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Abstract 

X-ray crystallography is currently the most common way protein 
structures are elucidated. One of the most time-consuming steps in 
the crystallographic process is interpretation of the electron density 
map, a task that involves finding patterns in a three-dimensional 
picture of a protein. This paper describes DEFT (DEFormable 
Template), an algorithm using pictorial structures to build a 
flexible protein model from the protein's amino-acid sequence.  
Matching this pictorial structure into the density map is a way of 
automating density-map interpretation.  Also described are several 
extensions to the pictorial structure matching algorithm necessary 
for this automated interpretation.  DEFT is tested on a set of 
density maps ranging from 2 to 4Å resolution, producing root-
mean-squared errors ranging from 1.38 to 1.84Å. 

1  Introduction 

An important question in molecular biology is what is the structure of a particular 
protein?  Knowledge of a protein’s unique conformation provides insight into the 
mechanisms by which a protein acts.  However, no algorithm exists that accurately 
maps sequence to structure, and one is forced to use "wet" laboratory methods to 
elucidate the structure of proteins. The most common such method is x-ray 
crystallography, a rather tedious process in which x-rays are shot through a crystal 
of purified protein, producing a pattern of spots (or reflections) which is processed, 
yielding an electron density map.  The density map is analogous to a three-
dimensional image of the protein.  The final step of x-ray crystallography – referred 
to as interpreting the map – involves fitting a complete molecular model (that is, the 
position of each atom) of the protein into the map.  Interpretation is typically 
performed by a crystallographer using a time-consuming manual process.  With 
large research efforts being put into high-throughput structural genomics, 
accelerating this process is important.  We investigate speeding the process of x-ray 
crystallography by automating this time-consuming step. 

When interpreting a density map, the amino-acid sequence of the protein is known 
in advance, giving the complete topology of the protein.  However, the intractably 
large conformational space of a protein – with hundreds of amino acids and 
thousands of atoms – makes automated map interpretation challenging.  A few 
groups have attempted automatic interpretation, with varying success [1,2,3,4]. 
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Figure 1:  This graphic 
illustrates density map 
quality at various reso-
lutions.  All resolutions 
depict the same alpha 
helix structure 

Confounding the problem are several sources of error that make automated 
interpretation extremely difficult.  The primary source of difficulty is due to the 
crystal only diffracting to a certain extent, eliminating higher frequency components 
of the density map.  This produces an overall blurring effect evident in the density 
map.  This blurring is quantified as the resolution of the density map and is 
illustrated in Figure 1.  Noise inherent in data collection further complicates 
interpretation.  Given minimal noise and sufficiently good resolution – about 2.3Å 
or less – automated density map interpretation is essentially solved [1].  However, 
in poorer quality maps, interpretation is difficult and inaccurate, and other 
automated approaches have failed.   

The remainder of the paper describes DEFT (DEFormable Template), our 
computational framework for building a flexible three-dimensional model of a 
molecule, which is then used to locate patterns in the electron density map. 

2  Pictorial  structures 

Pictorial structures model classes of objects as a single flexible template.  The 
template represents the object class as a collection of parts linked in a graph 
structure.  Each edge defines a relationship between the two parts it connects.  For 
example, a pictorial structure for a face may include the parts "left eye" and "right 
eye."  Edges connecting these parts could enforce the constraint that the left eye is 
adjacent to the right eye.  A dynamic programming (DP) matching algorithm of 
Felzenszwalb and Huttenlocher (hereafter referred to as the F-H matching 
algorithm) [5] allows pictorial structures to be quickly matched into a two-
dimensional image.  The matching algorithm finds the globally optimal position and 
orientation of each part in the pictorial structure, assuming conditional 
independence on the position of each part given its neighbors. 

Formally, we represent the pictorial structure as a graph G = (V,E), V = {v1,v2,…,vn} 
the set of parts, and edge eij ∈ E connecting neighboring parts vi and vj if an explicit 
dependency exists between the configurations of the corresponding parts.  Each part 
vi is assigned a configuration li describing the part's position and orientation in the 
image.  We assume Markov independence: the probability distribution over a part's 
configurations is conditionally independent of every other part's configuration, 
given the configuration of all the part's neighbors in the graph.  We assign each edge 
a deformation cost dij(li,lj), and each part a "mismatch" cost mi(li,I). These functions 
are the negative log likelihoods of a part (or pair of parts) taking a specified 
configuration, given the pictorial structure model. 

The matching algorithm places the model into the image using maximum-likelihood.  
That is, it finds the configuration L of parts in model Θ in image I maximizing 
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By monotonicity of exponentiation, this minimizes ( ) ( )∑∑ ∈∈ + EV I ),( ,d,m
jviviv .  

The F-H matching algorithm places several additional limitations on the pictorial 
structure.  The object's graph must be tree structured (cyclic constraints are not 
allowed), and the deformation cost function must take the form 
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)()( ji ll jiij TT − , where 
Tij and Tji are arbitrary functions and ||·|| is some norm (e.g. Euclidian distance).   

Figure 2.  An "interpreted" density map. 
The right figure shows the arrangement of 
atoms that generated the observed density.
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Figure 3. An example of the 
construction of a pictorial structure 
model given an amino acid. 

3  Building a f lexible atomic model  

Given a three-dimensional map containing a large molecule and the topology (i.e., 
for proteins, the amino-acid sequence) of that molecule, our task is to determine the 
Cartesian coordinates in the 3D density map of each atom in the molecule.  Figure 2 
shows a sample interpreted density map.  DEFT finds the coordinates of all atoms 
simultaneously by first building a pictorial structure corresponding to the protein, 
then using F-H matching to optimally place the model into the density map.  This 
section describes DEFT's deformation cost function and matching cost function. 

DEFT's deformation cost is related to the probability of observing a particular 
configuration of a molecule.  Ideally, this function is proportional to the inverse of 
the molecule's potential function, since configurations with lower potential energy 
are more likely observed in nature.  However, this potential is quite complicated and 
cannot be accurately approximated in a tree-structured pictorial structure graph. 

Our solution is to only consider the relationships between covalently bonded atoms.  
DEFT constructs a pictorial structure graph where vertices correspond to non-
hydrogen atoms, and edges correspond to the covalent bonds joining atoms.  The 
cost function each edge defines maintain invariants –  interatomic distance and bond 
angles – while allowing free rotation around the bond.  Given the protein's amino 
acid sequence, model construction, illustrated in Figure 3, is trivial.  Each part's 
configuration is defined by six parameters: three translational, three rotational 
(Euler angles α, β, and γ ).  For the cost function, we define a new connection type 
in the pictorial structure framework, the screw-joint, shown in Figure 4. 

The screw-joint's cost function is mathematically specified in terms of a directed 
version of the pictorial structure's undirected graph.  Since the graph is constrained 
by the fast matching algorithm to take a tree structure, we arbitrarily pick a root 
node and point every edge toward this root.  We now define the screw joint in terms 
of a parent and a child.  We rotate the child such that its z axis is coincident with the 
vector from child to parent, and allow each part in the model (that is, each atom) to 
freely rotate about its local z axis.  The ideal geometry between child and parent is 
then described by three parameters stored at each edge, xij = (xij, yij, zij).  These three 
parameters define the optimal translation between parent and child, in the 
coordinate system of the parent (which in turn is defined such that its z-axis 
corresponds to the axis connecting it to its parent).   



 

In using these to construct the cost function dij, we define the function Tij, which 
maps a parent vi's configuration li into the configuration lj of that parent's ideal child 
vj.  Given parameters xij on the edge between vi and vj, the function is defined  
 ( ) jjjjjjiiiiii zyxzyx γβαγβα ,,,,,,,,,, =ijT  

(2) 

with 
ij αα = , ( )zyxj ′−′+′= ,atan2 22β , ( )xyj ′′+= ,atan22πγ , and 

〉′′′〈+〉〈=〉〈 zyxzyxzyx iiijjj ,,,,,,  

where (x', y', z') is rotation of the bond parameters (xij, yij, zij) to world coordinates.  
That is, ( ijijijiii γ,,  with TT zyxzyx βαR=′′′ ),,(),, iii γ,β,αR  the rotation matrix corresponding to 
Euler angles (αi, βi, γi).  The expressions for βj and γj define the optimal orientation 
of each child: +z coincident with the axis that connects child and parent. 

The F-H matching algorithm requires our cost function to take a particular form, 
specifically, it must be some norm.  The screw-joint model sets the deformation cost 
between parent vi and child vj to the distance between child configuration lj and 
Tij(li), the ideal child configuration given parent configuration li (Tji in equation (2) 
is simply the identity function).  We use the 1-norm weighted in each dimension,  
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In the above equation,  ijw  is the cost of rotating about a bond, ij  is the cost 
of rotating around any other axis, and ijw  is the cost of translating in x, y or z.  
DEFT's screw-joint model sets w  to 0, and  and w  to +100. 
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DEFT's match-cost function implementation is based upon Cowtan's fffear  
algorithm [4].  This algorithm quickly and efficiently calculates the mean squared 
distance between a weighted 3D template of density and a region in a density map.  
Given a learned template and a corresponding weight function,   fffear uses a Fourier 
convolution to determine the maximum likelihood that the weighted template 
generated a region of density in the density map. 

For each non-hydrogen atom in the protein, we create a target template 
corresponding to a neighborhood around that particular atom, using a training set of 
crystallographer-solved structures.  We build a separate template for each atom type 
– e.g., the β-carbon (2nd sidechain carbon) of leucine and the backbone oxygen of 
serine – producing 171 different templates in total.  A part's m function is the fffear-
computed mismatch score of that part's template over all positions and orientations. 

Once we construct the model, parameters – including the optimal orientation xij 
corresponding to each edge, and the template for each part – are learned by training 
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the model on a set of crystallographer-determined structures.  Learning the 
orientation parameters is fairly simple: for each atom we define canonic coordinates 
(where +z corresponds to the axis of rotation).  For each child, we record the 
distance r and orientation (θ,φ) in the canonic coordinate frame.  We average over 
all atoms of a given type in our training set – e.g., over all leucine β-carbon’s – to 
determine average parameters ravg, θavg, and φavg.  Converting these averages from 
spherical to Cartesian coordinates gives the ideal orientation parameters xij.   

A similarly-defined canonic coordinate frame is employed when learning the model 
templates; in this case, DEFT's learning algorithm computes target and weight 
templates based on the average and inverse variance over the training set, 
respectively.  Figure 5 shows an overview of the learning process.  Implementation 
used Cowtan's Clipper library. 

For each part in the model, DEFT searches through a six-dimensional conformation 
space (x,y,z,α,β,γ), breaking each dimension into a number of discrete bins.  The 
translational parameters x, y, and z are sampled over a region in the unit cell.  
Rotational space is uniformly sampled using an algorithm described by Mitchell [6]. 

4  Model  Enhancements 

Upon initial testing, the pictorial-structure matching algorithm performs rather 
poorly at the density-map interpretation task.  Consequently, we added two routines 
– a collision-detection routine, and an improved template-matching routine – to 
DEFT's pictorial-structure matching implementation.  Both enhancements can be 
applied to the general pictorial structure algorithm, and are not specific to DEFT. 

4 .1  Col l i s ion  Detec t ion  

Our closer investigation revealed that much of the algorithm's poor performance is 
due to distant chains colliding. Since DEFT only models covalent bonds, the 
matching algorithm sometimes returns a structure with non-bonded atoms 
impossibly close together.  These collisions were a problem in DEFT's initial 
implementation.  Figure 6 shows such a collision (later corrected by the algorithm). 

Given a candidate solution, it is straightforward to test for spatial collisions: we 
simply test if any two atoms in the structure are impossibly (physically) close 
together.  If a collision occurs in a candidate, DEFT perturbs the structure.  Though 
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Figure 5: An overview of the parameter-learning process.  For each atom of a given 
type – here alanine Cα – we rotate the atom into a canonic orientation.  We then 
average over every atom of that type to get a template and average bond geometry. 



 

the optimal match is no longer returned, this approach works well in practice.  If 
two atoms are both aligned to the same space in the most probable conformation, it 
seems quite likely that one of the atoms belongs there.  Thus, DEFT handles 
collisions by assuming that at least one of the two colliding branches is correct.  
When a collision occurs, DEFT finds the closest branch point above the colliding 
nodes – that is, the root y of the minimum subtree containing all colliding nodes.  
DEFT considers each child xi of this root, matching the subtree rooted at xi, keeping 
the remainder of the tree fixed.  The change in score for each perturbed branch is 
recorded, and the one with the smallest score increase is the one DEFT keeps. 

Figure 6. This illustrates the 
collision avoidance algorithm.  On 
the left is a collision (the predicted 
molecule is in the darker color). 
The amino acid's sidechain is 
placed coincident with the back-
bone.  On the right, collision 
avoidance finds the right structure. 

 

Table 1 describes the collision-avoidance algorithm.  In the case that the colliding 
node is due to a chain wrapping around on itself (and not two branches running into 
one another), the root y is defined as the colliding node nearest to the top of the tree.  
Everything below y is matched anew while the remainder of the structure is fixed. 

4 .2  Improved templa te  match ing  

In our original implementation, DEFT learned a template by averaging over each of 
the 171 atom types.  For example, for each of the 12 (non-hydrogen) atoms in the 
amino-acid tyrosine we build a single template – producing 12 tyrosine templates in 
total.  Not only is this inefficient, requiring DEFT to match redundant templates 
against the unsolved density map, but also for some atoms in flexible sidechains, 
averaging blurs density contributions from atoms more than a bond away from the 
target, losing valuable information about an atom's neighborhood. 

DEFT improves the template-matching algorithm by modeling the templates using a 
mixture of Gaussians, a generative model where each template is modeled using a 
mixture of basis templates.  Each basis template is simply the mean of a cluster of 
templates.  Cluster assignments are learned iteratively using the EM algorithm.  In 
each iteration of the algorithm we compute the a priori likelihood of each image 
being generated by a particular cluster mean (the E step).  Then we use these 
probabilities to update the cluster means (the M step).  After convergence, we use 
each cluster mean (and weight) as an fffear search target. 

Table 1. DEFT's collision handing routine. 

Given:   An illegal pictorial structure configuration L = {l1,l2,…,ln} 
Return:  A legal perturbation L' 
Algorithm: 
 X ← all nodes in L illegally close to some other node 
 y ← root of smallest subtree containing all nodes in X 
 for each child xi of y 
  Li ← optimal position of subtree rooted at xi fixing remainder of tree 
  scorei ← score(Li) – score(subtree of L rooted at xi) 
 imin ← arg min (scorei) 
 L' ← replace subtree rooted at xi in L with Limin 

 return L' 



 

5  Experimental  Studies  

We tested DEFT on a set of proteins provided by the Phillips lab at the University 
of Wisconsin.  The set consists of four different proteins, all around 2.0Å in 
resolution.  With all four proteins, reflections and experimentally-determined initial 
phases were provided, allowing us to build four relatively poor-quality density 
maps.  To test our algorithm with poor-quality data, we down-sampled each of the 
maps to 2.5, 3 and 4Å by removing higher-resolution reflections and recomputed the 
density.  These down-sampled maps are physically identical to maps natively 
constructed at this resolution.  Each structure had been solved by crystallographers. 

For this paper, our experiments are conducted under the assumption that the 
mainchain atoms of the protein were known to within some error factor.  This 
assumption is fair; approaches exist for mainchain tracing in density maps [7].  
DEFT simply walks along the mainchain, placing atoms one residue at a time 
(considering each residue independently).   

We split our dataset into a training set of about 1000 residues and a test set of about 
100 residues (from a protein not in the training set).   Using the training set we built 
a set of templates for matching using fffear.  The templates extended to a 6Å radius 
around each atom at 0.5Å sampling.  Two sets of templates were built and 
subsequently matched: a large set of 171 produced by averaging all training set 
templates for each atom type, and a smaller set of 24 learned through by the EM 
algorithm.  We ran DEFT's pictorial structure matching algorithm using both sets of 
templates, with and without the collision detection code.  

Although placing individual atoms into the sidechain is fairly quick, taking less than 
six hours for a 200-residue protein, computing fffear match scores is very CPU-
demanding.  For each of our 171 templates, fffear takes 3-5 CPU-hours to compute 
the match score at each location in the image, for a total of one CPU-month to 
match templates into each protein!  Fortunately the task is trivially parallelized; we 
regularly do computations on over 100 computers simultaneously. 

The results of all tests are summarized in Figure 7.  Using individual-atom 
templates and the collision detection code, the all-atom RMS deviation varied from 
1.38Å at 2Å resolution to 1.84Å at 4Å.  Using the EM-based clusters as templates 
produced slight or no improvement.  However, much less work is required; only 24 
templates need to be matched to the image instead of 171 individual-atom templates.  
Finally, it was promising that collision detection leads to significant error reduction. 

It is interesting to note that 
individually using the improved 
templates and using the collision 
avoidance both improved the 
search results; however, using 
both together was a bit worse than 
with collision detection alone.  
More research is needed to get a 
synergy between the two 
enhancements.  Further investi-
gation is also needed balancing 
between the number and templates 
and template size.  The match cost 
function is a critically important 
part of DEFT and improvements 
there will have the most profound 
impact on the overall error. 
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6  Conclusions and future work 

DEFT has applied the F-H pictorial structure matching algorithm to the task of 
interpreting electron density maps.  In the process, we extended the F-H algorithm 
in three key ways.  In order to model atoms rotating in 3D, we designed another 
joint type, the screw joint.  We also developed extensions to deal with spatial 
collisions of parts in the model, and implemented a slightly-improved template 
construction routine.  Both enhancements can be applied to pictorial-structure 
matching in general, and are not specific to the task presented here. 

DEFT attempts to bridge the gap between two types of model-fitting approaches for 
interpreting electron density maps.  Several techniques [1,2,3] do a good job  
placing individual atoms, but all fail around 2.5-3Å resolution.  On the other hand, 
fffear [4] has had success finding rigid elements in very poor resolution maps, but is 
unable to locate highly flexible “loops”.  Our work extends the resolution threshold 
at which individual atoms can be identified in electron density maps.  DEFT's 
flexible model combines weakly-matching image templates to locate individual 
atoms from maps where individual atoms have been blurred away.  No other 
approach has investigated sidechain refinement in structures of this poor resolution. 

We next plan to use DEFT as the refinement phase complementing a coarser 
method.  Rather than model the configuration of each individual atom, instead treat 
each amino acid as a single part in the flexible template, only modeling rotations 
along the backbone.  Then, our current algorithm could place each individual atom. 

A different optimization algorithm that handles cycles in the pictorial structure 
graph would better handle collisions (allowing edges between non-bonded atoms).  
In recent work [8], loopy belief propagation [9] has been used with some success 
(though with no optimality guarantee).  We plan to explore the use of belief propa-
gation in pictorial-structure matching, adding edges in the graph to avoid collisions. 

Finally, the pictorial-structure framework upon which DEFT is built seems quite 
robust; we believe the accuracy of our approach can be substantially improved  
through implementation improvements, allowing finer grid spacing and larger fffear 
ML templates.  The flexible molecular template we have described has the potential 
to produce an atomic model in a map where individual atoms may not be visible, 
through the power of combining weakly matching image templates.  DEFT could 
prove important in high-throughput protein-structure determination. 
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