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Learning Objective 

After participating in this activity, the learner 
should be better able to: 
 

Collaborate with clinical and/or machine learning 
experts in decision support system development 



Opportunity & Problem 

 
 

Great opportunities for machine-learned 
decision support systems 

 
But… 

 
Standardized, complete, and sufficient training data 

is rarely available 
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● 5-15% of core needle biopsies non-definitive 

● Approximately 35,000-105,000* per year 

● 80-90% of non-definitive biopsies are benign 

 

* Based on 2010 annual breast biopsy utilization rate 
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ABLe 

 

Comprises two parts 

1) Definitions of advice sources 

2) Iterative process for model refinement 
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Task 
● What is the problem and scope? 
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Variable Relationships 
● What combinations of variables are important to the task? 

 

Parameter Values 
● What is the clinical objective? 

● What model parameters best represent that objective? 



ABLe - Iterative Process 



Phase 1 



Phase 1 

Task 

● Simple probabilistic model (Naïve Bayes) 

● Standardized BI-RADS descriptor features 

● Some non-standard pathology features and demographics 

● Predict probability of malignancy 

● Assume excision at 2% model score 

 

Variable Relationships 

● Rules predicting increase/decrease risk of malignancy 

 

Parameter Values 

● None 



Variable Relationships 

If-Then rules that suggest increase/decrease 
risk of upgrade. 
 
High-risk mass rule: 
 

IF 
Irregular mass shape is present   OR 
Spiculated mass margin is present OR 
High density mass is present      OR 
Abnormality is increasing 

THEN 
Risk of upgrade increases 
 



Biopsies in Practice (2006-11) 

Core Needle Biopsies 

2,808 

Core Needle Biopsies + Dx Mammogram 

1,910 

Malignant Biopsy 

601 

Benign Biopsy 

1,309 

Non-definitive 

157 

Malignant (upgrade) 

29 

Benign (non-upgrade) 

128 



Phase 1 Results 

Data Rules Data + Rules 

Malignant Excisions 
Missed (%) 

8 (27.6%) 1 (3.4%) 9 (31.0%) 

Benign Excisions 
Avoided (%) 

46 (35.9%) 5 (3.9%) 63 (49.2%) 
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Observations & Refinements 

Observations 

● No output threshold with acceptable performance 

● Non-definitive biopsies broken into 3 categories at diagnosis 

○ Atypical / Radial Scar (ARS) 

○ Insufficient (I) 

○ Discordant (D) 

● ARS and I cases consistently mislabeled 

○ ARS and I more dependent on pathology 

○ D more dependent on imaging descriptors 

Refinements 

● Focus exclusively on discordant cases 



Discordant Biopsies (2006-11) 

Discordant Biopsy 

60 

Malignant (upgrade) 

10 

Benign (non-upgrade) 

50 



Phase 2 Results 

Data Rules Data + Rules 

Malignant Excisions 
Missed (%) 

3 (30.0%) 1 (10.0%) 3 (30.0%) 

Benign Excisions 
Avoided (%) 

29 (58.0%) 17 (34.0%) 27 (54.0%) 



Phase 3 
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Observations & Refinements 

Observations 

● Good ranking of cases by output probabilities 

● Most cases assigned less than 2% risk 

Refinements 

● Make model more conservative 

o Specify different costs for false negatives (FN) versus                 
false positives (FP) 

o Take from utility analysis literature in mammography 



Phase 3 Results 

Data Rules Data + Rules 

Malignant Excisions 
Missed (%) 

0 (0.0%) 0 (0.0%) 0 (0.0%) 

Benign Excisions 
Avoided (%) 

5 (10.0%) 5 (10.0%) 12 (24.0%) 



Conclusions 

 
 

● Presented a framework for collaboration and 

leveraging domain expert advice 

● Demonstrated ABLe on important task 

● Achieved best results using ABLe 



Future Work 

● Use inductive logic programming (ILP) to 
automatically infer if-then rules from data 

o Allows automated feature construction/selection 

o Easily control constraints on features 

● Evaluate model on unseen data 

o From our own institution 

o At collaborating institutions 

● Grow model development data using natural 
language processing methods 



Thanks 

 
 
 
 

Questions? 


