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ABSTRACT

Inductive Logic Programming (ILP) is a machine-learningaach that uses first-order logic
to create human-readable rules from a database of infaymatd a set of positive and negative
examples. When working with highly skewed data sets wheradigatives vastly outhumber the
positives, common metrics such as predictive accuracy eeadunder the receiver-operator char-
acteristic curves (AUROC) do not work well because theseiosetount negatives and positives
equally, causing performance on the negative examplesnndde. This thesis explores creating
ensembles of rules to maximize area under the recall-poac@urves (AURPC), a much better
metric that focuses specifically on the coverage and acguwfdabeling the positive examples.

| create an ensemble of rules from a wide range of recall gadne combine them to maximize
AURPC. My Gleaner algorithm retains a set of rules for eachtpesseed example where standard
ILP methods keep only a single rule. Gleaning rules from ¢hages that would normally be
discarded and combining them into a single ensemble showsoued predictive performance
while reducing the number of rules evaluated.

| evaluate several modified search methods for finding settaotes that work well together.
One method applies a probability distribution over the spzfcules and stochastically selects rules
more likely to improve Gleaner’s predictive performance.sécond method follows a boosting
framework and weights examples in order to maximize AURPCngdyogether the method of
combining rules with the search for good candidate rulesvshimprovement over the standard
Gleaner algorithm.

| apply these first-order ensemble techniques to severalsids from two very different do-

mains. The first data sets come from the Information-ExtvadiE) domain where the task is to



Xiv

find specific relationships in text. The next data sets com fthe computer-assisted medical-
diagnosis domain. The task is to identify findings on a manmamgas malignant or benign given
descriptors of the findings, patient risk factors, radicdtg score, and information from any pre-
vious mammograms.

| also include my work with Davis et al.’s SAYU algorithm. | e@nstrate methods to im-
prove predictive performance and to increase understgrafimalignancy indicators. Inclusion
of additional background knowledge that allows for rulesaatain ranges of values provides for
more complex models that improve predictive performancals® show that transferred models
are able to outperform radiologists at new institutionsnewéaen no additional data are available
from the new institution. Finally, first-order rules and patility help in improving understanding
of malignant indicators. | use these techniques to confirniniportance of high mass density
in identifying malignant findings. | also identify surpmg pairs of features that perform better
than expected at identifying malignant findings than wowddekpected by looking at the features

individually.



Chapter 1

Introduction

One can organize predictive models built from labeled eXxasinto two categories. The first
utilizes propositional modeling techniques to build a jegde model. The second builds a first-
order logical model from the data. My research falls int® tbécond domain utilizing a logical

modeling technique called Inductive Logic ProgrammingJL

1.1 General Overview

ILP takes a set of positive and negative examples along vatkdround information about
those examples and a set of constraints on what type of ridgdmlearned. ILP generates a set
of rules called a theory. Traditionally, a new example islad as positive if any of the rules are
true for the example, otherwise it is labeled as false.

ILP has some distinct advantages over complicated propoaltmethods. First, logical mod-
els are simple and easy to understand, providing insigbttimt reason for the prediction. The
predictive model becomes more than a black box providingl&afor new data. The model aids
human researchers in understanding the reason for thénglagid can guide future research. Sec-
ond, ILP can incorporate disparate types of informatiorpidglly propositional modeling utilizes
a single table of information about the examples in the dattalsP techniques can utilize an entire
database of information, taking advantage of not only tf@mation in a single table, but using
the links between tables to look more deeply and find pat@ensss many tables.

While ILP has some advantages over propositional methodésathas some disadvantages.

First, because ILP can utilize an entire database of infoom#he search space becomes extremely



large. Second, evaluating candidate rules for inclusiothentheory is a slow process. Each
candidate rule must be evaluated against each exampléduadily, searching through the database
to see if the rule is true for the example. Because this prasessslow, the number of rules that
can be evaluated in a reasonable amount of time is limitedrd;Tthe final theory generated by
ILP is brittle. The theory labels new examples as positivani of the rules are true. Statistical
approaches often provide a more flexible model by labeliregrgtes with a score. The score
provides a means of assessing how likely an example is to §isveo This allows the user of the
system to trade off false positives for false negatives bgstolding this score at different levels.
Many of these disadvantages become more pronounced wh&mgavith large, skewed data
sets. Large data sets slow the evaluation process for cediges. This results in fewer candidate
rules evaluated in a fixed amount of time. Skewed data seteexaie the problem of brittleness.
With even a small amount of noise in a large negative classdbimes more difficult to find rules
that cover predominantly positive examples. These rulesnwdombined into a theory will cover
many current, and more importantly future negative examaiel hence the theory’s performance

will be poor.

1.2 Thesis Statement

Inductive Logic Programming’s predictive performance atufe examples can be improved
by creating ensembles of rules using more sophisticatedodsthan currently used. When work-
ing with highly skewed data sets, ensembles that are spabjifaesigned to optimize performance
in recall-precision space will show a marked improvemetr @impler approaches. By adaptively
searching the space of rules, further improvements candershModifying search to find addi-
tional rules that work well with the rules already selectadiie ensemble will also show predictive
improvement. Biomedical data sets form good test beds farindRuding information extraction

tasks and computer-assisted medical diagnosis.



1.3 Outline

The remainder of my thesis is organized as follows:

Chapter 2 contains background material and related work. | descrfaduation metrics, espe-
cially ones that work well with skewed data. | explain induetlogic programming more
formally. | also describe ensemble approaches, partigutgisemble approaches that have
been applied to ILP. | then present different modeling meshibat have been used to guide

search.

Chapter 3 explains the large, skewed data sets | use to validate my.wbno data sets are
taken from the information-extraction domain, two from thedical-diagnosis domain, and
one from the social-interaction domain. | explain the sgtita semantic, and statistical
background knowledge | include to help in the predictivek ths information-extraction
tasks. | also explain the BI-RADS lexicon (American College ofiiRbbgy, 2003) and

patient risk factors used in the mammography data sets.

Chapter 4 explains the Gleaner algorithm and presents results congpiato a bagging (Dutra
et al., 2002) approach. Gleaner is an ensemble approactafioering rules from a wide
spectrum of recall values and combining them in such a wag asaikimize area under the

recall-precision curve.

Chapter 5 investigates an adaptive search method for Gleaner. |nasid develop a probabilis-
tic model to predict the areas of search space which are niketg to contain high-scoring
clauses and which have been under-explored. | utilize tbigatto guide search and present

results showing an improvement in AURPC performance.

Chapter 6 presents another ensemble approach based on the RankBaastdféat al., 1998)
algorithm. | have modified RankBoost to maximize AURPC. | expl@aous optimization
functions and weak hypotheses that | use inside this bap&tamework. | show results
on several data sets that confirm a further reduction in thebeu rules searched while

maintaining AURPC performance.



Chapter 7 presents additional work that | have done with the mammdgrajata sets. | have
worked on gaining insight that radiologists can use to healp wiagnosis. | also present
work on transferring machine models from the data set onlhwiey are trained to new data

sets.

Chapter 8 concludes my thesis. | discuss what | have learned and fdtregetions for this work.



Chapter 2

Background and Related Work

My research is in the area of ensemble learning for indudbigie programming and modeling
ILP’s search space. | provide background information oselereas of machine learning as well

as describe my evaluation methodology.

2.1 Evaluation Metrics and General Methodology

Researchers use evaluation metrics both to guide theirresaad to assess future perfor-
mance. Depending on the situation, some evaluation metreesnore helpful than others in ac-
complishing these tasks. | will explain the evaluation mestt have used throughout this thesis
and why these metrics are suited to the data sets | have hebyingg.

K-fold cross validation (Kohavi, 1995) is often used to get @rénaccurate estimate of an
algorithm’s future performance and to assess significarfeenveomparing between algorithms.
The data set is divided int& disjoint sets. One subset is used as the testing set whiternhaning
K —1 subsets of the data are used as the training set. A modebitedrand parameters are learned
using the training set. The trained model is evaluated usi@gredetermined metric on the testing
set. This model is discarded and the evaluation score isisaJee process repeats. Each subset
is used exactly once as the test set. When the process finigtgssebset has been used as the
test set exactly once. There akescores, one for each subset. Any single score may be a poor
predictor of future performance because the test set iscidraof the entire data set which may
cause high variance in the score. However the average p&ifme across all of the subsets will

reduce the variance and provide a better estimation ofduyiarformance.



Actual TP + TN

Accuracy = TP+ TN + FP + FN
Positive Negative TP
True Positive Rate = —p
Positive TP FP False Positive Rate = ﬁ
: - TP
Predicted Recall = TP + FN
_ - TP
Negative | FN TN Precision = TP + FP
F1 score = 2 x Precision x Recall

Precision + Recall

Figure 2.1 Confusion matrix and scoring metrics used througthis thesis.

| evaluate significance between competing models by penfgythe K -fold paired t-test (Di-
etterich, 1998a). | train model and modelB on K — 1 folds and evaluate performance on the
remaining fold. | calculate the difference between the twarels. This process is repeated for
each of thei( folds and thée statistic is calculated wit — 1 degrees of freedom (Mitchell, 1997,
chapter 5). | report a statistical difference between cdmgeanodels using a 95% confidence
interval.

| designed my predictive models for two-class, large, skkdaga sets. In a two-class problem
a predictive model labels examples as either positive oativegy When comparing the model’'s
predictions to the true class on a set of examples a confusairix is formed. Such a confusion
matrix appears in Figure 2.1 on the left. True positive (TR)eples are those examples the model
correctly labeled as positive. False positives (FP) arengkas the model incorrectly labeled as
positive. False negatives (FN) are examples where the nmdé&beled a positive example as a
negative. True negatives (TN) are examples correctly éabas negative.

Several evaluation metrics use the values in a confusiomxnabmbining them into a single
score that expresses how well a model performs. Severalesttbvaluation metrics appear in
Figure 2.1 on the right. Accuracy is the fraction of corngddlbeled examples. The true-positive
rate (TPR) expresses the fraction of correctly labeled peséixamples. The false-positive rate
(FPR) expresses the fraction of incorrectly labeled negagxamples.Recallis another name

for the true-positive ratePrecisionis the fraction of those predicted as positive that are dgtua



positive. For models that provide a score for an examplesrdtian just the predicted class, several
types of curves can be drawn to show the possible trade+off®iformance. Receiver operator

characteristic (ROC) curves show the trade-off between #ie @nd FPR. Recall-precision (RP)

curves show the trade-off between recall and precision.

Two final metrics used for evaluation utilize the area untiesé curves. Area under the ROC
curve (AUROC), also known as the Wilcox-Mann-Whitney statigHanley & McNeil, 1982), is
a commonly used metric to evaluate predictive models. AUR@Sa simple statistical meaning.
It is the probability that a randomly selected positive egbawill be scored more highly than a
randomly selected negative example. A second metric tiletaest area under a curve is the area
under the recall-precision curve (AURPC). AURPC is the metvidiifocus on as it is especially
well-suited for skewed data because it focuses on the mgreriant positive examples.

When working with highly skewed data several metrics do nstirtjuish well between mod-
els. High accuracy is trivial by simply predicting the largéass. Distinguishing between compet-
ing models is difficult if the simplest model already achieevery high accuracy. AUROC can
be problematic for a similar reason. ROC curves graph rdtewaiag the FPR on the x-axis and
the TPR on the y-axis. Imagine a model that classifies roughlyal number of positive and neg-
ative examples as positive. The TPR will be approximately halfway up the y-axis. However
the FPR will have barely moved away from zero since the nurabeegatives misclassified is so
small compared to the total number of negatives. Modelsthie will perform very well when
using AUROC. However if you compare the misclassified negatwith the number of correctly
classified positive examples it will be apparent that théteisa large room for improvement in
the model. AURPC does just that by utilizing precision indteBFPR on an axis. When the skew
is large and performance on the positive class is more irapbthan performance on the negative
class AURPC shows a much larger variation between competottgls making it easier to distin-
guish between them. Several researchers use AURPC and etladirprecision metrics to report
model performance (Goadrich et al., 2004; Singla & Domin@®5; Walters, 2009) and work
has been done comparing AURPC to AUROC (Davis & Goadrich, 20@éining et al., 2008).



2.2 Inductive Logic Programming

Inductive Logic Programming (ILP) algorithms are learnaigorithms that seek explanations
written in first-order logic that discriminate between pivsi and negative examples. The FOIL
algorithm quinlan90foil, one of the oldest ILP algorithnuses an information-based heuristic to
greedily search for IF-THEN rules in a top-down fashion. B@LEM algorithm (Muggleton &
Feng, 1990) attempts to build rules bottom-up, by genenglipairs of positive examples. Progol
is a popular ILP algorithm (Muggleton, 1995). Aleph is an lerpentation of Progol written in
Prolog (Srinivasan, 2003). Aleph is relatively easy to egtand modify. Next, | will describe
some of the aspects of this system. A brief description ofestmgic programming terms can be
found in Table 2.1.

Aleph, like most other ILP algorithms, uses a covering atpar to learn if-then rules that
explain the positive examples in a training set. A coverilggathm similar to the one outlined by

Costaet al. (Costa et al., 2003) is shown in Table 2.2. Aleph has sevegalirements to operate:

1. background knowledge B, consisting of logical facts and inference rules about & t
domain

2. aset of examplesF, of the target literal to be learned divided into positi#&;, and nega-
tive, £, subsets

3. alanguage specification,, describing the space of if-then rules to be searched

4. an optionaket of constraints 7, limiting the space of allowable rules.

The goal of Aleph is to generalize the specific examples fitoartrtaining set into a set of rules
called a hypothesig, that explains most of the examples founddn but few of the examples
in E~. Each loop through the covering algorithm adds an additiaria to the hypothesis. The
rule covers a portion of the positive examples. Generallgphlremoves the subset of positives
explained by the new rule; then the algorithm iterates. Gxleph explains all positive examples,

the algorithm terminates and returns the set of rules that haen found.



Table 2.1

Some standard Prolog and ILP terms and their defigit

Term

Definition

term

An expression referring to an object. Terms can be constants
variables, or functions. Constants refer to single, specbijects.
Variables refer to objects. Functions refer to specific cigje
based upon a mapping from their input terms. Using the family
domain, examples of constants woulddam, sue, andjan.
Variables includéerson1 andPerson2. Function

terms might includeéather (adam) andmother (Personl).
Following Prolog’s conventions, | use lower case for contsta
and upper case for logical variables.

predicate

Also called literal, consists of a name and a set of terms.
Predicates are used to explain relations between the sbject
Relations involving people would include

parent0f (adam, sue), female(jan), andfatherOf (sue, X).

Horn clause

Also called a rule. Predicates can be defined in terms of qiteglicates using a
Horn clause. Horn clauses have the notaftbn—Lit; A ... A Lit,,,

whereH is called theHeadand Lit, A ... A Lit,, is called thebody.

Clauses are interpreted as “If all the body predicates aeg then

the head is true.” An example using the family domain would be
grandfather0f (X,Y) :- father0f(X,Z), mother0f(Z,Y).

where “: =" means “if” and commas mean AND.

theory

A conjunction of Horn clauses for a particular predicateiokh
together try to capture the complete definition of a relatitm
continue with our family example, a complete theory which
describes the grandfather predicate might be:
grandfather0f (X,Y) :- fatherOf(X,Z), mother0f(Z,Y).
grandfather0f (X,Y) :- fatherOf(X,Z), father0f(Z,Y).

background knowledge

e When trying to learn Horn clauses and theories for a particula
predicate, all other objects, predicates and clauses in our
domain are the background knowledge. In the above exaniple, a
groundings of the literals would be the background knowedg

for learning thegrandfather0f predicate.

This specifies our search space for the body of clauses.

bottom clause

A particular Horn clause created from a positive example {#eed”),
used to limit the search space. This clause is created by
chaining through relations until no more facts about thelsee

example can be added or until a specified limit is reached.
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Table 2.2 Covering algorithm for ILP

function GENERALIZE(B, I, L, E): returns H, a hypothesis
inputs: B, background knowledge

1, hypothesis constraints

L, language specifications

E = E* U E~, training set of positive and negative examples

H=10
while ET is not emptydo
¢ = SELECFEXAMPLE(E™)
1 = CONSTRUCFBOTTOM(e, £)
¢=SEARCHL,B,H, I, E) /* find good clause */

H=HU{c}
E,.=COVERED(B, H, ET) [* positives derivable by clause }/
Et=FET - FE,
return H

Construction of Bottom Clause Final Bottom Clause

h(+a,+b):- _ h(A,B):-

—— 1st iteration p(A,C),

p(+a,-c), reachable terms={a,b} p(B,D),

p(+bl'd)l p(c!E)!

— 2nd iteration p(D,F),

p(+c,-e), reachable terms={a,b,c,d} )

p(+dp'f)i
—— 3rd iteration
reachable terms={a,b,c,d,e, f}

Figure 2.2 Example bottom clause being constructed. Tregpgn (+) refers to input variables
and the minus sign (-) refers to output variables. An outpuiable must first appear as an input
variable earlier in the clause.

In Aleph, the realization of the language specification escduwring the construction of a bot-
tom clause,l.. The bottom clause can limit the space of acceptable rulésphAconsiders only

subsets of the literals found in the bottom clause as adoleptales for addition to the hypothesis.
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The bottom clause consists of the reachable facts from tbkgbaund knowledge. Several
parameters determine whether a fact is reachable, one of bleéng a user-definable set of in-
put/output variables for each literal. Modes are definedngyuser of the Aleph system for each
literal in the background knowledge. These modes assigartpeaments of a literal to be either
input variables (+), output variables (-), or constants @eph uses these modes when building
the bottom clause.

Aleph builds a bottom clause starting with a single posigxample as shown in Figure 2.2.
Bottom-clause generation initializes a set of reachabiag¢o contain the terms from the positive
example which are input argumengs,andb in the example. Aleph consults the background
knowledge using this set of reachable terms. Any literalmtbwhich are satisfied by these terms
in their input arguments, Aleph adds to the bottom clausepAladds the terms from the output
arguments in these literals to the list of reachable termshé example, the literals whose input
arguments are satisfied gvéta,-c) andp(+b,-d). The-c and the-d are the output arguments that
are then added to the set of reachable terms. This procesatsdpr a user-specified number of
times, growing the bottom clause during each iteration.

Aleph replaces constants found in the input and output ipositof a predicate with unique
variables. The variablized bottom clause in combinatiothwhe modes constitutes the search
space. Any subset of literals that can be built, maintaitiregconnection between input and output
variables, is a legal clause. Aleph allows further constsaio this set of clauses. One common
constraint is the clause length limit, restricting claugebe sets of literals that are shorter than

some user-defined parameter.
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Table 2.3 Top-down search algorithm

function SEARCH L, B, H, I, E): returns a legal clause
inputs: L, bottom clause

B, background knowledge

H, hypothesis rules learned so far

1, hypothesis constraints

E = E* U E—, training set of positive and negative examples

Open = {0O}
Closed = ()
until TERMINATE(Closed, Open) do

s = REMOVE-BEST(Open)

Closed = Closed U {s}

if NOtPRUNH(s, I)

Open = OpenU REFINEMENTSs, L, B, H, E') — Closed

return REMOVE-BEST(Closed)

The original search algorithm by Muggleton (Muggleton, 3péutlined searches for sets of
literals from the bottom clause in a top-down manner, as showigure 2.3 on the left. A top-
down algorithm appears in Table 2.3. Search begins by lizitig the open list with the empty
clause,0. The top-down algorithm removes the best clause from tha @ipe As long as the
clause passes any pruning criteria, the algorithm refindg ia top-down search refinements are
legal extensions to the clause. Search repeatedly sefectsghest-scoring clause from the open
list and extends it. In this fashion search generates loagdrlonger clauses, and returns the
highest-scoring clause.

Exhaustive search of the space is intractable for even ratalgrsized bottom clauses. The
size of the search space grows exponentially with the sitleedbottom clause. Typically the user

provides some termination criteria such as a limit on the lmemof clauses searched or the amount
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Search Space
O

=p (O Y)E=-q(X))(:-r(X,Z)

:'p(X,Y), :'p(X;Y)p
q(Y) p(Y,Z)

Top-Down Search

RRR Search

Figure 2.3 Comparing top-down search to Rapid Random Restadial isearch. For clarity the
heads of rules are not shown. The rule circled in bold is tadisg location of each search.
Top-Down search can only add literals to the body of the rdléeARRR can both add literals and
remove them from the rule.

of time spent searching. In addition the user provides a lomithe length of rules that will be
considered. Another limitation arises because of memomngtraints which forces Aleph to limit
the size of the open list. Because of these limits there areuacagtees of finding the optimal
clause.

Work by Zelezry et al. (Zelezry et al., 2003) have shown that the runtime distribution of
a search is heavy-tailed. This means that there is a sigmifat@nce that search from a single
starting point in the search space will take much longer #hasrage to find satisfactory results.
They have introduced the Rapid Random Restart search stratéggph in order to reduce the
average runtime requirements. This search methodologgh@asn in Figure 2.3 on the right,

starts by selecting a random clause from the search lattidg@arforming a local search from this
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starting location. Search is terminated early, after somegifamount of time, and a new starting
location is used. This local search constructs the neigtlbases from the initial clause by adding
a single literal or removing a single literal from the initdause.

Further work Zelezry et al., 2004) has shown that on several datasets the “Cwtalfie (the
number of clauses examined before restarting) is importaebntrolling the average runtime
while maintaining good performance. Limiting the amountsearch around any single starting

point and having multiple starting points are the importantors in reducing the average runtime.

2.3 Ensemble Methods

Research over the past 15 years has shown an improvementlintmeaccuracy by using an
ensemble of classifiers over individual classifiers (Drétte 2000a; Opitz & Maclin, 1999; Bauer
& Kohavi, 1999). Ensembles consist of a set of individuakslfers where individual classifier
predictions are combined into a single prediction, oftengia weighted sum. Important consid-
erations when creating an ensemble are the individualifilr&spredictive accuracy and diversity
among the classifiers (Kuncheva & Whitaker, 2003; Opitz & $ikad996). Several different
methodologies are used to create a diverse, accurate selivatiual classifiers and combine them
into an ensemble.

The Bayes optimal classifier can be considered the ideal dils@tassifier (Russell & Norvig,
2002). It consists of every hypothesis, from the space of hypothese, Each hypothesis is
weighted by the probability that the hypothesis is the aimeodel given the data. This ensemble

is optimal in that any other classifier will be correct leseenf The label for a new example using
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the Bayes optimal classifier from the set of possible classg$at’, and having a training data set,
D,is
argmax

label = P P(h|D
wel = T 3 PCNP(ID)

For most real world problems the Bayes optimal classifier ia@table. Typically the space of
hypotheses is very large if not infinite. This means simalifieethods must be used.

Bagging (Breiman, 1996) is an ensemble approach that traiingdoal classifiers on varying
subsets of the data. Each subset is of the same size as thebtigining set; however, a subset
is created by sampling/ith replacemenfrom the original training set. This allows individual
examples to appear more than once or not at all in a given subsgi&vidual classifiers are biased
toward the subset on which they are trained, producing sityein the set of classifiers. The
ensemble is created by taking the majority vote of individi@ssifiers. In this sense bagging is a
type of model averaging over the set of hypotheses learnenhiiiyos, 2000).

Boosting algorithms such as AdaBoost (Freund & Schapire, 1@@6another popular ensem-
ble approach. Individual classifiers are trained to overdhe misclassifications of previously
learned classifiers. Weights are assigned to examples itrdlmeng set. Individual classifiers
are trained on the weighted examples. After an individuassifier is trained the weights are
updated so that correctly classified examples are downhtegigand misclassified examples are
up-weighted. This increases the importance of miscladseéi@mples so future classifiers focus
more attention on these examples. Boosting has been appliedrty domains including the rela-

tional domain (Quinlan, 2001) where the goal is to discokierrelationship between entities. One
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drawback of the boosting approach arises when working wiikyndata. Boosting focuses suc-
cessive learners on the noisy examples and classificatidorpmnce suffers (Dietterich, 2000b).

Other boosting algorithms have been designed both to over@mme of the shortcomings
of AdaBoost and to improve boosting’s performance. BrownBbesidles noisy data by down-
weighting examples that are consistently misclassifieeufd, 2001; McDonald et al., 2003).
LPBoost updates weights on all classifiers learned so farkm iteto account the new classifier
being added to the ensemble (Demiriz et al., 2002). RankBoastdesigned to minimize mis-
orderings in an ordered list (Freund et al., 1998). RankBoastaiso been shown to maximize

AUROC for two-class problems (Cortes & Mohri, 2003).

2.4 Modeling Search Space

ILP’s objective function requires evaluating each solutica clause — against every example in
the training set. This is a costly operation. Objective tiorts are functions which guide the search
process. The goal is to find the highest (or lowest) value isfahject function. One approach to
reduce reliance upon the objective function, when workiitty wiultiple related learning tasks, is
to learn a bias over the hypothesis space to more quicklpaesa hypothesis that performs well
over all tasks (Baxter, 2000; Caruana, 1993). The bias inessth® likelihood of selecting some
hypotheses and decreases the likelihood of selectingthiris bias forces the area searched
to a subset of the total search space. As part of my thesismhierausing a probabilistic model,
Bayesian networks, to place a probability distribution diersearch space in order to guide search

to promising areas of the search space. When working withggesi@arning task, using a model to
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Step 1: Sample True Function Uniformly

Objective Function

Step 2: Build Model from Sample

g1/ /Ei\
g7\ [ ™) =
S\ % -8
= N~ £
Search Space / Search Space
Step 3: Optimize model to find Step 3: Sample according to
new distribution

new sample point

Figure 2.4 Two ways of modeling the objective function over search space.

direct search can reduce the number of times an expenssertpute objective function needs to
be evaluated. This technique has shown promise in a numigEmadins. Typically two different
types of models have been used, regression models and )emeradels. Figure 2.4 shows both
of these two model types being built from a coarse samplirdpatd points across search space.
A regression modedstimates the conditional expected value of one varigblgyen the value
of some other variable;. Variabley in this case is the objective function’s value and variabig
the search space. Regression modeling attempts to fit aleafata points from the sample. The

model then predicts the objective function’s value for n@ins in search space.
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A generative modeéstimates the joint probability(z, y), for the search space, and the
class,y. Often, one need only model the “positive” class if the modél be used to create
new examples. The “positive” class represents solutioasdahe above some cut-off value. One
then uses the generative model to create new solutions fnensearch space according to its
distribution. One advantage of generative models is thd fexdewer training examples to achieve
asymptotic performance. Ng and Jordan (2001) have showigdémerative models typically need
on the order ofog(N') examples wheré/ is the number of free parameters of the model, compared

to discriminative classifiers which need on the ordeNoéxamples.

Regression Models of the Optimization Function over Search@ce

To build a regression model, one needs a sampling of the tolgdanction at several locations
in the search space. Several different types of regressiateis have been fit to the sample data in
the literature including neural networks (DiMaio & Shayl#004), linear and quadratic regression
models (Boyan & Moore, 1998), and kernel regression modake(i§ & Stamatopoulos, 2001).
Once the model has been fit one can use it as a surrogate oftimézagion function during search.
Several valuable properties of some types of regressiorelmoaake them ideal surrogates for the
optimization function such as having a fast evaluation tane being able to easily find the global

optimum. Typically, when using a regression model to disserch the following steps repeat:

1. Find the optimal solution of the regression model.
2. Evaluate that solution on the true objective function.

3. Modify the regression model to incorporate this new daiatp
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DiMaio and Shavlik (2004) have designed a neural networkghedicts a rule’s score in ILP.
They use their model to modify the Rapid-Random-Restart sedgchithm Zelezry et al., 2003).
They select a random initial starting clause, perform sastih gradient ascent using the model,
and use the ending clause as the true “random restart” claussy trained their model using a
subset of previous rules explored, keeping a cache of highrgy rules and rules that had most
recently been evaluated. They show improvement in two @ethiatasets evaluated.

The STAGE algorithm learns an evaluation function that mtsdhe outcome of some type
of local search, such as hill-climbing or simulated anmgpliBoyan & Moore, 2000; Boyan &
Moore, 1998). They used simple linear or quadratic regoessiodels. These type of models
extrapolate trends seen in training data. This benefits EBgfinding a good starting solution
that scores well using their predictive model. They alsamfbthat using all states along a trajectory
— from some initial starting location to the final outcome -A&kted their algorithm, despite the
correlation among examples on the trajectory. Their algoriiterates between optimizing on
real data and optimizing on the learned model. They showorgmnent over several local search
algorithms in several domains, including bin-packing, refe routing, and Bayesian-network-
structure finding.

Telelis and Stamatopoulos (2001; 2002) use a kernel-reigresnodel to guide search. In
contrast to the previously discussed approaches that witlhhkcamplete solutions, this work uses
a constructive approach. They construct a solution, getiamiables’ values one at a time, until
they obtain a complete solution. The kernel regression irtbdethey use estimates the objective

function’s value for partial solutions. At each step of doamstion of the partial solution, they
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Figure 2.5 Demonstration of a Kriging surface fit to the samgata, with the statistical upper
bound of the standard error of the model. The new sample goihée one that maximizes the
model plus the standard error.

consider each possible extension and select the extemgibhds the highest score on the kernel-
regression model.

Another approach by Jones (2001) goes beyond selectioraals@oints via maximizing a
regression model. Jones discusses selection of new seairdls py several methods including
maximizing a statistical upper bound of the model, maxingzihe probability of improvement,
and maximizing the expected improvement. Each of theseadstiely upon using an interpolated
model known as a Kriging response surface (Sacks et al.,)188@ing has a statistical interpre-
tation which provides a way to construct an estimate of therg@l error in the model. Figure 2.5
shows a function to be optimized, the Kriging model fit to a plang of points, and a statistical
upper bound of the model. Jones maximizes the upper bound asnulti-restart method and the

maximum of that curve is the new sample point.
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Generative Models for Good Areas of Search Space

In contrast to regression models which predict the scoresofigtion, generative models create
new data points in the search space which are similar to pgsidtoring solutions. One still uses
the original objective function to evaluate a solution the generative model selects which areas
of the search space will be explored. This approach appedigire 2.4 on the right.

Simple Genetic Algorithms (SGAS) (Holland, 1975) can bemad as anmplicit model of
the search space. After the SGAS’ population has beenlinéd the algorithm repeats two main

steps until the termination criteria are met:

1. Select a high-scoring subset of the population.

2. Generate a new population via recombination and mutation.

Selection focuses the model on high-scoring areas of thelsspace, while recombination
and mutation provide means of exploring more thoroughlyadothose high-scoring solutions.
Designing effective recombination operators is difficuitiaypically requires customization to a
specific domain (Michalewicz & Fogel, 2004). The challergy®ipreserve parameters of a parent
thattogetherare responsible for its high score (Holland, 2000). Moreliekgenerative models
have grown out of genetic algorithm theory with the underdiiag that by explicitly representing
the model of the search space, the model can be designedserygeaspects that are important
for improved performance. These methods follow similaoatgmic steps as SGAs, with the

addition of training the model to the data, namely:

1. Generate a new population via the model.
2. Select a high-scoring subset of the population.

3. Fit the model to the subset.
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Table 2.4 Probability distribution for two different popitions. Despite having very different
populations the probability vectors are the same. Becauseeahdependence assumption, PBIL
has no means to distinguish between these two cases.
Population #1 | Population #2

0011 1010
1100 0101
1100 1010
0011 0101

Representation Representation
0.5,0.5,0.5,0.5| 0.5,0.5,0.5,0.5

The variations among the different generative methods axslyncentered around their theo-
retical underpinnings and the complexity of the model useaddition, smaller variation can be
seen in which portion of the sample is used to update the natehow the model is fit to the
data.

The population-based incremental learning (PBIL) algamittBaluja, 1994; Baluja, 1996;
Baluja & Caruana, 1995) is one of the first and simplest. The iedefixed-length probability
vector. Each position in the vector is the probability theg torresponding position in a solution
vector will be set tal. Individual solutions are stochastically created frons ghiobability vector.
The highest-scoring individuahigh, from each generation updates the probability vector. Each

position,, of the probability vector is updated Ihygh using the equation

probability; = (1 — LR) x probability; + LR x high,;

whereL R is the learning rate. The idea is to take a small step in thextian of the best solution
from each population. This slows convergence, allowingdoough time to find the highest-

scoring area of search space. Because PBIL assumes indeperatanng the positions of a
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Q \O b / \O b / \O
Figure 2.6 Graphical structure for generative models thaivgairwise interactions between
variables. The chain structure on the left is used in MIMIE Bbnet et al., 1997). The middle is

a tree structure used in COMIT (Baluja & Davies, 1997). Thetrigla forest structure used in
BMDA (Pelikan & Muhlenbein, 1999).

solution it is unable to distinguish between some very diffie populations. PBIL's model is
too simple to capture complex domains. Even the simple @ojoms shown in Table 2.4 would
produce the same probability vector because the model haetiod of correlating variables.

Despite PBIL's weaknesses with correlated variables, ibis & outperform SGAs on many
domains. Generative models in general have been shownperbatm SGAs on many problems
from the genetic algorithm community (Wright et al., 2004&v&ral models have been built that
allow for a single parent of each variable. MIMIC (de Bonet kt 4997) uses a heuristic to
build a chain linking the variables together. COMIT (Baluja &\Wes, 1997) uses the maximal-
branching algorithm which guarantees finding the optinmes wf variables, and BMDA (Pelikan
& M iihlenbein, 1999) greedily searches for a forest of treesmoect the variables. All of these
methods allow for some dependencies between the variatitesBMDA being the most general.
Figure 2.6 shows the structure of these models.

The most general algorithms allow for dependencies amdngpalbles. As such they are
more costly algorithms and have no guarantee of finding thienapsolution. The Bayesian Opti-

mization Algorithm (BOA) (Pelikan et al., 1999) uses the Bagednformation Content (BIC) to
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Figure 2.7 Graphical structure for generative models thatvanultivariate interactions. The
figure on the left is a Bayesian network created by BOA (Pelikal.£1999). The right figure is
a clustering of variables created by ECGA (Harik, 1999).

guide search of possible Bayesian networks that fit the sahtadea. ECGA (Harik, 1999) finds
sets of variables that are correlated together. Each oétakprithms has shown an improve-
ment over SGAs on domains where the variables are intezceldthe graphical structure of these
algorithms is shown in Figure 2.7.

Rubinstein’s cross-entropy (CE) algorithm (Rubinstein, 19R8binstein & Kroese, 2004)
comes from the rare-event modeling domain. It uses a teahrigown asmportance sampling
(Denny, 2001). Importance sampling shifts sampling to tgbér-scoring areas of the search space
using prior knowledge. Importance sampling weights thegarto maintain an unbiased model.
CE assumes no prior knowledge to modify sampling. It begingrifprmly sampling. The sample
is sorted and the highegtpercentile is selected. This upper percentile is usedito & generative,
probabilistic model. After training, a new sample is getedlausing the model and the process
repeats. Since the model is trained using the uppeercentile, successive iterations converge
on high scoring areas. The algorithm terminates when thaffdor the upperp-percentile is the

same in successive iterations. CE has been modified to pepimitmcombinatorial and continuous
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optimization (de Boer et al., 2005), and work has been doneaweghe asymptotic convergence

of the CE algorithm to the optimal solution (Margolin, 2005).

Incorporating Probabilistic Models into ILP’s Search Process

When probabilistic models are incorporated into the seamtgss the portion of space searched
can be reduced while maintaining a high quality solutiorepXl is a commonly used ILP method
for discriminative learning that suffers from a large séaspace. Aleph imposes bounds on the
size of the search space by using a positive seed exampleaturdtig it to create the bottom
clause. Legal subsets of literals are evaluated using atig function. Probabilistic models
can help reduce the number of evaluations on actual dataibg asmodel to help guide search
(Boyan & Moore, 2000; Boyan & Moore, 1998). Successful use obpbilistic models has been
shown to produce more accurate solutions in many domainsdsing search on areas that are
more likely to contain high-scoring solutions.

| claim that incorporating probabilistic models into Alewfil reduce the number of evaluations
of the objective function on training data and will signifitly decrease the time necessary to find
accurate solutions. In chapter 5, | report on incorporating of these probabilistic models, a
Bayesian network, to predict which areas of ILP’s searchepae more likely to contain high-
scoring rules. In this chapter | have included an overviewdxditional probabilistic models that
have been used to reduce the amount of hypothesis spaces tbedirched while maintaining a
high-scoring final solution. These other methods which leh@viewed are promising avenues to

explore in future work.
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Chapter 3

Data Sets

In my work | have focused on data sets with a large skew betwieemumber of positive
examples and the number of negative examples. Table 3.1ssbmmve basic summary statistics
for the data sets that | use throughout this thesis. Notiedatge variation between the number
of positive and the number of negative examples. Two of tha sets come from the biomedical
information-extraction domain, two come from the medidagnosis domain, and one comes
from the social-interactions domain. In this chapter | exphow these data sets were gathered
and annotated.

Table 3.1 Descriptions of the data sets used in this thesituded are the relation, number of

positive and negative examples, the number of folds usadglaross validation, and the ratio of
negatives to positives.

Data Set Relation Learned Positives| Negatives| Folds | Skew
Protein Localization| proteinlocation(P,L,S) 1,773 279,154 5|157:1
Genetic Disorder | genedisease(G,D,S) 233| 103,959 5| 446:1
Mammography 1 is_malignant(A) 510 61,709 10| 1212
Mammaography 2 is_malignant(A) 351 30,054 10| 86:1
Advisor advisedby(S,A) 113 2,711 5| 231
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...\We show that the yeast frataxin homologue, which we
have namedFH1, localizes tamitochondria and is
required to maintain mitochondrial DNA...

Figure 3.1 Example sentence from an abstract in the prateadization domain. The words in
bold font are those appearing in the relation.

3.1 Information-Extraction Data Sets

| utilize several data sets from the information-extract{tE) domain (Mooney & Bunescu,
2005). IE is the process of gathering structured infornmatrom non-structured text. The data
sets that | use consist of abstracts from journal articldge Joal in these information extraction
tasks is to find specific relationships between entitiesarathstract. For example, Figure 3.1 shows
a sentence from an abstract in the protein-localizatioa dat. Here the objective is to find the
protein and where the protein localizes in the cell. Theti@hghip in this sentence is between the
proteinYFH1and the locatiomitochondria Each data set has a specific relationship to be found,
so different types of background knowledge will be utiliZedeach task. First | will explain the
background knowledge used for these tasks. Then | will éxpfdiormation specific to each data

set.
3.1.1 Background Knowledge

| have incorporated information about several differepeass of the IE task. Syntactic knowl-
edge incorporates information about the sentence steidiwrphologic knowledge deals with the
internal structure of individual words. Semantic knowledigcorporates information from several

dictionaries and ontologies to better identify specifidgteagt in the sentence. Statistical knowledge
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deals with frequency of words across the entire trainingo$etbstracts as well as information
about some simple statistics of a sentence. Finally, | hateefled the information so that less

search needs to be performed to discover important features

3.1.1.1 Syntactic Knowledge

Each data set begins as a set of abstracts annotated withificspgationship between entities
to be learned. First, | submit each sentence from each ab&irasyntax parser. | use the Sundance
sentence parser of Riloff and Phillips (Riloff & Phillips, 200 perform a shallow parse of each
sentence. Each sentence is divided into phrases with eaabgannotated with its type such as
noun phrase, verb phrase, etc. In addition, Sundance das@&ach word with its part of speech.
Figure 3.2 shows a sentence fragment divided into phragésphrase types and part of speech
information along with additional annotations. | convdrbéthis information to Prolog (Clocksin
& Mellish, 2003) syntax and add it to the background knowkdg

Additional predicates are created to connect the hieraatlsentence structure created by the
parser. A sentence contains phrases and a phrase contais wo addition there is an order
to the phrases in a sentence and the words in a phrase. | predieates such asord nextand
word_previousas well aphrasenextandphraseprevious | also create predicates for larger jumps
in the hierarchical structure. Predicgtkraseafter and predicat@hrasebeforeare true for any
phrase after a given phrase or before a given phrase.

At this point | change the task slightly. Instead of tryingidentify the relationship between
exact words in the sentence | change the task to identifyelaéionship between the phrases that

contain those words. This changes the task to a well develspeervised learning task. Positive
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NP VP NP VP PP NP

Iwe Ihave named | YFHL ]localizes Jto | mitochondria

-

Novel Word
Stat Sig. ‘between’ word
Gene Ontology

Alphanumeric
Capitalized
Novel Word

On-Line Medical Dictionary
Stat Sig. ‘location’ word

Figure 3.2 An annotated sentence fragment divided intog@staAnnotations include phrase
types, part-of-speech information, novel words, cag&iwords, alphanumeric words, words
appearing in different dictionaries, and statisticallyrsficant words that appear more frequently
in positive sentences than in negative ones. See text fati@ual explanation of annotations.

examples are the phrase pairs for which the relationshiués tNegative examples consist of all
other phrase pairs in a sentence. An average sentencertogtad phrases will have 100 phrase
pairs. If just one of these phrase pairs is the correct meldahien there are 99 negative pairs, hence
the large positive:negative skew.

Knowing which phrases are involved in the relationshipvaidor additional predicates that
relate the remaining phrases to the phrases in a relatjpnghe predicatén_betweenboth target
_phrasesis true for all phrases which occur between the two targeas#s in a relationship.
Likewise, beforeboth target phrasesand after_both target phrasesare true for the correspond-

ing phrases in the sentence.
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3.1.1.2 Morphologic Knowledge

There are several morphological features that | felt woeld$eful in these IE tasks. Morphol-
ogy deals with the form that a word can take. | use the Poréenister (Porter, 1980) to take the
stem of the words in order to reduce the noise due to diffes@ntl endings. | identify words that
are capitalized or contain hyphens or are alphanumericsd ahnotate words that appear in the
title of the abstract and words that contain only a singleattar. Each of these annotations occur

at the word level. Later | transfer this information up to gfease level.

3.1.1.3 Semantic Knowledge

One advantage that ILP has over other learning models is lilikyao incorporate many
sources of information and use them to improve predictivéop@mance for the given task. There
exist many public domain ontologies and dictionaries wlaoh directly related to the entities in
the relationships found in my data sets. If a word in a se@ppears in one of these resources
| annotate the word in the sentence. A listing of the ont@egind dictionaries which | have used

appears in Table 3.2 along with information about thoseuess.

3.1.1.4 Statistical Knowledge

One final area of domain knowledge considers the frequeneyoodls appearing in positive
examples compared to words appearing in negative exambhasld dictionaries of words that
appear 2, 5, and 10 times more frequently in phrases of a@taganship compared to all other

phrases. These frequently occurring words are calculatdabth of the entities in the relationship
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Table 3.2 Ontologies and lexicons used in annotating thernmétion extraction data sets.
| Resource Description |

UNIX dictionary The standard UNIX dictionary found in /usr/dict/words.
Words not appearing in this are marked with
thenovelwordpredicate.

MeSH The Medical Subject Headings controlled vocabulary thesau
is found at http://www.nIm.nih.gov/mesh/meshhome.htinl.
contains a hierarchically structured medical lexicon afirey
levels of specificity. | utilize several categories of wotlat
pertain to the entities in each of the data sets.

On-Line Medical Dictionary] The dictionary consists of terms related to science and civedi
It can be found at http://www.mondofacto.com/dictionary/

| use the cell biology portion under the medical heading.
Gene Ontology The Gene Ontology consists of three structured controlled
vocabularies that describe gene products. It can be found at
http://www.geneontology.org/. | use the cellular compuse
portion of the ontology.

individually as well as for words that appear more frequebttween, before, or after the two
entities. | then use these dictionaries to annotate all svorthe abstracts.

Whenbuilding these frequency dictionaries | use only the informatiorhm ¢urrent training
data in order to maintain a clear separation between trdimrse test set. Wheunsing these
dictionaries | mark both the training set and test set withdictionary words. This means | build

a separate set of frequency dictionaries for each fold ofittia sets.

3.1.1.5 Flattening the Knowledge

ILP searches through the predicates in the background lealgglto find predictive rules. ILP
adds one predicate at a time to a growing rule. Because ol ltiisyill not be able to distinguish
between predicates that have no value in improving a rutediptive performance from predicates

that are helpful but not until additional literals are add®thny of the more predictive predicates
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are found at the word level and several other predicatesdvtegd to be added before discovering
these more predictive predicates. To reduce this probleedigates have been added that allow
for direct addition of more distant information in the serde.

For example, predicates have been created that bring iatamfrom the words in a phrase
to the phrase itself. Predicates suctphgasecontainssomealphanumericandphrasecontains
someall_cap word bring information from the word level to the phrase levetjuiing fewer pred-
icate additions to a rule for predictive improvement. Tkisiimeans of making the data set more
propositional while still utilizing the advantages of ILFedicates were also created for lifting the
words in a phrase up to the phrase level. Predicates suphrasecontainsspecificword pair
andphrasecontainsspecificword.triple allow for the addition of several words at the same time.
The goal when creating these types of predicates is to lifhash relevant information to the

phrase level as possible.

3.1.2 Protein Localization Data Set

The protein-localization data set originally comes from Ragl Craven (Ray & Craven, 2001).
They gathered MEDLINE abstracts that contained occurrences of proteins and vihese pro-
teins localize in the cell. The list of proteins and theirdbzations were taken from the Yeast
Protein Database (Hodges et al., 1997). They mark all oenuoes of relations found in a sentence
using a computer algorithm. Their algorithm performed oaably well but they estimated it still

had a noise level of between 10% and 15%.

LA fact sheet explaining the MEDLINE database can be founttpt/lwww.nlm.nih.gov/pubs/factsheets/medline.html.
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Because of the noise level, Soumya Ray, Mark Goadrich andtedt@ehand-annotated version
of the data set. Annotations were made for each protein add eallular location. We also
annotated relationships between these two entities. Retaivere divided int€lear, Ambiguous
andCo-occurrenceOnly theClear relations were used as positive examples, with all othezd us
as negatives.

In order to reduce the positive:negative skew we filteredititaset through two different filters.
First, proteins and cellular locations are nouns and shapfzear in noun phrases. All relations
where the entities were not noun phrases were discardedurffef reduce the positive:negative
skew we randomly sub-sample the negatives, retaining oneH of the negative examples for
the training set. The test set retains all examples andiyp®sélations that were discarded due to
filtering are counted as being misclassified.

The data was divided at the abstract level into 5 folds. Aditiens in the abstracts of a fold are
the postive and negative examples for that fold. For eacésevalidation run one fold is used as
the test set, three are used as the training set, and onedigsislee tuning set. The hand-marked
data set can be downloaded at ftp://ftp.cs.wisc.edu/mael@arning/shavlik-group/datasets/IE-

protein-location.

3.1.3 Genetic Disorder Data Set

The genetic disorder data set also comes from Ray and Crave&(Regven, 2001). The task
is to correctly label pairs of phrases as in the protein{lpaaon data set. However, the relationship
for this data set is to correctly pair disorders with genes #iie associated with the disorder. The

list of gene-disorder pairs comes from the Online Mendélderitance in Man (OMIM) dataset
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(McKusick-Nathans Institute of Genetic Medicine, Johngkas University and National Center
for Biotechnology Information, National Library of Median 2001) and the abstracts that are
marked come from MEDLINE. | use the computer-marked data lsawever due to hardware
limitations | sub-sample 25% of the abstracts to reduce theuat of data. This reduced data
set contains 233 positive relations and 103,959 negatlatiors. In other respects this data set
is similar to the Protein Localization data set. The abstréalow the same process of parsing
and addition of background knowledge selecting approprittionaries for the entities in the

relationship. Folds are created and used in the same masirettee protein-localization data set.

3.2 Mammography Data Sets

A second group of data sets comes from radiology and the @ledii@gnosis domain. One of
the key responsibilities of a radiologist is to analyze masgrams and identify possible malignant
findings. Radiologists use the BI-RADS lexicon to describerthadings (American College
of Radiology, 2003). The lexicon also provides means for thalogist to summarize their
recommendations. In addition to the information from themmagram, the technician reports
patient risk-factor information that may be helpful in pietohg breast cancer. The task is to
correctly identify a finding on a mammogram as malignant andpe given information from the
BI-RADS descriptors, the patient risk factors, any historg gatient may have from previous
mammograms, and information about any other findings ondgheesmammogram. | will briefly

explain the BI-RADS lexicon and the demographic informatisediin these data sets.
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3.2.1 Mammography Background Knowledge

The Breast Imaging Reporting and Data System (BI-RADS) (Amer@@allege of Radiology,

2003) of the American College of Radiology contains a lexiammdiescribing findings on a mam-
mogram. The lexicon is organized in a hierarchical strictdrhe main categories are shown in
Table 3.3 with brief descriptions. The lexicon contains tltof 43 descriptors for describing
characteristics of a finding on a mammogram that fall into oindnese main headings. The lexi-
con also has BI-RADS assessment categories for the radibtoggesmmarize their findings. The
descriptors that are relevant to the predictive task haes loenverted to ILP predicates. Table

3.4 shows a list of the converted BI-RADS descriptors and thessible values used in my ILP

system.

Table 3.3 Main BI-RADS categories for describing findings onaammogram.

| BI-RADS Terminology

Description |

Mass

Calcification

Architectural
Distortion

A ‘Mass’ is a space-occupying lesion seen in two different
projections. Important characteristics include the nregsize,
shape, and density.

Calcifications are commonly found on a mammogram. When
found in conjunction with a mass they provide additional
information about the mass. Calcifications are described
according to their size, shape, number, and how they are
distributed. Calcifications are classified as typically

benign, intermediate concern, or higher probability of
malignancy.

The typical architecture of the breast is distorted with rsible
mass. The category contains special cases and associakiadsir

In addition to the descriptors from findings on a mammograiormation about the patient is

recorded. Previous research has identified factors thatoarelated to an increased risk of breast
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cancer. Models such as the Gail model (Gail et al., 1989) demtified several factors which
increase a woman'’s likelihood of developing breast carsteat) as family history of breast cancer
and age at menarche. Additional research has identified a#ilefactors (Longnecker, 1994,
Rosner et al., 1994). The data sets | use include risk fadtatswere recorded by a technician and
that were deemed relevant by an expert radiologist, EltraBarnside. Table 3.4 also lists these
features.

Finally, two additional predicates are created to consaeatient’s history and other find-
ings on the same mammogram. If a patient has had multiple nogmams, observations on
previous mammograms may influence the likelihood of maliggaor a finding on the current
mammogram. The same may be true between findings on the sameogram. Predicates
previousstudyand samestudywere created so clauses could learn these types of relatiaors
example, an important indicator of malignancy is when a nag®ases in size from one mam-

mogram to another. Rules can use pineviousstudypredicate to find such relationships.

3.2.2 Mammmography Data Set 1

This data set is described in detail by Burnsateal. (2009). All screening and diagnostic
mammograms between April 5th, 1999 and February 9th, 2004 ealected from the Froedtert
and Medical College of Wisconsin Breast Imagining Center. Altot 18,270 patients were exam-
ined, collecting a total of 47,669 mammograms. All findingstlee mammograms were matched
with the Wisconsin Cancer Reporting System (WCRS). A finding wassidered malignant if
there was a registry match within 365 days after the mamnmognaif a biopsy was performed

and cancer was discovered. All other findings are considezadyn.
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Table 3.4 BI-RADS descriptors and patient risk factors useétlémrmammography data sets.

Descriptor

| Descriptor Values

Age

Hormone Therapy
Personal History of Breast Canc
Family History of Breast Cancer
Prior Surgery

PostOp Change
Reason For Mammogram
Breast Density

Mass Shape

Mass Stability

Mass Margins

Mass Density

Mass Size>

Lymph Node
Asymmetric Density
Skin Thickening
Tubular Density

Skin Retraction
Nipple Retraction
Trabecular Thickening
Skin Lesion

Axillary Adenopathy
Architectural distortion
CaSuture
CalcPopcorn

Calc Milk
CalcRodLike

Calc Eggshell

Calc Dystrophic

Calc Lucent

Calc Dermal
CalcRound

Calc Punctate

Calc Amorphous

Calc Pleomorphic
CalcFineLinear
BI-RADS category

< 45, 45-50, 51-54, 55-60, 61-6%, 65

None, Less than 5 years, More than 5 years
eNo, Yes

None, Minor, Strong

No, Yes

Not Reported, pOC

Screening, Diagnostic

Class 1, Class 2, Class 3, Class 4

Oval, Round, Lobular, Irregular, Cannot discern
Decreasing, Stable , Increasing, Cannot discern
Circumscribed, lll-defined, Microlobulated, Spiculat€@hnnot discern
Fat, Low, Equal, High, Cannot discern

in millimeters

Present, Not Present

Present, Not Present

Present, Not Present

Present, Not Present

Present, Not Present

Present, Not Present

Present, Not Present

Present, Not Present

Present, Not Present

Present, Not Present

Not Reported, Not Present

Present, Not Present

Present, Not Present

Present, Not Present

Present, Not Present

Present, Not Present

Present, Not Present

Present, Not Present

Scattered, Regional, Clustered, Segmental, Linearductal
Scattered, Regional, Clustered, Segmental, Linearductal
Scattered, Regional, Clustered, Segmental, Linearductal
Scattered, Regional, Clustered, Segmental, Linearductal
Scattered, Regional, Clustered, Segmental, Linearductal
0,1,2,3,4,5
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3.2.3 Mammography Data Set 2

A second data set comes from the University of Wisconsin Halsgnd Clinic’s radiology de-
partment. This second mammography data set is a work inggegNew mammograms continue
to be added. The snapshot of the data that | discuss hereroatiamammograms between Octo-
ber 1, 2005 and March 31, 2008. A total of 18,375 patients wraenined. For this version of the
data set no matching has yet been done with the WCRS. Malighaasyetermined via biopsy.
Findings that were not biopsied are considered benign.

The raw data set has more features describing the patietharficidings on the mammogram.
There is also less noise and blank values in the feature siakeer this version of the data set |
used the same code that was created for the first data setwerttre data to a fixed format. The
code was created by Yue Pan, Zhiyu Liu, Jag Chhatwal, and Juxgar. This code reduced the
raw data to contain the same features as the first mammogdapayset. | do this so that models

trained on one data set can be validated on the second.

3.3 Advisor Data Set

The final data set that | will be using throughout this thesimes from the University of
Washington (Richardson & Domingos, 2006). The objectivehia tlata set is to predict who the
advisor is for each graduate student. Background knowledg&ins information about who are
students and who are professors. It also contains infoomafbout courses taught and by whom.
Relations also exist for who has written papers with whom. W/thils is a smaller data set in the

number of examples there remains a reasonably-sized skewasitive to 24 negatives.
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Chapter 4

Gleaning Ensembles of First-Order Rules

This chapter contains joint work with Mark Goadrich. The tworiginally appeared in Goad-
rich et al. (2006) and Goadrich et al. (2004), which receibexibest student paper award for the
Inductive Logic Programming ConferenceEnhe chapter presents the Gleaner algorithm for quickly

learning an ensemble model to maximize performance onlseatision curves.

4.1 Our Algorithm: Gleaner

In order to rapidly produce good recall-precision curves,have developed Gleaner, a two-
stage algorithm to (1) learn a broad spectrum of clausesgntbmbine them into a thresholded
theory aimed at maximizing precision for a particular cleca¢ recall. Pseudo-code for our algo-
rithm appears in Table 4.1. gleaneris one who gathers grain left behind by reapers. We call our
algorithm Gleaner because it sifts through rules discabyea standard heuristic search and uses
some of them to form its theories. Our Gleaner algorithmentty uses Aleph as its underlying
engine for generating rules.

After initialization, the first stage of Gleaner learns aggpectrum of rules, illustrated in Fig-
ure 4.1. We use Aleph to search for rules usiigeed examples to encourage diversity. In our ex-

periments that appear in Section 4.3, the recall dimensianiformly divided intoB equally-sized
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Table 4.1 The Gleaner algorithm.

Initialize Bins:
CreateB recall bins,bz'n%, bin%, ..., biny, to uniformly divide the recall range [0,1]

Populate Bins:
Fori = 1to K (can be in parallel)
Pick a seed example to generate the bottom clause
Use Randomized Local Search to find rules
After each generation of a new rute
Find the recalbin, for ¢ on the training set
If the Precision x Recall of ¢ is best yet for seedin bin,
Storec in bin, and discard old best rule of seeth bin,
Until N rules are generated

Determine Bin Threshold:

For eachbin;
Find theory frombin,,, andL,, € [1, K] with highest precision on tune set such that
recall of “At leastL,,, of K rules match examplest recall forbin;

Evaluate on Test set:
Find precision and recall of test set using each bin’s “adtleaof K” decision process

bins, for example|0, 0.05], [0.05,0.10], ..., [0.95,1]. The number of bins is somewhat arbitrary,
however enough bins must be created in order have a widdiselet rules while not creating so
many bins that the majority of them would have few rules fathim them. In our experiments
we thought that 20 bins was a reasonable number of bins. brs=ed, we consider up 19
possible rules using stochastic local-search methodsq8o8tutzle, 2004). As these rules are
generated, we compute the recall of each rule and determtimgvhich bin the rule falls. Each bin
keeps track of the best rule appearing in its bin for the cuirseed. We use the heuristic function

precisionx recall to determine the best rule within a bin. At the end of this searocess, there
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Figure 4.1 A hypothetical run of Gleaner for one seed and 26 bn the training set, showing

each considered rule as a small circle, and each bin’s chrakeas a large circle. This is repeated

for K seeds to gatheés x K rules (assuming a rule is found that falls into each bin faheseed).

will be B rules collected for each seed aiidseed examples for a total &f x K rules (assuming

arule is found that falls into each bin for each seed).

To perform stochastic local search, we considered the fanch methods: Stochastic Clause

Selection (SCS) (Srinivasan, 1999), GSAT and WalkSAT (P2g@0), and Rapid Random Restart

(RRR) elezry et al., 2003). We found that GSAT and WalkSAT make more “lipimioves in the

search space (i.e., removing predicates from the rule) RRR, and due to the internal workings
of Aleph, adding predicates to a rule is much more efficieahttemoving them. In our testbeds,

RRR both takes less time and produces higher quality rulesttigaother methods, and | will use

it as Gleaner’'s search method for the remainder of my thesis.
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Figure 4.2 Twenty complete recall-precision curves, onmfeach Gleaner bin, evaluated on
fold 1 of our protein-localization data set.

The second stage takes place once all the rules have beesraghilsing random search.
Gleaner combines the rules in each bin to create one largehbided theory, of the form “At
leastL of theseK rules must cover an example in order to classify it as a pesitEach of these
learned theories could generate their own recall-pretisioves, by exploring all possible values
for L, as shown in Figure 4.2. These curves will overlap in theialleand precision results, and
we would like to save the highest points along this combinede; irrespective of the bin which
generated the points. Hence, for each bin we record theytlaewt threshold. which generated
the highest points in that bin on the tuning set. With thisve now evaluate our saved thresholded
theory on the test set and record the precision and recaliw¥end up with B recall-precision
points, one generated by each bin, that hopefully broadiy $pe recall-precision curve. | note

here that the use of bins during this tuning phase is someavbétary. Another approach would
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find the upper convex hull of these curves and utilize all fgoatong this convex hull as the final
set of models for evaluation on the testing set.

A unique aspect of Gleaner is that each point in the recaltipion curve might be generated
by a separate thresholded theory. This is opposed to thd setup to create a curve, where
one standard theory is transformed into many by ranking taenples and then finding different
thresholds of classification. Our separate-theory methadlated to using the ROC convex hull
created from separate classifiers (Fawcett, 2003). Weueelising separate theories is a strength
of our Gleaner approach, such that each theory, and therefeh point on our curves, is not
hindered by the mistakes of previous points; each theorgtadly independent of the others. In
addition since the final result for any point is a single setubés, the set is smaller and more
interpretable.

An end-user of Gleaner will be able to choose their prefeoerating point from this recall-
precision curve as a function of how they weight false pessticompared to false negatives. Our
algorithm will then be used to generate test set classificatising the closest bin to their desired
recall results along with our found threshdldIf necessary, we can produce a confidence score for
each example by using the number of rules that cover this pbeawithin our selected bin. For this
reason, we have performed macro-averaging (Lewis, 199dyofesults to calculate the AURPC,

where the AURPC is first calculated for each fold and then @extdo produce one value.
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4.2 Experimental Controls

Our main experimental control for this work is Aleph enseasbdiscussed below. In addition
we compare to weighting methods of what we call Single-Thdtmsembles, as well as ive

Bayes and Structural HMMs.

4.2.1 Aleph Ensembles

We investigate here the “random seeds” approach for cgea&tisembles from Dutra et al.
(2002). This approach, shown to have essentially equivpledictive accuracy as bagging (Breiman,
1996), produces diversity in its learned models by stamsagh run of its underlying ILP system
with a different random seed example. We compare our Glesgm@oach (described in Section
4.1) to this method of using “random seeds” ensembles intAl&pthis experimental control, we
call Aleph N times and have it creat®¥ theories (i.e., sets of rules that cover most of the positive
training examples and few of the negative ones). To creagzallfprecision curve from these
N theories, we simply classify an example as positive if astiéa of the theories classify it as
positive; varyingK from 1 to N produces a family of ensembles, and each of these ensembles
produces a point on a recall-precision curve.

As discussed earlier, Aleph is a very flexible ILP system aithide variety of learning param-
eters available for modification. We use the train and testaefold 1 of our protein-localization
data set to choose good parameter settings (since thisexpleeimental control against which we

compare our Gleaner algorithm, it is “fair” to use the testse¢une Aleph’s parameters). We limit
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the number of rules considered to 100 thousand per seedssexteand we also limit the num-
ber of reductions to 100 million (using the11_counting predicate available in YAP Proldy
Unless explicitly stated otherwise, our parameter chomoee made initially and not empirically

tuned. The major Aleph parameters we used are:

minimum accuracy We can place a lower bound on the accuracy of each rule ledoyexr
system. (Note that this is only the accuracy of the rule onpibstive examples, in other

words, precision.) We consider two settings for minimumuaacy for learned rules: 0.75

and 0.90.

minimum positives To prevent Aleph from learning overly narrow rules, onesahhonly cover
a few examples, we specify that each acceptable rule must ebleast a certain number of

positives. We require all rules to cover at least seven ipestixamples.

rule length The size of a particular rule can be constrained using ruigtle By limiting the
length, we can explore a wider breadth of rules and prevéss from becoming too specific.
We required that rules be no longer than ten literals, inalmdhe head (the same settings

we use for random sampling of the hypothesis space in oum@tesgpproach).

search strategy Aleph allows the user to choose which search function to Tikese include the
standard search methods of breadth-first search, deptsdasch, iterative beam search, it-
erative deepening, and heuristic methods requiring amatiah function. We used heuristic

search since it scales best to the large size of our tasknaastigated a number of different

evaluation functions.

Thttp://iwww.ncc.up.pt/“vsc/Yap/yap.html
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evaluation function There are many ways to calculate the value of a node for fuetkgoration.
The default heuristic used in Alephe®verage This is defined as the number of positives
covered by the rule minus the number of negatié8 { F'P). In our highly skewed domain,
coverage will bias the search toward rules which cover alsmatber of false positives, no
matter how many true positives they cover. A very similarrigic is compressionwhich
is coverage minus the length of the ruleK — FFP — L). Compression biases the search
toward the minimum description-length hypothesis (Riseath@78), or the shorter the rule,
the better. To improve rule quality and correct accuracyreges for rules that only cover
a small number of examples, one can also uselt@ace estimate(%). Since

we are working within domains to generate precision/recailves, we also explored as

our heuristic-search’s evaluation functipnecision x recall, and theF1-score which is

(BLrecisionx ecally " The yse of these two metrics provides a balance betweeisjore and

Precision+ Recall

recall rule coverage.

coverage in tune set.To encourage our rules to be more general, we added a paraméieph
requiring each recorded rule to cover at least two positkaargles in the tune set. We
believe this will create more general rules that will penforvell on unseen examples in the

test set without increasing computational overhead duraiging.

For these parameter evaluations on fold 1, we obtained atraoea under the recall-precision
curve for Aleph ensembles using Laplace as the evaluatioetitn and a minimum rule accuracy
of 0.75, as shown in Table 4.2. Under this setting, the aeeragnber of rules considered per

constructed theory is approximately 35,000.
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Table 4.2 AURPC results on test-set fold 1 of protein-lo@dian data set, 25 rules per theory, 50

theories.
Minimum Heuristic
Accuracy Function AURPC

Laplace 0.38
0.75 coverage 0.35
F1-score 0.20
precisionx recall | 0.19
Laplace 0.34
0.90 coverage 0.35
F1-score 0.34
precisionx recall | 0.31

One new finding we encountered that was not reported by [Rutrhis that it is better to limit
the size of theories. Figure 4.3 plots the AURPC as a functidineomaximum number of rules we
allow in the learned theories. Running Aleph to its normal ptation given the above parameters
leads to theories containing 271 rules on average. Howiéwves, limit this to the firstC' rules, the
AURPC can be drastically better. The likely reason for thtb# larger theories have less diversity
amongst themselves than do smaller ones, and diversity iethto ensembles (Dietterich, 1998b).
Therefore in our subsequent experiments, we stop the raiteifey for each theory after 50 rules.
A convenient side-effect of limiting theory size is that tiuatime of individual Aleph executions
is substantially reduced.

While we have not considered all possible parameter setindslgorithm designs with which
Aleph could be used to create an ensemble of theories, wedvalgated a substantial number of
variants and feel that our chosen settings provide a setiisfaexperimental control against which

to compare our new algorithm, Gleaner.
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Figure 4.3 AURPC for Aleph ensembles, whéfe= 100, with varying number of rules on
protein-localization data set.

4.2.2 Single-Theory Ensembles

A theory learned by Inductive Logic Programming can itsedfyiewed as an ensemble, or
disjunction, of rules. This view can be extended by explphiow to weight the influence of each
rule on the overall classification of each example; a stahtteaory under this interpretation has all
rules with the same (positive) weight, and the decisionstioél being set to zero. This approach,
which we call asingle-theory ensembhlenight achieve better results and examine fewer rules than
the Aleph ensembles approach. Next we explore possiblenweggschemes for comparison with
Gleaner.

Fawcett (2001) compares a number of propositional-rulglteig methods in relation to their

area under the curve (AUC) performance. There are a numbeffefethces between our data
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set and the ones examined by Fawcett. First, we use ILP toleam rules which cover the
positive class, whereas the propositional-rule learnessnéned earlier by Fawcett have rules for
both positive and negative examples. For this reason, werable to compare to a number of
his weighting schemes. Second, our data is highly skewedrtbihe negative examples, while
Fawcett’'s previous work has examined data sets which haaelg balanced distribution. One
final difference to note is that we are using the AURPC for llgmadcision curves instead of the
AUC for ROC curves.

To determine the score for each test example, we investightefollowing methods on the

protein-localization data set, using the tune set to gaibestatistics.

Ranked List This method treats a theory as a list of rules, ordered bygusmimn-estimate on the
precision of each rule on the tune $g§%). For a given test set example, its score
is generated by finding the set of rules which cover this exarapd using the score of the
highest-scoring rule. Fawcett calls this method first, amslalso employed by Craven and

Slatterly (2001) within ILP.

Lowest False Positive RateLFPR is another one of Fawcett’'s proposed schemes. It isagitoi
the Ranked List method above, using the false-positive ratb@tuning data instead of the

m-estimate as the score for each rule, and using the lowgetuhsf the highest-ranked rule.

CN2 We also compared to the unordered rule resolution methodiomeal by Clark and Boswell
(1991) for CN2, a propositional-rule learner. First, thedfaules that match each example

are found. We then separately sum the true positives anel falsitives for each matching
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rule on the tune set, and the score assigned to each examiple issulting aggregated

precision.

Weighted Vote Along the same lines as CN2, we can use Fawcett’s weightedwetieod. This
first finds the precision of each matching rule and an exaspk®re is thaverageof these

precision scores for the matching rules.

Cumulative A class of weighting schemes not examined by others is to hesesize of the set
of matching rules as the score for each example. This sthglery ensemble approach is
partially inspired by Blockeel and Dehaspe (2000) with tpeaposal for using cumulativity
in ILP. We call this methoéqual weightingwhere each rule has one vote, and the score of
an example is the number of matching rules. We also explosatywother methods to
determine the weight of each rule’s vote, such aspiteeision recall or F1 scoreof each

rule, as well as diversitymetric adapted from Opitz and Shavlik (1996).

Naive Bayes and TAN The method of first learning a theory and then learning weiglain be
seen as a way to combine feature selection with proposlizati@n. We also compare
with two propositional learners discussed in Dagtsal. (2005b), N&ve Bayes and Tree
Augmented Networks (TAN) (Friedman et al., 1997), whichraegts né/e Bayes as a way

to account for the dependence between features.

We compared these different weighting schemes on the pritealization set to find a good
weighting scheme as a control experiment for Gleaner. We sisedard Aleph to learn 30 theories

on each training set fold, using a minimum accuracy settfr@yZb and a maximum nodes setting
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Figure 4.4 Comparison of AURPC for Various Weighting Appraashbn the protein-localization
data sets with Error Bars for the Standard Deviation acras§itre Folds.

of 100,000. Our 150 learned theories, 30 for each fold, @ext&71 learned rules. Figure 4.4
shows the results of our different weighting schemes in tioéejn localization task, ordered by
performance. The five leftmost columns are for the cumwgatreighting schemes, the next two
are from the propositional learning methods, then rankeigemes, followed by the averaging
schemes.

In our experiments, we found that the highest scoring sceemgeneral were the cumulative
weighting schemes, and among these the highest scoringumaslative weighting using preci-
sion However the difference between Na Bayes, TAN and the cumulative schemes is barely
statistically significant, witlp value slightly less than 0.10. These results are in cortiwdbbse of
Fawcett, who found that LFPR and Weighted Vote scored eguagll, while Ranked List lagged
behind. However, it should be noted that our experimentg mwolve one protein-localization

data set.
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4.2.3 Additional Controls

We also compare our results to Ray and Craven’s structural H{R4y & Craven, 2001),
which were retrained and evaluated on our cleaned datarsgtoaa propositional nee Bayes
approach for text classification found in Mitchell (Mitchel997). Under Ray and Craven’s HMM
approach, a phrase that has more than one protein or locatioh as “pifl and pif2,” would be
counted multiple times when part of a positive relation. Duéhis different problem representa-
tion, the HMM approach has slightly more positive examplemstour ILP framework, since our
examples are based on the phrase constants only and natdhstituent words.

For nave Bayes, we created two feature sets, one with a bag of wordsaich of the two
phrases in the relation, and one with five bags of words foh example: one for each phrase in
the relation, and one each for words before, between andtaftdarget phrases. We also used
Mitchell's m-estimate equation of——"-——— with m values of 1, 10 and 100 and found the best

mXx|Vocabulary|

results withm = 1. Features were only the stemmed words.

4.3 Experimental Results

Our main hypothesis is that by dividing up the recall-priecisarea, both for collecting rules
and combining rules into theories, we can quickly find the®svith high area under the recall-
precision curve. We explore this hypothesis through expents on our two biomedical information-

extraction domains.
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4.3.1 Protein Localization Data Set

We divided the protein-localization data into five folds. cBaraining set consisted of three
folds, with one fold held aside for tuning and another fotites For our experiments, we require
each rule learned on the training set to cover at least twaiyp®®xamples in the tuning set.
Gleaner uses the tuning set to pick the appropriate thréghfr each bin.

A sample rule chosen by Gleaner is shown in Table 4.3. We cauthse the rule has picked
up on the tendency of the protein phrase to con#diphanumeric words. The location part of
the sentence contains words previously marked as locatiahe training set, and has a familiar
pattern starting with an article, “a,” “an,” or “the.” Alsanportant for this rule is the sentence
structure, requiring that the protein phrase comes befardocation phrase, and that the location
phrase is not the last phrase in the sentence.

Our Aleph-based method for producing ensembles has tworedeas that we varyN, the
number of theories (i.e., the size of the ensemble), @nthe number of rules per theory. To
produce ensemble points for our experiments, wé\ldde 100 and choos€ from {1, 5, 10, 15,
20, 25, 5@, with the average nodes explored per rule learned bein@85T® extend our analysis
to lower numbers of rules generated, wedébe 1 and choos& from {10, 25, 50, 75, 10p
We also compare in our experiments the scenario where wéadiaslimit the nodes explored
to 1,000. In this latter experiment using 1,000 nodes, apprately 20 seed examples per theory
would result in singletons, i. e. they were unable to learnitable rule within the time allowed.

These wasted rule evaluations are counted in our comparisamther attempts to limit the nodes
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Table 4.3 Sample rule with 29% recall and 34% precision ardesl.

proteinlocation(P,L,S) :-

targetargl beforetargetarg2(P,L,S),

first word.in_phrase(L,A),

phrasecontainssomeart(L,A),

phrasecontainssomemarkedup_location(L,),

phraseafter(L,),

few_alphanumeriovordsin_phrase(P),

few_alphanumeriovordsin_sentence(S),

after both targetphrases(S)).

where the variablé is the protein phrasd, is the location phrase; is the sentence,
and ‘’ indicates variables that only appear once in the rule.

Positive Extraction

“NPL3 encodes a nuclear proteiith an RNA recognition motif and similarities to
a family of proteins involved in RNA metabolism.”

protein_location(‘NPL3’, ‘a nuclear protein’)

Negative Extraction (i.e., a false positive)

“Subcellular fractionation studies further demonstratg the 1455 amino acid
Vps15pis peripherally associated with the cytoplasmic fata late Golgi

or vesicle compartment.”

protein location(‘the 1455 amino acid Vpsi1b6p’, ‘the cytoplasmic face’)

explored to 100 resulted in approximately 350 singletorrstipeory; when these singletons are
factored in with learning time, it becomes more expensivetd the nodes to 100 than 1,000.
We also compare Gleaner to single-theory ensembles usrgythulative precision weighting,
as this performed highest of all the weighting schemes. Tkentlze comparison competitive, we
limited the maximum nodes to 1,000 for each learned rule enttieory, and calculated AURPC

points with the first 25, 50 and 100 rules as well as the corapletory.
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Figure 4.5 Comparison of AURPC from Gleaner and Aleph ensenibjlevrarying the number of
rules generated on the Protein-Localization data set.

For the parameters of Gleaner, we used 20 equally-sized bawa. We used Rapid Random
Restart Zelezry et al., 2003) with theprecision x recall heuristic function to construct 1,000
rules derived from the initial random rule before restaytivith a new random rule. We generate
AURPC data points for Gleaner by choosing 100 seed examptessing the values of1,000,
10,000, 25,000, 50,000, 100,000, 250,000, 500;G00the number of candidate rules generated
per seed. We further reduce the number of seed exampl{&5t®0, 75 to explore performance
on lower numbers of rules generated.

The results of our comparison are found in Figure 4.5; thetsaare averaged over all five

folds. Note that this graph has a logarithmic scale in the lmemof rules generated. We see that
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Gleaner can find comparable AURPC numbers while generatneg thrders of magnitude fewer
rules than Aleph ensembles with 35,000 nodes per learned Aléph ensembles improve when
limited to considering 1,000 nodes per learned rule, how@eaner is still more than one order of
magnitude faster. It is interesting to note that the Gleanere is very consistent (i.e., flat) across
the number of rules allowed, while the Aleph ensemble methotkases when more rules are
considered. This demonstrates the benefit of saving mongisathe “best” rule when searching
hypothesis space, as well as showing that Gleaner is nefsistaverfitting. We also see in Figure
4.5 that Gleaner is one order of magnitude faster than theodedf weighting one theory. Single-
theory ensembles employ a covering algorithm which halsnieg when all positive examples
are either singletons or covered by a rule, thus we canndbextheir behavior on large numbers
of considered rules. Note that Gleaner and Aleph ensematebe& executed in parallel which will
give a large savings in running time, while the theory-wéiglhmethod learns rules sequentially.

In Figures 4.6(a)-(c), we show a comparison of RP curves lmtWaeaner and Aleph ensem-
bles, using 100,000, 1,000,000 and 10,000,000 as the nwhtatal rules evaluated. These results
are generated by averaging the precision across all five &tld 00 equally-spaced recall values.
After 100,000 rules, we can clearly see the benefits of savigig-recall rules, as Gleaner quickly
spans the whole recall-precision space, while Aleph enksare initially limited in their recall
ability. Aleph ensembles achieve higher recall and prenisit 1,000,000 and 10,000,000 rules,
and the major benefit from Gleaner is increased precisiolo¥oras well as high recall.

Gleaner’s ‘I, of K” rules should theoretically produce higher precision tivadividual rules

with the same recall, as long as the coverage of positiveeter than the coverage of negatives
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Figure 4.6 Comparison of RP curves between Gleaner and Alepénidsles for various numbers
of rules generated on the Protein-Localization data setvé&3urvere averaged across all five folds.
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Table 4.4 AURPC results averaged over five folds on the préteialization data set for iie
Bayes, HMM, Aleph Ensembles, Single-Theory Ensembles aerdri&r. For Aleph Ensembles,
Single-Theory Ensembles and Gleaner, the right-most poitie curve from Figure 4.5 is used.

Learning Algorithm \ Test set AURPC

nave Bayes with 5 bags 0.018
nave Bayes with 2 bags 0.032

Structural HMM 0.141
Single-Theory Ensembles 0.415
Aleph Ensembles 0.447
Gleaner 0.461

and our rules are independent. In practice, our rules araotdependent as we would like and
have a tendency to cover the same negatives. This is edpenig in the high-recall bins, with
many of the learned rules being identical, and we belieweedierlap degrades the performance.
Our results when comparing to structural HMMs andveaBayes are shown in Table 4.4.
Naive Bayes only performs slightly better than random guessirigis domain, and we believe
this is partially due to relational nature of the data seicasieach protein phrase in a positive
example is repeated in many more negative examples wheronetctly paired with a location
phrase. Also, many of the protein words to be classified int¢lse set are novel and therefore
receive the “data-free/h-estimate score. The HMM approach of Ray and Craven (Ray & Craven,
2001) fares better; however it suffers from low recall, aghg its highest recall of 0.31 on the

test set for fold 3.
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Figure 4.7 Comparison of AURPC from Gleaner and Aleph enseiijlevarying the number of
rules generated on the genetic-disorder data set.

4.3.2 Genetic Disorder Data Set

Finally, we also evaluate Gleaner on the genetic-disord@nédical information extraction
data set. We compare Aleph ensembles to our Gleaner algpiiing the same parameter settings
as in our previous experiment.

Figure 4.7 shows the comparison results on the geneticelisalata set. Gleaner again con-
sistently achieves a higher AURPC than Aleph ensembles a@lbvalues for the number of
candidate rules. We notice that Gleaner consistently ingg@s more rules are examined, reach-

ing a maximum AURPC score of 0.44 as compared to 0.36 for Aledembles. The peak in
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Gleaner’s performance at 75,000 rules indicates thereddmih benefit from pruning rules found
through Gleaner, since this point was found by using 75 saed<,000 rules generated per seed.
In this domain, early stopping after 15 rules per theory woniprove the final AURPC of Aleph

ensembles; we show here all data points for completeness.

4.4 Summary

The Gleaner algorithm quickly retains a large number ofgirea wide range of performance
areas. It then combines these rules into a set of theoriesdprg good precision across the full
recall range. In this research we have focused on data sitsawarge skew between the number
of positive and negative examples. We designed Gleaner tk well with such data sets by
constructing bins along the recall dimension of the repedeision space and retaining the highest
precision rules along this range. Gleaner also combinesthdes in such a way as to optimize
for area under the recall-precision curve.

Gleaner conducts multiple parallel searches using a rarsgiof initial seeds. By conducting
these searches in parallel, the time to a final model is rei@ae drawback to conducting these
searches in parallel is that there is no communication betwiee parallel searches. Rules are
retained based upon their individual performance ratham tin how well they will combine with
other rules that have already been retained.

Future directions include increasing the diversity of thles that are retained by Gleaner. Many

rules contained in the higher recall bins are duplicates. okenexhaustive approach to searching
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for high recall rules may discover a larger set of diversesuGleaner is designed to use the recall-
precision space for deciding which rules to retain. Thisrapph works well with highly skewed
data sets. Another direction | plan to pursue involves nyaalif Gleaner to work with ROC curves
and find and combine rules to maximize performance on ROGCesurvhis would generalize the
Gleaner algorithm to work with data sets which are more lzadretween the number of positive

and negative examples.
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Chapter 5

Adaptively Searching with Gleaner

Recall that Inductive Logic Programming (ILP) ZBroski & Lavrac, 2001) algorithms search
for explanations written in first-order logic that discrimaie between positive and negative exam-
ples. Two open challenges for scaling ILP to larger domanctude slow evaluation times for
candidate clauses and large search spaces in which to fied ttauses. This chapter addresses
this second challenge using adaptive stochastic searckean€&r. This work originally appeared
in the Proceedings dhe 2007 Inductive Logic Programming Conferer{@iphant & Shavlik,
2007).

Algorithms such as Progol (Muggleton, 1995) and Aleph (Saisan, 2003) also address the
second challenge by constraining the size of the searclesmacg a bottom clause constructed
from a positive seed example as discussed in Section 2.2 ttArbalause is constructed from a
positive seed by using a set of user-provided modes. Thecusates a mode for each literal in
the background knowledge. Modes indicate which argumeintiseoliteral are input arguments
and which are output arguments. As the bottom clause is hlmingtructed, only literals whose
input arguments are satisfied by the output arguments cdlt@lready in the bottom clause may

be added. The modes create a dependency between the liteadt®ttom clause. A literal may
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not be added to a candidate clause unless its input arguisgpésr as output arguments in some
prior literal already in the candidate clause.

Even with these constraints the size of the search spacdysiauch larger than can be
exhaustively searchedZelezry et al. (2003) have incorporated a randomized search algorithm
into Aleph in order to reduce the average search time. Thpidrandom restart (RRR) algorithm
selects an initial clause using a pseudo-uniform distidiouand performs local search for a fixed
amount of time. This process is repeated for a fixed numbeiesf. t

My work builds on top of the RRR algorithm and bottom-clauseagation. | construct a non-
uniform probability distribution over the search spacd tiiases search towards more promising
areas of the space and away from areas which have alreadyekpkmed or that do not look
promising. | use a pair of Bayesian networks to capture thesvskl distribution. The structure
of the networks is determined by the bottom clause and trenpeters are trained as ILP’s search
progresses. The rules that are evaluated by the ILP systeomigethe positive and negative
examples for training the Bayesian networks. The trainedordss are then used to select the next

initial clause and to modify the local search portion of RRR.

5.1 Directed Stochastic Search Algorithm

Zelezny’s RRR algorithm appears in Figure 5.1 on the top. | have inm@ied a non-uniform
distribution into this algorithm in order to bias search &mds more promising areas of the search

space. My modifications appear in Figure 5.1 on the bottorthdriollowing subsections | explain
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Table 5.1 Pseudo-code showing the Rapid Random Restart (RRRijlalgand my modified

version of RRR.
RRR Algorithm

Repeat N times:
Select Initial Clause uniformly

Perform Local Search for S clauses

Directed RRR Algorithm

Repeat N times:
Select Initial Clause Adaptively

Perform Modified Local Search for S clauses

my method of modeling a probability distribution over ILRsarch space, training the parameters

of the model, and using this trained model to modify RRR’s seprohess.

5.1.1 Modeling ILP’s Search Space with Bayesian Networks

A Bayesian network (Heckerman, 1995 revised June 96) is atduteacyclic graphical model
that captures a full joint probability distribution over et ®f variables. Each node in the graphical
model represents a random variable. Arcs represent depeiedeetween variables. Each node
has a probability distribution showing the probability bétvariable given its parents.

ILP’s search space consists of subsets of literals from dteim clause. A sample bottom
clause appears in Figure 5.1 on the left. Literals’ argusibave been annotated with +/- marks
to indicate input/output arguments taken from the usevigeal modes. Not all subsets of literals
are legal rules. A subset of literals is a legal rule and insemrch space if the input arguments of
each literal in the subset first appears as output argumens®me literal earlier in the subset or
as input arguments in the head.

| capture these dependencies created by the user-proviodéelsim a graphical model. Figure

5.1 on the right shows graphically the dependencies fourttiarbottom clause. Each node in
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Bottom Clause Bayesian Network

h(+A,+B):-
p(+A,-C),
q(+B,-C),
r(+B,-D),
p(+C,-D),
q(+D,-E),
r(+E,-C),
p(+E,-F).

Figure 5.1 A portion of a Bayesian network built from the lgksrin a bottom clause. The “+”
marks indicate input arguments and the “-” marks indicatpatarguments taken from the
user-provided modes. The head literal is not part of the BagesArcs indicate dependencies
between the output variables of one literal and the inpuaises of another literal. Dotted arcs

are dropped to maintain the acyclic requirement of Bayeséwarks.

the network represents a Boolean variable that is true if éneesponding literal from the bottom

clause is included in a candidate rule. Each arc represartsreection between the output argu-
ments of one literal to the input arguments of another litefotted arcs indicate dependencies
that are dropped in order to maintain the acyclic nature egddr Bayesian networks. | drop

arcs that would link a literal that appears lower in the hotidause, as ordered by Aleph, to one
higher in the list. The structure of the Bayesian network mheitges the bottom clause while the
parameters are learned as ILP’s search progresses.

My algorithm to create the Bayesian network structure fromthdon clause appears in Figure
5.2. The algorithm constructs the Bayes net in a top-downacagmpr. Variablggroup contains all
literals whose input variables appear as outputs fronHtag literal or any literal already in the
network. The literals igroup are added one at a time to the Bayes net. As the literal is adted i

the Bayes net the algorithm connects it to all literals thattaim some input variable that is not
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contained in thélead literal. Creating a group of literals and adding them to thevoek repeats

until all literals have been added.

5.1.2 Training the Model

After creating the Bayesian network structure, | still nestetairn the parameters of the model.
Each node contains a conditional probability table (CPT) ghadicts the probability the node
is true, given its parents. | estimate these probabilitiemftraining data collected during ILP’s
search.

| construct two networks that have the same graphical streiah order to trade off exploration
of unsearched areas of the search space and exploitatioeas af the space found to contain
high-scoring rules. The parameters of the first exploitatietwork are trained using “good” rules
seen during search, while the parameters of the secondraiiplo network are trained on all
rules evaluated. These two networks provide probabilthes indicate, respectively, how good a
candidate rule is and the rule’s similarities to past ruldgese distributions are density estimators
indicating the promising areas of the search space and wanézs have already been explored.

The parameters of a node are estimated using ratios of vegiglounts between rules that con-
tain the literal and those that do not for the various sestioighe parents. | update the parameters
during search when a rule is evaluated on the training dateh Eule that is evaluated on training
data becomes a new example for the Bayesian network.

The first network, which estimates the probability that & risl“good,” is trained using high-
scoring rules. | have tried several methods for decidingctviules to use. My current approach

involves using the Gleaner algorithm (Goadrich et al., 30@eaner retains a set of high-scoring
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Table 5.2 Pseudo-code showing the construction of a Bayasitavork from a bottom clause.

function CONSTRUCTNETWORK(_L): returns a Bayesian network
input: L, a bottom clause consisting oHiaad andBody
bayes_net=empty
reached=input variables fronfead
while Body is not emptydo:
group={l|l € Body and!’s input variables are ieached}
for eachlit € group do:
ADD_NODE(1it,bayes_net) /* connects talit all nodes
in bayes_net that satisfy an inpy
variable of1it*/

~—+

Body = Body - group
reached = reached + output variables frongroup
return bayesnet

rules across arange of recall values. All rules that aréreddan Gleaner’s database are used, along
with those rules in the trajectory from the initial rule teetbne retained in the database in order
to increase the number of examples used for training thexpeteas of the Bayesian Network. |
use weighted counts (a rule’s F1 score is its weight — seer&igLl) with higher-scoring rules
receiving higher weights. This allows better rules to haweennfluence on the network.

The second network, which estimates the probability thag\a rule is similar to past rules,
is trained on all rules considered, using a uniform weightrenrules. The combination of the
probabilities from these two networks allows my algorithontitade off exploration of unvisited
portions of the hypothesis space for exploitation of theypsing portions.

| have found that some nodes in the networks created for tiaeséés from chapter 3 have 20 or
more parents. In order to reduce the size of the conditiorddgbility tables, | utilize a noisy-OR

assumption (Pearl, 1988). The noisy-OR model assumesiltiparants of a node are independent
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Node N
q(+A1 l"'l+AMI-B)

Figure 5.2 Node with many arguments.

of each other in their ability to influence the node. This @hithe size of the CPT to be linear in
the number of parents.

Figure 5.2 shows a single node whose corresponding litasasbveral input arguments. Each
argument may be satisfied by one of many parents. | calciiatprobability that a nodey, is
true using this variant of the noisy-or formula:

M M
P(N =tI(N)) = [[PV=ts;(N) = ]] (1 - 1] piv= fR))
j=1 j R

7=1 €S;(N)
wherell(N) are the parents oV and.S; is the subset ofl(/V) that satisfy input argument

In the right-most portion of this equation, the outer pradanges over all\/ input variables
of the node. The conditional probabilitié¥ N = ¢|S;(/V)) are modeled as noisy-ORs over each
input argument. | seP(N = f|R = f) equal to 1 so if any input argument is not satisfied by

at least one parent then that portion of the prodity|S;(N)), will be zero, making the entire

product zero. This limits the rules that have a non-zero abdity to those that are legal.

5.1.3 Using the Model to Guide Search

The probabilities provided by the Bayesian networks arerpm@ted into a weight that | can

attach to rules. Recall that two networks are created. | ballgrobability from the network
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trained on “good” rulesf X PLOIT and the probability from a second network trained on all
rulesEXPLORED. | combine these two estimates into a weight for a candiddeeusing the
formula

W =a x EXPLOIT + (1 —a) x (1 — EXPLORED)

where0 < o < 1. | can then set parameterto trade-off exploration for exploitatidnin order to
interleave exploration and exploitation, | selectrom a range of values each time an initial rule
is selected.

| use the rule weighitt’” to modify the RRR algorithm in two ways. The original RRR algamith
selects an initial rule uniformly. My modified version of RRRfezems K hill-climbing runs using
the weights generated by the Bayesian network to guide sehtbbn select a single initial rule
from the K local peaks by selecting a rule found at one of these peakample proportional
to the weights of the rules, with the hope that the searchbeidjin in a higher-scoring and more
diverse area of the space. Assigning a weight to a rule ictaspared to evaluating the rule on
the training data.

Next the original RRR algorithm performs a local search ardhrglinitial rule, expanding the
highest-scoring rule on the open list and evaluatfigof its neighbors on the training set. My
modified version of RRR uses the weidht for the neighboring rules before they are evaluated
on the training set. My algorithm stochastically selectslasgt of size, using the weights. This

reduces the number of neighbor rules evaluated on thernaohta, thus broadening the search

IThis is similar to the exploration/exploitation trade-wfreinforcement learning with one important differenae. |
reinforcement learning it is fine to repeatedly get the saotelgeward. In my work discovering the same rule in each
search would be harmful. This is discouraged by updating=KleLORED model with any new clauses searched.
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and guiding it to areas of the search space which are moig likeontain high-scoring, unique
rules.

This modified algorithm interleaves optimizing using thedaland optimizing using real data.
Assigning a weight to a rule using the model is much fasten #aaaluating a rule on real data
when the data set is large. | hypothesize that this approdtbwtperform standard RRR search
in terms of area under the recall-precision curve, whenoMalRRR and our modified version to

each evaluate the same number of rules on real training data.

5.2 Directed-Search Experiments

| compare my search modifications using the Gleaner algorii@oadrich et al., 2006) of
Goadrichet al. Following our methodology | compare area under the rgmadtision curves (AU-
RPC) using Gleaner with the standard RRR search algorithm asaw&ith my modified RRR
search algorithm. | evaluated our modifications to the RRRckealgorithm on three data sets:
the protein-localization data set, the gene-disorder sietieand the advisor data set.

| assign then parameter to be betweér01 and0.75 in order to encourage exploration. | set
the K parameter controlling the number of hill-climbing runs ach initial clause to ten, and
the L parameter controlling how many neighbors of a clause aegn@d to twenty. The internal
parameters of the Bayesian networks are updated as clagsesadumated. | ran our experiment
using 100 seeds for the two information extraction task dhseeds for the advisor-student task. |

evaluate performance after one thousand, ten thousandyanty-five thousand clauses per seed.
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Figure 5.3 Comparison on three datasets of AURPC for varyimgau of clauses considered
using Gleaner with and without a directed RRR search algorithm
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Figure 5.3 shows the AURPC versus the number of clauses ¢vdlaseraged over all five
folds of each data set. Although the improvement is smahédrotein-localization task, it is sig-
nificant for the first two points at th&% confidence level using a pairétest. My algorithm also
shows improvement in the advisor-student task; howevsritigprovement is not significant. Per-
haps this is because the data set is smaller, which may cagee Variance between folds. On the
gene-disorder task no improvement is found. One additiared that may improve performance

would be to use a tuning set for setting the algorithm’s patans.

5.3 Summary

Stochastic search of the space of clauses provides a meadh®fto scale to larger datasets.
My basic approach converts the dependency structure fouAteph’s modes into two Bayesian
networks, whose parameters are trained as search pragirdssse these networks to influence
where to search in the space of clauses in order to exploreareas and exploit known areas that
contain high-scoring clauses.

| compare the Gleaner algorithm using the standard rapidiorarrestart search algorithm and
a modified version of search that first finds an area of the Besgrace that scores well using my
Bayesian networks. As search progresses in this area ofectqase the score produced by the
Bayesian networks is used as a filter. Only a high-scoringetudislauses are evaluated on actual
data. | have shown improvement on area under the recalisppaacurve experiments on two of

three highly skewed datasets by using this adaptive sttictsesrch.
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Chapter 6

Boosting First-Order Rules for Large Skewed Data Sets

Successful ensemble approaches must both learn indivitksgifiers that work well with a
set of other classifiers, as well as combine those classifiersvay that maximizes performance.
Because Gleaner learns rules and combines them in two segéeps, the learning process is not
optimized to find rules that work well in combination with ettrules. In this chapter | present
a boosting algorithm that is designed to discover ruleswmak well in concert to improve per-
formance on recall-precision curves. The work in this ceapppeared ithe Proceedings of the
2009 International Conference on Inductive Logic Programgr{Oliphant et al., 2009).

AdaBoost (Freund & Schapire, 1996) is a well known ensembldoakthat both learns classi-
fiers that work as a set and combines them to maximize accukdeBoost learns weak hypothe-
ses iteratively, increasing the weight on previously naissified examples so successive learners
focus on misclassified examples. It combines weak hypoghese a single classifier by using a
weighted sum, where each weak hypothesis is weighted aogaalits accuracy.

While AdaBoost focuses on improving accuracy of the final di&ssother boosting algo-
rithms have been created that maximize other metrics. Tlexile of Freud et al.'s RankBoost

algorithm (1998) is to maximize the correct ordering of akpible pairs of examples in a list of
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examples. RankBoost maintains a probability distributioarall pairs of examples. The weak
learner uses this distribution and finds a hypothesis thainizes the weighted misorderings from
the correct ordering of the examples.

One version of RankBoost, named RankBoost.B, is designed to wirlimary classification
problems. Weights are only assigned to pairs of examplae #xamples are from different classes.
This focuses learning on ordering examples so that all ipeskamples will be ranked before the
negative examples and ignoring the ordering of exampldgif are of the same class. Cortes and
Mohri (2003) showed RankBoost.B maximizes the area underettever operator characteristic
(AUROC) curve.

AUROC is a common metric used to discriminate between dlassi Davis and Goadrich
(2006) however demonstrated that AUROC is not a good madridiscriminating between clas-
sifiers when working with highly skewed data where the negatoutnumber the positives. They
recommend using area under the recall-precision curve (AL)RMen working with skewed data.

In this chapter | present a modified version of the RankBoosigBrithm that works well
with skewed data which | name PRankBoostgacision-recall RankBoostts objective function
seeks to maximize AURPC. | implement a top-down, heuristickeai search to find high-scoring
rules for the weak hypotheses and then use this modified RaskRégorithm to combine them
into a single classifier. | also evaluate several other pdgs for weak hypotheses that use sets

of the best-scoring rules found during search.
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6.1 PRankBoost—A Modified RankBoost Algorithm

PRankBoost, a modified version of Freud et al.'s RankBoost.Britthgo, appears in Table 6.1.
| have modified the sum of the weights on the negative set tekbe between the size of the
negative set and the size of the positive set. | make thisgghtmexpose enough information to
the weak learner so that it can optimize the AURPC.

PRankBoost initializes weights on the positive examplesoumify to ﬁ where X, is the set
of positive examples. Negative examples are also unifolimtialized so that the sum of their
weights is equal to the skew between positives and negatiMesse initial weights preserve the
same distribution between positive and negative exam@eghat exists in the unweighted data
set. Calculating recall and precision for a model on theahitieighted data set will be identical
to calculating recall and precision on the unweighted wersif the data set.

After PRankBoost initializes example weights, the algoritanters a loop to learn a set of
T weak learners. A weak learner is trained using the weightadhples. | have explored using
several different weak learners which | will discuss shlyoriThe objective function used during
training is the weighted AURPC. After training, PRankBoost@ssia weight to the weak learner.
The weight is calculated analogous to thed methoddiscussed by Freud et al. In this method
« is an upper bound on the normalization factér, Cortes and Mohri show that theparameter
used to calculate is equivalent to a weighted version of the area under the R@@c | modify
this approach for PRankBoost so that this a weighted version of AURPC.

PrankBoost updates weights using the parametehe weak learneh(z), and a factorZ,

which maintains the same weight distribution between ttsitpe and negative examples as exists
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with the initial weights. An example’s weight is decreaselhtive to how well the weak learner
scores the example. The higher a positive example is scyréaebwveak learner the smaller the
weight while be, while the opposite is true for negative egbas. The effect is to place more
weight on examples which the weak learner has difficultysifgmg.

The final classifierf{ (x), assigns a score to a new exampleas a weighted sum of the individ-
ual weak learners. | designed PRankBoost to be analogous tBRask While RankBoost's final
classifier maximizes AUROC, my modified version attempts taimae AURPC. | hypothesize

that this modified version will outperform RankBoost when canpg AURPC.

Table 6.1 PRankBoost—A modified RankBoost algorithm for opiimgizarea under the
recall-precision curve.

Modified RankBoost Algorithm
Given: disjoint subsets of negativ&,, and positive X, examples

Initialize:
skew - ¢
skew = 2oL () = weXo
| X1] IX1| zfmGXl
fort=1,..,T:

Train weak learner,;, usingw; andskew.

Get weak rankingy; : X — R.

Choosey; = 0.51n (1) wherer = AURPC(see text).
Update

wy(z) CXPé;athHI)) Zf z€X1

wt+1(x) = wi (z) exp(a T
t(z) gf(ﬁ) thi(=)) ifxEXo

Where

Z wy(x) exp(—aghy(z))

JJEXl

t skew X Zwt T ) exp atht( ))

z€Xg

Output the final ranking# (= Z ohy(x
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6.2 Weak Learners

As shown in Table 6.1, a weak learnégx) is a function that maps an example to a real
value. A perfect weak learner maps all positive examplesgiodr values than negative examples.
Often it is not possible to find a perfect weak learner and solbpective function is used to decide
among possible weak learners. In Adaboost the object fumgfuides learning towards models
that minimize a weighted version of misclassification ertarRankBoost the objective function
maximizes a weighted area under the ROC curve. My PRankBogstithim for finding weak
learners uses area under the recall-precision curve abjbet éunction.

When deciding what search algorithm to use for finding a weatnkr | had several goals in
mind. First, | wanted the search algorithm to find a clauséwwaked well with highly skewed
data. This is the reason | use AURPC as the objective functBatond, | wanted to apply this
algorithm to large data sets. Evaluation of clauses in ldega sets is a costly time step and limits
the number of weak learners that can be considered in a ra@laleoamount of time. Because of
this | use a greedy hill-climbing algorithm to find weak lears

| consider several possibilities for weak learners. Thepsast weak learner | use consists
of a single first-order rule. To find this rule | select a randpaositive example as a seed and |
saturate it to build the bottom clause. | begin with the mestegal rule from this bottom clause.
All legal literals are considered to extend the rule. Theeegion that improves the AURPC the
most is selected and added to the rule. The process repéitsouimprovement can be found or
some time limit or rule-length limit is reached. Each weakdthesis,(x), is the best scoring

individual rule found during this search.
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This weak learner maps an exampleg,to the range{0, 1} where the mapping is 1 if the
example is predicted as true, 0 otherwise. | call this leaPiankBoost.Clause.

| have also explored other possibilities for the weak leaamel how the AURPC is calculated
for the objective function. My goal in developing other wdalirners was to create more accurate
models without increasing the number of rules evaluatedainihg data. One method of devel-
oping more complex first-order models is to retain more thest jhe best clause found during
search. Taking an idea from the Gleaner algorithm (Goadkici., 2006) which retains an entire
set of rules found during search that span the range of reahles, | have developed a second
weak learner that retains a set of the best rules found dgeagch. This weak learner, PRank-
Boost.Path, contains all rules along the path from the mastigd rule to the highest-scoring rule
found during search. This set of rules will contain shortiegal rules that cover many exam-
ples and longer, more specific rules that have higher acgimacower coverage on the positive
examples.

For example consider the rules that appear in Figure 6.1. tAfsmiles would contain the
highest-scoring rule, h(X):-p(X),q(X,Y),r(Y), along witthe subsets of the rule from the most
general rule to this rule, h(X):-p(X,Y),p(Y,Z) and h(X)(>6,Y). This weak hypothesig; (x), maps
an examplez, to the rangé0, 1] by finding the most specific of these rules that covers the pl&am
If the highest-scoring rule did not cover some new exampaa the next most specific rule would
be considered until a rule is found that covers the exantple:) is the fraction of the total AURPC
covered by this rule as illustrated in Figure 6.1. The totdR®C,r, is the area under the entire

path from the most specific rule to the most general rule (ited grayed area in Figure 6.1).
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Figure 6.1 Area under the recall-precision curve for a patauses learned during hill
climbing. The total grayed area is the total AURRCIf h(X) :- p(X), q(X,Y) is the most specific
clause in the path to cover an example thgir) maps the example to the value (light gray area /

total grayed area).

6.3 Calculating AURPC

| use a weighted version of AURPC as both the objective funaliged to find weak learners
as well as to weight weak learners when combining them intersemble. In general | follow the
algorithm outlined by Goadrich et al. (2006) to calculateRRLC, however | made two modifica-
tions to work in my ensemble setting and to improve accuracyiacrease speed. First, | use a
weighted version of recall and precision. Second, wherutatiog the area between two points in
recall-precision spaced and B, Davis and Goadrich use a discretized version that estgrihte
area under the curve. | calculate the area under the cunatiyexaing a closed form solution to

the integral for the curve between the two points,

TPg
x
/ dx
rp, T+ FPy+s(x—TPy)

whereT P is the true positive weight anél'P is the false positive weight. Parameters the

FPp—FP,4

local skew of false positives to true positives between te poins A and B, s = TR

The total AURPC is a piece-wise integral between each of tirggpm recall-precision space that
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correspond to the rules of a weak learner. For PRankBoost&lausich consists of a single
clause, this would be a single point in recall-precisioncgpd use Goadrich et al.'s method for
extending this point down to zero recall and up to 100% rdmallising the most general clause.
For PrankBoost.Path | perform the same extension down toreeedl and up to 100% recall but
| use all point that correspond to the clauses in the setn@taby the weak learner. This curve is

shown in Figure 6.1.

6.4 Experimental Methodology and Results

| modified Aleph (Srinivasan, 2003) to incorporate RankBoasd any modified versions,
PRankBoost.Clause and PRankBoost.Path. RankBoost uses the Basimalbing algorithm for
finding weak learners as my two variants use. | used individiaaises for the weak learners in
RankBoost. This makes the RankBoost algorithm directly confppata PRankBoost.Clause. |
compared these algorithms using AUROC and AURPC on four Jakmved data sets, the two
from the information-extraction domain and the two from themmography domain.

| ran 10-fold, cross-validation for the mammography data sed 5-fold for the IE data sets.
| ran each fold 10 times using a different random seed to geeoart differences due to random
effects such as seed selection. | calculated average AURB@gerAUROC, and standard devia-
tions across the different runs and folds. Also, to compare Quickly the ensembles converged,
| created learning curves with theaxis showing the number of rules evaluated andytexis

showing the average AURPC.
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Table 6.2 Average AUROC and AURPC percentages with standasidttbns for several large,
skewed data sets using the RankBoost and PRankBoost.ClausthalgoBold indicates
statistically significant improvement at 5% confidence leve

| Data set \ AUROC \ AURPC |
RankBoost | PRankBoost.Clause RankBoost | PRankBoost.Clausg
Mammography 1 | 89.9 +4.2 88.1£5.8 18.5 £5.7 329+76
Mammography 2 | 92.5 + 2.0 96.7 £ 1.1 16.2£74 41.3 £10.6
Protein Localization 98.9 +0.1 97.9+0.7 404 +79 40.5 £ 8.6
Gene Disease 98.2+0.9 95.4+24 32.9 4+ 10.7 46.6 =11.9

Table 6.2 shows average AURPC and AUROC results with stardividtions for ensembles

containing 100 weak learners for RankBoost and PRankBoost&€laRankBoost outperforms

PRankBoost.Clause when comparing AUROC on three of the foarstds. The AUROC scores

are high and close together. This makes it more difficult su&ily distinguish ROC curves from

eachother. However when comparing AURPC the differencedmtwhe two algorithms is large.

PRankBoost.Clause outperforms RankBoost on three of the foarséét. The variance is much

larger for AURPC scores than for AUROC scores because wheitl ieclose to zero variance in

precision values is high.

Learning curves on the four data sets appear in Figure 6.éh gaph shows the AURPC on

they-axis by the number of rules considered during training exthxis. Each curve extends until

100 weak hypotheses have been found. | do this as a way of shdiat the various algorithms do

different amounts of work to produce 100 hypotheses, alf@ttwould be lost if | simply extended

all three to the full width of the:-axis.

My PRankBoost.Path algorithm reaches an AURPC of 0.44 on theeiRrbocalization data

set after less than 20,000 clauses searched. The Gleapéthalgtakes over 100,000 clauses to
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surpass this level of performance. On the Gene Diseaseetatayd®RankBoost.Clause algorithm
reaches 0.48 AURPC after 45,000 clauses searched, whileltamé&® algorithm does not reach
this level of performance even after 10 million clauses cezdl.

The more complex weak learner, PRankBoost.Path does notrajgpdaminate the simple
learner, PRankBoost.Clause, on all of the data sets. | beleseéstbecause PRankBoost.Clause
learns a very specific clause and reduces the weights on fest positive examples. This forces
search to focus on other positive examples and find otheifgpeauses that perform well on those
positive examples. PRankBoost.Path on the other hand leathspecific and general clauses in
the set of clauses used as a model for the weak learner. Thissmeany positive examples will
be down-weighted rather quickly. The remaining positivaraples may consist of very difficult
examples where it is not easy to find a good clause that coles tpositive examples without
also covering many negatives. After observing these cheniatics | designed other weak learners

that try to find a mix of models somewhere between PRankBoosis€land PRankBoost.Path.

6.5 Additional Experiments with Variations on Weak Learners

| have additional results using other weak learners thabooenvariations of PRankBoost.Clause
and PRankBoost.Path. Remember that PRankBoost.Clause retasiadle rule that is the best
seen during search. Its score,is a weighted version of the area under the recall-pretisiove
of that single rule. PRankBoost.Path retains a set of rulegyatee trajectory from the most gen-
eral rule to the best rule found during hill climbing. The \daarner’s score is based upon the

area under the entire path of rules. Figure 6.3 shows the tethads of scoring a weak learner
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Figure 6.2 Learning curves for Freund et al.'s RankBoost #lyor my PRankBoost.Clause and
PRankBoost.Path algorithms on four large, skewed data seésning curves extend until 100
weak hypotheses are learned. This makes some curves eatémel than others.

based upon the single rule or the entire trajectory. Thel snlive uses the entire trajectory from
the most general rule to the rule itself while the dashedecuses only the rule itself.

These two scoring methods create a very different seartérpatConsider scoring rules based
upon the entire path from the most general rule. A portiorhefdcore is fixed based upon the
portion of the rule that has already been chosen. Any exdarnsi the rule will only decrease
recall or at best leave recall unchanged. The score will ghamly the left-most portion of the
recall-precision curve. Any extension that increasesigi@t will also increase the rule’s overall

score. This is not true when scoring a rule based upon onlyuleeitself. Adding a literal to a
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rule, even though it may increase the precision of the ruley still decrease the overall rule’s
score because the curve to the single rule will also changepdxtion of the curve is fixed. The
difference between these two scoring methods means thrag the entire path to score a rule will
search more deeply in the search space and discover lorigemwith higher precision but lower

recall.

h(X):-p(X),q(X,Y),r(Y).

530 —W0 —0 0= T

Recall
Figure 6.3 Two scoring methods for a weak learner. One sgoniethod (solid curve) used by
the PRankBoost.Path and Mix1 weak learners is based upontire teectory of rules from the
most general rule to the best rule. The second scoring méttasthed curve) used by the

PRankBoost.Clause and Mix2 weak learners is based upon tHe bigj rule alone. Mix3

alternates between using these two scoring methods.

As variations on PRankBoost.Path and PRankBoost.Clause | heaedrthree other weak
learners. The first retains the entire set of rules like PRankBBath, but the scoring function of
the learner is based upon the single best rule like PRankEBXagte. The second does just the
reverse by retaining only the single best rule, but scorifigised upon the entire trajectory. As a

final variation | have also alternated between PRankBoosts€land PRankBoost.Path for each

weak learner created.
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| ran experiments using the same experimental setup as mippseexperiments. Results for
these three new weak learners appear in Figure 6.4. It apfhedrthese variations do not find mod-
els that are consistly higher than PRankBoost.Clause and PRaskBath models when measur-
ing AURPC. However the first mixed model (dashed line) does stmwe interesting properties.
Its initial performance is very low compared to the other eled It has a more shallow learning
curve and it does not appear to have reached its asymptofarmpance after 100 weak learners
have been included in the model. All of these observationsensanse when considering the type
of weak learner. Each weak learner is an individual clauaewhll have high precision but low
recall due to the scoring function being the area under thieegmath. After each weak hypothe-
sis is learned the few positive examples that are coverddwitiown-weighted and a new weak
hypothesis will be learned that covers new examples. Beazube small coverage of each indi-
vidual clause, learning will be slow and consistent, shgwmprovement even after many clauses
have been learned.

For future work | would like to create additional mixed magléhat begin by learning more
general clauses as seen in PRankBoost.Clause and then sgitchearning more specific clauses
as seenin the first mixed model. | believe this type of modi&bliow good initial performance and
will continue to show predictive improvement reaching ailgigasymptote. As future work | would
also like to perform theoretical analysis to support my emgi work showing that PRankBoost
maximizes AURPC following Freund et al.’s proof that RankBawmsiximizes AUROC (Freund

et al., 1998).
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Figure 6.4 Learning curves for three models that mix comptsef PRankBoost.Path and
PRankBoost.Clause on four large data sktix1 includes clauses as weak learners like
PRankBoost.Clause but scores them like PRankBoost.FtB.includes entire paths of clauses
as PRankBoost.Path but scores the path like PRankBoost.CMix8alternates between the
method used in PRankBoost.Path and the one used in PRankBooseCla

6.6 Summary

When working with skewed data sets metrics such as area uraezdall-precision curve have
been shown to discriminate well between competing modelssigned a modified RankBoost al-
gorithm to maximize area under the recall-precision cudlveompared the original RankBoost

algorithm, which is designed to maximize area under the RQ&e; with my modified version.
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When comparing AUROC on four large, skewed data sets thenatigflankBoost algorithm out-
performs my modified PRankBoost version. However when comgaURPC PRankBoost out-
performs the orginal algorithm.

| created several first-order logic weak learners. The sstpleak learner, PRankBoost.Clause,
consists of an individual rule. A second, more complex weakrer, PRankBoost.Path, consists
of all rules along the path to the best rule. This more comfdarer does not require any addi-
tional rules be evaluated on training data. This is espgadialportant when working with large
data sets because evaluation is a costly time step. Both wagkelrs have different strengths with
neither learner dominating in performance across all dgtta $n addition to these two weak learn-
ers | created several other weak learners that are a conunirtdtthese two. The most promising,
Mix1, consists of the highest-scoring clause found duriegrsh, but its score is calculated using

the entire trajectory of rules from the most general rulénts best rule.
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Chapter 7

Additional Experiments with the Mammography Data Sets

While working with the mammography data sets | have had twaiedlobjectives. My first ob-
jective is to create models that improve predictive perfamoe over existing work and my second
objective is to better understand indicators of malignaswaygested by the data. In this chapter |
explain additional experiments that | have done along theseomplementary paths.

In order to improve predictive performance | have addedrinédion from other sources. |
have also added additional features that allow for range&loies to be learned. | will explain
these changes and additions to the data set and their effeptedictive performance. | have also
looked at how well a model trained on one data set performé@isécond data set. The transfer
of these models to new data sets plays an important role iaratahding how well these models
can be expected to perform at new institutions. It also garesndication of the importance of
obtaining and training on data from the institution where tmodel will be used.

In order to better understand malignant indicators in thi&a,dahave gathered some basic
statistics about features in the data set. | have also loakedirs of features that perform either

better than expected or worse than expected compared todivedual features in the pair.
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7.1 Improving Predictive Performance

Davis et al. have developed the SAYU algorithm and used tigisrithm with chapter 3’s
mammography data set 1 (2005a). The SAYU algorithm incatesrfirst-order logic rules into a
propositional TAN model. SAYU adds a new rule to the existimgpositional feature set and re-
trains the TAN model (Friedman et al., 1997). If the new rui@ioves the predictive performance
on a held-aside tuning set then it is retained and furthessrake considered. This process of
considering rules continues for a fixed amount of time.

In these experiments | use the SAYU algorithm and the origiatof features as my control.
| have made several changes to the original set of featuodls,ilbcorporating new features and
modifying existing features. First | will explain experimts with modifying the feature set. After
that | explain a transfer experiment to both validate the ehath new data and to see how well
the model can be expected to perform when used at new instisuvhere the features may not be

identical to those on which the model was trained.

7.1.1 Feature Modification Experiment

The original feature set as used by Davis et al. containeddgogitional features and two rela-
tional features, one linking a finding on a mammogram to diineings on the same mammogram
and a second that links a finding to previous findings for tmeespatient. | have developed other
features that allow for ranges of values to be used in a ral@dtition | incorporated the output
from another model as a new feature in the data set. Finaiberérules created by a radiologist

were added to the background knowledge.
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| have created additional predicates so that ranges of vakue be learned in addition to indi-
vidual values. Dauvis et al. had already done this for the magsfeature since it was continuous.
They created theizefeature allowing for mass sizes that are greater than orl égjgsame specific
value, X, to be learned. However for discrete features only indiald@lues could be learned. |
created something similar to tise&zefeature for the other discrete-valued features. | ordened t
values of a feature based on the probability of malignanesrgihe feature’s value. | did this for all
features except for the age feature where | used the natda@liog. | then added a second feature
to each existing one using theidea. For example, the values for mass margins have no hatura
ordering. | calculated the probability of malignancy fockaf its values and ordered the values
using that. | then added thwarginsfeature so that all values greater than or equal to the value
X in the seed example would cause this predicate to be trualependently create these order
features for each fold to keep training and testing setsragpaAdding these features increases
the size of the search space significantly so it is not imntelgiabvious that this will improve
predictive performance, however | do feel that the increadke size of the search space will be
offset by greater flexibility in the rules that can be learned

In addition to creating predicates that allow a range ofeslio be learned | also incorporated
the output from another model that predicts the probalihisyg a patient will develop breast cancer.
The Gail model (Gail et al., 1989) takes as input a set of patisks factors and predicts the
likelihood that the patient will develop breast cancer with specific period of time. The National

Cancer Institute has created a websithere patient risk factors can be entered and the likelihood

Lhttp://www.cancer.gov/bcrisktool/Default.aspx
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of developing breast cancer within the next five years isntepo | created a script to gather these
likelihoods and used them as an additional predicate indbkdround knowledge. The Gail model
was developed using data from a joint NCl and American Cancele§abreast cancer screening
study that involved 280,000 women aged 35 to 74 years. | Hogtausing the output of this model
will leverage the much larger data set on which the model widsdnd improve performance on
our smaller data set.

One final addition to the background knowledge comes fronegenerated rules. An expert
radiologist, Dr. Elizabeth Burnside, wrote down a set of suleed to distinguish malignant find-
ings. There were a total of six unique concepts to help iniggishing malignancy. An example
of one of these conceptsuspicious mass descripto@ppears in Table 7.1 after converting it to
first-order logic. The six concepts were converted to Hoausés and added to the background

knowledge.

Table 7.1 Hand-crafted, expert rules used to destinguidignaant findings.
likelyMalignant(X) :- suspiciousMassDescriptor(X).

suspiciousMassDescriptor(X) :- suspiciousMassMargjn(X
suspiciousMassDescriptor(X) :- massShape(X, irregular)
suspiciousMassDescriptor(X) :- massDensity(X, high).

suspiciousMassMargin(X) :- massMargin(X, spiculated).
suspiciousMassMargin(X) :- massMargin(X, microlobuthte

| ran SAYU with the original set of background knowledge arithwhe modified version on

both mammography data sets using 10-fold cross validatiigure 7.1 shows recall-precision
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Figure 7.1 Recall-Precision curves for the two mammograattg dets showing performance
using the original background knowledge and a modified warsf the background knowledge
that includes additional predicates.
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curves for the two data sets and the two sets of backgrounsl&dge. On both data sets improve-
ment was found in the AURPC above 0.50 recall by incorporétiege new features.

Via inspection of the rules that were retained in the TAN mpaled because of earlier runs that
incorporated only portions of the new features, | was abkst®rtain which added features made
a difference in performance. The features that allow ranf@slues were used frequently in the
final model while the other additional features made litifeedence. | believe the expert rules did
not make a difference because they were too specific and oured a small percentage of the
positive examples in the data set. The Gail model featur@aidio a good job at separating ma-
lignant from benign in our data set. The model was designedgess the likelihood of developing

breast cancer over a five year period, not to indicate théHiked on a single mammogram.

7.1.2 Transferring the Model

Originally only a single data set of mammographic findingsenaevailable and SAYU created
models to maximize AURPC performance on this data set. Aieeldping a second data set
from mammographic findings at a second institution, a qaedfat arose was how well these
SAYU models that were trained on the data from one institutiould perform at a second insti-
tution. Answering this question would give some insighbihbw portable the model would be
from institution to institution. It would also help answerelated question: is there a significant
improvement when data is obtained and a model is trainedfgpicthe new institution.

To answer these questions | setup an experiment to trahsfenadel learned on data from one
institution and see how well it performs on data from the seldostitution. | train three different

models. The first modelransfer Modelis trained on the data from one institution and results are
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reported for the data from the second institution. The secoodel,No Transfer does not involve
transfer. Itis created using 9 of the 10 folds and | repoutltegor the held-aside fold of the same
data set. Results are then pooled across the 10 folds. Thlentlodel, Combined datais trained
on all data from one institution and 9 of the 10 folds from teead institution combining the data
into one large training set. Results are reported for the i@ngafold of the second institution. |
create this third model for each of the 10 test folds and go®lesults.

| do this experiment using the first mammography data set@sdhlrce and the second as
the target. | also calculated the performance of the radiste using the BI-RADS scores. One
difference between the two data sets is the method for detergground truth. In the second data
set ground truth was determined only via biopsy, while tret fiata set used biopsy and matching
to a state registry. Biopsies are typically performed whem@irig has a BI-RADS score of 4 or
5. If a BI-RADS score of 0 is assigned then additional imagingadormed which may lead to
a higher BI-RADS score and a possible biopsy. Because therernsgmsiry match there are no
malignant findings with a score other than 4, 5, or 0 in the seé@ata set. Future work includes
performing a registry match to improve ground truth.

Results for these experiments appear in Figure 7.2. The $tigleeformer is the model learned
from the most data. The second highest performer is the nibdels trained on the data set on
which it is tested. The next highest performer is the modeh&d on the opposite data set from
which it is tested. All of these computer generated modeigertorm the radiologists.

The answer to the portability question is yes, the transtemodel is able to improve upon

radiologists performance at a new institution without igqg the model be retrained on data
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Figure 7.2 Recall-Precision curves using the second manapbygrdata set as the test set. The
Transferred Modeis trained only on the first mammography data set. $hme Sourcemodel is
trained on 9 of the 10 folds of the second set and tested orethaining fold. TheCombined
datamodel is trained on all of the first set and 9 of the 10 folds efgkcond set and tested on the
remaining fold. Results are pooled across folds.

specific to that institution. In answer to the second quasttmout training a model specific to a new
institution the answer also is in the affirmative. Traininghadel using data from the institution
where it will be utilized makes a marked improvement in pcéde performance. However if
data is unavailable the model trained using data from anatis&tution will still provide benefit
over using no computer generated model at all. Finally the performing model is the one
given the combined data from both institutions as trainiagad The combined curve in Figure 7.2
shows the performance of the model trained on the combintdatal evaluated on the second

mammography data set.
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Figure 7.3 Learning curves using the first mammography ddtassthe test set. Tli@ombined
Data Modelis trained on all of the second set and varying numbers otfofdlata from the first
set.Same Source ModahdRadiologistdo not vary and are graphed for comparison.

| ran a second experiment training tBembined Modebn varying amounts of data from the
target institution along with all data from the source ington to better understand the relationship
between performance and the amount of institution speciia.dl created th€ombined Model
using 0, 3, 6, and 9 folds from the target institution and caref the area under the recall-precision
curve greater than 0.50 recall. | compare @@mbined ModeWith the model trained on source
institution data only and the radiologists performance. UResppear in Figure 7.3. It appears
that theCombined Modesurpasses thBame Sourceodel after only three folds of data from the
target institution are used. This equates to roughly 10@gmaht and 9,000 benign examples from
mammography data set 2.

The rules learned for each of the three computer models aysieilar. | believe the reason for

the improved performance between the different models hag o do with learning improved
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parameters and not as much because of finding better rules.pdiameters of the model will
continue to improve as additional data is used. Future wanlkides finding and utilizing additional

data sources to further improve model parameters.

7.2 Improving Understanding of Malignant Indicators

Another important direction in regards to the mammograpdia dets involves improving our
understanding of malignant indicators that may be fountiéndata. Improved understanding can
not only lead to better computer models, it can also aid tadists in improving their diagnosis
and researchers in understanding of breast cancer. Reseadbund several important factors
in determining breast cancer such as breast density andrbadyg index (Barlow et al., 2006).
Two important directions for understanding malignant aadiors involve finding these indicators
and understanding how these indicators work together. Sgtdgon contains work with first-order
rules and conditional probabilities that support the rédiewling of the importance of high mass
density in predicting breast cancer. This section alsoainstwork with identifying features that
are more predictive in conjunction with each other than wdé expected by their performance

individually.

7.2.1 Identifying High Mass Density as a Risk Factor using ILPand Condi-
tional Probabilities

ILP is a machine learning technique which is particularliphd in aiding researchers in mak-

ing discoveries. The rules learned are easily understodgvide insight on interaction between
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features. Probability theory is another method that cantifjethe association between a predic-
tive indicator and a specific outcome (Grinstead & Snell,7J9€onditional probabilities describe
the probability of a specific outcome given a set of indicgitéor example the probability of malig-
nancy given a finding on a mammogram. Such probabilitiesigeansight into indicators that are
more or less predictive of a specific outcome. | have used lhéttand conditional probabilities
to help confirm high mass density as a risk factor of maligganc

The predictive capability of the mammographic density ofasaremains controversial. In the
past, experts have asserted, with limited data, that higsilemasses are more likely malignant.
The only study reported in the literature to evaluate the@ation between breast mass density and
cancer explicitly showed that mass density is difficult tagistently evaluate and that breast mass
density contributes less to predicting malignancy thaditi@ally thought (Jackson et al., 1991).
Since that research was performed in the early 1990s, niestunthe literature have evaluated the
contribution of breast mass density to prediction of canRecently, however, research using ILP
showed that high mass density may indeed be an importanicppedf cancer (Burnside et al.,
2005). The purpose of this work is to confirm the conclusiohthis previous research using a
modified ILP method and probability theory. Additional wadas done to test this conclusion by
specifically assessing the association between breastdeasgy and pathologic outcome in an
independent data set of mammographic findings (Woods €Gf9).

| used Srinivasan’s Aleph ILP system (2003) to learn rulesfthe set of examples in the first
mammography data set. The pseudo-code showing the gepeeairgg algorithm used by Aleph

appears in Table 2.2 with the search algorithm appearing@biel2.3. | made one modification
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to this general covering algorithm in that | usederymalignant finding as a seed example. | set
Aleph to select each malignant finding in turn. For the sel@éinding, rules are formed using the
information from the background knowledge that relates#delected finding. In this modified
ILP analysis, | set Aleph to consider rules for each maligriarding in the following manner:
The search through the space of rules starts with the mostrglerule which is true for every
mammographic finding whether benign or malignant. For eachd of search the best rule seen so
far is selected and extended. Each descriptor from thetedl&nding is considered as an extension
by adding the descriptor to the rule and calculating itsescging the compression scoring function
(explained below). This process of selecting the best reds s0 far and considering all possible
extensions repeats until 10,000 rules have been considerezhch malignant finding. | only
retained rules that had a recall of at least 5% and a prectdian least 25%. The longest rule |
considered was of length 10. Each rule is scored using th@ssion scoring metho®,— N — L
where P is the number of positives covered, is the number of negatives covered ahds the
length of the rule. Compression scoring finds short rulesdbaér as many positive and as few
negative examples as possible.

The best rule for each of the 510 malignant findings was redorA total of 80 unique rules
were found that met the user-defined constraints. The rudes thue, on average, for 40 malignant
and 43 benign findings (precision of 48%) and contained figewgtors. The entire set of 80 rules
had a recall of 67% and a precision of 23%. A radiologist neweié all 80 rules and identified
potentially interesting rules based on known significamidptors of malignancy, such as spicu-

lated margins and older age, a few of which appear in Table Mi&ny of the descriptors used
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in the rules are already known to be predictive of malignai®nilar to previous results | found
that high breast mass density also frequently appeareceiseghof rules. Of the 80 unique rules

learned, 19 (24%) contained the high mass-density descript

Table 7.2 Examples of rules learned by ILP, including the benof benign and malignant cases
for which the rule is true. Also shown are the precision amaiidor each rule.
| Rule | Benign | Malignant| Precision| Recall|

Finding is malignant if: 21 58 73% 11%
Mass Margins = Spiculated and
Mass Density = High and
Reason for Mammogram = Diagnostic

Finding is malignant if: 29 37 56% 7%
Mass Density = High and
Age > 65 and

Mass Size> 10mm and

Reason for Mammogram = Diagnostic
Finding is malignant if: 41 37 47% 7%

Mass Density = High and

Personal History of Breast Cancer = Yes and

Mass Stability = Increasing

After finding that high mass density frequently appearecuies learned by ILP, | evaluated
how predictive each of the descriptors were individuallg &low high mass density compared in
predictive ability to the other descriptors. | calculated tonditional probability of a malignant
finding given each descriptor individually. The conditibpeobability is defined as the fraction of
findings that are both malignant and have the descriptodéd/by the total number of findings that
have the descriptor alone. Probabilities were smoothejusaplacian smoothing (adding one to
all frequency counts) to help mitigate the problem of smallerage sizes for some descriptors. |

then ordered the descriptors from the most predictive tdethst predictive.
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The top 10 descriptors with their associated conditionabgbilities are listed in Table 7.3.
As with the ILP approach, most of these descriptors are géigavell known to be predictive of
malignancy. Based on conditional probability analysishimtass density appears as the fifth most

predictive indicator.

Table 7.3 The probability of malignancy given individuakdaptors. The 10 descriptors with the
highest probability of malignancy are shown.

| Descriptor | P(malignancy|descriptor) | Benign| Malignant|
BI-RADS category =5 0.62 109 181
Mass Margin = Spiculated 0.44 147 114
Regional pleomorphic calcifications 0.31 19 8
BI-RADS category = 4 0.28 403 160
Mass Density = High 0.18 489 108
Mass Shape = Irregular 0.12 842 118
Nipple Retraction = Present 0.10 72 7
Mass Size> 30mm 0.07 426 30
Clustered pleomorphic calcifications 0.07 937 67
Prior Surgery = True 0.06 1609 106

The ILP method generated several rules that contained gterhass-density descriptor, and
shows that high mass density is a useful predictor of matignavhen used in conjunction with
additional descriptors. Calculated conditional prob#bsi further confirmed this conclusion,
demonstrating that high mass density is among the top gregliadicators of malignancy when

considered alone.

7.2.2 Surprising Pairs

One way of better understanding malignant indicators iobkihg at pairs of features and the
probability of malignancy given these pairs. Looking atrpaif features gives insight on how the

features interact with each other and how this interactifates the likelihood of malignancy. The
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purpose of this work is to discover pairs of features thatbetéer at predicting malignancy than
would be expected looking at the individual features aloneall thesesurprising pairs Being
aware of surprising pairs allows for closer scrutiny wheunagions occur that contain them.

The probability that the class value is malignant given a phfeatures and their values can
be written P(C' = m|F; = v,, F5 = v;,). Using Bayes rule, conditional independence of the
features given the class, independence of the featuresoanel basic arithmetic the probability of
the class variable given the pair can be reduced to probabithat use the features alone rather
than in pairs. Consider the following simplifications to thelpability of malignancy conditioned

on a pair of features:

P(C =m|Fy = v, F = vp)

_ P(F1 = vg, Iy = v|C = m)P(C = m) Bayes Rule
P(Fl :UG,FQZUE))

_ P(F1 = ve, Fy = v|C = m)P(C =m)

Independence Assumption
P(Fy = va)(Fs = ) P P

PUFL = va|C = m)P(Fy = ,|C = m)P(C = m) Cond. Independence Assumptio
= nda. n naen umption
P(Fy = v,)P(Fy = vp) p p

P(C:m|F1:v,,,)(F1=va) P(C:m\ngvb)P(ngvb)P C = m
= PC=m) P(C=m) ( ) Bayes Rule
P(Fl = ’Ua)P(FQ = Ub)

= P<C — m‘Fl — va)P(C — m’FQ - vb) Basic Arithmetic
P(C =m)
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This calculation shows how a probability conditioned on & p&features can be reduced to
conditioning on the features individually. This result caso be viewed as a prediction. The
probability conditioned on a pair of features can be predidiy looking at probabilities that are
conditioned on the individual features alone.

| use two ways to determinB(C' = m|F, = v,, F5 = v,). The first is to measure this proba-
bility from data. For all of this work | use the first mammoghgata set to measure probabilities.
The second method is to use the prediction of the probalbitityy simpler probabilities that use
the individual features alone as described in the aboveilkedions. The amount to which these
two methods differ is how surprising the pair of features is.

| calculate the ratio between the measured probability badgtedicted probability for every
pair of features and sort the features by this value. | drogs pehere the ratio is smaller than 2.
| also drop pairs where the number of examples used to cédctiia probability is too small. |
follow the rule of thumb that numbers are too small to calufobabilities ifP- (1 — P)- N < 5
where N is the number of examples in the denominator &hid the probability being calculated
(Mitchell, 1997). | also drop pairs which a radiologist h&ethed to be uninformative. There are
a total of 156 unique feature values, which make over twdmysand pairs of feature values. Of
these twenty thousand pairs only 61 met the above criteria.

The top 10 surprising pairs appear in Table 7.4. The mostisurg pair, MassesSize=Small
and SkinRetraction=Present, is over 16 times more likelytmalignant then predicted by looking

at the features individually. However the numbers usedltuézte these probabilities are still quite
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Table 7.4 The top 10 surprising pairs of features. Also shievwhe ratio between the measured
and predicted conditional probability of malignancy gitbe pair of features, the number of

malignant examples covered, and the number of benign exsnaplvered.

’ Surprising Pair ‘ ?Tee“j;::j ‘ | M alignant| ‘ | Benign| ‘
MassesSize=Small, SkinRetraction=Present 16.17 7 14
SkinThickening=Present, HBreastCA=NoHxBreastCA 10.97 5 133
MassesSize=Small, ArchDistortion=Present 9.33 14 32
MassesDensity=Equal, BI-RADS=0 412 8 162
HormoneTx=None, BI-RADS=2 411 5 638
HO_Surgery=PriorSurgery, MassesMargins=Circumscriped3.80 11 103
HormoneTx=None, BI-RADS=3 3.79 9 420
HormoneTx=None , MassesMargins=Circumscribed 3.75 5 262
Age=Age4044, Cald®leomorphic=Clustered 3.60 15 77
MassesStability=Increasing, SkinRetraction=Present 3.49 5 31
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small despite dropping pairs that did not meet the rule afnihgriteria that | used. Small numbers
result in high variance and little reliability in the resuRuture work includes applying this process

to a larger data set in order to have more confidence in thé.resu

7.3 Summary

This chapter contains additional work that | have done withrhammography data sets. My
twin objectives when working with these data sets was totenemre accurate models than found
previously and to better understand the indicators of maligy. | conducted a set of experiments
to help with these objectives.

| added three types of predicates to the background knowledgrder to improve predictive
performance. | demonstrated the improvement in AURPC on imatimmography data sets using
these additional predicates. In another experiment | stidwev well a model trained on one data
set collected from on institution performed on a data sdéectdd from a second institution. | also
showed the value of collecting and training a model on data fthe institution where the model
will be used.

| conducted a set of experiments to better understand theaitods of malignancy. | used both
logical models and probability to demonstrate the impargaof high mass density in predicting
malignancy. It is the fifth most predictive indicator of nalancy after two BI-RADS categories,
spiculated margins, and regional pleomorphic calcificetioFinally, |1 considered pairs of fea-
tures that are more predictive of malignancy than would geeted by considering the features

individually.
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Chapter 8

Conclusion

Inductive Logic Programming is an important field of studgé&a on mathematical logic. My
research has incorporated ensemble approaches into ILBpgtidd them to large, skewed data
sets. The goal in my research is to scale ILP methods to latgesets and utilize metrics that are

designed for skewed data.

8.1 Contributions

My research has investigated efficiently creating ensesniiidirst-order rules. By doing this
| have been able to scale ILP to larger data sets and provide fieaible models that generate an
entire curve in recall-precision space. These ensembleagipes also show improved predictive
performance compared to a bagging ILP model. | have desitireset ensemble models to work
specifically with skewed data sets, optimizing area undereicall-precision curve.

The Gleaner ensemble algorithm (Goadrich et al., 2004; Gdadt al., 2005; Goadrich et al.,
2006) creates a theory by retaining rules across the erairger of recall values. The rules in
a recall bin are combined into a single hypothesis using anf“K” thresholding method. The
highest precision hypothesis on the tune set for each birerswised. One of Gleaner’s advantages

is the ability to quickly find and retain a diverse set of rul@bese rules span the spectrum from
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specific, precise rules to more general, less precise onas. s€t of rules can aid discovery by
capturing the full range of rules.

In Gleaner there is no communication between the differeatches or between the multiple
restarts for a single search. This means the same areagdf space may be scoured repeatedly
by the many restarts. | designed and implemented an ada@areh strategy where a probability
distribution is retained over the search space for each skedearch progresses the probability
distribution is updated so that areas that have been thlpsglarched are down-weighted and
areas that contain rules that have been retained in preséaishes are up-weighted. This adaptive
search algorithm shows a small improvement when used wétiGiraner algorithm (Oliphant &
Shavlik, 2007).

Gleaner's combination method is divorced from the seardtgss. It retains rules during
search simply based upon their individual performance adoased upon how well they will
complement the rules already retained. | created a boostsile method based on RankBoost
in order to integrate the combining phase and the searcletsiseory generation (Oliphant et al.,
2009). I modified RankBoost to optimize AURPC, a metric that wovkd with skewed data sets.
| demonstrated that this modified RankBoost algorithm ougpers traditional RankBoost when
measuring AURPC and is able to learn a high-scoring model opaickly than Gleaner.

| have also done additional work on the mammography data $&ysresearch involved not
only creating models for improved predictive performanaediso understanding the reasons for
malignancy that may be indicated in the data. | modified tla¢uies of the data set and incorpo-

rated additional features so that more complex models doeilléarned that improved predictive
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performance. | also transferred the model learned on orzesgditto another data set to show how
well these models will perform at new institutions showihgttmy computer-created models are
able to outperform radiologists at predicting malignamegrewhen no data from the institution is
available. 1 used ILP and probability to better understdredimdicators of malignancy confirming
that high mass density is an important indicator of maligiygiwoods et al., 2009). | also looked
at pairs of features that had a higher predictive power thaualdvbe indicated by the features

looked at in isolation.

8.2 Future Work

| envision several directions to extend this work. Glearaar be extended to retain clauses
across a wide spectrum of any metric desired. ROC curveanmmonly used when working with
balanced data where the number of positive and negativespea are roughly equal. | can see a
version of Gleaner that retains clauses in order to optip&é&rmance with ROC curves.

| designed a Bayesian network model where the structure lisftam a positive seed example
to capture a probability distribution across the space afiss for the seed. | plan to extend this
model so the proability distribution is over the entire gpat clauses instead of just the space of
clauses for a single seed.

The search process used in the modified RankBoost algoritlamsett most the clauses along
the best path during hill-climbing. Retaining additionauses not along this path that have al-
ready been evaluated would increase the coverage of theleaaler and may improve predictive

performance without requiring any additional search. Tdmalgining process used in the modified
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RankBoost algorithm is a simple weighted sum where weightfxae at the time when the weak
hypothesis is added to the theory. Updating all weights asweak hypotheses are added as in
LPBoost (Demiriz et al., 2002) or creating a more complex rhbégond a weighted sum such
as the TAN model used in the SAYU algorithm (Davis et al., 20&r a full Bayesian network
(Davis et al., 2004) may prove fruitful.

In addition to improving the predictive models, future wankludes improving the data sets.
For the mammography data sets, patients’ genetic infoamadi being collected that can be used
to better assess a person’s susceptibility to breast caidditional modalities such as ultrasound
are used to gather information about masses in the breasdingdhese types of background
knowledge may build more predictive models for the mammplgyalata sets. For the information
extraction data set$s-A hierarchies such as WordNet (Fellbaum, 1998) may add ussailonal
information for improving predictive performance.

The ground truth in some of these data sets is noisy and ceulehjroved. A registry match
was performed on the first mammography data set in order toafilulitional malignancies that
were not biopsied. This same procedure is being followedhersecond mammography data set
and should improve the accuracy of class labels. In the gedisorder data set class labels were
created semi-automatically. Class labels could be imprboyedllowing the same hand-labelling

procedure used in the protein-localization data set.
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8.3 Final Remarks

In this thesis | have incorporated several ensemble teaksigqto Inductive Logic Program-
ming in order to improve predictive performance and reducgime. These techniques scale ILP
to larger data sets and to data sets with a large imbalanaeéetpositive and negative examples.
As larger and larger data sets are created from ever moresdifields, creating accurate, under-
standable models becomes increasingly important. | hawershhat ensemble models such as

Gleaner and my modified RankBoost algorithm can be used foe ingsortant tasks.
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Appendix A: Predicates of the Protein-Localization Data Sé

This is a list of predicates used in the protein-localizatiata set. The data set contains a total
of 243 predicates. The gene-disease data set containg rigatrtical predicates with some minor
modifications for the different subsets of the MeSH dictignased. The predicates are divided
into syntax predicates, morphological predicates, seimpredicates, and statistical predicates.

| use the same format for the arguments of predicates asmgieelinode declarations of Aleph.
The plus (+) sign refers to input arguments, the minus (1) s&jers to output arguments, and the
number (#) sign refers to constant grounded argumentse Ralillists argument types along with
a definition of each type.

The ground literals in the data set refer to abstracts, seas phrases and words from a
set of documents obtained from the PubMed on-line databhstA refer to the PubMed ab-
stract identification number, S the sentence number witienabstract, P be the phrase number
within a sentence, and W the word number within a sentenceaurtr literals refering to ab-
stracts are denoted as “abA”, sentences as “ab@S”, phrases as “ab#enSphP” and words
as “abAsenSphPwW”. For example, ab12345enl1ph2 w3 denotes the 3rd word in the 1st

sentence of PubMed abstract 12345.
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Table A.1 A list of the argument types used by predicateseamptiotein-localization data set.

| Argument Type| Description

abstract
sentence
phrase
word
string
pos

fold
example
dataset

An abstract in the PubMed on-line database.

A specific sentence of an abstract.

A specific phrase in a sentence.

A specfic word in a sentence.

The actual text of the abstract.

A part of speech as marked by the Sundance parser.

An identifier for different folds of the data set.

An identifier for a specific positive or negative example ia tlata set
One of train, tune, or test.

Additional ground literals include the actual strings oftti®r the words, phrases and sentences

in the abstracts, the fold identification for abstracts tovalus to compute statistics on the training

set without using the testing set predicates, referencspdoific positive and negative examples,

and an identifier for train, tune, or test sets.

A.1 Syntax Predicates

These predicates refer to a information contained in thecttre of the document and phrase
types and part-of-speech information that was collectétutie Sundance sentence parser. Ad-
ditional predicates relate phrases in a relation to othesg#s in the sentence.

pp.segment( +phrase)
vp_segment( +phrase)
adj. segment( +phrase)
isanp_segment( +phrase)

c_m( +phrase)
art( +phrase)
adj( +phrase)
prep(+phrase)
conj(+phrase)
adv( +phrase)
lex( +phrase)
part(+phrase)
v( +phrase)



first word.in_phrase( +phrase, -word)

last word.in_phrase( +phrase, -word)

first phrasein_sentence(+sentence, -phrase)

last phrasein_sentence( +sentence, -phrase)

shortphrase( +phrase)

mediumphrase(+phrase)

long phrase( +phrase)

shortsentence( +sentence)

avg length sentence(+sentence)

long sentence( +sentence)

few_phrasesn_sentence( +sentence)
severalphrasesn_sentence(+sentence)

many phrasesn_sentence( +sentence)

no_POSin_phrase( +phrase , #pos)

one POSin_phrase( +phrase , #pos)

few_POSin_phrase( +phrase , #pos)
somePOSin_phrase(+phrase , #pos)

many POSin_phrase(+phrase , #pos)
no.wordPOSin_sentence( +sentence , #pos)
onewordPOSin_sentence( +sentence , #pos)
few_wordPOSIin_sentence( +sentence , #pos)
somewordPOSin_sentence(+sentence , #pos)

many wordPOSin_sentence(+sentence , #pos)
no_phrasePO3n_sentence( +sentence , #pos)
onephrasePOSn_sentence( +sentence , #pos)
few_phrasePOSn_sentence( +sentence , #pos)
somephrasePOSn_sentence(+sentence , #pos)

many phrasePO3n_sentence(+sentence , #pos)
adjacenttargetargs( +example, +dataset, #fold)
identicaltargetargs( +example, +dataset, #fold)
few_phraseseforetargetargs( +example, +dataset, #fold)
somephrasesheforetargetargs( +example, +dataset, #fold)
many phrasesheforetargetargs( +example, +dataset, #fold)
few_phrasedetweentargetargs( +example, +dataset, #fold)
somephrasesetweentargetargs(+example, +dataset, #fold)
many phrasesdetweentargetargs(+example, +dataset, #fold)
few_phrasesafter targetargs( +example, +dataset, #fold)
somephrasesafter targetargs( +example, +dataset, #fold)
many phrasesafter targetargs( +example, +dataset, #fold)
few_words beforetargetargs( +example, +dataset, #fold)
somewords beforetargetargs( +example, +dataset, #fold)
many words beforetargetargs( +example, +dataset, #fold)
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few_words betweentargetargs( +example, +dataset, #fold)
somewords betweentargetargs( +example, +dataset, #fold)
many words betweentargetargs( +example, +dataset, #fold)
few_words aftertargetargs( +example, +dataset, #fold)
somewords after targetargs( +example, +dataset, #fold)
many words after targetargs( +example, +dataset, #fold)
first. sentencan_abstract( -abstract, +sentence)

middle sentencen_abstract(-abstract, +sentence)

last sentencan_abstract( -abstract, +sentence)
shortabstract(+abstract)

mediumabstract(+abstract)

long abstract(+abstract)

sentencegparent( +phrase, -abstract)

sentencechild( +sentence, -phrase)
sentencadescendent(+sentence, -phrase)
sentencadescendent(+sentence, -word)
phraseancestor( +phrase, -sentence)
phrasedescendent( +phrase, -word)

phrasechild( +phrase, -word)

phraseparent( +phrase, -sentence)

phrasenext( +phrase, -phrase)

phraseprevious( +phrase, -phrase)

phrasesibling( +phrase, -phrase)

phrasebefore( +phrase, -phrase)

phraseafter( +phrase, -phrase)

word ancestor( +word, -phrase)

word ancestor( +word, -sentence)

word parent( +word, -phrase)

word_nextwithin_phrase( +word, -word)

word_next( +word, -word)
word_previouswithin_phrase(+word, -word)
word_previous( +word, -word)

word before( +word, -word)

word after( +word, -word)

word_sibling within_phrase( +word, -word)

word beforewithin_phrase( +word, -word)

word_after within_phrase( +word, -word)

different phrases(+phrase, +phrase)
phrasecontainssomeprep(+phrase, -word)
phrasecontainssomeart( +phrase, -word)
phrasecontainssomeadj( +phrase, -word)
phrasecontainssomen( +phrase, -word)
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phrasecontainssomev( +phrase, -word)

phrasecontainssomecop( +phrase, -word)

phrasecontainssomedet( +phrase, -word)

phrasecontainssomeunk( +phrase, -word)

phrasecontainssomepn( +phrase, -word)

phrasecontainssomeadv( +phrase, -word)

phrasecontainssomec_m( +phrase, -word)

phrasecontainssomenum( +phrase, -word)

phrasecontainssomeger( +phrase, -word)

phrasecontainssomeinf( +phrase, -word)

phrasecontainssomeconj(+phrase, -word)

phrasecontainssomeaux( +phrase, -word)

phrasecontainssomelex( +phrase, -word)

phrasecontainssomepart(+phrase, -word)

phrasecontainsPOS( +phrase, -word, #pos)

phrasecontainsPOSpair( +phrase, -word, -word, #pos, #pos)
phrasecontainsPOStriple( +phrase, -word, -word, -word, #pos, #pos, #pos)
sentencecontainsPOS pair( +sentence, +phrase, -phrase, -word, -word, #pos)#po
sentencecontainsPOStriple( +sentence, +phrase, -phrase, -phrase, -word,ciwarord, #pos,
#pos, #pos)

sentencecontainsspecificword POS pair(+sentence, +phrase, -phrase, -word, -word, #st#inos)
sentencecontainsspecificPOSword pair(+sentence, +phrase, -phrase, -word, -word, #pasng st
few_phrasesbeforetargetargs( +example, +dataset, #fold)
severalphrasesdeforetargetargs(+example, +dataset, #fold)

many phrasesbeforetargetargs( +example, +dataset, #fold)

few_words beforetargetargs( +example, +dataset, #fold)

severalwords beforetargetargs( +example, +dataset, #fold)

many words beforetargetargs( +example, +dataset, #fold)
few_phrasedetweentargetargs( +example, +dataset, #fold)
severalphrasedetweentargetargs(+example, +dataset, #fold)

many phrasesetweentargetargs( +example, +dataset, #fold)

few_words betweentargetargs( +example, +dataset, #fold)

severalwords betweentargetargs( +example, +dataset, #fold)

many words betweentargetargs( +example, +dataset, #fold)

few_phrasesafter targetargs( +example, +dataset, #fold)

severalphrasesafter targetargs(+example, +dataset, #fold)

many phrasesafter targetargs( +example, +dataset, #fold)
few_words after targetargs( +example, +dataset, #fold)
severalwords after targetargs( +example, +dataset, #fold)

many words after targetargs( +example, +dataset, #fold)
beforebothtargetphrases( +example, +dataset, #fold, -phrase)

word beforeboth targetphrases(+example, +dataset, #fold, -phrase, -wordng3tri
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in_betweentargetphrases( +example, +dataset, #fold, -phrase)
word.in_betweentargetphrases( +example, +dataset, #fold, -phrase, -wordg3tri

after both targetphrases( +example, +dataset, #fold, -phrase)
word_after both targetphrases( +example, +dataset, #fold, -phrase, -word#gstri

targetargl beforetargetarg2(+example, +dataset, #fold)

targetarg2 beforetargetargl(+example, +dataset, #fold)
word_pair_in_betweentargetphrases(+example, +dataset, #fold, -phrase, -phrased-wsord,
#string, #string)

pos pair_.in_betweentargetphrases( +example, +dataset, #fold, -phrase, -phrased-woord,
#pos, #pos)

word posin_betweentargetphrases( +example, +dataset, #fold, -phrase, -phrased -weord,
#string, #pos)

posword.in_betweentargetphrases( +example, +dataset, #fold, -phrase, -phrased -weord,
#pos, #string)

word_prev_targetargl( +example, +dataset, #fold, -phrase, -word, #string)

word_prev targetarg2( +example, +dataset, #fold, -phrase, -word, #string)

word nexttargetargl( +example, +dataset, #fold, -phrase, -word, #string)
word_nexttargetarg2( +example, +dataset, #fold, -phrase, -word, #string)
word_pair_prev.targetargl( +example, +dataset, #fold, -phrase, -phrase, -waraid, #string,
#string)

word_pair_prev.targetarg2( +example, +dataset, #fold, -phrase, -phrase, -waroid, #string,
#string)

word_ pair_nexttargetargl( +example, +dataset, #fold, -phrase, -phrase, -warord, #string,
#string)

word_pair_nexttargetarg2( +example, +dataset, #fold, -phrase, -phrase, -warord, #string,
#string)

A.2 Morphological Predicates

These predicates refer to the properties of the actual ctearstring of individual words. Ad-
ditional predicates lift this information to the phrasedkfor easy addition to rules created during
learning.

phrasecontainssomealphabetic( +phrase, -pos, -word)
phrasecontainssomealphanumeric( +phrase, -pos, -word)
phrasecontainssomenumeric( +phrase, -pos, -word)
phrasecontainssomesinglecharword( +phrase, -pos, -word)
phrasecontainssomehyphenatedvord( +phrase, -pos, -word)
phrasecontainssomeall_capsword( +phrase, -pos, -word)
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phrasecontainssomeleadingcapword( +phrase, -pos, -word)
phrasecontainssomeinternalcapword( +phrase, -pos, -word)
phrasecontainssomealphabetic( +phrase, #pos, -word)
phrasecontainssomealphanumeric( +phrase, #pos, -word)
phrasecontainssomenumeric( +phrase, #pos, -word)
phrasecontainssomesinglecharword( +phrase, #pos, -word)
phrasecontainssomehyphenatedvord( +phrase, #pos, -word)
phrasecontainssomeall_capsword( +phrase, #pos, -word)
phrasecontainssomeleadingcapword( +phrase, #pos, -word)
phrasecontainssomeinternalcapword( +phrase, #pos, -word)

phraselD _to_string( +phrase, #string)

phraselD _to_string(+phrase, #string)

word_ID _to_string( +word, #string)

word_ID _to_string( +word, #string)

word_ID _to_string( +word, #string)

phraselD _to_string( +phrase, #string)

sentencdD _to_string(+sentence, #string)

phrasecontainsspecificword( +phrase, -word, #string)
phrasecontainsspecificword_pair( +phrase, -word, -word, #string, #string)
phrasecontainsspecificword.triple( +phrase, -word, -word, -word, #string, #stringtrigy)
sentencecontainsspecificword( +sentence, -phrase, -word, #string)
sentencecontainsspecificphrase( +sentence, -phrase, #string)
sentencecontainsspecificword pair( +sentence, +phrase, -phrase, -word, -word, #stfisiging)
sentencecontainsspecificword triple( +sentence, +phrase, -phrase, -phrase, -wordg,weord,
#string, #string, #string)

A.3 Statistical Predicates

These predicates refer to the frequency counts of wordsjuérecies were collected on each
fold seperately so as to maintain a seperation betweenrigaamd testing sets. Frequencies were
binned into (10x,5x,2>§,x) more likely in positive examples than in negative ones.

phrasecontainssomearg 10x word( +phrase, #arg, #pos, -word, #fold)
phrasecontainssomearg 5x_word( +phrase, #arg, #pos, -word, #fold)
phrasecontainssomearg 2x word( +phrase, #arg, #pos, -word, #fold)
phrasecontainssomearg halfX_word( +phrase, #arg, #pos, -word, #fold)
phrasecontainsno_arg halfX_word( +phrase, #arg, #pos, #fold)
phrasecontainsseveralarg 10x word(+phrase, #arg, #pos, #fold)
phrasecontainsseveralarg 5x_word( +phrase, #arg, #pos, #fold)
phrasecontainsseveralarg 2x_ word( +phrase, #arg, #pos, #fold)
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phrasecontainsmanyarg 10x word( +phrase, #arg, #pos, #fold)
phrasecontainsmanyarg 5x word( +phrase, #arg, #pos, #fold)
phrasecontainsmany arg 2x word( +phrase, #arg, #pos, #fold)
very_high_phraselog_odds(+phrase, #arg, #fold)

high_phraselog_odds( +phrase, #arg, #fold)

med phraselog_odds( +phrase, #arg, #fold)

positive phraselog_odds( +phrase, #arg, #fold)

very_rareword( +word, #fold)

rare word( +word, #fold)

uncommonword( +word, #fold)

commonword( +word, #fold)

very_.commonword( +word, #fold)

only_in_one sentence( +word, #fold)

only_in_one abstract( +word, #fold)

in_few_sentences( +word, #fold)

in_few_abstracts( +word, #fold)

in_severalsentences( +word, #fold)

in_severalabstracts( +word, #fold)

in_many.sentences( +word, #fold)

in_many.abstracts( +word, #fold)

in_very_many sentences(+word, #fold)

in_very_many abstracts(+word, #fold)
phrasecontainssomebetweenl0x word( +phrase, #arg, #pos, -word, #fold)
phrasecontainssomebetween5x word( +phrase, #arg, #pos, -word, #fold)
phrasecontainssomebetween2x_word( +phrase, #arg, #pos, -word, #fold)
phrasecontainssomebetweenhalfX_word( +phrase, #arg, #pos, -word, #fold)
phrasecontainsno_betweenhalfX_word( +phrase, #arg, #pos, #fold)
phrasecontainsseveralbetweenlOx word(+phrase, #arg, #pos, #fold)
phrasecontainsseveralbetween5x word( +phrase, #arg, #pos, #fold)
phrasecontainsseveralbetween2x_ word( +phrase, #arg, #pos, #fold)
phrasecontainsmany betweenl0x word( +phrase, #arg, #pos, #fold)
phrasecontainsmany between5x word( +phrase, #arg, #pos, #fold)
phrasecontainsmany between2x word( +phrase, #arg, #pos, #fold)

A.4 Semantic Predicates

These predicates refer to semantic information found usewgral dictionaries. Words that
appear in one of these dictionaries is marked with a spedaiédipate for each dictionary. This
information is lifted to the phrase level for easy learning.
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phrasecontainsgo_term( +phrase, -string, -string, -word)
phrasecontainsmedDictterm(+phrase, -string, -string, -word)
phrasecontainsmeshterm( +phrase, -string, -string, -word)
phrasecontainsmeshprotein(+phrase, -string, -string, -word)
phrasecontainsmeshpeptide(+phrase, -string, -string, -word)
phrasecontainsmeshcellular structure(+phrase, -string, -string, -word)
phrasecontainsgo_term( +phrase, #string, #string, -word)
phrasecontainsmedDictterm(+phrase, #string, #string, -word)
phrasecontainsmeshterm( +phrase, #string, #string, -word)
phrasecontainsmeshprotein(+phrase, #string, #string, -word)
phrasecontainsmeshpeptide(+phrase, #string, #string, -word)
phrasecontainsmeshcellular structure(+phrase, #string, #string, -word)
phrasecontainssomepart(+phrase, -word)
phrasecontainssomemarkedup_arg(+phrase, #arg, -word, #fold)
phrasecontainssomeunknownword( +phrase, -pos, -word)
phrasecontainssomeunknownword( +phrase, -pos, -word)



