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Abstract

Learning from reinforcements is a promising approach for creating intelli-
gent agents. However, reinforcement learning usually requires a large number
of training episodes. We present a system called RATLE that addresses this
shortcoming by allowing a connectionist Q-learner to accept advice given, at
any time and in a natural manner, by an external observer. In RATLE, the
advice-giver watches the learner and occasionally makes suggestions, expressed
as instructions in a simple programming language. Based on techniques from
knowledge-based neural networks, RATLE inserts these programs directly into
the agent’s utility function. Subsequent reinforcement learning further inte-
grates and refines the advice. We present empirical evidence that shows our ap-
proach leads to statistically-significant gains in expected reward. Importantly,
the advice improves the expected reward regardless of the stage of training at
which it is given.

A shorter version of this paper appears in the Proceedings of the Twelfth National Conference
on Artificial Intelligence (AAAI-94), AAAI Press.



Incorporating Advice into Agents
that Learn from Reinforcements

1 Introduction

A successful and increasingly popular method for creating intelligent agents is to have
them learn from reinforcements (Barto et al., 1990; Lin, 1992; Mahadevan & Connell,
1992; Tesauro, 1992). However, these approaches suffer from their need for large
numbers of training episodes. While several approaches for speeding up reinforcement
learning have been proposed (they are reviewed later), a largely unexplored approach
is to design a learner that can also accept advice from an external observer. We
present and evaluate an approach, called RATLE (Reinforcement and Advice-Taking
Learning Environment), for creating advice-taking learners.

To illustrate the general idea of advice-taking, imagine that you are watching an
agent learning to play some video game. Assume you notice that frequently the agent
loses because it goes into a “box canyon” in search of food and then gets trapped
by its opponents. One would like to give the learner advice such as “do not go into
box canyons when opponents are in sight.” Importantly, the external observer should
be able to provide its advice in some quasi-natural language, using terms about the
specific task domain. In addition, the advice-giver should be oblivious to the details
of whichever internal representation and learning algorithm the agent is using.

Recognition of the value of advice-taking has a long history in Al. The general
idea of an agent accepting advice was first proposed about 35 years ago by McCarthy
(1958). Over a decade ago, Mostow (1982) developed a program that accepted and
“operationalized” high-level advice about how to better play the card game Hearts.
More recently Gordon and Subramanian (1994) created a system that deductively
compiles high-level advice into concrete actions, which are then refined using genetic
algorithms. However, the problem of making use of general advice has been largely
neglected.

In the next two sections, we present a framework for using advice with rein-
forcement learners, and our instantiation of this framework. The subsequent section
presents experiments that investigate the value of our approach. Finally, we list pos-
sible extensions to RATLE, further describe its relation to other research, and present
some conclusions that can be drawn from our research.



2 A General Framework for Advice-Taking

In this paper we focus on a method that allows an agent employing reinforcement
learning (RL) to make use of advice, though our technique applies to many advice-
taking tasks. We begin by outlining a framework for advice-taking developed by
Hayes-Roth, Klahr, and Mostow (1981)*, and discuss how our system fits into their
framework. In the following section we present specific details of our implemented
system, RATLE.

Step 1. Request the advice.

To begin the process of advice-taking, a decision must be made that advice is needed.
Often, approaches to advice-taking focus on having the learner ask for advice when
it is needs help. Rather than having the learner request advice, RATLE allows the
external observer to provide advice whenever the observer feels it is appropriate.
There are two reasons for this: (i) it places less of a burden on the observer; and
(ii) it is an open question how to create the best mechanism for having an agent
recognize (and express) its need for advice. In the specific area of providing advice
to RL agents, other work (Clouse & Utgoff, 1992; Whitehead, 1991) has focused on
having the observer assess the actions chosen by the agent. However, this can lead
to a large amount of interaction and requires that the learner induce the generality
of the advice.

Step 2. Convert the advice to an internal representation.

Once the observer has created a piece of advice, the agent must try to understand the
advice. Due to the complexities of natural language processing, we require that the
external observer express its advice using a simple programming language and a list
of acceptable task-specific terms. RATLE then parses the advice, using traditional
methods from programming-language compilers.

Step 3. Convert the advice into a usable form.

After the advice has been parsed, RATLE transforms the general advice into terms
that can be directly understood by the agent. Using techniques from knowledge com-
pilation (Dietterich, 1991), a learner can convert (“operationalize”) high-level advice
into a (usually larger) collection of directly interpretable statements (see Gordon and
Subramanian, 1994). In many task domains, the advice-giver may wish to use nat-
ural, but imprecise, terms such as “near” and “many.” A compiler for such terms
will be needed for each general environment since the terms needed to describe an

1See also pg. 345-349 of Cohen and Feigenbaum (1982).



problem will be problem-dependent. In RATLE, we make use of a method similar to
Berenji and Khedkar’s (1992) for compiling fuzzy-logic terms into neural networks.

Step 4. Integrate the reformulated advice into the agent’s current knowl-
edge base.

In this work our agent employs a connectionist approach to RL. To incorporate the
observer’s advice, the agent’s neural network must be updated. RATLE uses ideas
from knowledge-based neural networks (Fu, 1989; Omlin & Giles, 1992; Towell et al.,
1990) to directly install the advice into the agent. In one approach to knowledge-
based neural networks, KBANN (Towell et al., 1990; Towell & Shavlik, in press), a
set of propositional rules are re-represented as a neural network. KBANN converts
a ruleset into a network by mapping the “target concepts” of the ruleset to output
units and creating hidden units that represent the intermediate conclusions. In RATLE
we extend the KBANN approach to accommodate a programming language we have
developed for representing advice.

Step 5. Judge the value of the advice.

The final step of the advice-taking process is to evaluate the advice. One can also
envision that in some circumstances — such as a game-learner that can play against
itself (Tesauro, 1992) or when an agent builds an internal world model (Sutton, 1991)
— it would be straightforward to empirically evaluate the new advice. In RATLE we
view the process of evaluating advice as having two parts: (i) the evaluation from
the point of view of the agent, who must decide if the advice is useful, and (ii) the
evaluation from the point of view of the observer, who must decide if the advice had
the desired effect on the behavior of the agent.

The agent performs the process of evaluating the advice by further reinforcement
learning. Once the advice is incorporated into the agent, the agent returns to explor-
ing its environment making using of and updating its knowledge. This process allows
the agent to evaluate and refine the advice. To allow the observer to evaluate the
advice we let the observer watch the performance of the system after the advice has
been inserted. This may lead to further advice — thus starting the cycle over.

Summary

Figure 1 shows a diagram of our system and its interaction with the observer and the
agent. Note that the process is a cycle: the observer develops advice based on the
agent’s behavior, RATLE translates the advice and inserts it into the agent, and the
agent then tests the advice — which may result in behavior changes that cause the
cycle to start over. In the following section we discuss specific details of our current
implementation of this approach.
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Figure 1: Interaction of the RATLE approach for advice-taking with the
reinforcement-learning agent and the external observer.

3 RATLE - The Details

In this section we further describe RATLE, our system for reinforcement learners that
can accept advice. To better understand RATLE, we first present an outline of connec-
tionist Q-learning (Sutton, 1988; Watkins, 1989), the form of reinforcement learning
we use in our implementation, and KBANN, a technique for incorporating knowledge
in the form of rules into a network. We then discuss our extensions to these techniques
by showing how we implement each of the steps presented in the previous section.

Background

Figure 2 shows the general structure of a reinforcement learner, augmented (in bold),
with an observer that provides advice. In RL, the learner senses the current world
state, chooses an action to execute, and occasionally receives rewards and punish-
ments. Based on these reinforcements from the environment, the task of the learner
is to improve its action-choosing module such that it increases the total amount
of reinforcement it receives. In our augmentation, an observer watches the learner
and periodically provides advice, which RATLE incorporates into the action-choosing
module of the RL agent.

In Q-learning (Watkins, 1989) the action-choosing module is a wutility function
that maps states and actions to a numeric value. The utility value of a particular
state and action is the predicted future (discounted) reward that will be achieved if
that action is taken by the agent in that state. It is easy to see that given a perfect
version of this function, the optimal plan is to simply choose, in each state that is
reached, the action with the largest utility.

To learn a utility function, a Q-learner starts out with a randomly chosen utility
function and explores its environment. As the agent explores, it continually makes
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Figure 2: Reinforcement learning with an external advisor.

predictions about the reward it expects and then updates its utility function by com-
paring the reward it actually receives to its prediction. In connectionist )-learning,
the utility function is implemented as a neural network, whose inputs describe the
current state and whose outputs are the utility of each action.

To map the knowledge represented in the advice provided by the user, we extended
the KBANN algorithm. KBANN is a method for incorporating knowledge in the form
of simple propositional rules into a neural network. In a KBANN network, the units of
the network represent Boolean concepts. A concept is assumed to be true if the unit
representing the concept is highly active (near 1) and false if the unit is inactive (near
0). To represent the meaning of a set of rules, KBANN connects units with highly-
weighted links and sets unit biases (thresholds) in such a manner that the (non-input)
units emulate AND or OR gates, as appropriate. Figure 3 shows an example of this
process for a set of simple propositional rules.

In RATLE we use a programming language to specify advice instead of Prolog-like
rules. In order to map this more complex language, we make use of hidden units that
record state information about the neural network. These units are recurrent and
record the activation of a hidden unit from the previous activation of the network
(they “remember” the previous activation value). In the section below on mapping
program constructs into a neural networks we discuss how these units are used.

In the following subsections we give specific details on our implementation of the
advice-taking strategy we discussed in the last section. In our implementation, we
assume that we are giving advice to an agent performing connectionist Q-learning.

Step 1. Request the advice.

To give advice users simply interrupt the agent’s execution and type in their advice.
RATLE then begins the process of transforming the advice so that it may be added
to the agent.
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Figure 3: Sample of the KBANN (Towell et al., 1990) algorithm: (a) proposi-
tional rule set; (b) the dependencies of the rules; (¢) each proposition is rep-
resented as a unit (units are also added for other vertices of the dependency
graph); and (d) low-weighted links are added between layers as a basis for fu-
ture learning (an antecedent can be added to a rule by increasing one of these
weights).

Step 2. Convert the advice to an internal representation.

We built the parser for RATLE using the standard Unix compiler tools lexz and yace.
A complete grammar for RATLE’s advice language is shown in Table 1. Our advice-
taking language has three main programming constructs: IF-THEN rules, WHILE loops,
and REPEAT loops.

The 1IF-THEN constructs in the language actually serve two purposes. An IF-
THEN can be used to specify that a particular action should be taken in a particular
situation. One can also be used to create a new intermediate term. In this case the
conclusion of the IF-THEN rule is not an action, but the name of the new intermediate
term. This allows the user to build a new set of descriptive terms based on the original
terms. For example, the user may want to create an intermediate term NotLarge that
is true if an object is Small or Medium. Using an IF-THEN rule the user could create
this term, and NotLarge could then be used as an antecedent in future rules.

In order to specify antecedents and consequents for the IF-THEN and looping
constructs the user must be able to refer to conditions and actions in the specific
environment for which they are offering advice. The set of possible actions and the
input sensors are defined when creating the initial problem description. The user



Table 1: The grammar used for parsing RATLE’s advice language.

A piece of advice may be a single construct or multiple constructs.
rules <+ rule
| rules ; rule

The grammar has three main constructs: IF-THENs, WHILEs, and REPEATS.
rule < IF ante THEN act else END
| WHILE ante DO act postact END
| pre REPEAT act UNTIL ante postact END

else  « ¢ | ELSE act
postact < ¢ | THEN act
pre < ¢ | WHEN ante

A MULTIACTION construct specifies a sertes of actions to perform.
act < cons | MULTIACTION clist END
clist  « cons | cons clist
cons ¢ Term Name | ( corlst )
corlst  Term_Name | Term_Name V corlst

Antecedents are logical combinations of terms and fuzzy conditionals.
ante ¢+ Term_Name
| ( ante )
| = ante
| ante A ante
| ante V ante
| Quantifier_Name Object_Name 1S desc

The descriptor of the fuzzy conditional is a logical combination of fuzzy terms.
desc < Descriptor_Name
| = desc
| { dlist }
| ( deapr)
dlist  + Descriptor_Name | Descriptor_Name , dlist
dexpr ¢+ desc
| dexpr A dexpr
| dexpr V dexpr



Table 2: An example of a fuzzy condition in our advice language.

Form quantifier | object IS/ARE | descriptor
Example || Few Enemies | ARE Near

makes antecedents for the rules and looping constructs out of logical combinations of
the input terms plus any intermediate terms the user creates. To make the language
easier to use we also allow the observer to state fuzzy conditions, which we believe
provide a natural way to articulate imprecise advice. The particular fuzzy terms used
are domain dependent and must be created as part of defining the initial environment.
The process of translating a fuzzy condition into a corresponding neural network
construct is discussed in the next step.

Step 3. Convert the advice into a usable form.

Step 2’s parsing of the language converts the advice into an internal data structure. As
we shall see in Step 4, most of the concepts that can be expressed in our grammar can
be directly translated into additions to a neural network, but the fuzzy conditions
are somewhat different in that we must first determine the combination of input
units needed to match fuzzy condition. In this section we describe how to map fuzzy
conditions of the form shown in Table 2. We believe that fuzzy conditions of this
form apply to environments where the input sensors measure quantities of objects and
where the objects measured by a sensor share other properties (e.g. an input sensor
counts how many objects of type A are to the North — being North is the property
these objects share). For other environments, other types of fuzzy conditions may be
more applicable, thus necessitating extension of this notation.

Our method for performing the process of mapping a fuzzy condition to a corre-
sponding neural network construct is actually a two-part process; first we determine
the input units to which a fuzzy condition corresponds, then we map the fuzzy condi-
tion to the neural network. In this discussion we treat this as a single process, though
the second part of the process, mapping the fuzzy condition into the neural network,
would more correctly fit into our discussion of Step 4.

Our method for representing fuzzy conditions is based on the method proposed
by Berenji and Khedkar (1992). To better understand this process, consider the
example in Table 2. In our fuzzy conditions quantifiers are fuzzy terms describing
the number of objects needed for a match (e.g. A, No, Many, Few); objects are labels
for different things that may occur in the environment (e.g. Obstacle, Enemy, Food);
and descriptors are fuzzy terms that describe properties objects may have (e.g. Near,
North, Flat). The condition shown in Table 2 refers to objects named “Enemies” and
uses the fuzzy terms “Few” and “Near,” which must be defined by the user. Assume
that “Few” is defined as being two or three objects, and that “Near” means a distance
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Figure 4: An example of how RATLE converts a fuzzy condition to a set of
weights, biases, and hidden units. This example has input sensors where there
are at least two types of objects in the world (“Enemies” and “Rewards”) and
the input sensors count the number of Enemy and Reward objects that have
the property of falling within a certain distance from the agent. The input units
that represent Enemy objects and match the fuzzy term “Near” are connected
to hidden units that count if there are at least two “Near Enemies” and at
least four “Near Enemies,” respectively. The unit representing “Few Enemies
ARE Near” is then the conjunct of two “Near Enemies” and not four “Near

Enemies.”

between 1.0m and 3.5m.

The goal of RATLE when mapping a fuzzy condition is to create a hidden unit
that is highly active when the input matches the fuzzy condition, and is inactive
otherwise. In order to do this, RATLE first determines which input units match the
fuzzy terms. Then RATLE determines a set of weights and biases for the new hidden
unit that calculates when the fuzzy terms are met (drawing on ideas from KBANN
and Berenji and Khedkar’s work).

Figure 4 shows the set of hidden units and weights that are added to a network
to produce a hidden unit representing the condition “Few Enemies ARE Near.” The
first part of RATLE’s process for making these additions is to determine the set of
input units that are relevant for the fuzzy condition. RATLE first restricts the input
units to those that represent objects of the type indicated in the antecedent — in this
case “Enemies.” RATLE then determines how well each of these input units matches
the descriptor. If an input unit completely matches a description (an input unit
representing enemies at a distance of 1.0m to 2.0m would completely match “Near”),
RATLE assigns it a match strength of 1.0. For input units that only partially match



a descriptor RATLE makes an assumption of independent distribution? and assigns a
match strength equal to the fraction of the range of the input unit that is overlapped
by the descriptor. For example, since we have defined “Near” as distances between
1.0m and 3.5m, the input unit representing Enemies at a distance of 3.0m to 4.0m
matches only partially. RATLE assigns this unit a match strength of 0.5 since the
region from 3.0m to 3.5m out of the input unit’s total region of 3.0m to 4.0m matches.

Once RATLE determines the set of input units that match the object type and de-
scriptor, it examines the quantifier portion of the antecedent. The quantifier specifies
how many of the appropriate type of object are needed to achieve a match. If the
quantifier is a range, RATLE actually creates three hidden units: one that tests if the
number of matching objects are enough to exceed the low end of the range; one that
tests if the number of objects exceeds the high end of the range; and one that tests if
the first two units produced are active (true) and inactive (false), respectively. So, in
our example we get a hidden unit that tests if there are at least two Near Enemies,
one that tests if there are at least four Near Enemies, and one that tests if the first
is true and the second false (i.e., there are at least two Near enemies, but not four
or more). For quantifiers that are open ended (e.g. “Many” means more than three,
etc.), we need only create a single hidden unit.

To set the weights and bias for the unit labeled “# Near Enemies > 2,” RATLE
uses a technique similar to the standard KBANN technique generalized for the fact that
we are counting a number of objects, and that we may be counting over several hidden
units. In our example, this means we create weights from the input units representing
Enemies at a distance of 1.0m to 2.0m, Enemies at a distance of 2.0m to 3.0m, and
Enemies at a distance of 3.0m to 4.0m, such that the net input to the hidden unit
will exceed the bias if the count of Enemies is at least two across all of these inputs.
Once the weight is set for a particular input unit, RATLE multiplies the weight by
the match strength of the input unit (calculated previously) to represent that only
part of some inputs should be counted. The weights and bias of the unit representing
four Near Enemies are calculated similarly, while those for the unit representing the
conjunct of these two units are set using the standard KBANN process.

The result of this process is a hidden unit that is active when the condition “Few
Enemies ARE Near” is true, and false otherwise. Note that the weights and biases of
the hidden units created for the fuzzy antecedent can be changed by learning in the
world, and thus the fuzzy antecedent can be refined by learning.

2This means that we assume the objects counted by an input sensor are evenly distributed across
the input sensor’s range of values. For example, if an input sensor measures three Enemy objects
that are at a distance of 1m to 2m from the agent, we assume the actual distances to the objects
are may fall anywhere in the range from 1m to 2m with equal probability.

10
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Figure 5: RATLE adds advice to the neural network by adding hidden units
that correspond to the advice.

Step 4. Integrate the reformulated advice into the agent’s current knowl-
edge base.

After RATLE has reformulated any fuzzy conditions, it proceeds to map all of the other
advice into the agent’s neural-network utility function. To do this, we made three
extensions to the standard KBANN algorithm: (i) advice can contain multi-step plans;
(ii) it can contain loops; and (iii) it can refer to previously defined terms. For each
of our extensions, incorporating advice involves adding hidden units representing the
advice to the existing neural network as shown in Figure 5. Note that the inputs and
outputs to the network remain unchanged; the advice only changes how the function
from states to the utility of actions is calculated.

Table 3 shows some sample advice one might provide to an agent learning to
play a video game. We will use these samples to illustrate the process of integrating
advice into a neural network. The left column contains the advice as input to our
programming language, the center column shows the advice in English, and the right
column illustrates the advice.

As an example of a multi-step plan, consider the first entry in Table 3. Figure 6
shows the network additions that represent this advice. RATLE first creates a hidden
unit (labeled A) that represents the conjunction of (i) an enemy being near and west
and (ii) an obstacle being adjacent and north. It then connects this unit to the action
MoveFEast, which is an existing output unit (recall that the agent’s utility function
maps states to values of actions); this constitutes the first step of the two-step plan.
RATLE also connects unit A to a newly-added hidden unit called Statel that records
when unit A was active in the previous state. It next connects Statel to a new
input unit called Statel_y. This recurrent unit becomes active (“true”) when Statel
was active for the previous input (we need a recurrent unit to implement multi-step
plans). Finally, it constructs a unit (labeled B) that is active when Statel_; is true
and the previous action was an eastward move (the input includes the previous action
taken in addition to the current sensor values). When active, unit B suggests moving
north — the second step of the plan.

11



Table 3: Samples of advice in our advice language.

Advice English Version Pictorial Version
IF An Enemy IS (Near A West) A If an enemy is near and west
An Obstacle IS (Near A North) and an obstacle is adjacent ‘/\
THEN and north, hide behind the C
MULTIACTION obstacle. @ »
MoveEast
MoveNorth
END
END:

WHEN Surrounded A
OKtoPushEast A
An Enemy IS Near
REPEAT
MULTIACTION
PushEast
MoveEast
END
UNTIL — OKtoPushEast Vv
= Surrounded

END;

3

Other Outputs

When the agent is sur-
rounded, pushing east is
possible, and an enemy 1is
near, then keep pushing
(moving the obstacle out of
the way) and moving east
until there is nothing more
to push or the agent is no
longer surrounded.

MoveEast MoveNorth

Other Inputs

Figure 6: RATLE’s translation of the first piece of advice. The large ellipse
at left represents the original hidden units. Arcs show units and weights that
are set to make a conjunctive unit. We also add, as is typical in knowledge-
based networks, zero-weighted links (not shown) to other parts of the current

Enemy
Near,West

Obstacle
Near,North
4

MoveEast 1

network. These links support subsequent refinement.
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PushEast MoveEast

Surrounded OKtoPushEast Enemy
Near

Other Inputs ~ PushEast ; MoveEast_,  SL

Figure 7: RATLE’s translation of the second piece of advice. Dotted lines show
negative weights. As with other translations, the units shown are added to the
existing network (not shown).

RATLE assigns a high weight® to the arcs coming out of units A and B. This
means that when either unit is active, the total weighted input to the corresponding
output unit will be increased, thereby increasing the utility value for that action.
Note, however, that this does not guarantee that the appropriate action will be chosen
when units A or B are active. Also, notice that during subsequent training the weight
(and thus the definition) of a piece of advice may be substantially altered.

The second piece of advice in Table 3 also contains a multi-step plan, but this time
it is embedded in a REPEAT. Figure 7 shows RATLE’s additions to the network for
this advice. The key to translating this construct is that there are two ways to invoke
the two-step plan. The plan executes when the WHEN condition is true (unit C') and
also when the plan was just run and the UNTIL condition is false. Unit D is active
when the UNTIL condition is met, while unit ¥ is active when the UNTIL is unsatisfied
and the agent’s two previous actions were pushing and then moving east.

A final issue for RATLE is dealing with advice that involves previously defined
terms. This frequently occurs, since advice generally indicates new situations in
which to perform existing actions. For new definitions of agent actions RATLE adds
a strongly weighted link from the new concept to the output unit representing that
action. This is done so that in the situations where the advice is active the utility
of the action will then be higher than the utility of any other action (thus the action

3Through empirical investigation we chose a value of 2.0 for these weights. A topic of our future
research is to more intelligently select this value.

13
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Figure 8: Incorporating the definition of a term that already exists.

will be chosen). Figure 8 shows how we address this issue for terms other than
agent actions.* We add a new definition of an existing term by first creating the
representation of the added definition and making a copy of the unit representing the
existing definition. We create a new unit, which becomes the term’s new definition,
representing the disjunction of the old and new definitions. This process is analogous
to how KBANN processes multiple rules with the same consequent. We do not use this
process with output units because we do not necessarily want output units activity
to be near 1 (max utility) since overpredictions of utility can cause problems for
connectionist Q-learning (Thrun, 1994).

Step 5. Judge the value of the advice.

Once RATLE inserts the advice into the RL agent, the agent returns to exploring its
environment. In this way the agent can evaluate the advice empirically and refine
the advice based on its further experience. This is a key step in our process because
RATLE cannot determine the optimal weights to use for the new piece of advice;
instead we use RL to adjust the weights towards optimal based on experience.

We also allow the observer to judge the value of their advice by letting the observer
watch the agent perform subsequent tasks. This allows the observer to make further
suggestions to the agent. We do not currently allow the observer to directly change
its advice, although it might be useful for the user to be able to retract bad advice or
provide refinements to advice. We instead rely on RL to wash out the effects of bad
advice.

4 Experimental Study

We next empirically judge the value of using our system, RATLE, for providing advice
to an RL agent.

4We tested a number of mechanisms for adding new definitions of existing terms. We chose two
separate approaches because the approach used on the non-output units resulted in a significant
drop in agent performance after advice was inserted.

14



Key
e A o - ® | ]
© © ©  Reward 7< ©
e > | |eg-m o =
jo! | -
® D Obstacle
- ‘ Empty e ‘
- (a) (b) (c)

ACTIONS
No Action MoveEast PushEast MoveNorth

SENSOR INPUTS

Figure 9: Our sample test environment: (a) sample configuration; (b) sample
division of the environment into sectors; (c) the agent measuring the distance
to the nearest occluding object along a fixed set of arcs; (d) a neural network
that computes the utility of actions.

4.1 Testbed

Figure 9a illustrates our test environment. Our task is similar to those explored by
Agre and Chapman (1987) and Lin (1992). The agent can perform nine actions:
mouving and pushing in each of the directions Fast, North, West and South; and doing
nothing. Pushing moves the obstacles in the environment — when the agent is next to
an obstacle and pushes it, the obstacle slides until it encounters another obstacle or
the edge of the board. If the obstacle is unable to move (there is an obstacle or wall
behind it), the obstacle object disintegrates. Reward objects are collected when the
agent touches them and destroyed if an enemy touches them. A moving obstacle will
destroy both reward and enemy objects if it touches them (since moving obstacles are
much faster than the agent and they move away from the agent’s push it is impossible
for the obstacle to hit the agent).

15




The initial mazes are generated randomly using a maze creation program that
randomly lays out lines of obstacles and then creates connections between “rooms.”
The percentage of the total board covered by obstacles is controlled by a parameter,
as are the number of enemy and reward objects. The enemy, reward, and agent
objects are randomly deposited on the board with the caveat that the enemies are
required to be at least a fixed distance (another parameter) away from the agent at
the start.

The agent receives reinforcement signals when: (i) an enemy eliminates the agent
by touching the agent (—1.0); (ii) the agent collects one of the reward objects (+0.7);
and (iii) the agent destroys an enemy by pushing an obstacle into it (4+0.9). Note
that the agent receives no signal if an action it takes fails. Each enemy moves ran-
domly unless the agent is in sight, in which case it moves toward the agent. Enemies
may move off the board (they appear again at a random interval), but the agent is
constrained to remain on the board.

We do not assume a global view of the environment, but instead use an agent-
centered sensor model. It is based on partitioning the world into a set of sectors
around the agent (see Figure 9b). Each sector is defined by a minimum and maximum
distance from the agent and a minimum and maximum angle with respect to the
direction the agent is facing. The agent calculates the percentage of each sector that
is occupied by each type of object — reward, enemy, obstacle, or wall. To calculate
the sector occupancy, we assume the agent is able to measure the distance to the
nearest occluding object along a fixed set of angles around the agent (see Figure 9c).
This means that the agent is only able to represent the objects in direct line-of-sight
from the agent (for example, the enemy object to the South of the agent is out of
sight). The value of each object in a sector is just the number of distances that fall
within that sector that correspond to that type of object divided by the maximum
number of distances that could fall within a sector. So for example, given Figure 9b,
the agent’s percentage for “obstacle” would be high for the sector to its right. These
percentages constitute the input to the neural network (see Figure 9d).

4.2 Methodology

We train the agents for a fixed number of episodes for each experiment. An episode
consists of placing the agent into a randomly generated, initial environment, and then
allowing it to explore until it is captured or a threshold of 500 steps is reached. Each
of our environments contains a 7x7 grid with approximately 15 obstacles, 3 enemy
agents, and 10 rewards. We use three randomly-generated sequences of initial environ-
ments as a basis for the training episodes. We train 10 randomly initialized networks
on each of the three sequences of environments; hence, we report the averaged results
of 30 neural networks. We estimate the average total reinforcement (the average sum
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Table 4: Testset results for the baseline and the four different types of advice;
each of the gains (over the baseline) in average total reinforcement for the four
sets of advice is statistically significant at the p < 0.01 level (i.e., with 99%
confidence).

Advice Added Average Total Reinforcement
None (baseline) 1.32
SimpleMoves 1.92
NonLocalMoves 2.01
ElimEnemies 1.87
Surrounded 1.72

of the reinforcements received by the agent)® by freezing the network and measuring
the average reinforcement on a testset of 100 randomly-generated environments.

We chose parameters for our Q-learning algorithm that are similar to those in-
vestigated by Lin (1992). The learning rate for the network is 0.15, with a discount
factor of 0.9. To establish a baseline system, we experimented with various num-
bers of hidden units, settling on 15 since that number resulted in the best average
reinforcement for the baseline system.

After choosing an initial network topology, we then spent time acting as a user
of RATLE, observing the behavior of the agent at various times. Based on these ob-
servations, we wrote several collections of advice. For use in our experiments, we
chose four sets of advice (see Appendix), two that use multi-step plans (referred to
as ElimFEnemies and Surrounded), and two that do not (SimpleMoves and NonLocal-
Movwes).

4.3 Results and Discussion

For our first experiment, we evaluate the hypothesis that our system can in fact take
advantage of advice. After 1000 episodes of initial learning, we measure the value of
(independently) providing each of the four sets of advice to our agent using RATLE.
We train the system for 2000 more episodes after adding the advice before measuring
the average cumulative reinforcement on the testset. (The baseline is trained for
3000 episodes). Table 4 reports the averaged testset reinforcement; all gains over
the baseline system are statistically significant. Note that the gain is higher for the
simpler pieces of advice SimpleMoves and NonlLocalMoves, which do not incorporate
multi-step plans. This suggests the need for further work on taking complex advice;

SWe report the average total reinforcement rather than the average discounted reinforcement
because this is the standard for the RL community. Graphs of the average discounted reward are
qualitatively similar to those shown in the next section.
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Figure 10: Testset results of four sample pieces of advice.

Table 5: Mean number of enemies captured, rewards collected, and number of
actions taken for the experiments summarized in Table 4.

Advice Added Enemies | Rewards | Survival Time
None (baseline) 0.15 3.09 32.7
SimpleMoves 0.28 3.79 39.6
NonLocalMoves 0.26 3.95 39.1
ElimEnemies 0.44 3.50 38.3
Surrounded 0.30 3.48 46.2

however the multi-step advice may simply be less useful.

In our second experiment we investigate the hypothesis that the observer can
beneficially provide advice at any time during training. To test this, we insert the
four sets of advice at different points in training (after 0, 1000, and 2000 episodes).
Figure 10 contains the results for the four pieces of advice. They indicate the learner
does indeed converge to approximately the same expected reward no matter when
the advice is presented.

Each of our pieces of advice to the agent addresses specific subtasks: collect-
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ing rewards (SimpleMoves and NonLocalMoves); eliminating enemies ( ElimEnemies);
and avoiding enemies, thus surviving longer (SimpleMoves, NonLocalMoves, and Sur-
rounded). Hence, it is natural to ask how well each piece of advice meets its intent.
Table 5 reports statistics on the components of the reward. These statistics show
that the pieces of advice do indeed lead to the expected improvements. For example,
our advice ElimEnemies leads to a much larger number of enemies eliminated than
the baseline or any of the other pieces of advice.

5 Future Work

There are a number of experiments we intend to perform to further evaluate RATLE.
Our current experiments have only demonstrated the value of giving a single piece of
advice. We plan to empirically study the effect of providing multiple pieces of advice
at different times during training. It is our hypothesis that given useful advice the
agent will show gains for each piece of advice provided.

We also intend to evaluate the use of “replay” in training our agent. Replay
involves the periodic retraining of an agent on past states and reinforcements stored
by the agent. Replay has been shown to greatly reduce the number of training
examples needed to learn a policy function (Lin, 1992).

Our agent currently suffers from the limitation that it must learn the value of
actions when facing each of the four directions East, North, West, and South. We
plan to examine the use of soft weight-sharing (Nowlan & Hinton, 1992) to foster
transfer of learning across the corresponding rules for each direction.

We also plan to evaluate our approach in other domains. One especially interesting
area of interest is the training of agents in a cooperative environment, where tasks are
performed by multiple agents working together. Such a domain is interesting in that
the user may want to specify means for the agents to communicate toward reaching
shared goals.

We intend to make a number of further extensions to RATLE using our growing
understanding of the problem of giving advice to RL agents. We plan to extend
RATLE’s language for instructing agents in a number of ways. First, we plan to allow
the user to provide advice in the form of warnings, i.e., “do not perform this action
in this state.” This could be especially useful for tasks where there are large negative
reinforcements, as the user could specify actions that lead to these reinforcements, and
therefore should be avoided. Second, we plan to add a method for the user to declare
and make use of state units, so that users may (if they choose) specify information
to remember and use in their plans. Using this mechanism the user could specify
information to retain that might be useful for solving long-term problems. Third, we
plan to extend the multi-step plan construct so that the user may include conditions
which must be checked as the plan is being executed (rather than just conditions that
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start the plan).

One important part of the framework for advice-taking that we have thus far spent
little time on is the evaluation phase. We intend to introduce mechanisms for users to
track their advice in terms of how often and how well it performs, and then to remove
the advice if it is proving detrimental. This step might be combined with replay,
in that once a hidden unit is removed from a neural network the system may need
to do some significant retraining to reset the weights and biases that were indirectly
affected by the removed weight. We will also plan to allow users to make refinements
to their advice (adding or deleting preconditions, for example).

6 Related Work

Our work on RATLE relates to a number of recent research efforts. This related work
can be roughly divided into four groups: (i) providing advice to a problem solver, (ii)
giving advice to a problem solver employing reinforcement learning, (iii) developing
programming languages for interacting with agents, and (iv) creating knowledge-
based neural networks.

Providing advice to a problem solver

An early example of a system that makes use of advice is the ABSTRIPS planning
system (Sacerdoti, 1974). In ABSTRIPS, a human user assigns initial “criticalities”
to preconditions to cause the planner to focus on making key planning steps. In
both ABSTRIPS and RATLE the user is in some way directing the system’s search,
but the ABSTRIPS mechanism requires the user to have some understanding of the
search process, while in RATLE the user need not understand how the system works
internally.

In Mostow’s (1982) system FOO, general advice is operationalized by reformulating
the advice into search heuristics. These search heuristics are then applied during
problem solving. In FOO the advice is assumed to be correct and the learner has to
learn how to convert the general advice into an executable plan based on its knowledge
about the domain. Our system is different in that we try to directly incorporate
general advice, but we do not provide a sophisticated means of operationalizing advice.
Also, we do not assume the advice is correct; instead we use learning to refine and
evaluate the advice.

More recently, Laird et al. (1990) created an advice-taking system called ROBO-
SOAR based on the SOAR architecture (Laird et al., 1987). SOAR uses its knowledge
to select operators to achieve goals. If it is unable to select from a set of operators or
no operator is available an tmpasse arises. In this case SOAR creates a subgoal and
applies itself to the subgoal. In ROBO-SOAR, a user can provide advice to the system
during an impasse by suggesting which operators to explore in an attempt to resolve
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the impasse. As with FOO and ABSTRIPS, the advice presented is used to guide the
learner’s search process, while in RATLE we directly incorporate the advice into the
learner’s knowledge and then refine that knowledge.

Huffman and Laird (1993) developed another SOAR-based system called INSTRUCTO-
SOAR that allows an agent to interpret simple imperative statements such as “Pick
up the red block” and “Move down.” INSTRUCTOSOAR examines these instructions
in the context of its current problem solving situation and uses explanation-based
learning (Mitchell et al., 1986) to try to generate a general rule based on the advice
that may be used in similar situations. RATLE differs from INSTRUCTOSOAR in that
we provide a language for entering general advice rather than attempting to generalize
specific advice.

Providing advice to a problem solver that uses reinforcement learning

A number of researchers have introduced methods for providing advice to a reinforce-
ment learning agent. Lin (1992) designed a technique for allowing an RL agent to use
advice in the form of sequences of teacher’s actions. In his system the agent “replays”
the teacher actions periodically to bias the agent toward the actions chosen by the
teacher. Our approach differs in that RATLE inputs the advice in a general form; also,
RATLE directly installs the advice into the learner rather than using the advice as a
basis for learning.

Utgoff and Clouse (1991) developed a learner that consults a set of teacher actions
if the action it chose resulted in significant error. This system has the advantage that
it determines the situations in which it required advice, but is limited in that it may
require advice more often than the user is willing to provide it. On the other hand,
in RATLE users provide advice whenever they feel they have something to say.

Whitehead (1991) examined an approach similar to both Lin’s and Utgoff &
Clouse’s that can learn both by receiving advice in the form of critiques (a reward
indicating whether the chosen action was optimal or not), as well as learning by ob-
serving the actions chosen by a teacher. Clouse and Utgoff (1992) created a second
system that takes advice in the form of actions suggested by the teacher. Both sys-
tems are similar to ours in that they can incorporate advice whenever the teacher
chooses to provide it, but unlike RATLE they do not accept broadly applicable advice.

Thrun and Mitchell (1993) investigated a method for allowing RL agents to make
use of prior knowledge in the form of neural networks. These neural networks are
assumed to have been trained to predict the results of actions. This proves to be
effective, but requires previously trained neural networks that are related to the task
being addressed.

Gordon and Subramanian (1994) developed a system that is closely related to
ours. Their system employs genetic algorithms, an alternate approach for learning
from reinforcements. Their agent accepts high-level advice of the form I1F conditions
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THEN ACHIEVE goal. It operationalizes these rules using its background knowledge
about goal achievement. Our work primarily differs from Gordon and Subramanian’s
in that RATLE uses connectionist Q-learning instead of genetic algorithms, and in
that RATLE’s advice language focuses on actions to take rather than goals to achieve.
Also, we allow advice to be given at any time during the training process, but as with
the Mostow’s FOO system, our system does not have the operationalization capability
of Gordon and Subramanian’s system.

Developing robot-programming languages

A number of researchers have introduced languages for programming robot-like agents
(e.g. Brooks, 1990; Chapman, 1991; Gat, 1991; Kaelbling, 1987; Nilsson, 1994).
These systems do not generally focus on programming agents that learn to refine their
programs. Suppes (1991) investigated how a robot can learn to understand a human’s
instructions, but he focuses on the problem of understanding natural language, which
is beyond the scope of our system. We chose to focus on the more limited task of
providing a language for a human to instruct a robot agent that is relatively simple
to parse, but still powerful enough for useful and reasonably natural interaction.

Diederich (1989) devised a method that accepts instructions in a symbol form.
He uses the instructions to create examples, then trains a neural network with these
examples to incorporate the instructions, as opposed to directly installing the instruc-
tions.

Siegelman (1994) proposed a technique for converting programs expressed in a
general-purpose, high-level language into a type of recurrent neural networks. Her
system is especially interesting in that it provides a mechanism for performing arith-
metic calculations, but the learning abilities of this system have not yet been empir-
ically demonstrated.

Gruau (1994) developed a compiler that can translate Pascal programs into neural
networks. While his approach has so far only been tested on simple programs, his
technique may prove applicable to the task of programming agents. Gruau’s approach
includes two methods for refining the networks he produces: a genetic algorithm and
a hill-climber. The main difference between Gruau’s system and ours is that the
networks we produce can be refined using standard connectionist techniques such as
backpropagation, while Gruau’s networks require the development of a specific learn-
ing algorithm, since they require integer weights (-1,0,1) and incorporate functions
that do not have derivatives.

Creating knowledge-based neural networks

As mentioned earlier, RATLE represents an extension of the KBANN system (Towell
et al., 1990; Towell & Shavlik, in press). Our work extends knowledge-based neural
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networks to a new task and shows that “domain theories” can be supplied incremen-
tally (as opposed to providing the domain theory at the start of the learning task).
Our work on RATLE is similar to our earlier work with the FSKBANN system (Maclin
& Shavlik, 1993). FSKBANN uses a type of recurrent neural network introduced by
Jordan (1989) and Elman (1990) that maintains information from previous activa-
tions using the recurrent network links. FSKBANN extends KBANN to deal with state
units, but it does not create new state units.

Similarly, Omlin and Giles (1992) insert prior knowledge about a finite-state au-
tomaton into a recurrent neural network. As with FSKBANN, Omlin and Giles do
not make use of knowledge provided after training has begun, nor do they study RL
tasks.

Lin (1993) has also investigated the idea of having a learner use prior state knowl-
edge. Lin uses an RL agent that has as input not only the current input state, but
also some number of the previous input states. The difference between Lin’s approach
and ours is that we use the advice to determine a portion of the previous information
to keep rather than trying to keep all of the previous information; keeping all of the
information about previous states makes learning more difficult.

7 Conclusions

We present a system called RATLE that allows a reinforcement-learning agent to take
advantage of suggestions provided by an external observer. The observer commu-
nicates advice using a simple programming language, one that does not require the
observer to have any knowledge of the agent’s internal workings. RATLE directly
installs the advice into a neural network that represents the agent’s utility function,
and the agent then refines this knowledge with further learning. Our experiments
demonstrate the validity of this advice-taking approach, since each of four types of
advice lead to statistically significant gains in expected future reward. Interestingly,
our experiments show the gains in expected future reward does not depend on when
the observer supplies the advice.
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Appendix — Four Sample Pieces of Advice

The four pieces of advice used in the experiments in Section 4 appear below. Recall that in
our testbed the agent has two actions (moving and pushing) that can be executed in any
of the four directions (East, North, West, and South). To make it easier for an observer to
specify advice that applies in any direction, we defined the special term dir. During parsing,
dir is expanded by replacing each rule containing it with four rules, one for each direction.
Similarly we have defined a set of four terms {ahead, back, sidel, side2}. Any rule using
these terms leads to eight rules — two for each case where ahead is Fast, North, West and
South and back is appropriately set. There are two for each case of ahead and back because
sidel and side?2 can have two sets of values for any value of ahead (e.g. if ahead is North,
sidel could be East and side2 West or vice-versa).

SimpleMoves
If An Obstacle is (NextTo A dir) Then OkPushdir End,; Grab rewards next to you;
If No Obstacle is (NextTo A dir) A No Wall is (NextTo A dir) run from enemies next to you;
Then OkMovedir End; push obstacles at enemies be-
If OkMovedir A An Enemy is (Near A - dir) hind obstacles. [This leads to
Then Movedir End; 20 rules.]

If OkMovedir A A Reward is (Near A dir) A

No Enemy is (Near A dir) Then Movedir End;
If OkPushdir A An Enemy is (Near A dir)

Then Pushdir End

NonLocalMoves
If No Obstacle is (NextTo A dir) A No Wall is (NextTo A dir) Run away if many enemies in
Then OkMovedir End; a direction (even if they are
If Many Enemy are (= dir) A No Enemy is (Near A dir) A not close), and move towards
OkMovedir Then Movedir End; rewards even if there is an en-
If OkMovedir A An Enemy is (dir A {Medium V Far}) A emy in that direction (as long
No Enemy is (dir A Near) A A Reward is (dir A Near) as the enemy is a ways off).
Then Movedir End [12 rules.]
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ElimEnemies

If No Obstacle is (NextTo A dir) A No Wall is (NextTo A dir) When an enemy is closely be-
Then OkMovedir End; hind you and a convenient ob-

If OkMoveahead A An Enemy is (Near A back) A stacle is nearby, spin around
An Obstacle is (NextTo A side!) Then the obstacle and push it at the
MultiAction enemy. [12 rules.]

Moveahead Moveside! Movesidel
Moveback Pushside?2

End
End
Surrounded
If An Obstacle is (NextTo A dir) When surrounded by obsta-
Then OkPushdir End; cles and enemies, push obsta-
If An Enemy is (Near A dir) V A Wallis (NextTo A dir) V cles out of the way and move
An Obstacle is (NextTo A dir) Then Blockeddir End; through the holes. [13 rules.]

If BlockedEast A BlockedNorth A BlockedSouth A BlockedWest
Then Surrounded End;
When Surrounded A OkPushdir A An Enemy is Near
Repeat
Multiaction Pushdir Movedir End
Until = OkPushdir
End
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