

of rules called a theory. Traditionally, a new example is labeled as positive if any of the rules are

true for the example, otherwise it is labeled as false.

ILP has some distinct advantages over complicated propositional methods. First, logical mod-

els are simple and easy to understand, providing insight into the reason for the prediction. The

predictive model becomes more than a black box providing labels for new data. The model aids

human researchers in understanding the reason for the labeling and can guide future research. Sec-

ond, ILP can incorporate disparate types of information. Typically propositional modeling utilizes

a single table of information about the examples in the data set. ILP techniques can utilize an entire

database of information, taking advantage of not only the information in a single table, but using

the links between tables to look more deeply and find patternsacross many tables.

While ILP has some advantages over propositional methods, italso has some disadvantages.

First, because ILP can utilize an entire database of information the search space becomes extremely

2

large. Second, evaluating candidate rules for inclusion inthe theory is a slow process. Each

candidate rule must be evaluated against each example individually, searching through the database

to see if the rule is true for the example. Because this processis so slow, the number of rules that

can be evaluated in a reasonable amount of time is limited. Third, the final theory generated by

ILP is brittle. The theory labels new examples as positive ifany of the rules are true. Statistical

approaches often provide a more flexible model by labeling examples with a score. The score

provides a means of assessing how likely an example is to be positive. This allows the user of the

system to trade off false positives for false negatives by thresholding this score at different levels.

Many of these disadvantages become more pronounced when working with large, skewed data

sets. Large data sets slow the evaluation process for candidate rules. This results in fewer candidate

rules evaluated in a fixed amount of time. Skewed data sets exacerbate the problem of brittleness.

With even a small amount of noise in a large negative class it becomes more difficult to find rules

that cover predominantly positive examples. These rules when combined into a theory will cover

many current, and more importantly future negative examples and hence the theory’s performance

will be poor.

1.2 Thesis Statement

Inductive Logic Programming’s predictive performance on future examples can be improved

by creating ensembles of rules using more sophisticated methods than currently used. When work-

ing with highly skewed data sets, ensembles that are specifically designed to optimize performance

in recall-precision space will show a marked improvement over simpler approaches. By adaptively

searching the space of rules, further improvements can be shown. Modifying search to find addi-

tional rules that work well with the rules already selected for the ensemble will also show predictive

improvement. Biomedical data sets form good test beds for ILP, including information extraction

tasks and computer-assisted medical diagnosis.

3

1.3 Outline

The remainder of my thesis is organized as follows:

Chapter 2 contains background material and related work. I describe evaluation metrics, espe-

cially ones that work well with skewed data. I explain inductive logic programming more

formally. I also describe ensemble approaches, particularly ensemble approaches that have

been applied to ILP. I then present different modeling methods that have been used to guide

search.

Chapter 3 explains the large, skewed data sets I use to validate my work. Two data sets are

taken from the information-extraction domain, two from themedical-diagnosis domain, and

one from the social-interaction domain. I explain the syntactic, semantic, and statistical

background knowledge I include to help in the predictive task for information-extraction

tasks. I also explain the BI-RADS lexicon (American College of Radiology, 2003) and

patient risk factors used in the mammography data sets.

Chapter 4 explains the Gleaner algorithm and presents results comparing it to a bagging (Dutra

et al., 2002) approach. Gleaner is an ensemble approach for gathering rules from a wide

spectrum of recall values and combining them in such a way as to maximize area under the

recall-precision curve.

Chapter 5 investigates an adaptive search method for Gleaner. I design and develop a probabilis-

tic model to predict the areas of search space which are more likely to contain high-scoring

clauses and which have been under-explored. I utilize this model to guide search and present

results showing an improvement in AURPC performance.

Chapter 6 presents another ensemble approach based on the RankBoost (Freund et al., 1998)

algorithm. I have modified RankBoost to maximize AURPC. I explorevarious optimization

functions and weak hypotheses that I use inside this boosting framework. I show results

on several data sets that confirm a further reduction in the number rules searched while

maintaining AURPC performance.

4

Chapter 7 presents additional work that I have done with the mammography data sets. I have

worked on gaining insight that radiologists can use to help with diagnosis. I also present

work on transferring machine models from the data set on which they are trained to new data

sets.

Chapter 8 concludes my thesis. I discuss what I have learned and futuredirections for this work.

5

Chapter 2

Background and Related Work

My research is in the area of ensemble learning for inductivelogic programming and modeling

ILP’s search space. I provide background information on these areas of machine learning as well

as describe my evaluation methodology.

2.1 Evaluation Metrics and General Methodology

Researchers use evaluation metrics both to guide their research and to assess future perfor-

mance. Depending on the situation, some evaluation metricsare more helpful than others in ac-

complishing these tasks. I will explain the evaluation metrics I have used throughout this thesis

and why these metrics are suited to the data sets I have been studying.

K-fold cross validation (Kohavi, 1995) is often used to get a more accurate estimate of an

algorithm’s future performance and to assess significance when comparing between algorithms.

The data set is divided intoK disjoint sets. One subset is used as the testing set while theremaining

K−1 subsets of the data are used as the training set. A model is created and parameters are learned

using the training set. The trained model is evaluated usingthe predetermined metric on the testing

set. This model is discarded and the evaluation score is saved. The process repeats. Each subset

is used exactly once as the test set. When the process finishes every subset has been used as the

test set exactly once. There areK scores, one for each subset. Any single score may be a poor

predictor of future performance because the test set is a fraction of the entire data set which may

cause high variance in the score. However the average performance across all of the subsets will

reduce the variance and provide a better estimation of future performance.

6

Figure 2.1 Confusion matrix and scoring metrics used throughout this thesis.

I evaluate significance between competing models by performing theK-fold paired t-test (Di-

etterich, 1998a). I train modelA and modelB on K − 1 folds and evaluate performance on the

remaining fold. I calculate the difference between the two models. This process is repeated for

each of theK folds and thet statistic is calculated withK −1 degrees of freedom (Mitchell, 1997,

chapter 5). I report a statistical difference between competing models using a 95% confidence

interval.

I designed my predictive models for two-class, large, skewed data sets. In a two-class problem

a predictive model labels examples as either positive or negative. When comparing the model’s

predictions to the true class on a set of examples a confusionmatrix is formed. Such a confusion

matrix appears in Figure 2.1 on the left. True positive (TP) examples are those examples the model

correctly labeled as positive. False positives (FP) are examples the model incorrectly labeled as

positive. False negatives (FN) are examples where the modelmislabeled a positive example as a

negative. True negatives (TN) are examples correctly labeled as negative.

Several evaluation metrics use the values in a confusion matrix, combining them into a single

score that expresses how well a model performs. Several of these evaluation metrics appear in

Figure 2.1 on the right. Accuracy is the fraction of correctly labeled examples. The true-positive

rate (TPR) expresses the fraction of correctly labeled positive examples. The false-positive rate

(FPR) expresses the fraction of incorrectly labeled negative examples.Recall is another name

for the true-positive rate.Precisionis the fraction of those predicted as positive that are actually

7

positive. For models that provide a score for an example rather than just the predicted class, several

types of curves can be drawn to show the possible trade-offs in performance. Receiver operator

characteristic (ROC) curves show the trade-off between the TPR and FPR. Recall-precision (RP)

curves show the trade-off between recall and precision.

Two final metrics used for evaluation utilize the area under these curves. Area under the ROC

curve (AUROC), also known as the Wilcox-Mann-Whitney statistic (Hanley & McNeil, 1982), is

a commonly used metric to evaluate predictive models. AUROChas a simple statistical meaning.

It is the probability that a randomly selected positive example will be scored more highly than a

randomly selected negative example. A second metric that utilizes area under a curve is the area

under the recall-precision curve (AURPC). AURPC is the metric Iwill focus on as it is especially

well-suited for skewed data because it focuses on the more important positive examples.

When working with highly skewed data several metrics do not distinguish well between mod-

els. High accuracy is trivial by simply predicting the larger class. Distinguishing between compet-

ing models is difficult if the simplest model already achieves a very high accuracy. AUROC can

be problematic for a similar reason. ROC curves graph rates showing the FPR on the x-axis and

the TPR on the y-axis. Imagine a model that classifies roughlyequal number of positive and neg-

ative examples as positive. The TPR will be approximately0.5, halfway up the y-axis. However

the FPR will have barely moved away from zero since the numberof negatives misclassified is so

small compared to the total number of negatives. Models likethis will perform very well when

using AUROC. However if you compare the misclassified negatives with the number of correctly

classified positive examples it will be apparent that there still is a large room for improvement in

the model. AURPC does just that by utilizing precision instead of FPR on an axis. When the skew

is large and performance on the positive class is more important than performance on the negative

class AURPC shows a much larger variation between competing models making it easier to distin-

guish between them. Several researchers use AURPC and other recall-precision metrics to report

model performance (Goadrich et al., 2004; Singla & Domingos, 2005; Walters, 2009) and work

has been done comparing AURPC to AUROC (Davis & Goadrich, 2006; Manning et al., 2008).

8

2.2 Inductive Logic Programming

Inductive Logic Programming (ILP) algorithms are learningalgorithms that seek explanations

written in first-order logic that discriminate between positive and negative examples. The FOIL

algorithm quinlan90foil, one of the oldest ILP algorithms,uses an information-based heuristic to

greedily search for IF-THEN rules in a top-down fashion. TheGOLEM algorithm (Muggleton &

Feng, 1990) attempts to build rules bottom-up, by generalizing pairs of positive examples. Progol

is a popular ILP algorithm (Muggleton, 1995). Aleph is an implementation of Progol written in

Prolog (Srinivasan, 2003). Aleph is relatively easy to extend and modify. Next, I will describe

some of the aspects of this system. A brief description of some logic programming terms can be

found in Table 2.1.

Aleph, like most other ILP algorithms, uses a covering algorithm to learn if-then rules that

explain the positive examples in a training set. A covering algorithm similar to the one outlined by

Costaet al. (Costa et al., 2003) is shown in Table 2.2. Aleph has several requirements to operate:

1. background knowledge, B, consisting of logical facts and inference rules about the task
domain

2. aset of examples, E, of the target literal to be learned divided into positive,E+, and nega-
tive, E−, subsets

3. alanguage specification, L, describing the space of if-then rules to be searched

4. an optionalset of constraints, I, limiting the space of allowable rules.

The goal of Aleph is to generalize the specific examples from the training set into a set of rules

called a hypothesis,H, that explains most of the examples found inE+ but few of the examples

in E−. Each loop through the covering algorithm adds an additional rule to the hypothesis. The

rule covers a portion of the positive examples. Generally Aleph removes the subset of positives

explained by the new rule; then the algorithm iterates. OnceAleph explains all positive examples,

the algorithm terminates and returns the set of rules that have been found.

9

Table 2.1 Some standard Prolog and ILP terms and their definitions.
Term Definition

term An expression referring to an object. Terms can be constants,
variables, or functions. Constants refer to single, specific objects.
Variables refer to objects. Functions refer to specific objects
based upon a mapping from their input terms. Using the family
domain, examples of constants would beadam, sue, andjan.
Variables includePerson1 andPerson2. Function
terms might includefather(adam) andmother(Person1).
Following Prolog’s conventions, I use lower case for constants
and upper case for logical variables.

predicate Also called literal, consists of a name and a set of terms.
Predicates are used to explain relations between the objects.
Relations involving people would include
parentOf(adam, sue), female(jan), andfatherOf(sue, X).

Horn clause Also called a rule. Predicates can be defined in terms of otherpredicates using a
Horn clause. Horn clauses have the notationH :−Lit1 ∧ ... ∧ Litn,
whereH is called theHeadandLit1 ∧ ... ∧ Litn is called thebody.
Clauses are interpreted as “If all the body predicates are true, then
the head is true.” An example using the family domain would be:
grandfatherOf(X,Y) :- fatherOf(X,Z), motherOf(Z,Y).

where “:-” means “if” and commas mean AND.
theory A conjunction of Horn clauses for a particular predicate, which

together try to capture the complete definition of a relation. To
continue with our family example, a complete theory which
describes the grandfather predicate might be:
grandfatherOf(X,Y) :- fatherOf(X,Z), motherOf(Z,Y).

grandfatherOf(X,Y) :- fatherOf(X,Z), fatherOf(Z,Y).

background knowledge When trying to learn Horn clauses and theories for a particular
predicate, all other objects, predicates and clauses in our
domain are the background knowledge. In the above example, all
groundings of the literals would be the background knowledge
for learning thegrandfatherOf predicate.
This specifies our search space for the body of clauses.

bottom clause A particular Horn clause created from a positive example (the “seed”),
used to limit the search space. This clause is created by
chaining through relations until no more facts about the seed
example can be added or until a specified limit is reached.

10

Table 2.2 Covering algorithm for ILP

function GENERALIZE(B, I,L, E): returns H, a hypothesis
inputs: B, background knowledge

I, hypothesis constraints
L, language specifications
E = E+ ∪ E−, training set of positive and negative examples

H = ∅
while E+ is not emptydo

e = SELECT-EXAMPLE(E+)
⊥ = CONSTRUCT-BOTTOM(e,L)
c = SEARCH(⊥, B,H, I, E) /* find good clause */
H = H ∪ {c}
Ec = COVERED(B,H,E+) /* positives derivable by clause */
E+ = E+ − Ec

return H

Figure 2.2 Example bottom clause being constructed. The plus sign (+) refers to input variables
and the minus sign (-) refers to output variables. An output variable must first appear as an input

variable earlier in the clause.

In Aleph, the realization of the language specification occurs during the construction of a bot-

tom clause,⊥. The bottom clause can limit the space of acceptable rules. Aleph considers only

subsets of the literals found in the bottom clause as acceptable rules for addition to the hypothesis.

11

The bottom clause consists of the reachable facts from the background knowledge. Several

parameters determine whether a fact is reachable, one of them being a user-definable set of in-

put/output variables for each literal. Modes are defined by the user of the Aleph system for each

literal in the background knowledge. These modes assign thearguments of a literal to be either

input variables (+), output variables (-), or constants (#). Aleph uses these modes when building

the bottom clause.

Aleph builds a bottom clause starting with a single positiveexample as shown in Figure 2.2.

Bottom-clause generation initializes a set of reachable terms to contain the terms from the positive

example which are input arguments,a and b in the example. Aleph consults the background

knowledge using this set of reachable terms. Any literals found which are satisfied by these terms

in their input arguments, Aleph adds to the bottom clause. Aleph adds the terms from the output

arguments in these literals to the list of reachable terms. In the example, the literals whose input

arguments are satisfied arep(+a,-c) andp(+b,-d). The-c and the-d are the output arguments that

are then added to the set of reachable terms. This process repeats for a user-specified number of

times, growing the bottom clause during each iteration.

Aleph replaces constants found in the input and output positions of a predicate with unique

variables. The variablized bottom clause in combination with the modes constitutes the search

space. Any subset of literals that can be built, maintainingthe connection between input and output

variables, is a legal clause. Aleph allows further constraints to this set of clauses. One common

constraint is the clause length limit, restricting clausesto be sets of literals that are shorter than

some user-defined parameter.

12

Table 2.3 Top-down search algorithm

function SEARCH(⊥, B,H, I, E): returns a legal clause
inputs: ⊥, bottom clause

B, background knowledge
H, hypothesis rules learned so far
I, hypothesis constraints
E = E+ ∪ E−, training set of positive and negative examples

Open = {2}
Closed = ∅
until TERMINATE(Closed,Open) do

s = REMOVE-BEST(Open)
Closed = Closed ∪ {s}
if not PRUNE(s, I)

Open = Open∪ REFINEMENTS(s,⊥, B,H,E) − Closed

return REMOVE-BEST(Closed)

The original search algorithm by Muggleton (Muggleton, 1995) outlined searches for sets of

literals from the bottom clause in a top-down manner, as shown in Figure 2.3 on the left. A top-

down algorithm appears in Table 2.3. Search begins by initializing the open list with the empty

clause,2. The top-down algorithm removes the best clause from the open list. As long as the

clause passes any pruning criteria, the algorithm refines it. In a top-down search refinements are

legal extensions to the clause. Search repeatedly selects the highest-scoring clause from the open

list and extends it. In this fashion search generates longerand longer clauses, and returns the

highest-scoring clause.

Exhaustive search of the space is intractable for even moderately-sized bottom clauses. The

size of the search space grows exponentially with the size ofthe bottom clause. Typically the user

provides some termination criteria such as a limit on the number of clauses searched or the amount

13

Figure 2.3 Comparing top-down search to Rapid Random Restart’s radial search. For clarity the
heads of rules are not shown. The rule circled in bold is the starting location of each search.

Top-Down search can only add literals to the body of the rule while RRR can both add literals and
remove them from the rule.

of time spent searching. In addition the user provides a limit on the length of rules that will be

considered. Another limitation arises because of memory constraints which forces Aleph to limit

the size of the open list. Because of these limits there are no guarantees of finding the optimal

clause.

Work by Železńy et al. (Železńy et al., 2003) have shown that the runtime distribution of

a search is heavy-tailed. This means that there is a significant chance that search from a single

starting point in the search space will take much longer thanaverage to find satisfactory results.

They have introduced the Rapid Random Restart search strategy to Aleph in order to reduce the

average runtime requirements. This search methodology, asshown in Figure 2.3 on the right,

starts by selecting a random clause from the search lattice and performing a local search from this

14

starting location. Search is terminated early, after some fixed amount of time, and a new starting

location is used. This local search constructs the neighborclauses from the initial clause by adding

a single literal or removing a single literal from the initial clause.

Further work (̌Zelezńy et al., 2004) has shown that on several datasets the “cutoff” value (the

number of clauses examined before restarting) is importantin controlling the average runtime

while maintaining good performance. Limiting the amount ofsearch around any single starting

point and having multiple starting points are the importantfactors in reducing the average runtime.

2.3 Ensemble Methods

Research over the past 15 years has shown an improvement in predictive accuracy by using an

ensemble of classifiers over individual classifiers (Dietterich, 2000a; Opitz & Maclin, 1999; Bauer

& Kohavi, 1999). Ensembles consist of a set of individual classifiers where individual classifier

predictions are combined into a single prediction, often using a weighted sum. Important consid-

erations when creating an ensemble are the individual classifier’s predictive accuracy and diversity

among the classifiers (Kuncheva & Whitaker, 2003; Opitz & Shavlik, 1996). Several different

methodologies are used to create a diverse, accurate set of individual classifiers and combine them

into an ensemble.

The Bayes optimal classifier can be considered the ideal ensemble classifier (Russell & Norvig,

2002). It consists of every hypothesis,h, from the space of hypotheses,H. Each hypothesis is

weighted by the probability that the hypothesis is the correct model given the data. This ensemble

is optimal in that any other classifier will be correct less often. The label for a new example using

15

the Bayes optimal classifier from the set of possible class labels,C, and having a training data set,

D, is

label =
argmax

c ∈ C

∑

h∈H

P (c|h)P (h|D)

For most real world problems the Bayes optimal classifier is intractable. Typically the space of

hypotheses is very large if not infinite. This means simplified methods must be used.

Bagging (Breiman, 1996) is an ensemble approach that trains individual classifiers on varying

subsets of the data. Each subset is of the same size as the original training set; however, a subset

is created by samplingwith replacementfrom the original training set. This allows individual

examples to appear more than once or not at all in a given subset. Individual classifiers are biased

toward the subset on which they are trained, producing diversity in the set of classifiers. The

ensemble is created by taking the majority vote of individual classifiers. In this sense bagging is a

type of model averaging over the set of hypotheses learned (Domingos, 2000).

Boosting algorithms such as AdaBoost (Freund & Schapire, 1996) are another popular ensem-

ble approach. Individual classifiers are trained to overcome the misclassifications of previously

learned classifiers. Weights are assigned to examples in thetraining set. Individual classifiers

are trained on the weighted examples. After an individual classifier is trained the weights are

updated so that correctly classified examples are down-weighted and misclassified examples are

up-weighted. This increases the importance of misclassified examples so future classifiers focus

more attention on these examples. Boosting has been applied to many domains including the rela-

tional domain (Quinlan, 2001) where the goal is to discover the relationship between entities. One

16

drawback of the boosting approach arises when working with noisy data. Boosting focuses suc-

cessive learners on the noisy examples and classification performance suffers (Dietterich, 2000b).

Other boosting algorithms have been designed both to overcome some of the shortcomings

of AdaBoost and to improve boosting’s performance. BrownBoosthandles noisy data by down-

weighting examples that are consistently misclassified (Freund, 2001; McDonald et al., 2003).

LPBoost updates weights on all classifiers learned so far to take into account the new classifier

being added to the ensemble (Demiriz et al., 2002). RankBoost was designed to minimize mis-

orderings in an ordered list (Freund et al., 1998). RankBoost has also been shown to maximize

AUROC for two-class problems (Cortes & Mohri, 2003).

2.4 Modeling Search Space

ILP’s objective function requires evaluating each solution – a clause – against every example in

the training set. This is a costly operation. Objective functions are functions which guide the search

process. The goal is to find the highest (or lowest) value of this object function. One approach to

reduce reliance upon the objective function, when working with multiple related learning tasks, is

to learn a bias over the hypothesis space to more quickly discover a hypothesis that performs well

over all tasks (Baxter, 2000; Caruana, 1993). The bias increases the likelihood of selecting some

hypotheses and decreases the likelihood of selecting others. This bias forces the area searched

to a subset of the total search space. As part of my thesis I examine using a probabilistic model,

Bayesian networks, to place a probability distribution overthe search space in order to guide search

to promising areas of the search space. When working with a single learning task, using a model to

17

Figure 2.4 Two ways of modeling the objective function over the search space.

direct search can reduce the number of times an expensive-to-compute objective function needs to

be evaluated. This technique has shown promise in a number ofdomains. Typically two different

types of models have been used, regression models and generative models. Figure 2.4 shows both

of these two model types being built from a coarse sampling ofdata points across search space.

A regression modelestimates the conditional expected value of one variable,y, given the value

of some other variable,x. Variabley in this case is the objective function’s value and variablex is

the search space. Regression modeling attempts to fit all of the data points from the sample. The

model then predicts the objective function’s value for new points in search space.

18

A generative modelestimates the joint probability,p(x, y), for the search space,x, and the

class,y. Often, one need only model the “positive” class if the modelwill be used to create

new examples. The “positive” class represents solutions that are above some cut-off value. One

then uses the generative model to create new solutions from the search space according to its

distribution. One advantage of generative models is the need for fewer training examples to achieve

asymptotic performance. Ng and Jordan (2001) have shown that generative models typically need

on the order oflog(N) examples whereN is the number of free parameters of the model, compared

to discriminative classifiers which need on the order ofN examples.

Regression Models of the Optimization Function over Search Space

To build a regression model, one needs a sampling of the objective function at several locations

in the search space. Several different types of regression models have been fit to the sample data in

the literature including neural networks (DiMaio & Shavlik, 2004), linear and quadratic regression

models (Boyan & Moore, 1998), and kernel regression models (Telelis & Stamatopoulos, 2001).

Once the model has been fit one can use it as a surrogate of the optimization function during search.

Several valuable properties of some types of regression models make them ideal surrogates for the

optimization function such as having a fast evaluation timeand being able to easily find the global

optimum. Typically, when using a regression model to directsearch the following steps repeat:

1. Find the optimal solution of the regression model.

2. Evaluate that solution on the true objective function.

3. Modify the regression model to incorporate this new data point.

19

DiMaio and Shavlik (2004) have designed a neural network that predicts a rule’s score in ILP.

They use their model to modify the Rapid-Random-Restart searchalgorithm (̌Zelezńy et al., 2003).

They select a random initial starting clause, perform stochastic gradient ascent using the model,

and use the ending clause as the true “random restart” clause. They trained their model using a

subset of previous rules explored, keeping a cache of high-scoring rules and rules that had most

recently been evaluated. They show improvement in two of three datasets evaluated.

The STAGE algorithm learns an evaluation function that predicts the outcome of some type

of local search, such as hill-climbing or simulated annealing (Boyan & Moore, 2000; Boyan &

Moore, 1998). They used simple linear or quadratic regression models. These type of models

extrapolate trends seen in training data. This benefits STAGE by finding a good starting solution

that scores well using their predictive model. They also found that using all states along a trajectory

– from some initial starting location to the final outcome – benefited their algorithm, despite the

correlation among examples on the trajectory. Their algorithm iterates between optimizing on

real data and optimizing on the learned model. They show improvement over several local search

algorithms in several domains, including bin-packing, channel routing, and Bayesian-network-

structure finding.

Telelis and Stamatopoulos (2001; 2002) use a kernel-regression model to guide search. In

contrast to the previously discussed approaches that work with complete solutions, this work uses

a constructive approach. They construct a solution, setting variables’ values one at a time, until

they obtain a complete solution. The kernel regression model that they use estimates the objective

function’s value for partial solutions. At each step of construction of the partial solution, they

20

Figure 2.5 Demonstration of a Kriging surface fit to the sample data, with the statistical upper
bound of the standard error of the model. The new sample pointis the one that maximizes the

model plus the standard error.

consider each possible extension and select the extension that has the highest score on the kernel-

regression model.

Another approach by Jones (2001) goes beyond selection of search points via maximizing a

regression model. Jones discusses selection of new search points by several methods including

maximizing a statistical upper bound of the model, maximizing the probability of improvement,

and maximizing the expected improvement. Each of these methods rely upon using an interpolated

model known as a Kriging response surface (Sacks et al., 1989). Kriging has a statistical interpre-

tation which provides a way to construct an estimate of the potential error in the model. Figure 2.5

shows a function to be optimized, the Kriging model fit to a sampling of points, and a statistical

upper bound of the model. Jones maximizes the upper bound using a multi-restart method and the

maximum of that curve is the new sample point.

21

Generative Models for Good Areas of Search Space

In contrast to regression models which predict the score of asolution, generative models create

new data points in the search space which are similar to past high-scoring solutions. One still uses

the original objective function to evaluate a solution but the generative model selects which areas

of the search space will be explored. This approach appears in Figure 2.4 on the right.

Simple Genetic Algorithms (SGAs) (Holland, 1975) can be viewed as animplicit model of

the search space. After the SGAs’ population has been initialized, the algorithm repeats two main

steps until the termination criteria are met:

1. Select a high-scoring subset of the population.

2. Generate a new population via recombination and mutation.

Selection focuses the model on high-scoring areas of the search space, while recombination

and mutation provide means of exploring more thoroughly around those high-scoring solutions.

Designing effective recombination operators is difficult and typically requires customization to a

specific domain (Michalewicz & Fogel, 2004). The challenge is to preserve parameters of a parent

that togetherare responsible for its high score (Holland, 2000). More explicit generative models

have grown out of genetic algorithm theory with the understanding that by explicitly representing

the model of the search space, the model can be designed to preserve aspects that are important

for improved performance. These methods follow similar algorithmic steps as SGAs, with the

addition of training the model to the data, namely:

1. Generate a new population via the model.

2. Select a high-scoring subset of the population.

3. Fit the model to the subset.

22

Table 2.4 Probability distribution for two different populations. Despite having very different
populations the probability vectors are the same. Because ofthe independence assumption, PBIL

has no means to distinguish between these two cases.
Population #1 Population #2
0 0 1 1 1 0 1 0
1 1 0 0 0 1 0 1
1 1 0 0 1 0 1 0
0 0 1 1 0 1 0 1

Representation Representation
0.5,0.5,0.5,0.5 0.5,0.5,0.5,0.5

The variations among the different generative methods are mostly centered around their theo-

retical underpinnings and the complexity of the model used.In addition, smaller variation can be

seen in which portion of the sample is used to update the modeland how the model is fit to the

data.

The population-based incremental learning (PBIL) algorithm (Baluja, 1994; Baluja, 1996;

Baluja & Caruana, 1995) is one of the first and simplest. The model is a fixed-length probability

vector. Each position in the vector is the probability that the corresponding position in a solution

vector will be set to1. Individual solutions are stochastically created from this probability vector.

The highest-scoring individual,high, from each generation updates the probability vector. Each

position,i, of the probability vector is updated byhigh using the equation

probabilityi = (1 − LR) × probabilityi + LR × highi

whereLR is the learning rate. The idea is to take a small step in the direction of the best solution

from each population. This slows convergence, allowing forenough time to find the highest-

scoring area of search space. Because PBIL assumes independence among the positions of a

23

Figure 2.6 Graphical structure for generative models that allow pairwise interactions between
variables. The chain structure on the left is used in MIMIC (de Bonet et al., 1997). The middle is
a tree structure used in COMIT (Baluja & Davies, 1997). The right is a forest structure used in

BMDA (Pelikan & Mühlenbein, 1999).

solution it is unable to distinguish between some very different populations. PBIL’s model is

too simple to capture complex domains. Even the simple populations shown in Table 2.4 would

produce the same probability vector because the model has nomethod of correlating variables.

Despite PBIL’s weaknesses with correlated variables, it is able to outperform SGAs on many

domains. Generative models in general have been shown to outperform SGAs on many problems

from the genetic algorithm community (Wright et al., 2004). Several models have been built that

allow for a single parent of each variable. MIMIC (de Bonet et al., 1997) uses a heuristic to

build a chain linking the variables together. COMIT (Baluja & Davies, 1997) uses the maximal-

branching algorithm which guarantees finding the optimal tree of variables, and BMDA (Pelikan

& M ühlenbein, 1999) greedily searches for a forest of trees to connect the variables. All of these

methods allow for some dependencies between the variables,with BMDA being the most general.

Figure 2.6 shows the structure of these models.

The most general algorithms allow for dependencies among all variables. As such they are

more costly algorithms and have no guarantee of finding the optimal solution. The Bayesian Opti-

mization Algorithm (BOA) (Pelikan et al., 1999) uses the Bayesian Information Content (BIC) to

24

Figure 2.7 Graphical structure for generative models that allow multivariate interactions. The
figure on the left is a Bayesian network created by BOA (Pelikan et al., 1999). The right figure is

a clustering of variables created by ECGA (Harik, 1999).

guide search of possible Bayesian networks that fit the sampled data. ECGA (Harik, 1999) finds

sets of variables that are correlated together. Each of these algorithms has shown an improve-

ment over SGAs on domains where the variables are interrelated. The graphical structure of these

algorithms is shown in Figure 2.7.

Rubinstein’s cross-entropy (CE) algorithm (Rubinstein, 1999; Rubinstein & Kroese, 2004)

comes from the rare-event modeling domain. It uses a technique known asimportance sampling

(Denny, 2001). Importance sampling shifts sampling to the higher-scoring areas of the search space

using prior knowledge. Importance sampling weights the sample to maintain an unbiased model.

CE assumes no prior knowledge to modify sampling. It begins byuniformly sampling. The sample

is sorted and the highestρ-percentile is selected. This upper percentile is used to train a generative,

probabilistic model. After training, a new sample is generated using the model and the process

repeats. Since the model is trained using the upperρ-percentile, successive iterations converge

on high scoring areas. The algorithm terminates when the cutoff for the upperρ-percentile is the

same in successive iterations. CE has been modified to performboth combinatorial and continuous

25

optimization (de Boer et al., 2005), and work has been done to prove the asymptotic convergence

of the CE algorithm to the optimal solution (Margolin, 2005).

Incorporating Probabilistic Models into ILP’s Search Process

When probabilistic models are incorporated into the search process the portion of space searched

can be reduced while maintaining a high quality solution. Aleph is a commonly used ILP method

for discriminative learning that suffers from a large search space. Aleph imposes bounds on the

size of the search space by using a positive seed example and saturating it to create the bottom

clause. Legal subsets of literals are evaluated using an objective function. Probabilistic models

can help reduce the number of evaluations on actual data by using a model to help guide search

(Boyan & Moore, 2000; Boyan & Moore, 1998). Successful use of probabilistic models has been

shown to produce more accurate solutions in many domains by focusing search on areas that are

more likely to contain high-scoring solutions.

I claim that incorporating probabilistic models into Alephwill reduce the number of evaluations

of the objective function on training data and will significantly decrease the time necessary to find

accurate solutions. In chapter 5, I report on incorporatingone of these probabilistic models, a

Bayesian network, to predict which areas of ILP’s search space are more likely to contain high-

scoring rules. In this chapter I have included an overview ofadditional probabilistic models that

have been used to reduce the amount of hypothesis space that is searched while maintaining a

high-scoring final solution. These other methods which I have reviewed are promising avenues to

explore in future work.

26

Chapter 3

Data Sets

In my work I have focused on data sets with a large skew betweenthe number of positive

examples and the number of negative examples. Table 3.1 shows some basic summary statistics

for the data sets that I use throughout this thesis. Notice the large variation between the number

of positive and the number of negative examples. Two of the data sets come from the biomedical

information-extraction domain, two come from the medical-diagnosis domain, and one comes

from the social-interactions domain. In this chapter I explain how these data sets were gathered

and annotated.

Table 3.1 Descriptions of the data sets used in this thesis. Included are the relation, number of
positive and negative examples, the number of folds used during cross validation, and the ratio of

negatives to positives.

Data Set Relation Learned Positives Negatives Folds Skew

Protein Localization protein location(P,L,S) 1,773 279,154 5 157:1

Genetic Disorder genedisease(G,D,S) 233 103,959 5 446:1

Mammography 1 is malignant(A) 510 61,709 10 121:1

Mammography 2 is malignant(A) 351 30,054 10 86:1

Advisor advisedby(S,A) 113 2,711 5 23:1

27

...We show that the yeast frataxin homologue, which we

have namedYFH1, localizes tomitochondria and is

required to maintain mitochondrial DNA...
Figure 3.1 Example sentence from an abstract in the protein localization domain. The words in

bold font are those appearing in the relation.

3.1 Information-Extraction Data Sets

I utilize several data sets from the information-extraction (IE) domain (Mooney & Bunescu,

2005). IE is the process of gathering structured information from non-structured text. The data

sets that I use consist of abstracts from journal articles. The goal in these information extraction

tasks is to find specific relationships between entities in the abstract. For example, Figure 3.1 shows

a sentence from an abstract in the protein-localization data set. Here the objective is to find the

protein and where the protein localizes in the cell. The relationship in this sentence is between the

proteinYFH1and the locationmitochondria. Each data set has a specific relationship to be found,

so different types of background knowledge will be utilizedfor each task. First I will explain the

background knowledge used for these tasks. Then I will explain information specific to each data

set.

3.1.1 Background Knowledge

I have incorporated information about several different aspects of the IE task. Syntactic knowl-

edge incorporates information about the sentence structure. Morphologic knowledge deals with the

internal structure of individual words. Semantic knowledge incorporates information from several

dictionaries and ontologies to better identify specific entities in the sentence. Statistical knowledge

28

deals with frequency of words across the entire training setof abstracts as well as information

about some simple statistics of a sentence. Finally, I have flattened the information so that less

search needs to be performed to discover important features.

3.1.1.1 Syntactic Knowledge

Each data set begins as a set of abstracts annotated with a specific relationship between entities

to be learned. First, I submit each sentence from each abstract to a syntax parser. I use the Sundance

sentence parser of Riloff and Phillips (Riloff & Phillips, 2004) to perform a shallow parse of each

sentence. Each sentence is divided into phrases with each phrase annotated with its type such as

noun phrase, verb phrase, etc. In addition, Sundance annotates each word with its part of speech.

Figure 3.2 shows a sentence fragment divided into phrases with phrase types and part of speech

information along with additional annotations. I convert all of this information to Prolog (Clocksin

& Mellish, 2003) syntax and add it to the background knowledge.

Additional predicates are created to connect the hierarchical sentence structure created by the

parser. A sentence contains phrases and a phrase contains words. In addition there is an order

to the phrases in a sentence and the words in a phrase. I createpredicates such asword nextand

word previousas well asphrasenextandphraseprevious. I also create predicates for larger jumps

in the hierarchical structure. Predicatephraseafter and predicatephrasebeforeare true for any

phrase after a given phrase or before a given phrase.

At this point I change the task slightly. Instead of trying toidentify the relationship between

exact words in the sentence I change the task to identify the relationship between the phrases that

contain those words. This changes the task to a well developed supervised learning task. Positive

29

Figure 3.2 An annotated sentence fragment divided into phrases. Annotations include phrase
types, part-of-speech information, novel words, capitalized words, alphanumeric words, words

appearing in different dictionaries, and statistically significant words that appear more frequently
in positive sentences than in negative ones. See text for additional explanation of annotations.

examples are the phrase pairs for which the relationship is true. Negative examples consist of all

other phrase pairs in a sentence. An average sentence containing 10 phrases will have 100 phrase

pairs. If just one of these phrase pairs is the correct relation then there are 99 negative pairs, hence

the large positive:negative skew.

Knowing which phrases are involved in the relationship allows for additional predicates that

relate the remaining phrases to the phrases in a relationship. The predicatein betweenboth target

phrasesis true for all phrases which occur between the two target phrases in a relationship.

Likewise, beforeboth target phrasesandafter both target phrasesare true for the correspond-

ing phrases in the sentence.

30

3.1.1.2 Morphologic Knowledge

There are several morphological features that I felt would be useful in these IE tasks. Morphol-

ogy deals with the form that a word can take. I use the Porter stemmer (Porter, 1980) to take the

stem of the words in order to reduce the noise due to differentword endings. I identify words that

are capitalized or contain hyphens or are alphanumeric. I also annotate words that appear in the

title of the abstract and words that contain only a single character. Each of these annotations occur

at the word level. Later I transfer this information up to thephrase level.

3.1.1.3 Semantic Knowledge

One advantage that ILP has over other learning models is the ability to incorporate many

sources of information and use them to improve predictive performance for the given task. There

exist many public domain ontologies and dictionaries whichare directly related to the entities in

the relationships found in my data sets. If a word in a sentence appears in one of these resources

I annotate the word in the sentence. A listing of the ontologies and dictionaries which I have used

appears in Table 3.2 along with information about those resources.

3.1.1.4 Statistical Knowledge

One final area of domain knowledge considers the frequency ofwords appearing in positive

examples compared to words appearing in negative examples.I build dictionaries of words that

appear 2, 5, and 10 times more frequently in phrases of a true relationship compared to all other

phrases. These frequently occurring words are calculated for both of the entities in the relationship

31

Table 3.2 Ontologies and lexicons used in annotating the information extraction data sets.
Resource Description

UNIX dictionary The standard UNIX dictionary found in /usr/dict/words.
Words not appearing in this are marked with
thenovelwordpredicate.

MeSH The Medical Subject Headings controlled vocabulary thesaurus
is found at http://www.nlm.nih.gov/mesh/meshhome.html.It
contains a hierarchically structured medical lexicon of varying
levels of specificity. I utilize several categories of wordsthat
pertain to the entities in each of the data sets.

On-Line Medical Dictionary The dictionary consists of terms related to science and medicine.
It can be found at http://www.mondofacto.com/dictionary/.
I use the cell biology portion under the medical heading.

Gene Ontology The Gene Ontology consists of three structured controlled
vocabularies that describe gene products. It can be found at
http://www.geneontology.org/. I use the cellular components
portion of the ontology.

individually as well as for words that appear more frequently between, before, or after the two

entities. I then use these dictionaries to annotate all words in the abstracts.

Whenbuilding these frequency dictionaries I use only the information in the current training

data in order to maintain a clear separation between train set and test set. Whenusing these

dictionaries I mark both the training set and test set with the dictionary words. This means I build

a separate set of frequency dictionaries for each fold of thedata sets.

3.1.1.5 Flattening the Knowledge

ILP searches through the predicates in the background knowledge to find predictive rules. ILP

adds one predicate at a time to a growing rule. Because of this,ILP will not be able to distinguish

between predicates that have no value in improving a rule’s predictive performance from predicates

that are helpful but not until additional literals are added. Many of the more predictive predicates

32

are found at the word level and several other predicates would need to be added before discovering

these more predictive predicates. To reduce this problem, predicates have been added that allow

for direct addition of more distant information in the sentence.

For example, predicates have been created that bring information from the words in a phrase

to the phrase itself. Predicates such asphrasecontainssomealphanumericandphrasecontains

someall cap wordbring information from the word level to the phrase level, requiring fewer pred-

icate additions to a rule for predictive improvement. This is a means of making the data set more

propositional while still utilizing the advantages of ILP.Predicates were also created for lifting the

words in a phrase up to the phrase level. Predicates such asphrasecontainsspecificword pair

andphrasecontainsspecificword triple allow for the addition of several words at the same time.

The goal when creating these types of predicates is to lift asmuch relevant information to the

phrase level as possible.

3.1.2 Protein Localization Data Set

The protein-localization data set originally comes from Rayand Craven (Ray & Craven, 2001).

They gathered MEDLINE1 abstracts that contained occurrences of proteins and wherethose pro-

teins localize in the cell. The list of proteins and their localizations were taken from the Yeast

Protein Database (Hodges et al., 1997). They mark all occurrences of relations found in a sentence

using a computer algorithm. Their algorithm performed reasonably well but they estimated it still

had a noise level of between 10% and 15%.
1A fact sheet explaining the MEDLINE database can be found at http://www.nlm.nih.gov/pubs/factsheets/medline.html.

33

Because of the noise level, Soumya Ray, Mark Goadrich and I created a hand-annotated version

of the data set. Annotations were made for each protein and each cellular location. We also

annotated relationships between these two entities. Relations were divided intoClear, Ambiguous,

andCo-occurrence. Only theClear relations were used as positive examples, with all others used

as negatives.

In order to reduce the positive:negative skew we filtered thedataset through two different filters.

First, proteins and cellular locations are nouns and shouldappear in noun phrases. All relations

where the entities were not noun phrases were discarded. To further reduce the positive:negative

skew we randomly sub-sample the negatives, retaining one-fourth of the negative examples for

the training set. The test set retains all examples and positive relations that were discarded due to

filtering are counted as being misclassified.

The data was divided at the abstract level into 5 folds. All relations in the abstracts of a fold are

the postive and negative examples for that fold. For each cross-validation run one fold is used as

the test set, three are used as the training set, and one is used as the tuning set. The hand-marked

data set can be downloaded at ftp://ftp.cs.wisc.edu/machine-learning/shavlik-group/datasets/IE-

protein-location.

3.1.3 Genetic Disorder Data Set

The genetic disorder data set also comes from Ray and Craven (Ray& Craven, 2001). The task

is to correctly label pairs of phrases as in the protein-localization data set. However, the relationship

for this data set is to correctly pair disorders with genes that are associated with the disorder. The

list of gene-disorder pairs comes from the Online MendelianInheritance in Man (OMIM) dataset

34

(McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University and National Center

for Biotechnology Information, National Library of Medicine, 2001) and the abstracts that are

marked come from MEDLINE. I use the computer-marked data set, however due to hardware

limitations I sub-sample 25% of the abstracts to reduce the amount of data. This reduced data

set contains 233 positive relations and 103,959 negative relations. In other respects this data set

is similar to the Protein Localization data set. The abstracts follow the same process of parsing

and addition of background knowledge selecting appropriate dictionaries for the entities in the

relationship. Folds are created and used in the same manner as in the protein-localization data set.

3.2 Mammography Data Sets

A second group of data sets comes from radiology and the medical-diagnosis domain. One of

the key responsibilities of a radiologist is to analyze mammograms and identify possible malignant

findings. Radiologists use the BI-RADS lexicon to describe their findings (American College

of Radiology, 2003). The lexicon also provides means for the radiologist to summarize their

recommendations. In addition to the information from the mammogram, the technician reports

patient risk-factor information that may be helpful in predicting breast cancer. The task is to

correctly identify a finding on a mammogram as malignant or benign given information from the

BI-RADS descriptors, the patient risk factors, any history the patient may have from previous

mammograms, and information about any other findings on the same mammogram. I will briefly

explain the BI-RADS lexicon and the demographic information used in these data sets.

35

3.2.1 Mammography Background Knowledge

The Breast Imaging Reporting and Data System (BI-RADS) (American College of Radiology,

2003) of the American College of Radiology contains a lexicon for describing findings on a mam-

mogram. The lexicon is organized in a hierarchical structure. The main categories are shown in

Table 3.3 with brief descriptions. The lexicon contains a total of 43 descriptors for describing

characteristics of a finding on a mammogram that fall into oneof these main headings. The lexi-

con also has BI-RADS assessment categories for the radiologist to summarize their findings. The

descriptors that are relevant to the predictive task have been converted to ILP predicates. Table

3.4 shows a list of the converted BI-RADS descriptors and theirpossible values used in my ILP

system.

Table 3.3 Main BI-RADS categories for describing findings on a mammogram.
BI-RADS Terminology Description
Mass A ‘Mass’ is a space-occupying lesion seen in two different

projections. Important characteristics include the margins, size,
shape, and density.

Calcification Calcifications are commonly found on a mammogram. When
found in conjunction with a mass they provide additional
information about the mass. Calcifications are described
according to their size, shape, number, and how they are
distributed. Calcifications are classified as typically
benign, intermediate concern, or higher probability of
malignancy.

Architectural The typical architecture of the breast is distorted with no visible
Distortion mass. The category contains special cases and associated findings.

In addition to the descriptors from findings on a mammogram, information about the patient is

recorded. Previous research has identified factors that arecorrelated to an increased risk of breast

36

cancer. Models such as the Gail model (Gail et al., 1989) haveidentified several factors which

increase a woman’s likelihood of developing breast cancer,such as family history of breast cancer

and age at menarche. Additional research has identified other risk factors (Longnecker, 1994;

Rosner et al., 1994). The data sets I use include risk factors that were recorded by a technician and

that were deemed relevant by an expert radiologist, Elizabeth Burnside. Table 3.4 also lists these

features.

Finally, two additional predicates are created to considera patient’s history and other find-

ings on the same mammogram. If a patient has had multiple mammograms, observations on

previous mammograms may influence the likelihood of malignancy for a finding on the current

mammogram. The same may be true between findings on the same mammogram. Predicates

previousstudyandsamestudywere created so clauses could learn these types of relations. For

example, an important indicator of malignancy is when a massincreases in size from one mam-

mogram to another. Rules can use thepreviousstudypredicate to find such relationships.

3.2.2 Mammmography Data Set 1

This data set is described in detail by Burnsideet al. (2009). All screening and diagnostic

mammograms between April 5th, 1999 and February 9th, 2004 were collected from the Froedtert

and Medical College of Wisconsin Breast Imagining Center. A total of 18,270 patients were exam-

ined, collecting a total of 47,669 mammograms. All findings on the mammograms were matched

with the Wisconsin Cancer Reporting System (WCRS). A finding was considered malignant if

there was a registry match within 365 days after the mammogram or if a biopsy was performed

and cancer was discovered. All other findings are consideredbenign.

37

Table 3.4 BI-RADS descriptors and patient risk factors used inthe mammography data sets.
Descriptor Descriptor Values
Age < 45, 45-50, 51-54, 55-60, 61-64,≥ 65
Hormone Therapy None, Less than 5 years, More than 5 years
Personal History of Breast CancerNo, Yes
Family History of Breast Cancer None, Minor, Strong
Prior Surgery No, Yes
PostOp Change Not Reported, pOC
Reason For Mammogram Screening, Diagnostic
Breast Density Class 1, Class 2, Class 3, Class 4
Mass Shape Oval, Round, Lobular, Irregular, Cannot discern
Mass Stability Decreasing, Stable , Increasing, Cannot discern
Mass Margins Circumscribed, Ill-defined, Microlobulated, Spiculated,Cannot discern
Mass Density Fat, Low, Equal, High, Cannot discern
Mass Size≥ in millimeters
Lymph Node Present, Not Present
Asymmetric Density Present, Not Present
Skin Thickening Present, Not Present
Tubular Density Present, Not Present
Skin Retraction Present, Not Present
Nipple Retraction Present, Not Present
Trabecular Thickening Present, Not Present
Skin Lesion Present, Not Present
Axillary Adenopathy Present, Not Present
Architectural distortion Present, Not Present
CaSuture Not Reported, Not Present
Calc Popcorn Present, Not Present
Calc Milk Present, Not Present
Calc RodLike Present, Not Present
Calc Eggshell Present, Not Present
Calc Dystrophic Present, Not Present
Calc Lucent Present, Not Present
Calc Dermal Present, Not Present
Calc Round Scattered, Regional, Clustered, Segmental, Linearductal
Calc Punctate Scattered, Regional, Clustered, Segmental, Linearductal
Calc Amorphous Scattered, Regional, Clustered, Segmental, Linearductal
Calc Pleomorphic Scattered, Regional, Clustered, Segmental, Linearductal
Calc FineLinear Scattered, Regional, Clustered, Segmental, Linearductal
BI-RADS category 0, 1, 2, 3, 4, 5

38

3.2.3 Mammography Data Set 2

A second data set comes from the University of Wisconsin Hospital and Clinic’s radiology de-

partment. This second mammography data set is a work in progress. New mammograms continue

to be added. The snapshot of the data that I discuss here contains all mammograms between Octo-

ber 1, 2005 and March 31, 2008. A total of 18,375 patients wereexamined. For this version of the

data set no matching has yet been done with the WCRS. Malignancy was determined via biopsy.

Findings that were not biopsied are considered benign.

The raw data set has more features describing the patient andthe findings on the mammogram.

There is also less noise and blank values in the feature values. For this version of the data set I

used the same code that was created for the first data set to convert the data to a fixed format. The

code was created by Yue Pan, Zhiyu Liu, Jag Chhatwal, and Turgay Ayer. This code reduced the

raw data to contain the same features as the first mammographydata set. I do this so that models

trained on one data set can be validated on the second.

3.3 Advisor Data Set

The final data set that I will be using throughout this thesis comes from the University of

Washington (Richardson & Domingos, 2006). The objective in this data set is to predict who the

advisor is for each graduate student. Background knowledge contains information about who are

students and who are professors. It also contains information about courses taught and by whom.

Relations also exist for who has written papers with whom. While this is a smaller data set in the

number of examples there remains a reasonably-sized skew of1 positive to 24 negatives.

39

Chapter 4

Gleaning Ensembles of First-Order Rules

This chapter contains joint work with Mark Goadrich. The work originally appeared in Goad-

rich et al. (2006) and Goadrich et al. (2004), which receivedthe best student paper award for the

Inductive Logic Programming Conference. The chapter presents the Gleaner algorithm for quickly

learning an ensemble model to maximize performance on recall-precision curves.

4.1 Our Algorithm: Gleaner

In order to rapidly produce good recall-precision curves, we have developed Gleaner, a two-

stage algorithm to (1) learn a broad spectrum of clauses and (2) combine them into a thresholded

theory aimed at maximizing precision for a particular choice of recall. Pseudo-code for our algo-

rithm appears in Table 4.1. Agleaneris one who gathers grain left behind by reapers. We call our

algorithm Gleaner because it sifts through rules discardedby a standard heuristic search and uses

some of them to form its theories. Our Gleaner algorithm currently uses Aleph as its underlying

engine for generating rules.

After initialization, the first stage of Gleaner learns a wide spectrum of rules, illustrated in Fig-

ure 4.1. We use Aleph to search for rules usingK seed examples to encourage diversity. In our ex-

periments that appear in Section 4.3, the recall dimension is uniformly divided intoB equally-sized

40

Table 4.1 The Gleaner algorithm.

Initialize Bins:
CreateB recall bins,bin 1

B
, bin 2

B
, ..., bin1, to uniformly divide the recall range [0,1]

Populate Bins:
For i = 1 to K (can be in parallel)

Pick a seed example to generate the bottom clause
Use Randomized Local Search to find rules
After each generation of a new rulec

Find the recallbinr for c on the training set
If the Precision × Recall of c is best yet for seedi in binr

Storec in binr and discard old best rule of seedi in binr

Until N rules are generated

Determine Bin Threshold:
For eachbinj

Find theory frombinm andLm ∈ [1, K] with highest precision on tune set such that
recall of “At leastLm of K rules match examples”≈ recall forbinj

Evaluate on Test set:
Find precision and recall of test set using each bin’s “at least L of K” decision process

bins, for example,[0, 0.05], [0.05, 0.10], . . . , [0.95, 1]. The number of bins is somewhat arbitrary,

however enough bins must be created in order have a wide selection of rules while not creating so

many bins that the majority of them would have few rules fall within them. In our experiments

we thought that 20 bins was a reasonable number of bins. For each seed, we consider up toN

possible rules using stochastic local-search methods (Hoos & Stutzle, 2004). As these rules are

generated, we compute the recall of each rule and determine into which bin the rule falls. Each bin

keeps track of the best rule appearing in its bin for the current seed. We use the heuristic function

precision× recall to determine the best rule within a bin. At the end of this search process, there

41

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

P
re

ci
si

o
n

Recall
1.00.90.80.70.60.50.40.30.20.10.0

Figure 4.1 A hypothetical run of Gleaner for one seed and 20 bins on the training set, showing
each considered rule as a small circle, and each bin’s chosenrule as a large circle. This is repeated
for K seeds to gatherB ×K rules (assuming a rule is found that falls into each bin for each seed).

will be B rules collected for each seed andK seed examples for a total ofB × K rules (assuming

a rule is found that falls into each bin for each seed).

To perform stochastic local search, we considered the four search methods: Stochastic Clause

Selection (SCS) (Srinivasan, 1999), GSAT and WalkSAT (Page,2000), and Rapid Random Restart

(RRR) (Železńy et al., 2003). We found that GSAT and WalkSAT make more “uphill” moves in the

search space (i.e., removing predicates from the rule) thanRRR, and due to the internal workings

of Aleph, adding predicates to a rule is much more efficient than removing them. In our testbeds,

RRR both takes less time and produces higher quality rules thanthe other methods, and I will use

it as Gleaner’s search method for the remainder of my thesis.

42

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

P
re

ci
si

o
n

Recall
1.00.90.80.70.60.50.40.30.20.10.0

Figure 4.2 Twenty complete recall-precision curves, one from each Gleaner bin, evaluated on
fold 1 of our protein-localization data set.

The second stage takes place once all the rules have been gathered using random search.

Gleaner combines the rules in each bin to create one large thresholded theory, of the form “At

leastL of theseK rules must cover an example in order to classify it as a positive.” Each of these

learned theories could generate their own recall-precision curves, by exploring all possible values

for L, as shown in Figure 4.2. These curves will overlap in their recall and precision results, and

we would like to save the highest points along this combined curve, irrespective of the bin which

generated the points. Hence, for each bin we record the theory and thresholdL which generated

the highest points in that bin on the tuning set. With thisL, we now evaluate our saved thresholded

theory on the test set and record the precision and recall. Wewill end up withB recall-precision

points, one generated by each bin, that hopefully broadly span the recall-precision curve. I note

here that the use of bins during this tuning phase is somewhatarbitrary. Another approach would

43

find the upper convex hull of these curves and utilize all points along this convex hull as the final

set of models for evaluation on the testing set.

A unique aspect of Gleaner is that each point in the recall-precision curve might be generated

by a separate thresholded theory. This is opposed to the usual setup to create a curve, where

one standard theory is transformed into many by ranking the examples and then finding different

thresholds of classification. Our separate-theory method is related to using the ROC convex hull

created from separate classifiers (Fawcett, 2003). We believe using separate theories is a strength

of our Gleaner approach, such that each theory, and therefore each point on our curves, is not

hindered by the mistakes of previous points; each theory is totally independent of the others. In

addition since the final result for any point is a single set ofrules, the set is smaller and more

interpretable.

An end-user of Gleaner will be able to choose their preferredoperating point from this recall-

precision curve as a function of how they weight false positives compared to false negatives. Our

algorithm will then be used to generate test set classifications using the closest bin to their desired

recall results along with our found thresholdL. If necessary, we can produce a confidence score for

each example by using the number of rules that cover this example within our selected bin. For this

reason, we have performed macro-averaging (Lewis, 1991) ofour results to calculate the AURPC,

where the AURPC is first calculated for each fold and then averaged to produce one value.

44

4.2 Experimental Controls

Our main experimental control for this work is Aleph ensembles, discussed below. In addition

we compare to weighting methods of what we call Single-Theory Ensembles, as well as naı̈ve

Bayes and Structural HMMs.

4.2.1 Aleph Ensembles

We investigate here the “random seeds” approach for creating ensembles from Dutra et al.

(2002). This approach, shown to have essentially equivalent predictive accuracy as bagging (Breiman,

1996), produces diversity in its learned models by startingeach run of its underlying ILP system

with a different random seed example. We compare our Gleanerapproach (described in Section

4.1) to this method of using “random seeds” ensembles in Aleph. In this experimental control, we

call AlephN times and have it createN theories (i.e., sets of rules that cover most of the positive

training examples and few of the negative ones). To create a recall-precision curve from these

N theories, we simply classify an example as positive if at least K of the theories classify it as

positive; varyingK from 1 to N produces a family of ensembles, and each of these ensembles

produces a point on a recall-precision curve.

As discussed earlier, Aleph is a very flexible ILP system witha wide variety of learning param-

eters available for modification. We use the train and test sets of fold 1 of our protein-localization

data set to choose good parameter settings (since this is theexperimental control against which we

compare our Gleaner algorithm, it is “fair” to use the test set to tune Aleph’s parameters). We limit

45

the number of rules considered to 100 thousand per seed processed, and we also limit the num-

ber of reductions to 100 million (using thecall counting predicate available in YAP Prolog1).

Unless explicitly stated otherwise, our parameter choiceswere made initially and not empirically

tuned. The major Aleph parameters we used are:

minimum accuracy We can place a lower bound on the accuracy of each rule learnedby our

system. (Note that this is only the accuracy of the rule on thepositive examples, in other

words, precision.) We consider two settings for minimum accuracy for learned rules: 0.75

and 0.90.

minimum positives To prevent Aleph from learning overly narrow rules, ones which only cover

a few examples, we specify that each acceptable rule must cover at least a certain number of

positives. We require all rules to cover at least seven positive examples.

rule length The size of a particular rule can be constrained using rule length. By limiting the

length, we can explore a wider breadth of rules and prevent rules from becoming too specific.

We required that rules be no longer than ten literals, including the head (the same settings

we use for random sampling of the hypothesis space in our Gleaner approach).

search strategy Aleph allows the user to choose which search function to use.These include the

standard search methods of breadth-first search, depth-first search, iterative beam search, it-

erative deepening, and heuristic methods requiring an evaluation function. We used heuristic

search since it scales best to the large size of our task, and investigated a number of different

evaluation functions.
1http://www.ncc.up.pt/˜vsc/Yap/yap.html

46

evaluation function There are many ways to calculate the value of a node for further exploration.

The default heuristic used in Aleph iscoverage. This is defined as the number of positives

covered by the rule minus the number of negatives (TP−FP). In our highly skewed domain,

coverage will bias the search toward rules which cover a small number of false positives, no

matter how many true positives they cover. A very similar heuristic is compression, which

is coverage minus the length of the rule (TP − FP − L). Compression biases the search

toward the minimum description-length hypothesis (Rissanen, 1978), or the shorter the rule,

the better. To improve rule quality and correct accuracy estimates for rules that only cover

a small number of examples, one can also use theLaplace estimate, (TP+1
TP+FP+2

). Since

we are working within domains to generate precision/recallcurves, we also explored as

our heuristic-search’s evaluation functionprecision × recall, and theF1-score, which is

(2×Precision×Recall
Precision+Recall

). The use of these two metrics provides a balance between precision and

recall rule coverage.

coverage in tune set.To encourage our rules to be more general, we added a parameter to Aleph

requiring each recorded rule to cover at least two positive examples in the tune set. We

believe this will create more general rules that will perform well on unseen examples in the

test set without increasing computational overhead duringtraining.

For these parameter evaluations on fold 1, we obtained our best area under the recall-precision

curve for Aleph ensembles using Laplace as the evaluation function and a minimum rule accuracy

of 0.75, as shown in Table 4.2. Under this setting, the average number of rules considered per

constructed theory is approximately 35,000.

47

Table 4.2 AURPC results on test-set fold 1 of protein-localization data set, 25 rules per theory, 50
theories.

Minimum Heuristic
Accuracy Function AURPC

Laplace 0.38
0.75 coverage 0.35

F1-score 0.20
precision× recall 0.19

Laplace 0.34
0.90 coverage 0.35

F1-score 0.34
precision× recall 0.31

One new finding we encountered that was not reported by Dutraet al. is that it is better to limit

the size of theories. Figure 4.3 plots the AURPC as a function of the maximum number of rules we

allow in the learned theories. Running Aleph to its normal completion given the above parameters

leads to theories containing 271 rules on average. However,if we limit this to the firstC rules, the

AURPC can be drastically better. The likely reason for this isthat larger theories have less diversity

amongst themselves than do smaller ones, and diversity is the key to ensembles (Dietterich, 1998b).

Therefore in our subsequent experiments, we stop the rule learning for each theory after 50 rules.

A convenient side-effect of limiting theory size is that theruntime of individual Aleph executions

is substantially reduced.

While we have not considered all possible parameter settingsand algorithm designs with which

Aleph could be used to create an ensemble of theories, we haveevaluated a substantial number of

variants and feel that our chosen settings provide a satisfactory experimental control against which

to compare our new algorithm, Gleaner.

48

0.5

0.4

0.3

0.2

0.1

0.0

Te
st

se
t

A
U

R
P

C

Number of Clauses Used Per Theory

300250200150100500

0.6

Figure 4.3 AURPC for Aleph ensembles, whereN = 100, with varying number of rules on
protein-localization data set.

4.2.2 Single-Theory Ensembles

A theory learned by Inductive Logic Programming can itself be viewed as an ensemble, or

disjunction, of rules. This view can be extended by exploring how to weight the influence of each

rule on the overall classification of each example; a standard theory under this interpretation has all

rules with the same (positive) weight, and the decision threshold being set to zero. This approach,

which we call asingle-theory ensemble, might achieve better results and examine fewer rules than

the Aleph ensembles approach. Next we explore possible weighting schemes for comparison with

Gleaner.

Fawcett (2001) compares a number of propositional-rule weighting methods in relation to their

area under the curve (AUC) performance. There are a number of differences between our data

49

set and the ones examined by Fawcett. First, we use ILP to onlylearn rules which cover the

positive class, whereas the propositional-rule learners examined earlier by Fawcett have rules for

both positive and negative examples. For this reason, we areunable to compare to a number of

his weighting schemes. Second, our data is highly skewed toward the negative examples, while

Fawcett’s previous work has examined data sets which have a fairly balanced distribution. One

final difference to note is that we are using the AURPC for recall-precision curves instead of the

AUC for ROC curves.

To determine the score for each test example, we investigated the following methods on the

protein-localization data set, using the tune set to gatherour statistics.

Ranked List This method treats a theory as a list of rules, ordered by using anm-estimate on the

precision of each rule on the tune set(TP+m
TP+FP+2m

). For a given test set example, its score

is generated by finding the set of rules which cover this example and using the score of the

highest-scoring rule. Fawcett calls this method first, and it is also employed by Craven and

Slatterly (2001) within ILP.

Lowest False Positive RateLFPR is another one of Fawcett’s proposed schemes. It is similar to

the Ranked List method above, using the false-positive rate on the tuning data instead of the

m-estimate as the score for each rule, and using the lowest instead of the highest-ranked rule.

CN2 We also compared to the unordered rule resolution method mentioned by Clark and Boswell

(1991) for CN2, a propositional-rule learner. First, the setof rules that match each example

are found. We then separately sum the true positives and false positives for each matching

50

rule on the tune set, and the score assigned to each example isthe resulting aggregated

precision.

Weighted Vote Along the same lines as CN2, we can use Fawcett’s weighted votemethod. This

first finds the precision of each matching rule and an example’s score is theaverageof these

precision scores for the matching rules.

Cumulative A class of weighting schemes not examined by others is to use the size of the set

of matching rules as the score for each example. This single-theory ensemble approach is

partially inspired by Blockeel and Dehaspe (2000) with theirproposal for using cumulativity

in ILP. We call this methodequal weighting, where each rule has one vote, and the score of

an example is the number of matching rules. We also explored using other methods to

determine the weight of each rule’s vote, such as theprecision, recall or F1 scoreof each

rule, as well as adiversitymetric adapted from Opitz and Shavlik (1996).

Näıve Bayes and TAN The method of first learning a theory and then learning weights can be

seen as a way to combine feature selection with propositionalization. We also compare

with two propositional learners discussed in Daviset al. (2005b), Näıve Bayes and Tree

Augmented Networks (TAN) (Friedman et al., 1997), which augments näıve Bayes as a way

to account for the dependence between features.

We compared these different weighting schemes on the protein localization set to find a good

weighting scheme as a control experiment for Gleaner. We used standard Aleph to learn 30 theories

on each training set fold, using a minimum accuracy setting of 0.75 and a maximum nodes setting

51

Weighting Schemes

0.0

Te
st

se
t

A
U

R
P

C

0.1

0.2

0.3

0.4

0.5

0.6

Precision Diversity Equal F1-score Recall Naïve

Bayes

TAN Ranked

List

LFPR CN2 Weighted

Vote

Figure 4.4 Comparison of AURPC for Various Weighting Approaches on the protein-localization
data sets with Error Bars for the Standard Deviation across the Five Folds.

of 100,000. Our 150 learned theories, 30 for each fold, averaged 271 learned rules. Figure 4.4

shows the results of our different weighting schemes in the protein localization task, ordered by

performance. The five leftmost columns are for the cumulative weighting schemes, the next two

are from the propositional learning methods, then ranking schemes, followed by the averaging

schemes.

In our experiments, we found that the highest scoring schemes in general were the cumulative

weighting schemes, and among these the highest scoring wascumulative weighting using preci-

sion. However the difference between Naı̈ve Bayes, TAN and the cumulative schemes is barely

statistically significant, withp value slightly less than 0.10. These results are in contrastto those of

Fawcett, who found that LFPR and Weighted Vote scored equally well, while Ranked List lagged

behind. However, it should be noted that our experiments only involve one protein-localization

data set.

52

4.2.3 Additional Controls

We also compare our results to Ray and Craven’s structural HMMs(Ray & Craven, 2001),

which were retrained and evaluated on our cleaned data set, and to a propositional naı̈ve Bayes

approach for text classification found in Mitchell (Mitchell, 1997). Under Ray and Craven’s HMM

approach, a phrase that has more than one protein or location, such as “pif1 and pif2,” would be

counted multiple times when part of a positive relation. Dueto this different problem representa-

tion, the HMM approach has slightly more positive examples than our ILP framework, since our

examples are based on the phrase constants only and not theirconstituent words.

For näıve Bayes, we created two feature sets, one with a bag of words for each of the two

phrases in the relation, and one with five bags of words for each example: one for each phrase in

the relation, and one each for words before, between and after the target phrases. We also used

Mitchell’s m-estimate equation of m
m×|V ocabulary|

with m values of 1, 10 and 100 and found the best

results withm = 1. Features were only the stemmed words.

4.3 Experimental Results

Our main hypothesis is that by dividing up the recall-precision area, both for collecting rules

and combining rules into theories, we can quickly find theories with high area under the recall-

precision curve. We explore this hypothesis through experiments on our two biomedical information-

extraction domains.

53

4.3.1 Protein Localization Data Set

We divided the protein-localization data into five folds. Each training set consisted of three

folds, with one fold held aside for tuning and another for testing. For our experiments, we require

each rule learned on the training set to cover at least two positive examples in the tuning set.

Gleaner uses the tuning set to pick the appropriate threshold L for each bin.

A sample rule chosen by Gleaner is shown in Table 4.3. We can see that the rule has picked

up on the tendency of the protein phrase to containalphanumeric words. The location part of

the sentence contains words previously marked as locationsin the training set, and has a familiar

pattern starting with an article, “a,” “an,” or “the.” Also important for this rule is the sentence

structure, requiring that the protein phrase comes before the location phrase, and that the location

phrase is not the last phrase in the sentence.

Our Aleph-based method for producing ensembles has two parameters that we vary:N , the

number of theories (i.e., the size of the ensemble), andC, the number of rules per theory. To

produce ensemble points for our experiments, we letN be 100 and chooseC from {1, 5, 10, 15,

20, 25, 50}, with the average nodes explored per rule learned being 35,000. To extend our analysis

to lower numbers of rules generated, we letC be 1 and chooseN from {10, 25, 50, 75, 100}.

We also compare in our experiments the scenario where we drastically limit the nodes explored

to 1,000. In this latter experiment using 1,000 nodes, approximately 20 seed examples per theory

would result in singletons, i. e. they were unable to learn a suitable rule within the time allowed.

These wasted rule evaluations are counted in our comparisons. Further attempts to limit the nodes

54

Table 4.3 Sample rule with 29% recall and 34% precision on test-set 1.

protein location(P,L,S) :-
targetarg1beforetargetarg2(P,L,S),
first word in phrase(L,A),
phrasecontainssomeart(L,A),
phrasecontainssomemarkedup location(L,),
phraseafter(L,),
few alphanumericwords in phrase(P),
few alphanumericwords in sentence(S),
after both targetphrases(S,)).

where the variableP is the protein phrase,L is the location phrase,S is the sentence,
and ‘ ’ indicates variables that only appear once in the rule.

Positive Extraction
“NPL3 encodes a nuclear proteinwith an RNA recognition motif and similarities to
a family of proteins involved in RNA metabolism.”
protein location(‘NPL3’, ‘a nuclear protein’)

Negative Extraction (i.e., a false positive)
“Subcellular fractionation studies further demonstrate that the 1455 amino acid
Vps15pis peripherally associated with the cytoplasmic faceof a late Golgi
or vesicle compartment.”
protein location(‘the 1455 amino acid Vps15p’, ‘the cytoplasmic face’)

explored to 100 resulted in approximately 350 singletons per theory; when these singletons are

factored in with learning time, it becomes more expensive tolimit the nodes to 100 than 1,000.

We also compare Gleaner to single-theory ensembles using the cumulative precision weighting,

as this performed highest of all the weighting schemes. To make the comparison competitive, we

limited the maximum nodes to 1,000 for each learned rule in the theory, and calculated AURPC

points with the first 25, 50 and 100 rules as well as the complete theory.

55

Figure 4.5 Comparison of AURPC from Gleaner and Aleph ensembles by varying the number of
rules generated on the Protein-Localization data set.

For the parameters of Gleaner, we used 20 equally-sized recall bins. We used Rapid Random

Restart (̌Zelezńy et al., 2003) with theprecision× recall heuristic function to construct 1,000

rules derived from the initial random rule before restarting with a new random rule. We generate

AURPC data points for Gleaner by choosing 100 seed examples and using the values of{1,000,

10,000, 25,000, 50,000, 100,000, 250,000, 500,000} for the number of candidate rules generated

per seed. We further reduce the number of seed examples to{25, 50, 75} to explore performance

on lower numbers of rules generated.

The results of our comparison are found in Figure 4.5; the points are averaged over all five

folds. Note that this graph has a logarithmic scale in the number of rules generated. We see that

56

Gleaner can find comparable AURPC numbers while generating three orders of magnitude fewer

rules than Aleph ensembles with 35,000 nodes per learned rule. Aleph ensembles improve when

limited to considering 1,000 nodes per learned rule, however Gleaner is still more than one order of

magnitude faster. It is interesting to note that the Gleanercurve is very consistent (i.e., flat) across

the number of rules allowed, while the Aleph ensemble methodincreases when more rules are

considered. This demonstrates the benefit of saving more than just the “best” rule when searching

hypothesis space, as well as showing that Gleaner is resistant to overfitting. We also see in Figure

4.5 that Gleaner is one order of magnitude faster than the method of weighting one theory. Single-

theory ensembles employ a covering algorithm which halts learning when all positive examples

are either singletons or covered by a rule, thus we cannot explore their behavior on large numbers

of considered rules. Note that Gleaner and Aleph ensembles can be executed in parallel which will

give a large savings in running time, while the theory-weighting method learns rules sequentially.

In Figures 4.6(a)-(c), we show a comparison of RP curves between Gleaner and Aleph ensem-

bles, using 100,000, 1,000,000 and 10,000,000 as the numberof total rules evaluated. These results

are generated by averaging the precision across all five folds at 100 equally-spaced recall values.

After 100,000 rules, we can clearly see the benefits of savinghigh-recall rules, as Gleaner quickly

spans the whole recall-precision space, while Aleph ensembles are initially limited in their recall

ability. Aleph ensembles achieve higher recall and precision at 1,000,000 and 10,000,000 rules,

and the major benefit from Gleaner is increased precision forlow as well as high recall.

Gleaner’s “L of K” rules should theoretically produce higher precision thanindividual rules

with the same recall, as long as the coverage of positives is greater than the coverage of negatives

57

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re

ci
si

o
n Gleaner

Aleph

Ensembles 1K

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(a) RP curves after 100,000 rules.

Gleaner

Aleph

Ensembles 35K

Aleph

Ensembles 1K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re

ci
si

o
n

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) RP curves after 1,000,000 rules.

Gleaner

Aleph

Ensembles 35K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re

ci
si

o
n

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(c) RP curves after 10,000,000 rules.

Figure 4.6 Comparison of RP curves between Gleaner and Aleph Ensembles for various numbers
of rules generated on the Protein-Localization data set. Curves were averaged across all five folds.

58

Table 4.4 AURPC results averaged over five folds on the protein-localization data set for naı̈ve
Bayes, HMM, Aleph Ensembles, Single-Theory Ensembles and Gleaner. For Aleph Ensembles,
Single-Theory Ensembles and Gleaner, the right-most pointin the curve from Figure 4.5 is used.

Learning Algorithm Test set AURPC

näıve Bayes with 5 bags 0.018
näıve Bayes with 2 bags 0.032

Structural HMM 0.141
Single-Theory Ensembles 0.415

Aleph Ensembles 0.447
Gleaner 0.461

and our rules are independent. In practice, our rules are notas independent as we would like and

have a tendency to cover the same negatives. This is especially true in the high-recall bins, with

many of the learned rules being identical, and we believe this overlap degrades the performance.

Our results when comparing to structural HMMs and naı̈ve Bayes are shown in Table 4.4.

Näıve Bayes only performs slightly better than random guessingin this domain, and we believe

this is partially due to relational nature of the data set, since each protein phrase in a positive

example is repeated in many more negative examples when not correctly paired with a location

phrase. Also, many of the protein words to be classified in thetest set are novel and therefore

receive the “data-free”m-estimate score. The HMM approach of Ray and Craven (Ray & Craven,

2001) fares better; however it suffers from low recall, achieving its highest recall of 0.31 on the

test set for fold 3.

59

Figure 4.7 Comparison of AURPC from Gleaner and Aleph ensembles by varying the number of
rules generated on the genetic-disorder data set.

4.3.2 Genetic Disorder Data Set

Finally, we also evaluate Gleaner on the genetic-disorder biomedical information extraction

data set. We compare Aleph ensembles to our Gleaner algorithm, using the same parameter settings

as in our previous experiment.

Figure 4.7 shows the comparison results on the genetic-disorder data set. Gleaner again con-

sistently achieves a higher AURPC than Aleph ensembles across all values for the number of

candidate rules. We notice that Gleaner consistently improves as more rules are examined, reach-

ing a maximum AURPC score of 0.44 as compared to 0.36 for Aleph ensembles. The peak in

60

Gleaner’s performance at 75,000 rules indicates there could be a benefit from pruning rules found

through Gleaner, since this point was found by using 75 seedsand 1,000 rules generated per seed.

In this domain, early stopping after 15 rules per theory would improve the final AURPC of Aleph

ensembles; we show here all data points for completeness.

4.4 Summary

The Gleaner algorithm quickly retains a large number of rules in a wide range of performance

areas. It then combines these rules into a set of theories providing good precision across the full

recall range. In this research we have focused on data sets with a large skew between the number

of positive and negative examples. We designed Gleaner to work well with such data sets by

constructing bins along the recall dimension of the recall-precision space and retaining the highest

precision rules along this range. Gleaner also combines these rules in such a way as to optimize

for area under the recall-precision curve.

Gleaner conducts multiple parallel searches using a randomset of initial seeds. By conducting

these searches in parallel, the time to a final model is reduced. One drawback to conducting these

searches in parallel is that there is no communication between the parallel searches. Rules are

retained based upon their individual performance rather than on how well they will combine with

other rules that have already been retained.

Future directions include increasing the diversity of the rules that are retained by Gleaner. Many

rules contained in the higher recall bins are duplicates. A more exhaustive approach to searching

61

for high recall rules may discover a larger set of diverse rules. Gleaner is designed to use the recall-

precision space for deciding which rules to retain. This approach works well with highly skewed

data sets. Another direction I plan to pursue involves modifying Gleaner to work with ROC curves

and find and combine rules to maximize performance on ROC curves. This would generalize the

Gleaner algorithm to work with data sets which are more balanced between the number of positive

and negative examples.

62

Chapter 5

Adaptively Searching with Gleaner

Recall that Inductive Logic Programming (ILP) (Džeroski & Lavrac, 2001) algorithms search

for explanations written in first-order logic that discriminate between positive and negative exam-

ples. Two open challenges for scaling ILP to larger domains include slow evaluation times for

candidate clauses and large search spaces in which to find those clauses. This chapter addresses

this second challenge using adaptive stochastic search in Gleaner. This work originally appeared

in the Proceedings ofthe 2007 Inductive Logic Programming Conference(Oliphant & Shavlik,

2007).

Algorithms such as Progol (Muggleton, 1995) and Aleph (Srinivasan, 2003) also address the

second challenge by constraining the size of the search space using a bottom clause constructed

from a positive seed example as discussed in Section 2.2. A bottom clause is constructed from a

positive seed by using a set of user-provided modes. The usercreates a mode for each literal in

the background knowledge. Modes indicate which arguments of the literal are input arguments

and which are output arguments. As the bottom clause is beingconstructed, only literals whose

input arguments are satisfied by the output arguments of literals already in the bottom clause may

be added. The modes create a dependency between the literalsof a bottom clause. A literal may

63

not be added to a candidate clause unless its input argumentsappear as output arguments in some

prior literal already in the candidate clause.

Even with these constraints the size of the search space usually is much larger than can be

exhaustively searched.̌Zelezńy et al. (2003) have incorporated a randomized search algorithm

into Aleph in order to reduce the average search time. Their rapid random restart (RRR) algorithm

selects an initial clause using a pseudo-uniform distribution and performs local search for a fixed

amount of time. This process is repeated for a fixed number of tries.

My work builds on top of the RRR algorithm and bottom-clause generation. I construct a non-

uniform probability distribution over the search space that biases search towards more promising

areas of the space and away from areas which have already beenexplored or that do not look

promising. I use a pair of Bayesian networks to capture this skewed distribution. The structure

of the networks is determined by the bottom clause and the parameters are trained as ILP’s search

progresses. The rules that are evaluated by the ILP system become the positive and negative

examples for training the Bayesian networks. The trained networks are then used to select the next

initial clause and to modify the local search portion of RRR.

5.1 Directed Stochastic Search Algorithm

Železńy’s RRR algorithm appears in Figure 5.1 on the top. I have incorporated a non-uniform

distribution into this algorithm in order to bias search towards more promising areas of the search

space. My modifications appear in Figure 5.1 on the bottom. Inthe following subsections I explain

64

Table 5.1 Pseudo-code showing the Rapid Random Restart (RRR) algorithm and my modified
version of RRR.

my method of modeling a probability distribution over ILP’ssearch space, training the parameters

of the model, and using this trained model to modify RRR’s searchprocess.

5.1.1 Modeling ILP’s Search Space with Bayesian Networks

A Bayesian network (Heckerman, 1995 revised June 96) is a directed acyclic graphical model

that captures a full joint probability distribution over a set of variables. Each node in the graphical

model represents a random variable. Arcs represent dependencies between variables. Each node

has a probability distribution showing the probability of the variable given its parents.

ILP’s search space consists of subsets of literals from the bottom clause. A sample bottom

clause appears in Figure 5.1 on the left. Literals’ arguments have been annotated with +/- marks

to indicate input/output arguments taken from the user-provided modes. Not all subsets of literals

are legal rules. A subset of literals is a legal rule and in thesearch space if the input arguments of

each literal in the subset first appears as output arguments for some literal earlier in the subset or

as input arguments in the head.

I capture these dependencies created by the user-provided modes in a graphical model. Figure

5.1 on the right shows graphically the dependencies found inthe bottom clause. Each node in

65

Figure 5.1 A portion of a Bayesian network built from the literals in a bottom clause. The “+”
marks indicate input arguments and the “-” marks indicate output arguments taken from the

user-provided modes. The head literal is not part of the Bayesnet. Arcs indicate dependencies
between the output variables of one literal and the input variables of another literal. Dotted arcs

are dropped to maintain the acyclic requirement of Bayesian networks.

the network represents a Boolean variable that is true if the corresponding literal from the bottom

clause is included in a candidate rule. Each arc represents aconnection between the output argu-

ments of one literal to the input arguments of another literal. Dotted arcs indicate dependencies

that are dropped in order to maintain the acyclic nature needed for Bayesian networks. I drop

arcs that would link a literal that appears lower in the bottom clause, as ordered by Aleph, to one

higher in the list. The structure of the Bayesian network determines the bottom clause while the

parameters are learned as ILP’s search progresses.

My algorithm to create the Bayesian network structure from a bottom clause appears in Figure

5.2. The algorithm constructs the Bayes net in a top-down approach. Variablegroup contains all

literals whose input variables appear as outputs from theHead literal or any literal already in the

network. The literals ingroup are added one at a time to the Bayes net. As the literal is added into

the Bayes net the algorithm connects it to all literals that contain some input variable that is not

66

contained in theHead literal. Creating a group of literals and adding them to the network repeats

until all literals have been added.

5.1.2 Training the Model

After creating the Bayesian network structure, I still need to learn the parameters of the model.

Each node contains a conditional probability table (CPT) that predicts the probability the node

is true, given its parents. I estimate these probabilities from training data collected during ILP’s

search.

I construct two networks that have the same graphical structure in order to trade off exploration

of unsearched areas of the search space and exploitation of areas of the space found to contain

high-scoring rules. The parameters of the first exploitation network are trained using “good” rules

seen during search, while the parameters of the second exploration network are trained on all

rules evaluated. These two networks provide probabilitiesthat indicate, respectively, how good a

candidate rule is and the rule’s similarities to past rules.These distributions are density estimators

indicating the promising areas of the search space and whichareas have already been explored.

The parameters of a node are estimated using ratios of weighted counts between rules that con-

tain the literal and those that do not for the various settings of the parents. I update the parameters

during search when a rule is evaluated on the training data. Each rule that is evaluated on training

data becomes a new example for the Bayesian network.

The first network, which estimates the probability that a rule is “good,” is trained using high-

scoring rules. I have tried several methods for deciding which rules to use. My current approach

involves using the Gleaner algorithm (Goadrich et al., 2006). Gleaner retains a set of high-scoring

67

Table 5.2 Pseudo-code showing the construction of a Bayesiannetwork from a bottom clause.

function CONSTRUCT NETWORK(⊥): returns a Bayesian network
input: ⊥, a bottom clause consisting of aHead andBody
bayes net=empty
reached=input variables fromHead
while Body is not emptydo:

group={l|l ∈ Body andl’s input variables are inreached}
for eachlit ∈ group do:

ADD NODE(lit,bayes net) /* connects tolit all nodes
in bayes net that satisfy an input
variable oflit*/

Body = Body - group
reached = reached + output variables fromgroup

return bayesnet

rules across a range of recall values. All rules that are retained in Gleaner’s database are used, along

with those rules in the trajectory from the initial rule to the one retained in the database in order

to increase the number of examples used for training the parameters of the Bayesian Network. I

use weighted counts (a rule’s F1 score is its weight – see Figure 2.1) with higher-scoring rules

receiving higher weights. This allows better rules to have more influence on the network.

The second network, which estimates the probability that a new rule is similar to past rules,

is trained on all rules considered, using a uniform weight onthe rules. The combination of the

probabilities from these two networks allows my algorithm to trade off exploration of unvisited

portions of the hypothesis space for exploitation of the promising portions.

I have found that some nodes in the networks created for the data sets from chapter 3 have 20 or

more parents. In order to reduce the size of the conditional probability tables, I utilize a noisy-OR

assumption (Pearl, 1988). The noisy-OR model assumes that all parents of a node are independent

68

Figure 5.2 Node with many arguments.

of each other in their ability to influence the node. This reduces the size of the CPT to be linear in

the number of parents.

Figure 5.2 shows a single node whose corresponding literal has several input arguments. Each

argument may be satisfied by one of many parents. I calculate the probability that a node,N , is

true using this variant of the noisy-or formula:

P (N = t|Π(N)) =
M
∏

j=1

P (N = t|Sj(N)) =
M
∏

j=1



1 −
∏

R∈Sj(N)

P (N = f |R)





whereΠ(N) are the parents ofN andSj is the subset ofΠ(N) that satisfy input argumentj.

In the right-most portion of this equation, the outer product ranges over allM input variables

of the node. The conditional probabilitiesP (N = t|Sj(N)) are modeled as noisy-ORs over each

input argument. I setP (N = f |R = f) equal to 1 so if any input argument is not satisfied by

at least one parent then that portion of the product,P (N |Sj(N)), will be zero, making the entire

product zero. This limits the rules that have a non-zero probability to those that are legal.

5.1.3 Using the Model to Guide Search

The probabilities provided by the Bayesian networks are incorporated into a weight that I can

attach to rules. Recall that two networks are created. I call the probability from the network

69

trained on “good” rulesEXPLOIT and the probability from a second network trained on all

rulesEXPLORED. I combine these two estimates into a weight for a candidate rule using the

formula

W = α × EXPLOIT + (1 − α) × (1 − EXPLORED)

where0 ≤ α ≤ 1. I can then set parameterα to trade-off exploration for exploitation1. In order to

interleave exploration and exploitation, I selectα from a range of values each time an initial rule

is selected.

I use the rule weightW to modify the RRR algorithm in two ways. The original RRR algorithm

selects an initial rule uniformly. My modified version of RRR performsK hill-climbing runs using

the weights generated by the Bayesian network to guide search. I then select a single initial rule

from theK local peaks by selecting a rule found at one of these peaks. I sample proportional

to the weights of the rules, with the hope that the search willbegin in a higher-scoring and more

diverse area of the space. Assigning a weight to a rule is fastcompared to evaluating the rule on

the training data.

Next the original RRR algorithm performs a local search aroundthis initial rule, expanding the

highest-scoring rule on the open list and evaluatingall of its neighbors on the training set. My

modified version of RRR uses the weightW for the neighboring rules before they are evaluated

on the training set. My algorithm stochastically selects a subset of sizeL using the weights. This

reduces the number of neighbor rules evaluated on the training data, thus broadening the search

1This is similar to the exploration/exploitation trade-offin reinforcement learning with one important difference. In
reinforcement learning it is fine to repeatedly get the same good reward. In my work discovering the same rule in each
search would be harmful. This is discouraged by updating theEXPLORED model with any new clauses searched.

70

and guiding it to areas of the search space which are more likely to contain high-scoring, unique

rules.

This modified algorithm interleaves optimizing using the model and optimizing using real data.

Assigning a weight to a rule using the model is much faster than evaluating a rule on real data

when the data set is large. I hypothesize that this approach will outperform standard RRR search

in terms of area under the recall-precision curve, when I allow RRR and our modified version to

each evaluate the same number of rules on real training data.

5.2 Directed-Search Experiments

I compare my search modifications using the Gleaner algorithm (Goadrich et al., 2006) of

Goadrichet al. Following our methodology I compare area under the recall-precision curves (AU-

RPC) using Gleaner with the standard RRR search algorithm as wellas with my modified RRR

search algorithm. I evaluated our modifications to the RRR search algorithm on three data sets:

the protein-localization data set, the gene-disorder dataset, and the advisor data set.

I assign theα parameter to be between0.01 and0.75 in order to encourage exploration. I set

the K parameter controlling the number of hill-climbing runs foreach initial clause to ten, and

theL parameter controlling how many neighbors of a clause are retained to twenty. The internal

parameters of the Bayesian networks are updated as clauses are evaluated. I ran our experiment

using 100 seeds for the two information extraction task and 50 seeds for the advisor-student task. I

evaluate performance after one thousand, ten thousand, andtwenty-five thousand clauses per seed.

71

Figure 5.3 Comparison on three datasets of AURPC for varying number of clauses considered
using Gleaner with and without a directed RRR search algorithm.

72

Figure 5.3 shows the AURPC versus the number of clauses evaluated averaged over all five

folds of each data set. Although the improvement is small in the protein-localization task, it is sig-

nificant for the first two points at the95% confidence level using a pairedt test. My algorithm also

shows improvement in the advisor-student task; however this improvement is not significant. Per-

haps this is because the data set is smaller, which may cause larger variance between folds. On the

gene-disorder task no improvement is found. One additionalarea that may improve performance

would be to use a tuning set for setting the algorithm’s parameters.

5.3 Summary

Stochastic search of the space of clauses provides a means for ILP to scale to larger datasets.

My basic approach converts the dependency structure found in Aleph’s modes into two Bayesian

networks, whose parameters are trained as search progresses. I use these networks to influence

where to search in the space of clauses in order to explore newareas and exploit known areas that

contain high-scoring clauses.

I compare the Gleaner algorithm using the standard rapid random restart search algorithm and

a modified version of search that first finds an area of the search space that scores well using my

Bayesian networks. As search progresses in this area of clause space the score produced by the

Bayesian networks is used as a filter. Only a high-scoring subset of clauses are evaluated on actual

data. I have shown improvement on area under the recall-precision curve experiments on two of

three highly skewed datasets by using this adaptive stochastic search.

73

Chapter 6

Boosting First-Order Rules for Large Skewed Data Sets

Successful ensemble approaches must both learn individualclassifiers that work well with a

set of other classifiers, as well as combine those classifiersin a way that maximizes performance.

Because Gleaner learns rules and combines them in two separate steps, the learning process is not

optimized to find rules that work well in combination with other rules. In this chapter I present

a boosting algorithm that is designed to discover rules thatwork well in concert to improve per-

formance on recall-precision curves. The work in this chapter appeared inthe Proceedings of the

2009 International Conference on Inductive Logic Programming (Oliphant et al., 2009).

AdaBoost (Freund & Schapire, 1996) is a well known ensemble method that both learns classi-

fiers that work as a set and combines them to maximize accuracy. AdaBoost learns weak hypothe-

ses iteratively, increasing the weight on previously misclassified examples so successive learners

focus on misclassified examples. It combines weak hypotheses into a single classifier by using a

weighted sum, where each weak hypothesis is weighted according to its accuracy.

While AdaBoost focuses on improving accuracy of the final classifier, other boosting algo-

rithms have been created that maximize other metrics. The objective of Freud et al.’s RankBoost

algorithm (1998) is to maximize the correct ordering of all possible pairs of examples in a list of

74

examples. RankBoost maintains a probability distribution over all pairs of examples. The weak

learner uses this distribution and finds a hypothesis that minimizes the weighted misorderings from

the correct ordering of the examples.

One version of RankBoost, named RankBoost.B, is designed to work with binary classification

problems. Weights are only assigned to pairs of examples if the examples are from different classes.

This focuses learning on ordering examples so that all positive examples will be ranked before the

negative examples and ignoring the ordering of examples if they are of the same class. Cortes and

Mohri (2003) showed RankBoost.B maximizes the area under the receiver operator characteristic

(AUROC) curve.

AUROC is a common metric used to discriminate between classifiers. Davis and Goadrich

(2006) however demonstrated that AUROC is not a good metric for discriminating between clas-

sifiers when working with highly skewed data where the negatives outnumber the positives. They

recommend using area under the recall-precision curve (AURPC) when working with skewed data.

In this chapter I present a modified version of the RankBoost.B algorithm that works well

with skewed data which I name PRankBoost forprecision-recall RankBoost. Its objective function

seeks to maximize AURPC. I implement a top-down, heuristic-guided search to find high-scoring

rules for the weak hypotheses and then use this modified RankBoost algorithm to combine them

into a single classifier. I also evaluate several other possibilities for weak hypotheses that use sets

of the best-scoring rules found during search.

75

6.1 PRankBoost–A Modified RankBoost Algorithm

PRankBoost, a modified version of Freud et al.’s RankBoost.B algorithm, appears in Table 6.1.

I have modified the sum of the weights on the negative set to theskew between the size of the

negative set and the size of the positive set. I make this change to expose enough information to

the weak learner so that it can optimize the AURPC.

PRankBoost initializes weights on the positive examples uniformly to 1
|X1|

whereX1 is the set

of positive examples. Negative examples are also uniformlyinitialized so that the sum of their

weights is equal to the skew between positives and negatives. These initial weights preserve the

same distribution between positive and negative examples as what exists in the unweighted data

set. Calculating recall and precision for a model on the initial-weighted data set will be identical

to calculating recall and precision on the unweighted version of the data set.

After PRankBoost initializes example weights, the algorithmenters a loop to learn a set of

T weak learners. A weak learner is trained using the weighted examples. I have explored using

several different weak learners which I will discuss shortly. The objective function used during

training is the weighted AURPC. After training, PRankBoost assigns a weight to the weak learner.

The weight is calculated analogous to thethird methoddiscussed by Freud et al. In this method

α is an upper bound on the normalization factor,Z. Cortes and Mohri show that ther parameter

used to calculateα is equivalent to a weighted version of the area under the ROC curve. I modify

this approach for PRankBoost so that ther is a weighted version of AURPC.

PrankBoost updates weights using the parameterα, the weak learnerh(x), and a factorZ,

which maintains the same weight distribution between the positive and negative examples as exists

76

with the initial weights. An example’s weight is decreased relative to how well the weak learner

scores the example. The higher a positive example is scored by the weak learner the smaller the

weight while be, while the opposite is true for negative examples. The effect is to place more

weight on examples which the weak learner has difficulty classifying.

The final classifier,H(x), assigns a score to a new example,x, as a weighted sum of the individ-

ual weak learners. I designed PRankBoost to be analogous to RankBoost. While RankBoost’s final

classifier maximizes AUROC, my modified version attempts to maximize AURPC. I hypothesize

that this modified version will outperform RankBoost when comparing AURPC.

Table 6.1 PRankBoost–A modified RankBoost algorithm for optimizing area under the
recall-precision curve.

Modified RankBoost Algorithm
Given: disjoint subsets of negative,X0, and positive,X1, examples
Initialize:

skew = |X0|
|X1|

, w1(x) =

{

skew
|X0|

if x∈X0

1
|X1|

if x∈X1

for t = 1, ..., T :
Train weak learner,ht, usingwt andskew.
Get weak rankinght : X −→ R.
Chooseαt = 0.5 ln

(

1+r
1−r

)

wherer = AURPC(see text).
Update

wt+1(x) =

{

wt(x) exp(−αtht(x))

Z1
t

if x∈X1

wt(x) exp(αtht(x))

Z0
t

if x∈X0

where
Z1

t =
∑

x∈X1

wt(x) exp(−αtht(x))

Z0
t = 1

skew
×

∑

x∈X0

wt(x) exp(αtht(x))

Output the final ranking:H(x) =
T

∑

t=1

αtht(x).

77

6.2 Weak Learners

As shown in Table 6.1, a weak learner,ht(x) is a function that maps an example to a real

value. A perfect weak learner maps all positive examples to higher values than negative examples.

Often it is not possible to find a perfect weak learner and someobjective function is used to decide

among possible weak learners. In Adaboost the object function guides learning towards models

that minimize a weighted version of misclassification error. In RankBoost the objective function

maximizes a weighted area under the ROC curve. My PRankBoost algorithm for finding weak

learners uses area under the recall-precision curve as the object function.

When deciding what search algorithm to use for finding a weak learner I had several goals in

mind. First, I wanted the search algorithm to find a clause that worked well with highly skewed

data. This is the reason I use AURPC as the objective function.Second, I wanted to apply this

algorithm to large data sets. Evaluation of clauses in largedata sets is a costly time step and limits

the number of weak learners that can be considered in a reasonable amount of time. Because of

this I use a greedy hill-climbing algorithm to find weak learners.

I consider several possibilities for weak learners. The simplest weak learner I use consists

of a single first-order rule. To find this rule I select a randompositive example as a seed and I

saturate it to build the bottom clause. I begin with the most general rule from this bottom clause.

All legal literals are considered to extend the rule. The extension that improves the AURPC the

most is selected and added to the rule. The process repeats until no improvement can be found or

some time limit or rule-length limit is reached. Each weak hypothesis,ht(x), is the best scoring

individual rule found during this search.

78

This weak learner maps an example,x, to the range{0, 1} where the mapping is 1 if the

example is predicted as true, 0 otherwise. I call this learner PRankBoost.Clause.

I have also explored other possibilities for the weak learner and how the AURPC is calculated

for the objective function. My goal in developing other weaklearners was to create more accurate

models without increasing the number of rules evaluated on training data. One method of devel-

oping more complex first-order models is to retain more than just the best clause found during

search. Taking an idea from the Gleaner algorithm (Goadrichet al., 2006) which retains an entire

set of rules found during search that span the range of recallvalues, I have developed a second

weak learner that retains a set of the best rules found duringsearch. This weak learner, PRank-

Boost.Path, contains all rules along the path from the most general rule to the highest-scoring rule

found during search. This set of rules will contain short, general rules that cover many exam-

ples and longer, more specific rules that have higher accuracy but lower coverage on the positive

examples.

For example consider the rules that appear in Figure 6.1. A set of rules would contain the

highest-scoring rule, h(X):-p(X),q(X,Y),r(Y), along with the subsets of the rule from the most

general rule to this rule, h(X):-p(X,Y),p(Y,Z) and h(X):-p(X,Y). This weak hypothesis,ht(x), maps

an example,x, to the range[0, 1] by finding the most specific of these rules that covers the example.

If the highest-scoring rule did not cover some new example then the next most specific rule would

be considered until a rule is found that covers the example.ht(x) is the fraction of the total AURPC

covered by this rule as illustrated in Figure 6.1. The total AURPC,r, is the area under the entire

path from the most specific rule to the most general rule (the total grayed area in Figure 6.1).

79

Figure 6.1 Area under the recall-precision curve for a path of clauses learned during hill
climbing. The total grayed area is the total AURPC,r. If h(X) :- p(X), q(X,Y) is the most specific
clause in the path to cover an example thenht(x) maps the example to the value (light gray area /

total grayed area).

6.3 Calculating AURPC

I use a weighted version of AURPC as both the objective function used to find weak learners

as well as to weight weak learners when combining them into anensemble. In general I follow the

algorithm outlined by Goadrich et al. (2006) to calculate AURPC, however I made two modifica-

tions to work in my ensemble setting and to improve accuracy and increase speed. First, I use a

weighted version of recall and precision. Second, when calculating the area between two points in

recall-precision space,A andB, Davis and Goadrich use a discretized version that estimates the

area under the curve. I calculate the area under the curve exactly using a closed form solution to

the integral for the curve between the two points,

∫ TPB

TPA

x

x + FPA + s(x − TPA)
dx

whereTP is the true positive weight andFP is the false positive weight. Parameters is the

local skew of false positives to true positives between the two poinsA andB, s = FPB−FPA

TPB−TPA
.

The total AURPC is a piece-wise integral between each of the points in recall-precision space that

80

correspond to the rules of a weak learner. For PRankBoost.Clause, which consists of a single

clause, this would be a single point in recall-precision space. I use Goadrich et al.’s method for

extending this point down to zero recall and up to 100% recallby using the most general clause.

For PrankBoost.Path I perform the same extension down to zerorecall and up to 100% recall but

I use all point that correspond to the clauses in the set retained by the weak learner. This curve is

shown in Figure 6.1.

6.4 Experimental Methodology and Results

I modified Aleph (Srinivasan, 2003) to incorporate RankBoost and my modified versions,

PRankBoost.Clause and PRankBoost.Path. RankBoost uses the same hill-climbing algorithm for

finding weak learners as my two variants use. I used individual clauses for the weak learners in

RankBoost. This makes the RankBoost algorithm directly comparable to PRankBoost.Clause. I

compared these algorithms using AUROC and AURPC on four large, skewed data sets, the two

from the information-extraction domain and the two from themammography domain.

I ran 10-fold, cross-validation for the mammography data sets and 5-fold for the IE data sets.

I ran each fold 10 times using a different random seed to average out differences due to random

effects such as seed selection. I calculated average AURPC, average AUROC, and standard devia-

tions across the different runs and folds. Also, to compare how quickly the ensembles converged,

I created learning curves with thex-axis showing the number of rules evaluated and they-axis

showing the average AURPC.

81

Table 6.2 Average AUROC and AURPC percentages with standard deviations for several large,
skewed data sets using the RankBoost and PRankBoost.Clause algorithms. Bold indicates

statistically significant improvement at 5% confidence level.
Data set AUROC AURPC

RankBoost PRankBoost.Clause RankBoost PRankBoost.Clause
Mammography 1 89.9 ± 4.2 88.1 ± 5.8 18.5 ± 5.7 32.9 ± 7.6

Mammography 2 92.5 ± 2.0 96.7 ± 1.1 16.2 ± 7.4 41.3 ± 10.6

Protein Localization 98.9 ± 0.1 97.9 ± 0.7 40.4 ± 7.9 40.5 ± 8.6
Gene Disease 98.2 ± 0.9 95.4 ± 2.4 32.9 ± 10.7 46.6 ± 11.9

Table 6.2 shows average AURPC and AUROC results with standarddeviations for ensembles

containing 100 weak learners for RankBoost and PRankBoost.Clause. RankBoost outperforms

PRankBoost.Clause when comparing AUROC on three of the four data sets. The AUROC scores

are high and close together. This makes it more difficult to visually distinguish ROC curves from

eachother. However when comparing AURPC the difference between the two algorithms is large.

PRankBoost.Clause outperforms RankBoost on three of the four data sets. The variance is much

larger for AURPC scores than for AUROC scores because when recall is close to zero variance in

precision values is high.

Learning curves on the four data sets appear in Figure 6.2. Each graph shows the AURPC on

they-axis by the number of rules considered during training on thex-axis. Each curve extends until

100 weak hypotheses have been found. I do this as a way of showing that the various algorithms do

different amounts of work to produce 100 hypotheses, a fact that would be lost if I simply extended

all three to the full width of thex-axis.

My PRankBoost.Path algorithm reaches an AURPC of 0.44 on the Protein Localization data

set after less than 20,000 clauses searched. The Gleaner algorithm takes over 100,000 clauses to

82

surpass this level of performance. On the Gene Disease data set my PRankBoost.Clause algorithm

reaches 0.48 AURPC after 45,000 clauses searched, while the Gleaner algorithm does not reach

this level of performance even after 10 million clauses searched.

The more complex weak learner, PRankBoost.Path does not appear to dominate the simple

learner, PRankBoost.Clause, on all of the data sets. I believe this is because PRankBoost.Clause

learns a very specific clause and reduces the weights on just afew positive examples. This forces

search to focus on other positive examples and find other specific clauses that perform well on those

positive examples. PRankBoost.Path on the other hand learns both specific and general clauses in

the set of clauses used as a model for the weak learner. This means many positive examples will

be down-weighted rather quickly. The remaining positive examples may consist of very difficult

examples where it is not easy to find a good clause that covers those positive examples without

also covering many negatives. After observing these characteristics I designed other weak learners

that try to find a mix of models somewhere between PRankBoost.Clause and PRankBoost.Path.

6.5 Additional Experiments with Variations on Weak Learners

I have additional results using other weak learners that combine variations of PRankBoost.Clause

and PRankBoost.Path. Remember that PRankBoost.Clause retains the single rule that is the best

seen during search. Its score,α, is a weighted version of the area under the recall-precision curve

of that single rule. PRankBoost.Path retains a set of rules along the trajectory from the most gen-

eral rule to the best rule found during hill climbing. The weak learner’s score is based upon the

area under the entire path of rules. Figure 6.3 shows the two methods of scoring a weak learner

83

Figure 6.2 Learning curves for Freund et al.’s RankBoost algorithm, my PRankBoost.Clause and
PRankBoost.Path algorithms on four large, skewed data sets. Learning curves extend until 100

weak hypotheses are learned. This makes some curves extend farther than others.

based upon the single rule or the entire trajectory. The solid curve uses the entire trajectory from

the most general rule to the rule itself while the dashed curve uses only the rule itself.

These two scoring methods create a very different search pattern. Consider scoring rules based

upon the entire path from the most general rule. A portion of the score is fixed based upon the

portion of the rule that has already been chosen. Any extension to the rule will only decrease

recall or at best leave recall unchanged. The score will change only the left-most portion of the

recall-precision curve. Any extension that increases precision will also increase the rule’s overall

score. This is not true when scoring a rule based upon only therule itself. Adding a literal to a

84

rule, even though it may increase the precision of the rule, may still decrease the overall rule’s

score because the curve to the single rule will also change. No portion of the curve is fixed. The

difference between these two scoring methods means that using the entire path to score a rule will

search more deeply in the search space and discover longer rules with higher precision but lower

recall.

Figure 6.3 Two scoring methods for a weak learner. One scoring method (solid curve) used by
the PRankBoost.Path and Mix1 weak learners is based upon the entire trajectory of rules from the

most general rule to the best rule. The second scoring method(dashed curve) used by the
PRankBoost.Clause and Mix2 weak learners is based upon the single best rule alone. Mix3

alternates between using these two scoring methods.

As variations on PRankBoost.Path and PRankBoost.Clause I have created three other weak

learners. The first retains the entire set of rules like PRankBoost.Path, but the scoring function of

the learner is based upon the single best rule like PRankBoost.Clause. The second does just the

reverse by retaining only the single best rule, but scoring it based upon the entire trajectory. As a

final variation I have also alternated between PRankBoost.Clause and PRankBoost.Path for each

weak learner created.

85

I ran experiments using the same experimental setup as my previous experiments. Results for

these three new weak learners appear in Figure 6.4. It appears that these variations do not find mod-

els that are consistly higher than PRankBoost.Clause and PRankBoost.Path models when measur-

ing AURPC. However the first mixed model (dashed line) does showsome interesting properties.

Its initial performance is very low compared to the other models. It has a more shallow learning

curve and it does not appear to have reached its asymptotic performance after 100 weak learners

have been included in the model. All of these observations make sense when considering the type

of weak learner. Each weak learner is an individual clause that will have high precision but low

recall due to the scoring function being the area under the entire path. After each weak hypothe-

sis is learned the few positive examples that are covered will be down-weighted and a new weak

hypothesis will be learned that covers new examples. Becauseof the small coverage of each indi-

vidual clause, learning will be slow and consistent, showing improvement even after many clauses

have been learned.

For future work I would like to create additional mixed models that begin by learning more

general clauses as seen in PRankBoost.Clause and then switching to learning more specific clauses

as seen in the first mixed model. I believe this type of model will show good initial performance and

will continue to show predictive improvement reaching a higher asymptote. As future work I would

also like to perform theoretical analysis to support my empirical work showing that PRankBoost

maximizes AURPC following Freund et al.’s proof that RankBoostmaximizes AUROC (Freund

et al., 1998).

86

Figure 6.4 Learning curves for three models that mix components of PRankBoost.Path and
PRankBoost.Clause on four large data sets.Mix1 includes clauses as weak learners like

PRankBoost.Clause but scores them like PRankBoost.Path.Mix2 includes entire paths of clauses
as PRankBoost.Path but scores the path like PRankBoost.Clause.Mix3 alternates between the

method used in PRankBoost.Path and the one used in PRankBoost.Clause.

6.6 Summary

When working with skewed data sets metrics such as area under the recall-precision curve have

been shown to discriminate well between competing models. Idesigned a modified RankBoost al-

gorithm to maximize area under the recall-precision curve.I compared the original RankBoost

algorithm, which is designed to maximize area under the ROC curve, with my modified version.

87

When comparing AUROC on four large, skewed data sets the original RankBoost algorithm out-

performs my modified PRankBoost version. However when comparing AURPC PRankBoost out-

performs the orginal algorithm.

I created several first-order logic weak learners. The simplest weak learner, PRankBoost.Clause,

consists of an individual rule. A second, more complex weak learner, PRankBoost.Path, consists

of all rules along the path to the best rule. This more complexlearner does not require any addi-

tional rules be evaluated on training data. This is especially important when working with large

data sets because evaluation is a costly time step. Both weak learners have different strengths with

neither learner dominating in performance across all data sets. In addition to these two weak learn-

ers I created several other weak learners that are a combination of these two. The most promising,

Mix1, consists of the highest-scoring clause found during search, but its score is calculated using

the entire trajectory of rules from the most general rule to this best rule.

88

Chapter 7

Additional Experiments with the Mammography Data Sets

While working with the mammography data sets I have had two related objectives. My first ob-

jective is to create models that improve predictive performance over existing work and my second

objective is to better understand indicators of malignancysuggested by the data. In this chapter I

explain additional experiments that I have done along thesetwo complementary paths.

In order to improve predictive performance I have added information from other sources. I

have also added additional features that allow for ranges ofvalues to be learned. I will explain

these changes and additions to the data set and their effectson predictive performance. I have also

looked at how well a model trained on one data set performs on the second data set. The transfer

of these models to new data sets plays an important role in understanding how well these models

can be expected to perform at new institutions. It also givesan indication of the importance of

obtaining and training on data from the institution where the model will be used.

In order to better understand malignant indicators in the data, I have gathered some basic

statistics about features in the data set. I have also lookedat pairs of features that perform either

better than expected or worse than expected compared to the individual features in the pair.

89

7.1 Improving Predictive Performance

Davis et al. have developed the SAYU algorithm and used this algorithm with chapter 3’s

mammography data set 1 (2005a). The SAYU algorithm incorporates first-order logic rules into a

propositional TAN model. SAYU adds a new rule to the existingpropositional feature set and re-

trains the TAN model (Friedman et al., 1997). If the new rule improves the predictive performance

on a held-aside tuning set then it is retained and further rules are considered. This process of

considering rules continues for a fixed amount of time.

In these experiments I use the SAYU algorithm and the original set of features as my control.

I have made several changes to the original set of features, both incorporating new features and

modifying existing features. First I will explain experiments with modifying the feature set. After

that I explain a transfer experiment to both validate the model on new data and to see how well

the model can be expected to perform when used at new institutions where the features may not be

identical to those on which the model was trained.

7.1.1 Feature Modification Experiment

The original feature set as used by Davis et al. contained 36 propositional features and two rela-

tional features, one linking a finding on a mammogram to otherfindings on the same mammogram

and a second that links a finding to previous findings for the same patient. I have developed other

features that allow for ranges of values to be used in a rule. In addition I incorporated the output

from another model as a new feature in the data set. Finally, expert rules created by a radiologist

were added to the background knowledge.

90

I have created additional predicates so that ranges of values can be learned in addition to indi-

vidual values. Davis et al. had already done this for the masssize feature since it was continuous.

They created thesizefeature allowing for mass sizes that are greater than or equal to some specific

value,X, to be learned. However for discrete features only individual values could be learned. I

created something similar to thesizefeature for the other discrete-valued features. I ordered the

values of a feature based on the probability of malignancy given the feature’s value. I did this for all

features except for the age feature where I used the natural ordering. I then added a second feature

to each existing one using the≥ idea. For example, the values for mass margins have no natural

ordering. I calculated the probability of malignancy for each of its values and ordered the values

using that. I then added themarginsfeature so that all values greater than or equal to the value

X in the seed example would cause this predicate to be true. I independently create these order

features for each fold to keep training and testing sets separate. Adding these features increases

the size of the search space significantly so it is not immediately obvious that this will improve

predictive performance, however I do feel that the increasein the size of the search space will be

offset by greater flexibility in the rules that can be learned.

In addition to creating predicates that allow a range of values to be learned I also incorporated

the output from another model that predicts the probabilitythat a patient will develop breast cancer.

The Gail model (Gail et al., 1989) takes as input a set of patient risks factors and predicts the

likelihood that the patient will develop breast cancer within a specific period of time. The National

Cancer Institute has created a website1 where patient risk factors can be entered and the likelihood

1http://www.cancer.gov/bcrisktool/Default.aspx

91

of developing breast cancer within the next five years is reported. I created a script to gather these

likelihoods and used them as an additional predicate in the background knowledge. The Gail model

was developed using data from a joint NCI and American Cancer Society breast cancer screening

study that involved 280,000 women aged 35 to 74 years. I hope that using the output of this model

will leverage the much larger data set on which the model was built and improve performance on

our smaller data set.

One final addition to the background knowledge comes from expert generated rules. An expert

radiologist, Dr. Elizabeth Burnside, wrote down a set of rules used to distinguish malignant find-

ings. There were a total of six unique concepts to help in destinguishing malignancy. An example

of one of these concepts,suspicious mass descriptors, appears in Table 7.1 after converting it to

first-order logic. The six concepts were converted to Horn clauses and added to the background

knowledge.

Table 7.1 Hand-crafted, expert rules used to destinguish malignant findings.
likelyMalignant(X) :- suspiciousMassDescriptor(X).

suspiciousMassDescriptor(X) :- suspiciousMassMargin(X).
suspiciousMassDescriptor(X) :- massShape(X, irregular).
suspiciousMassDescriptor(X) :- massDensity(X, high).

suspiciousMassMargin(X) :- massMargin(X, spiculated).
suspiciousMassMargin(X) :- massMargin(X, microlobulated).

I ran SAYU with the original set of background knowledge and with the modified version on

both mammography data sets using 10-fold cross validation.Figure 7.1 shows recall-precision

92

(a) Mammography data set 1

(b) Mammography data set 2

Figure 7.1 Recall-Precision curves for the two mammography data sets showing performance
using the original background knowledge and a modified version of the background knowledge

that includes additional predicates.

93

curves for the two data sets and the two sets of background knowledge. On both data sets improve-

ment was found in the AURPC above 0.50 recall by incorporatingthese new features.

Via inspection of the rules that were retained in the TAN model, and because of earlier runs that

incorporated only portions of the new features, I was able toascertain which added features made

a difference in performance. The features that allow rangesof values were used frequently in the

final model while the other additional features made little difference. I believe the expert rules did

not make a difference because they were too specific and only covered a small percentage of the

positive examples in the data set. The Gail model feature didnot do a good job at separating ma-

lignant from benign in our data set. The model was designed toassess the likelihood of developing

breast cancer over a five year period, not to indicate the likelihood on a single mammogram.

7.1.2 Transferring the Model

Originally only a single data set of mammographic findings were available and SAYU created

models to maximize AURPC performance on this data set. After developing a second data set

from mammographic findings at a second institution, a question that arose was how well these

SAYU models that were trained on the data from one institution would perform at a second insti-

tution. Answering this question would give some insight into how portable the model would be

from institution to institution. It would also help answer arelated question: is there a significant

improvement when data is obtained and a model is trained specific to the new institution.

To answer these questions I setup an experiment to transfer the model learned on data from one

institution and see how well it performs on data from the second institution. I train three different

models. The first model,Transfer Model, is trained on the data from one institution and results are

94

reported for the data from the second institution. The second model,No Transfer, does not involve

transfer. It is created using 9 of the 10 folds and I report results for the held-aside fold of the same

data set. Results are then pooled across the 10 folds. The third model,Combined data, is trained

on all data from one institution and 9 of the 10 folds from the second institution combining the data

into one large training set. Results are reported for the remaining fold of the second institution. I

create this third model for each of the 10 test folds and pool the results.

I do this experiment using the first mammography data set as the source and the second as

the target. I also calculated the performance of the radiologists using the BI-RADS scores. One

difference between the two data sets is the method for determining ground truth. In the second data

set ground truth was determined only via biopsy, while the first data set used biopsy and matching

to a state registry. Biopsies are typically performed when a finding has a BI-RADS score of 4 or

5. If a BI-RADS score of 0 is assigned then additional imaging isperformed which may lead to

a higher BI-RADS score and a possible biopsy. Because there is noregistry match there are no

malignant findings with a score other than 4, 5, or 0 in the second data set. Future work includes

performing a registry match to improve ground truth.

Results for these experiments appear in Figure 7.2. The highest performer is the model learned

from the most data. The second highest performer is the modelthat is trained on the data set on

which it is tested. The next highest performer is the model trained on the opposite data set from

which it is tested. All of these computer generated models outperform the radiologists.

The answer to the portability question is yes, the transferred model is able to improve upon

radiologists performance at a new institution without requiring the model be retrained on data

95

Figure 7.2 Recall-Precision curves using the second mammography data set as the test set. The
Transferred Modelis trained only on the first mammography data set. TheSame Sourcemodel is

trained on 9 of the 10 folds of the second set and tested on the remaining fold. TheCombined
datamodel is trained on all of the first set and 9 of the 10 folds of the second set and tested on the

remaining fold. Results are pooled across folds.

specific to that institution. In answer to the second question about training a model specific to a new

institution the answer also is in the affirmative. Training amodel using data from the institution

where it will be utilized makes a marked improvement in predictive performance. However if

data is unavailable the model trained using data from another institution will still provide benefit

over using no computer generated model at all. Finally the best performing model is the one

given the combined data from both institutions as training data. The combined curve in Figure 7.2

shows the performance of the model trained on the combined data and evaluated on the second

mammography data set.

96

Figure 7.3 Learning curves using the first mammography data set as the test set. TheCombined
Data Modelis trained on all of the second set and varying numbers of folds of data from the first

set.Same Source ModelandRadiologistdo not vary and are graphed for comparison.

I ran a second experiment training theCombined Modelon varying amounts of data from the

target institution along with all data from the source institution to better understand the relationship

between performance and the amount of institution specific data. I created theCombined Model

using 0, 3, 6, and 9 folds from the target institution and compared the area under the recall-precision

curve greater than 0.50 recall. I compare theCombined Modelwith the model trained on source

institution data only and the radiologists performance. Results appear in Figure 7.3. It appears

that theCombined Modelsurpasses theSame Sourcemodel after only three folds of data from the

target institution are used. This equates to roughly 100 malignant and 9,000 benign examples from

mammography data set 2.

The rules learned for each of the three computer models are very similar. I believe the reason for

the improved performance between the different models has more to do with learning improved

97

parameters and not as much because of finding better rules. The parameters of the model will

continue to improve as additional data is used. Future work includes finding and utilizing additional

data sources to further improve model parameters.

7.2 Improving Understanding of Malignant Indicators

Another important direction in regards to the mammography data sets involves improving our

understanding of malignant indicators that may be found in the data. Improved understanding can

not only lead to better computer models, it can also aid radiologists in improving their diagnosis

and researchers in understanding of breast cancer. Researchhas found several important factors

in determining breast cancer such as breast density and bodymass index (Barlow et al., 2006).

Two important directions for understanding malignant indicators involve finding these indicators

and understanding how these indicators work together. Thissection contains work with first-order

rules and conditional probabilities that support the recent finding of the importance of high mass

density in predicting breast cancer. This section also contains work with identifying features that

are more predictive in conjunction with each other than would be expected by their performance

individually.

7.2.1 Identifying High Mass Density as a Risk Factor using ILPand Condi-
tional Probabilities

ILP is a machine learning technique which is particularly helpful in aiding researchers in mak-

ing discoveries. The rules learned are easily understood and provide insight on interaction between

98

features. Probability theory is another method that can identify the association between a predic-

tive indicator and a specific outcome (Grinstead & Snell, 1997). Conditional probabilities describe

the probability of a specific outcome given a set of indicators, for example the probability of malig-

nancy given a finding on a mammogram. Such probabilities provide insight into indicators that are

more or less predictive of a specific outcome. I have used bothILP and conditional probabilities

to help confirm high mass density as a risk factor of malignancy.

The predictive capability of the mammographic density of a mass remains controversial. In the

past, experts have asserted, with limited data, that high density masses are more likely malignant.

The only study reported in the literature to evaluate the association between breast mass density and

cancer explicitly showed that mass density is difficult to consistently evaluate and that breast mass

density contributes less to predicting malignancy than traditionally thought (Jackson et al., 1991).

Since that research was performed in the early 1990s, no studies in the literature have evaluated the

contribution of breast mass density to prediction of cancer. Recently, however, research using ILP

showed that high mass density may indeed be an important predictor of cancer (Burnside et al.,

2005). The purpose of this work is to confirm the conclusions of this previous research using a

modified ILP method and probability theory. Additional workwas done to test this conclusion by

specifically assessing the association between breast massdensity and pathologic outcome in an

independent data set of mammographic findings (Woods et al.,2009).

I used Srinivasan’s Aleph ILP system (2003) to learn rules from the set of examples in the first

mammography data set. The pseudo-code showing the general covering algorithm used by Aleph

appears in Table 2.2 with the search algorithm appearing in Table 2.3. I made one modification

99

to this general covering algorithm in that I usedeverymalignant finding as a seed example. I set

Aleph to select each malignant finding in turn. For the selected finding, rules are formed using the

information from the background knowledge that relates to the selected finding. In this modified

ILP analysis, I set Aleph to consider rules for each malignant finding in the following manner:

The search through the space of rules starts with the most general rule which is true for every

mammographic finding whether benign or malignant. For each round of search the best rule seen so

far is selected and extended. Each descriptor from the selected finding is considered as an extension

by adding the descriptor to the rule and calculating its score using the compression scoring function

(explained below). This process of selecting the best rule seen so far and considering all possible

extensions repeats until 10,000 rules have been consideredfor each malignant finding. I only

retained rules that had a recall of at least 5% and a precisionof at least 25%. The longest rule I

considered was of length 10. Each rule is scored using the compression scoring method,P −N−L

whereP is the number of positives covered,N is the number of negatives covered andL is the

length of the rule. Compression scoring finds short rules thatcover as many positive and as few

negative examples as possible.

The best rule for each of the 510 malignant findings was reported. A total of 80 unique rules

were found that met the user-defined constraints. The rules were true, on average, for 40 malignant

and 43 benign findings (precision of 48%) and contained five descriptors. The entire set of 80 rules

had a recall of 67% and a precision of 23%. A radiologist reviewed all 80 rules and identified

potentially interesting rules based on known significant predictors of malignancy, such as spicu-

lated margins and older age, a few of which appear in Table 7.2. Many of the descriptors used

100

in the rules are already known to be predictive of malignancy. Similar to previous results I found

that high breast mass density also frequently appeared in the set of rules. Of the 80 unique rules

learned, 19 (24%) contained the high mass-density descriptor.

Table 7.2 Examples of rules learned by ILP, including the number of benign and malignant cases
for which the rule is true. Also shown are the precision and recall for each rule.

Rule Benign Malignant Precision Recall

Finding is malignant if: 21 58 73% 11%
Mass Margins = Spiculated and
Mass Density = High and
Reason for Mammogram = Diagnostic

Finding is malignant if: 29 37 56% 7%
Mass Density = High and
Age> 65 and
Mass Size> 10mm and
Reason for Mammogram = Diagnostic

Finding is malignant if: 41 37 47% 7%
Mass Density = High and
Personal History of Breast Cancer = Yes and
Mass Stability = Increasing

After finding that high mass density frequently appeared in rules learned by ILP, I evaluated

how predictive each of the descriptors were individually and how high mass density compared in

predictive ability to the other descriptors. I calculated the conditional probability of a malignant

finding given each descriptor individually. The conditional probability is defined as the fraction of

findings that are both malignant and have the descriptor divided by the total number of findings that

have the descriptor alone. Probabilities were smoothed using Laplacian smoothing (adding one to

all frequency counts) to help mitigate the problem of small coverage sizes for some descriptors. I

then ordered the descriptors from the most predictive to theleast predictive.

101

The top 10 descriptors with their associated conditional probabilities are listed in Table 7.3.

As with the ILP approach, most of these descriptors are generally well known to be predictive of

malignancy. Based on conditional probability analysis, high mass density appears as the fifth most

predictive indicator.

Table 7.3 The probability of malignancy given individual descriptors. The 10 descriptors with the
highest probability of malignancy are shown.

Descriptor P (malignancy|descriptor) Benign Malignant

BI-RADS category = 5 0.62 109 181
Mass Margin = Spiculated 0.44 147 114
Regional pleomorphic calcifications 0.31 19 8
BI-RADS category = 4 0.28 403 160
Mass Density = High 0.18 489 108
Mass Shape = Irregular 0.12 842 118
Nipple Retraction = Present 0.10 72 7
Mass Size> 30mm 0.07 426 30
Clustered pleomorphic calcifications 0.07 937 67
Prior Surgery = True 0.06 1609 106

The ILP method generated several rules that contained the high mass-density descriptor, and

shows that high mass density is a useful predictor of malignancy when used in conjunction with

additional descriptors. Calculated conditional probabilities further confirmed this conclusion,

demonstrating that high mass density is among the top predictive indicators of malignancy when

considered alone.

7.2.2 Surprising Pairs

One way of better understanding malignant indicators is by looking at pairs of features and the

probability of malignancy given these pairs. Looking at pairs of features gives insight on how the

features interact with each other and how this interaction effects the likelihood of malignancy. The

102

purpose of this work is to discover pairs of features that arebetter at predicting malignancy than

would be expected looking at the individual features alone.I call thesesurprising pairs. Being

aware of surprising pairs allows for closer scrutiny when situations occur that contain them.

The probability that the class value is malignant given a pair of features and their values can

be writtenP (C = m|F1 = va, F2 = vb). Using Bayes rule, conditional independence of the

features given the class, independence of the features, andsome basic arithmetic the probability of

the class variable given the pair can be reduced to probabilities that use the features alone rather

than in pairs. Consider the following simplifications to the probability of malignancy conditioned

on a pair of features:

P (C = m|F1 = va, F2 = vb)

=
P (F1 = va, F2 = vb|C = m)P (C = m)

P (F1 = va, F2 = vb)
Bayes Rule

=
P (F1 = va, F2 = vb|C = m)P (C = m)

P (F1 = va)(F2 = vb)
Independence Assumption

=
P (F1 = va|C = m)P (F2 = vb|C = m)P (C = m)

P (F1 = va)P (F2 = vb)
Cond. Independence Assumption

=

P (C=m|F1=va)(F1=va)
P (C=m)

P (C=m|F2=vb)P (F2=vb)
P (C=m) P (C = m)

P (F1 = va)P (F2 = vb)
Bayes Rule

=
P (C = m|F1 = va)P (C = m|F2 = vb)

P (C = m)
Basic Arithmetic

103

This calculation shows how a probability conditioned on a pair of features can be reduced to

conditioning on the features individually. This result canalso be viewed as a prediction. The

probability conditioned on a pair of features can be predicted by looking at probabilities that are

conditioned on the individual features alone.

I use two ways to determineP (C = m|F1 = va, F2 = vb). The first is to measure this proba-

bility from data. For all of this work I use the first mammography data set to measure probabilities.

The second method is to use the prediction of the probabilityfrom simpler probabilities that use

the individual features alone as described in the above calculations. The amount to which these

two methods differ is how surprising the pair of features is.

I calculate the ratio between the measured probability and the predicted probability for every

pair of features and sort the features by this value. I drop pairs where the ratio is smaller than 2.

I also drop pairs where the number of examples used to calculate the probability is too small. I

follow the rule of thumb that numbers are too small to calculate probabilities ifP · (1−P) ·N < 5

whereN is the number of examples in the denominator andP is the probability being calculated

(Mitchell, 1997). I also drop pairs which a radiologist has deemed to be uninformative. There are

a total of 156 unique feature values, which make over twenty thousand pairs of feature values. Of

these twenty thousand pairs only 61 met the above criteria.

The top 10 surprising pairs appear in Table 7.4. The most surprising pair, MassesSize=Small

and SkinRetraction=Present, is over 16 times more likely to be malignant then predicted by looking

at the features individually. However the numbers used to calculate these probabilities are still quite

104

Table 7.4 The top 10 surprising pairs of features. Also shownis the ratio between the measured
and predicted conditional probability of malignancy giventhe pair of features, the number of

malignant examples covered, and the number of benign examples covered.
Surprising Pair measured

predicted
|Malignant| |Benign|

MassesSize=Small, SkinRetraction=Present 16.17 7 14
SkinThickening=Present, HOBreastCA=NoHxBreastCA 10.97 5 133
MassesSize=Small, ArchDistortion=Present 9.33 14 32
MassesDensity=Equal, BI-RADS=0 4.12 8 162
HormoneTx=None, BI-RADS=2 4.11 5 638
HO Surgery=PriorSurgery, MassesMargins=Circumscribed3.80 11 103
HormoneTx=None, BI-RADS=3 3.79 9 420
HormoneTx=None , MassesMargins=Circumscribed 3.75 5 262
Age=Age4044, CalcPleomorphic=Clustered 3.60 15 77
MassesStability=Increasing, SkinRetraction=Present 3.49 5 31

105

small despite dropping pairs that did not meet the rule of thumb criteria that I used. Small numbers

result in high variance and little reliability in the result. Future work includes applying this process

to a larger data set in order to have more confidence in the result.

7.3 Summary

This chapter contains additional work that I have done with the mammography data sets. My

twin objectives when working with these data sets was to create more accurate models than found

previously and to better understand the indicators of malignancy. I conducted a set of experiments

to help with these objectives.

I added three types of predicates to the background knowledge in order to improve predictive

performance. I demonstrated the improvement in AURPC on bothmammography data sets using

these additional predicates. In another experiment I showed how well a model trained on one data

set collected from on institution performed on a data set collected from a second institution. I also

showed the value of collecting and training a model on data from the institution where the model

will be used.

I conducted a set of experiments to better understand the indicators of malignancy. I used both

logical models and probability to demonstrate the importance of high mass density in predicting

malignancy. It is the fifth most predictive indicator of malignancy after two BI-RADS categories,

spiculated margins, and regional pleomorphic calcifications. Finally, I considered pairs of fea-

tures that are more predictive of malignancy than would be expected by considering the features

individually.

106

Chapter 8

Conclusion

Inductive Logic Programming is an important field of study based on mathematical logic. My

research has incorporated ensemble approaches into ILP andapplied them to large, skewed data

sets. The goal in my research is to scale ILP methods to large data sets and utilize metrics that are

designed for skewed data.

8.1 Contributions

My research has investigated efficiently creating ensembles of first-order rules. By doing this

I have been able to scale ILP to larger data sets and provide more flexible models that generate an

entire curve in recall-precision space. These ensemble approaches also show improved predictive

performance compared to a bagging ILP model. I have designedthese ensemble models to work

specifically with skewed data sets, optimizing area under the recall-precision curve.

The Gleaner ensemble algorithm (Goadrich et al., 2004; Goadrich et al., 2005; Goadrich et al.,

2006) creates a theory by retaining rules across the entire range of recall values. The rules in

a recall bin are combined into a single hypothesis using an “Lof K” thresholding method. The

highest precision hypothesis on the tune set for each bin is then used. One of Gleaner’s advantages

is the ability to quickly find and retain a diverse set of rules. These rules span the spectrum from

107

specific, precise rules to more general, less precise ones. This set of rules can aid discovery by

capturing the full range of rules.

In Gleaner there is no communication between the different searches or between the multiple

restarts for a single search. This means the same areas of search space may be scoured repeatedly

by the many restarts. I designed and implemented an adaptivesearch strategy where a probability

distribution is retained over the search space for each seed. As search progresses the probability

distribution is updated so that areas that have been throughly searched are down-weighted and

areas that contain rules that have been retained in previoussearches are up-weighted. This adaptive

search algorithm shows a small improvement when used with the Gleaner algorithm (Oliphant &

Shavlik, 2007).

Gleaner’s combination method is divorced from the search process. It retains rules during

search simply based upon their individual performance and not based upon how well they will

complement the rules already retained. I created a boosted ensemble method based on RankBoost

in order to integrate the combining phase and the search phase of theory generation (Oliphant et al.,

2009). I modified RankBoost to optimize AURPC, a metric that workswell with skewed data sets.

I demonstrated that this modified RankBoost algorithm outperforms traditional RankBoost when

measuring AURPC and is able to learn a high-scoring model morequickly than Gleaner.

I have also done additional work on the mammography data sets. My research involved not

only creating models for improved predictive performance but also understanding the reasons for

malignancy that may be indicated in the data. I modified the features of the data set and incorpo-

rated additional features so that more complex models couldbe learned that improved predictive

108

performance. I also transferred the model learned on one data set to another data set to show how

well these models will perform at new institutions showing that my computer-created models are

able to outperform radiologists at predicting malignancy even when no data from the institution is

available. I used ILP and probability to better understand the indicators of malignancy confirming

that high mass density is an important indicator of malignancy (Woods et al., 2009). I also looked

at pairs of features that had a higher predictive power than would be indicated by the features

looked at in isolation.

8.2 Future Work

I envision several directions to extend this work. Gleaner can be extended to retain clauses

across a wide spectrum of any metric desired. ROC curves are commonly used when working with

balanced data where the number of positive and negatives examples are roughly equal. I can see a

version of Gleaner that retains clauses in order to optimizeperformance with ROC curves.

I designed a Bayesian network model where the structure is built from a positive seed example

to capture a probability distribution across the space of clauses for the seed. I plan to extend this

model so the proability distribution is over the entire space of clauses instead of just the space of

clauses for a single seed.

The search process used in the modified RankBoost algorithm retains at most the clauses along

the best path during hill-climbing. Retaining additional clauses not along this path that have al-

ready been evaluated would increase the coverage of the weaklearner and may improve predictive

performance without requiring any additional search. The combining process used in the modified

109

RankBoost algorithm is a simple weighted sum where weights arefixed at the time when the weak

hypothesis is added to the theory. Updating all weights as new weak hypotheses are added as in

LPBoost (Demiriz et al., 2002) or creating a more complex model beyond a weighted sum such

as the TAN model used in the SAYU algorithm (Davis et al., 2005a) or a full Bayesian network

(Davis et al., 2004) may prove fruitful.

In addition to improving the predictive models, future workincludes improving the data sets.

For the mammography data sets, patients’ genetic information is being collected that can be used

to better assess a person’s susceptibility to breast cancer. Additional modalities such as ultrasound

are used to gather information about masses in the breast. Adding these types of background

knowledge may build more predictive models for the mammography data sets. For the information

extraction data sets,Is-A hierarchies such as WordNet (Fellbaum, 1998) may add usefulrelational

information for improving predictive performance.

The ground truth in some of these data sets is noisy and could be improved. A registry match

was performed on the first mammography data set in order to findadditional malignancies that

were not biopsied. This same procedure is being followed forthe second mammography data set

and should improve the accuracy of class labels. In the genetic-disorder data set class labels were

created semi-automatically. Class labels could be improvedby following the same hand-labelling

procedure used in the protein-localization data set.

110

8.3 Final Remarks

In this thesis I have incorporated several ensemble techniques into Inductive Logic Program-

ming in order to improve predictive performance and reduce runtime. These techniques scale ILP

to larger data sets and to data sets with a large imbalance between positive and negative examples.

As larger and larger data sets are created from ever more diverse fields, creating accurate, under-

standable models becomes increasingly important. I have shown that ensemble models such as

Gleaner and my modified RankBoost algorithm can be used for these important tasks.

111

Bibliography

American College of Radiology (2003). Breast imaging reporting and data system: BI-RADS.

Baluja, S. (1994). Population-based incremental learning: A method for integrating genetic

search based function optimization and competitive learning (Technical Report CMU-CS-94-

163). Carnegie Mellon University, Pittsburgh, PA.

Baluja, S. (1996). Genetic algorithms and explicit search statistics. Proceedings of Advances in

Neural Information Processing Systems(pp. 319–325). MIT Press.

Baluja, S., & Caruana, R. (1995). Removing the genetics from the standard genetic algorithm.

Proceedings of the International Conference on Machine Learning (pp. 38–46).

Baluja, S., & Davies, S. (1997).Combining multiple optimization runs with optimal dependency

trees(Technical Report CMU-CS-97-157). Carnegie Mellon University.

Barlow, W., White, E., Ballard-Barbash, R., Vacek, P., Titus-Ernstoff, L., Carney, P., Tice, J.,

Buist, D., Geller, B., Rosenberg, R., Yankaskas, B., & Kerlikowske, K. (2006). Prospective

breast cancer risk prediction model for women undergoing screening mammography.Journal of

the National Cancer Institute, 98.

112

Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms:

Bagging, boosting, and variants.Machine Learning, 36, 105–139.

Baxter, J. (2000). A model of inductive bias learning.Journal of Artificial Intelligence Research,

12, 149–198.

Blockeel, H., & Dehaspe, L. (2000). Cumulativity as inductivebias. PKDD 2000 Workshop on

Data Mining, Decision Support, Meta-learning and ILP. Lyon, France.

Boyan, J., & Moore, A. (1998). Learning evaluation functionsfor global optimization and Boolean

satisfiability.Proceedings of the Fifteenth National Conference on Artificial Intelligence(pp. 3–

10).

Boyan, J., & Moore, A. (2000). Learning evaluation functionsto improve optimization by local

search.Journal of Machine Learning Research, 1, 77–112.

Breiman, L. (1996). Bagging predictors.Machine Learning, 24, 123–140.

Burnside, E., Davis, J., Chhatwal, J., Alagoz, O., Lindstrom,M., Geller, B., Littenberg, B., Shaffer,

K., Kahn, C., & Page, C. D. (2009). A probabilistic computer model developed from clinical data

in the national mammography database format to classify mammographic findings.Radiology,

251, 663–672.

Burnside, E., Davis, J., Costa, V., de Castro Dutra, I., Kahn, C.,Fine, J., & Page, D. (2005).

Knowledge discovery from structured mammography reports using inductive logic program-

ming. American Medical Informatics Association Annual Symposium Proceedings.

113

Caruana, R. (1993). Multitask learning: A knowledge-based source of inductive bias.Proceedings

of the Tenth International Conference on Machine Learning(pp. 41–48).

Clark, P., & Boswell, R. (1991). Rule induction with CN2: Some recent improvements.Proceed-

ings of the European Working Session on Machine Learning(pp. 151–163).

Clocksin, W. F., & Mellish, C. S. (2003).Programming in prolog. Springer-Verlag.

Cortes, C., & Mohri, M. (2003). AUC optimization vs. error rateminimization.Neural Information

Processing Systems (NIPS). MIT Press.

Costa, V., Srinivasan, A., Camacho, R., Blockeel, H., Demoen, B.,Janssens, G., Struyf, J., Vande-

casteele, H., & Laer, W. V. (2003). Query transformations for improving the efficiency of ILP

systems.Journal Machine Learning Research, 4, 465–491.

Craven, M., & Slattery, S. (2001). Relational learning with statistical predicate invention: Better

models for hypertext.Machine Learning, 43, 97–119.

Davis, J., Burnside, E., Dutra, I., Page, D., & Costa, V. (2005a). An integrated approach to learn-

ing Bayesian networks of rules.16th European Conference on Machine Learning(pp. 84–95).

Springer.

Davis, J., Costa, V., Ong, I., Page, D., & Dutra, I. (2004). Using Bayesian classifiers to combine

rules.3rd Workshop on Multi-Relational Data Mining - KDD2004.

114

Davis, J., Dutra, I. C., Page, D., & Costa, V. S. (2005b). Establish entity equivalence in multi-

relation domains.Proceedings of the International Conference on Intelligence Analysis. Vienna,

Va.

Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC curves.Pro-

ceedings of the 23rd International Conference on Machine Learning (pp. 233–240). Pittsburgh,

Pennsylvania.

de Boer, P., Kroese, D., Mannor, S., & Rubinstein, R. (2005). A tutorial on the cross-entropy

method.Annals of Operations Research, 134, 19–67.

de Bonet, J., Isbell, Jr., C., & Viola, P. (1997). MIMIC: finding optima by estimating probability

densities.Proceedings of Advances in Neural Information Processing Systems(p. 424).

Demiriz, A., Bennett, K., & Shawe-Taylor, J. (2002). Linear programming boosting via column

generation.Machine Learning, 46, 225–254.

Denny, M. (2001). Introduction to importance sampling in rare-event simulations.European

Journal of Physics, 22, 403–411.

Dietterich, T. (1998a). Approximate statistical tests forcomparing supervised classification learn-

ing algorithms.Neural Computation, 10, 1895–1923.

Dietterich, T. (1998b). Machine-Learning Research: Four current directions.The AI Magazine,

18, 97–136.

115

Dietterich, T. (2000a). Ensemble methods in machine learning. Lecture Notes in Computer Sci-

ence, 1857, 1–15.

Dietterich, T. (2000b). An experimental comparison of three methods for constructing ensembles

of decision trees: Bagging, boosting, and randomization.Machine Learning, 40, 139–157.

DiMaio, F., & Shavlik, J. (2004). Learning an approximationto inductive logic programming

clause evaluation.Proceedings of the 14th International Conference on Inductive Logic Pro-

gramming.

Domingos, P. (2000). Bayesian averaging of classifiers and the overfitting problem.Proceedings

of the Seventeenth International Conference on Machine Learning (pp. 223–230).

Dutra, I., Page, D., Costa, V., & Shavlik, J. (2002). An empirical evaluation of bagging in inductive

logic programming. Proceedings of the Twelfth International Conference on Inductive Logic

Programming(pp. 48–65). Sydney, Australia.

Džeroski, S., & Lavrac, N. (2001). An introduction to inductive logic programming.Proceedings

of Relational Data Mining(pp. 48–66).

Fawcett, T. (2001). Using rule sets to maximize ROC performance.IEEE International Conference

on Data Mining (pp. 131–138).

Fawcett, T. (2003).ROC graphs: Notes and practical considerations for researchers (Technical

Report). HP Labs HPL-2003-4.

116

Fellbaum, C. (Ed.). (1998).Wordnet an electronic lexical database. Cambridge, MA ; London:

The MIT Press.

Freund, Y. (2001). An adaptive version of the boost by majority algorithm.Machine Learning, 43,

293–318.

Freund, Y., Iyer, R., Schapire, R., & Singer, Y. (1998). An efficient boosting algorithm for com-

bining preferences.Proceedings of 15th International Conference on Machine Learning (pp.

170–178).

Freund, Y., & Schapire, R. (1996). Experiments with a new boosting algorithm. Proceedings of

the 13th International Conference on Machine Learning(pp. 148–156).

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine

Learning, 29, 131–163.

Gail, M., Brinton, L., Byar, D., Corle, D., Green, S., Schairer,C., & Mulvihill, J. (1989). Pro-

jecting individualized probabilities of developing breast cancer for white females who are being

examined annually.Journal of the National Cancer Institute, 81.

Goadrich, M., Oliphant, L., & Shavlik, J. (2004). Learning ensembles of first-order clauses for

recall-precision curves: A case study in biomedical information extraction.Proceedings of the

14th International Conference on Inductive Logic Programming.

117

Goadrich, M., Oliphant, L., & Shavlik, J. (2005). Learning to extract genic interactions using

Gleaner. Proceedings of the Learning Language in Logic 2005 Workshopat the International

Conference on Machine Learning. Bonn, Germany.

Goadrich, M., Oliphant, L., & Shavlik, J. (2006). Gleaner: Creating ensembles of first-order

clauses to improve recall-precision curves.Machine Learning, 64, 231–261.

Grinstead, C., & Snell, J. (1997).Introduction to probability 2nd edition. Providence, RI: Ameri-

can Mathematical Society.

Hanley, J., & McNeil, B. (1982). The meaning and use of the areaunder a receiver operating

characteristic (ROC) curve.Radiology, 143, 29–36.

Harik, G. (1999). Linkage learning via probabilistic modeling in the ECGA(Technical Report

(Illigal Report) number 99010). University of Illinois at Urbana-Champaign.

Heckerman, D. (1995, revised June 96).A tutorial on learning with Bayesian networks(Technical

Report MSR-TR-95-06). Microsoft Research, Redmond, Washington.

Hodges, P., Payne, W., & Garrels, J. (1997). The Yeast Protein Database (YPD): A curated pro-

teome database for saccharomyces cerevisiae.Nucleic Acids Research, 26, 68–72.

Holland, J. (1975).Adaptation in natural and artificial systems. Ann Arbor, MI: The University

of Michigan Press.

Holland, J. H. (2000). Building blocks, cohort genetic algorithms, and hyperplane-defined func-

tions. Evolutionary Computation, 8, 373–391.

118

Hoos, H., & Stutzle, T. (2004).Stochastic local search: Foundations and applications. Morgan

Kaufmann.

Jackson, V., Dines, K., Bassett, L., & Reynolds, H. (1991). Diagnostic importance of the ra-

diographic density of noncalcified breast masses: analysisof 91 lesions.American Journal of

Roentgenology, 157, 25–28.

Jones, D. (2001). A taxonomy of global optimization methodsbased on response surfaces.Journal

of Global Optimization, 21, 345–383.

Kohavi, R. (1995). A study of cross-validation and bootstrapfor accuracy estimation and model

selection (pp. 1137–1143.). Morgan Kaufmann.

Kuncheva, L., & Whitaker, C. (2003). Measures of diversity in classifier ensembles and their

relationship with the ensemble accuracy.Machine Learning, 51, 181–207.

Lewis, D. (1991). Evaluating text categorization.Proceedings of Speech and Natural Language

Workshop(pp. 312–318).

Longnecker, M. P. (1994). Alcoholic beverage consumption in relation to risk of breast cancer:

Meta-analysis and review.Cancer Causes and Control, 5, 73–82.

Manning, C. D., Raghavan, P., & Schütze, H. (2008).Introduction to information retrieval. Cam-

bridge University Press.

Margolin, L. (2005). On the convergence of the cross-entropy method. Annals of Operations

Research, 134, 201–214.

119

McDonald, R., Hand, D., & Eckley, I. (2003). An empirical comparison of three boosting algo-

rithms on real data sets with artificial class noise.In Fourth International Workshop on Multiple

Classifier Systems(pp. 35–44).

McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University and National Center

for Biotechnology Information, National Library of Medicine (2001). Online Mendelian Inheri-

tance in Man, OMIM (tm).

Michalewicz, Z., & Fogel, D. (2004).How to solve it: Modern heuristics. Springer.

Mitchell, T. (1997).Machine learning. New York: McGraw-Hill.

Mooney, R., & Bunescu, R. (2005). Mining knowledge from text using information extraction.

SIGKDD Explorations Newsletter, 7, 3–10.

Muggleton, S. (1995). Inverse entailment and Progol.New Generation Computing Journal, 13,

245–286.

Muggleton, S., & Feng, C. (1990). Efficient induction of logicprograms.Proceedings of the 1st

Conference on Algorithmic Learning Theory(pp. 368–381).

Ng, A., & Jordan, M. (2001). On discriminative vs. generative classifiers: A comparison of logistic

regression and naive Bayes.Proceedings of Advances in Neural Information Processing Systems

(pp. 841–848).

Oliphant, L., Burnside, E., & Shavlik, J. (2009). Boosting first-order clauses for large, skewed data

sets.Proceedings of the 19th International Conference on Inductive Logic Programming.

120

Oliphant, L., & Shavlik, J. (2007). Using Bayesian networks to direct stochastic search in induc-

tive logic programming.Proceedings of the 17th International Conference on Inductive Logic

Programming(pp. 191–199).

Opitz, D., & Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal of

Artificial Intelligence Research, 11, 169–198.

Opitz, D., & Shavlik, J. (1996). Actively searching for an effective neural-network ensemble.

Connection Science, 8, 337–353.

Page, D. (2000). Ilp: Just do it.ILP (pp. 3–18).

Pearl, J. (1988).Probabilistic Reasoning in Intelligent Systems: Networks ofPlausible Inference.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Pelikan, M., Goldberg, D., & Cantú-Paz, E. (1999). BOA: The Bayesian optimization algorithm.

Proceedings of the Genetic and Evolutionary Computation Conference(pp. 525–532).

Pelikan, M., & Mühlenbein, H. (1999). The bivariate marginal distributionalgorithm.Proceedings

of Advances in Soft Computing - Engineering Design and Manufacturing (pp. 521–535).

Porter, M. (1980). An algorithm for suffix stripping.Program, 14, 130–137.

Quinlan, J. R. (2001). Relational learning and boosting.Relational Data Mining(pp. 292–306).

Ray, S., & Craven, M. (2001). Representing sentence structure in hidden Markov models for

information extraction. Proceedings of the 17th International Joint Conference on Artificial

Intelligence.

121

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62, 107–136.

Riloff, E., & Phillips, W. (2004).An introduction to the Sundance and Autoslog systems(Technical

Report UUCS-04-015). University of Utah School of Computing.

Rissanen, J. (1978). Modeling by shortest data description.Automatica, 14, 465–471.

Rosner, B., Colditz, G., & Willett, W. (1994). Reproductive riskfactors in a prospective study of

breast cancer: The nurses’ health study.American Journal of Epidemiology, 139, 819–835.

Rubinstein, R. (1999). The cross-entropy method for combinatorial and continuous optimization.

Methodology and Computing in Applied Probability, 1, 127–190.

Rubinstein, R., & Kroese, D. (2004).The cross-entropy method: A unified approach to com-

binatorial optimization, monte-carlo simulation and machine learning. Secaucus, NJ, USA:

Springer-Verlag New York, Inc.

Russell, S., & Norvig, P. (2002).Artificial intelligence: A modern approach. Prentice Hall. Second

edition.

Sacks, J., Welch, W., Mitchell, T., & Wynn, H. (1989). Designand analysis of computer experi-

ments (with discussion).Statistical Science, 4, 409–435.

Singla, P., & Domingos, P. (2005). Discriminative trainingof markov logic networks.Proceedings

of the 20th National Conference on Artificial Intelligence(pp. 868–873).

Srinivasan, A. (1999). A study of two sampling methods for analysing large datasets with ILP.

Data Mining and Knowledge Discovery, 3, 95–123.

122

Srinivasan, A. (2003). The Aleph manual version 4.

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.

Telelis, O., & Stamatopoulos, P. (2001). Combinatorial optimization through statistical instance-

based learning.International Conference on Tools with Artificial Intelligence(pp. 203–209).

Telelis, O., & Stamatopoulos, P. (2002). Guiding constructive search with statistical instance-based

learning.International Journal on Artificial Intelligence Tools, 11, 247–266.

Železńy, F., Srinivasan, A., & Page, D. (2003). Lattice-search runtime distributions may be heavy-

tailed. Proceedings of the 12th International Conference on Inductive Logic Programming 2002

(pp. 333–345). Syndey, Australia.

Železńy, F., Srinivasan, A., & Page, D. (2004). A Monte carlo study of randomized restarted search

in ILP. Proceedings of 14th International Conference on Inductive Logic Programming.

Walters, W. H. (2009). Google scholar search performance: Comparative recall and precision.

Libraries and the Academy, 9.

Woods, R., Salkowski, L., Sisney, G., Shinki, K., Oliphant, L., Page, D., Shavlik, J., Burnside, E.,

& Kahn, C. (2009). Using knowledge discovery techniques to identify a novel predictor of breast

cancer: Breast mass density.Society for Imaging Informatics in Medicine Annual Meeting.

Wright, A., Poli, R., Stephens, C., Langdon, W., & Pulavarty, S.(2004). An estimation of dis-

tribution algorithm based on maximum entropy.Proceedings of the Genetic and Evolutionary

Computation Conference(pp. 343–354).

DISCARD THIS PAGE

123

Appendix A: Predicates of the Protein-Localization Data Set

This is a list of predicates used in the protein-localization data set. The data set contains a total

of 243 predicates. The gene-disease data set contains nearly identical predicates with some minor

modifications for the different subsets of the MeSH dictionary used. The predicates are divided

into syntax predicates, morphological predicates, semantic predicates, and statistical predicates.

I use the same format for the arguments of predicates as used in the mode declarations of Aleph.

The plus (+) sign refers to input arguments, the minus (-) sign refers to output arguments, and the

number (#) sign refers to constant grounded arguments. Table A.1 lists argument types along with

a definition of each type.

The ground literals in the data set refer to abstracts, sentences, phrases and words from a

set of documents obtained from the PubMed on-line database.Let A refer to the PubMed ab-

stract identification number, S the sentence number within the abstract, P be the phrase number

within a sentence, and W the word number within a sentence. Ground literals refering to ab-

stracts are denoted as “abA”, sentences as “abAsenS”, phrases as “abAsenSphP” and words

as “abAsenSphPwW”. For example, ab12345sen1ph2 w3 denotes the 3rd word in the 1st

sentence of PubMed abstract 12345.

124

Table A.1 A list of the argument types used by predicates in the protein-localization data set.

Argument Type Description

abstract An abstract in the PubMed on-line database.
sentence A specific sentence of an abstract.
phrase A specific phrase in a sentence.
word A specfic word in a sentence.
string The actual text of the abstract.
pos A part of speech as marked by the Sundance parser.
fold An identifier for different folds of the data set.
example An identifier for a specific positive or negative example in the data set.
dataset One of train, tune, or test.

Additional ground literals include the actual strings of text for the words, phrases and sentences

in the abstracts, the fold identification for abstracts to allow us to compute statistics on the training

set without using the testing set predicates, references tospecific positive and negative examples,

and an identifier for train, tune, or test sets.

A.1 Syntax Predicates

These predicates refer to a information contained in the structure of the document and phrase
types and part-of-speech information that was collected using the Sundance sentence parser. Ad-
ditional predicates relate phrases in a relation to other phrases in the sentence.

pp segment(+phrase)
vp segment(+phrase)
adj segment(+phrase)
isa np segment(+phrase)
c m(+phrase)
art(+phrase)
adj(+phrase)
prep(+phrase)
conj(+phrase)
adv(+phrase)
lex(+phrase)
part(+phrase)
v(+phrase)

125

first word in phrase(+phrase, -word)
last word in phrase(+phrase, -word)
first phrasein sentence(+sentence, -phrase)
last phrasein sentence(+sentence, -phrase)
short phrase(+phrase)
mediumphrase(+phrase)
long phrase(+phrase)
short sentence(+sentence)
avg lengthsentence(+sentence)
long sentence(+sentence)
few phrasesin sentence(+sentence)
severalphrasesin sentence(+sentence)
manyphrasesin sentence(+sentence)
no POSin phrase(+phrase , #pos)
onePOSin phrase(+phrase , #pos)
few POSin phrase(+phrase , #pos)
somePOSin phrase(+phrase , #pos)
manyPOSin phrase(+phrase , #pos)
no wordPOSin sentence(+sentence , #pos)
onewordPOSin sentence(+sentence , #pos)
few wordPOSin sentence(+sentence , #pos)
somewordPOSin sentence(+sentence , #pos)
manywordPOSin sentence(+sentence , #pos)
no phrasePOSin sentence(+sentence , #pos)
onephrasePOSin sentence(+sentence , #pos)
few phrasePOSin sentence(+sentence , #pos)
somephrasePOSin sentence(+sentence , #pos)
manyphrasePOSin sentence(+sentence , #pos)
adjacenttargetargs(+example, +dataset, #fold)
identical targetargs(+example, +dataset, #fold)
few phrasesbeforetargetargs(+example, +dataset, #fold)
somephrasesbeforetargetargs(+example, +dataset, #fold)
manyphrasesbeforetargetargs(+example, +dataset, #fold)
few phrasesbetweentargetargs(+example, +dataset, #fold)
somephrasesbetweentargetargs(+example, +dataset, #fold)
manyphrasesbetweentargetargs(+example, +dataset, #fold)
few phrasesafter targetargs(+example, +dataset, #fold)
somephrasesafter targetargs(+example, +dataset, #fold)
manyphrasesafter targetargs(+example, +dataset, #fold)
few wordsbeforetargetargs(+example, +dataset, #fold)
somewordsbeforetargetargs(+example, +dataset, #fold)
manywordsbeforetargetargs(+example, +dataset, #fold)

126

few wordsbetweentargetargs(+example, +dataset, #fold)
somewordsbetweentargetargs(+example, +dataset, #fold)
manywordsbetweentargetargs(+example, +dataset, #fold)
few wordsafter targetargs(+example, +dataset, #fold)
somewordsafter targetargs(+example, +dataset, #fold)
manywordsafter targetargs(+example, +dataset, #fold)
first sentencein abstract(-abstract, +sentence)
middle sentencein abstract(-abstract, +sentence)
last sentencein abstract(-abstract, +sentence)
short abstract(+abstract)
mediumabstract(+abstract)
long abstract(+abstract)
sentenceparent(+phrase, -abstract)
sentencechild(+sentence, -phrase)
sentencedescendent(+sentence, -phrase)
sentencedescendent(+sentence, -word)
phraseancestor(+phrase, -sentence)
phrasedescendent(+phrase, -word)
phrasechild(+phrase, -word)
phraseparent(+phrase, -sentence)
phrasenext(+phrase, -phrase)
phraseprevious(+phrase, -phrase)
phrasesibling(+phrase, -phrase)
phrasebefore(+phrase, -phrase)
phraseafter(+phrase, -phrase)
word ancestor(+word, -phrase)
word ancestor(+word, -sentence)
word parent(+word, -phrase)
word next within phrase(+word, -word)
word next(+word, -word)
word previouswithin phrase(+word, -word)
word previous(+word, -word)
word before(+word, -word)
word after(+word, -word)
word sibling within phrase(+word, -word)
word beforewithin phrase(+word, -word)
word after within phrase(+word, -word)
different phrases(+phrase, +phrase)
phrasecontainssomeprep(+phrase, -word)
phrasecontainssomeart(+phrase, -word)
phrasecontainssomeadj(+phrase, -word)
phrasecontainssomen(+phrase, -word)

127

phrasecontainssomev(+phrase, -word)
phrasecontainssomecop(+phrase, -word)
phrasecontainssomedet(+phrase, -word)
phrasecontainssomeunk(+phrase, -word)
phrasecontainssomepn(+phrase, -word)
phrasecontainssomeadv(+phrase, -word)
phrasecontainssomec m(+phrase, -word)
phrasecontainssomenum(+phrase, -word)
phrasecontainssomeger(+phrase, -word)
phrasecontainssomeinf(+phrase, -word)
phrasecontainssomeconj(+phrase, -word)
phrasecontainssomeaux(+phrase, -word)
phrasecontainssomelex(+phrase, -word)
phrasecontainssomepart(+phrase, -word)
phrasecontainsPOS(+phrase, -word, #pos)
phrasecontainsPOSpair(+phrase, -word, -word, #pos, #pos)
phrasecontainsPOStriple(+phrase, -word, -word, -word, #pos, #pos, #pos)
sentencecontainsPOSpair(+sentence, +phrase, -phrase, -word, -word, #pos, #pos)
sentencecontainsPOStriple(+sentence, +phrase, -phrase, -phrase, -word, -word, -word, #pos,
#pos, #pos)
sentencecontainsspecificword POSpair(+sentence, +phrase, -phrase, -word, -word, #string,#pos)
sentencecontainsspecificPOSword pair(+sentence, +phrase, -phrase, -word, -word, #pos, #string)
few phrasesbeforetargetargs(+example, +dataset, #fold)
severalphrasesbeforetargetargs(+example, +dataset, #fold)
manyphrasesbeforetargetargs(+example, +dataset, #fold)
few wordsbeforetargetargs(+example, +dataset, #fold)
severalwordsbeforetargetargs(+example, +dataset, #fold)
manywordsbeforetargetargs(+example, +dataset, #fold)
few phrasesbetweentargetargs(+example, +dataset, #fold)
severalphrasesbetweentargetargs(+example, +dataset, #fold)
manyphrasesbetweentargetargs(+example, +dataset, #fold)
few wordsbetweentargetargs(+example, +dataset, #fold)
severalwordsbetweentargetargs(+example, +dataset, #fold)
manywordsbetweentargetargs(+example, +dataset, #fold)
few phrasesafter targetargs(+example, +dataset, #fold)
severalphrasesafter targetargs(+example, +dataset, #fold)
manyphrasesafter targetargs(+example, +dataset, #fold)
few wordsafter targetargs(+example, +dataset, #fold)
severalwordsafter targetargs(+example, +dataset, #fold)
manywordsafter targetargs(+example, +dataset, #fold)
beforeboth targetphrases(+example, +dataset, #fold, -phrase)
word beforeboth targetphrases(+example, +dataset, #fold, -phrase, -word, #string)

128

in betweentargetphrases(+example, +dataset, #fold, -phrase)
word in betweentargetphrases(+example, +dataset, #fold, -phrase, -word, #string)
after both targetphrases(+example, +dataset, #fold, -phrase)
word after both targetphrases(+example, +dataset, #fold, -phrase, -word, #string)
targetarg1beforetargetarg2(+example, +dataset, #fold)
targetarg2beforetargetarg1(+example, +dataset, #fold)
word pair in betweentargetphrases(+example, +dataset, #fold, -phrase, -phrase, -word, -word,
#string, #string)
pospair in betweentargetphrases(+example, +dataset, #fold, -phrase, -phrase, -word, -word,
#pos, #pos)
word pos in betweentargetphrases(+example, +dataset, #fold, -phrase, -phrase, -word, -word,
#string, #pos)
posword in betweentargetphrases(+example, +dataset, #fold, -phrase, -phrase, -word, -word,
#pos, #string)
word prev targetarg1(+example, +dataset, #fold, -phrase, -word, #string)
word prev targetarg2(+example, +dataset, #fold, -phrase, -word, #string)
word next targetarg1(+example, +dataset, #fold, -phrase, -word, #string)
word next targetarg2(+example, +dataset, #fold, -phrase, -word, #string)
word pair prev targetarg1(+example, +dataset, #fold, -phrase, -phrase, -word,-word, #string,
#string)
word pair prev targetarg2(+example, +dataset, #fold, -phrase, -phrase, -word,-word, #string,
#string)
word pair next targetarg1(+example, +dataset, #fold, -phrase, -phrase, -word,-word, #string,
#string)
word pair next targetarg2(+example, +dataset, #fold, -phrase, -phrase, -word,-word, #string,
#string)

A.2 Morphological Predicates

These predicates refer to the properties of the actual character string of individual words. Ad-
ditional predicates lift this information to the phrase level for easy addition to rules created during
learning.

phrasecontainssomealphabetic(+phrase, -pos, -word)
phrasecontainssomealphanumeric(+phrase, -pos, -word)
phrasecontainssomenumeric(+phrase, -pos, -word)
phrasecontainssomesinglecharword(+phrase, -pos, -word)
phrasecontainssomehyphenatedword(+phrase, -pos, -word)
phrasecontainssomeall capsword(+phrase, -pos, -word)

129

phrasecontainssomeleadingcapword(+phrase, -pos, -word)
phrasecontainssomeinternal capword(+phrase, -pos, -word)
phrasecontainssomealphabetic(+phrase, #pos, -word)
phrasecontainssomealphanumeric(+phrase, #pos, -word)
phrasecontainssomenumeric(+phrase, #pos, -word)
phrasecontainssomesinglecharword(+phrase, #pos, -word)
phrasecontainssomehyphenatedword(+phrase, #pos, -word)
phrasecontainssomeall capsword(+phrase, #pos, -word)
phrasecontainssomeleadingcapword(+phrase, #pos, -word)
phrasecontainssomeinternal capword(+phrase, #pos, -word)
phraseID to string(+phrase, #string)
phraseID to string(+phrase, #string)
word ID to string(+word, #string)
word ID to string(+word, #string)
word ID to string(+word, #string)
phraseID to string(+phrase, #string)
sentenceID to string(+sentence, #string)
phrasecontainsspecificword(+phrase, -word, #string)
phrasecontainsspecificword pair(+phrase, -word, -word, #string, #string)
phrasecontainsspecificword triple(+phrase, -word, -word, -word, #string, #string, #string)
sentencecontainsspecificword(+sentence, -phrase, -word, #string)
sentencecontainsspecificphrase(+sentence, -phrase, #string)
sentencecontainsspecificword pair(+sentence, +phrase, -phrase, -word, -word, #string,#string)
sentencecontainsspecificword triple(+sentence, +phrase, -phrase, -phrase, -word, -word, -word,
#string, #string, #string)

A.3 Statistical Predicates

These predicates refer to the frequency counts of words. Frequencies were collected on each
fold seperately so as to maintain a seperation between training and testing sets. Frequencies were
binned into (10x,5x,2x,1

2
x) more likely in positive examples than in negative ones.

phrasecontainssomearg 10x word(+phrase, #arg, #pos, -word, #fold)
phrasecontainssomearg 5x word(+phrase, #arg, #pos, -word, #fold)
phrasecontainssomearg 2x word(+phrase, #arg, #pos, -word, #fold)
phrasecontainssomearg halfX word(+phrase, #arg, #pos, -word, #fold)
phrasecontainsno arg halfX word(+phrase, #arg, #pos, #fold)
phrasecontainsseveralarg 10x word(+phrase, #arg, #pos, #fold)
phrasecontainsseveralarg 5x word(+phrase, #arg, #pos, #fold)
phrasecontainsseveralarg 2x word(+phrase, #arg, #pos, #fold)

130

phrasecontainsmanyarg 10x word(+phrase, #arg, #pos, #fold)
phrasecontainsmanyarg 5x word(+phrase, #arg, #pos, #fold)
phrasecontainsmanyarg 2x word(+phrase, #arg, #pos, #fold)
very high phraselog odds(+phrase, #arg, #fold)
high phraselog odds(+phrase, #arg, #fold)
medphraselog odds(+phrase, #arg, #fold)
positivephraselog odds(+phrase, #arg, #fold)
very rareword(+word, #fold)
rareword(+word, #fold)
uncommonword(+word, #fold)
commonword(+word, #fold)
very commonword(+word, #fold)
only in onesentence(+word, #fold)
only in oneabstract(+word, #fold)
in few sentences(+word, #fold)
in few abstracts(+word, #fold)
in severalsentences(+word, #fold)
in severalabstracts(+word, #fold)
in manysentences(+word, #fold)
in manyabstracts(+word, #fold)
in very manysentences(+word, #fold)
in very manyabstracts(+word, #fold)
phrasecontainssomebetween10x word(+phrase, #arg, #pos, -word, #fold)
phrasecontainssomebetween5x word(+phrase, #arg, #pos, -word, #fold)
phrasecontainssomebetween2x word(+phrase, #arg, #pos, -word, #fold)
phrasecontainssomebetweenhalfX word(+phrase, #arg, #pos, -word, #fold)
phrasecontainsno betweenhalfX word(+phrase, #arg, #pos, #fold)
phrasecontainsseveralbetween10x word(+phrase, #arg, #pos, #fold)
phrasecontainsseveralbetween5x word(+phrase, #arg, #pos, #fold)
phrasecontainsseveralbetween2x word(+phrase, #arg, #pos, #fold)
phrasecontainsmanybetween10x word(+phrase, #arg, #pos, #fold)
phrasecontainsmanybetween5x word(+phrase, #arg, #pos, #fold)
phrasecontainsmanybetween2x word(+phrase, #arg, #pos, #fold)

A.4 Semantic Predicates

These predicates refer to semantic information found usingseveral dictionaries. Words that
appear in one of these dictionaries is marked with a specific predicate for each dictionary. This
information is lifted to the phrase level for easy learning.

131

phrasecontainsgo term(+phrase, -string, -string, -word)
phrasecontainsmedDict term(+phrase, -string, -string, -word)
phrasecontainsmeshterm(+phrase, -string, -string, -word)
phrasecontainsmeshprotein(+phrase, -string, -string, -word)
phrasecontainsmeshpeptide(+phrase, -string, -string, -word)
phrasecontainsmeshcellular structure(+phrase, -string, -string, -word)
phrasecontainsgo term(+phrase, #string, #string, -word)
phrasecontainsmedDict term(+phrase, #string, #string, -word)
phrasecontainsmeshterm(+phrase, #string, #string, -word)
phrasecontainsmeshprotein(+phrase, #string, #string, -word)
phrasecontainsmeshpeptide(+phrase, #string, #string, -word)
phrasecontainsmeshcellular structure(+phrase, #string, #string, -word)
phrasecontainssomepart(+phrase, -word)
phrasecontainssomemarkedup arg(+phrase, #arg, -word, #fold)
phrasecontainssomeunknownword(+phrase, -pos, -word)
phrasecontainssomeunknownword(+phrase, -pos, -word)

