
Appears in the Working Notes of the ICML Workshop on Machine Learning in Bioinformatics, August 2003

Using Pictorial Structures to Identify Proteins
 in X-ray Crystallographic Electron Density Maps

Frank DiMaio1,2

dimaio@cs.wisc.edu
Jude Shavlik1,2

shavlik@cs.wisc.edu
George N. Phillips, Jr.3,1

phillips@biochem.wisc.edu

1Dept. of Computer Sciences, 2Dept. of Biostatistics and Medical Informatics, 3Dept. of Biochemistry
University of Wisconsin – Madison

Abstract

One of the most time-consuming steps in determining a protein's structure via x-ray crystallography is
interpretation of the electron density map. This can be viewed as a computer-vision problem, since a
density map is simply a three-dimensional image of a protein. However, due to the intractably large space
of conformations the protein can adopt, building a protein model to match in the density map is extremely
difficult. This paper describes the use of pictorial structures to build a flexible protein model from the
protein's amino acid sequence. A pictorial structure is a way of representing an object as a collection of
parts connected, pairwise, by deformable springs. Model parameters are learned from training data. Using
an efficient algorithm to match the model to the density map, the most probable arrangement of the
protein's atoms can be found in a reasonable running time. We test the algorithm is on two different tasks.
The first is an amino-acid sidechain-refinement task, in which the location of the protein's backbone is
approximately known. The algorithm places the remaining atoms into the region of density quite
accurately, placing 72% of atoms within 1.0 Å of their actual location (as determined by a
crystallographer). In the second task, a classification task, the algorithm is used to predict the type of
amino acid contained in an unknown region of density. In this task, the algorithm is 61% accurate in
discriminating between four different amino acids.

Introduction and Background

A fundamental problem in molecular biology involves the determination of a protein’s shape.
Known as the protein’s folding, the protein sequence alone usually determines its shape. The
issue is important because knowing a protein’s structure provides great insight into the
mechanisms in which that protein is involved. Knowledge of these mechanisms is needed for
disease treatment or drug development. Additionally, knowing the structure of a protein allows
biologists to get one step closer to the "holy grail" – a direct mapping from sequence to structure.
In the current state of structural biology, no algorithm exists that accurately maps sequence to
structure, and one is forced to use “wet” laboratory methods to elucidate the structure of proteins.
The most common technique in use today for determining the structure of proteins is x-ray
crystallography, a complex experimental technique that allows molecular-scale visualization.
The process is quite time-consuming, and requires a number of steps before a protein’s structure
can be determined. With the large research effort recently put into high-throughput structural
genomics [1], speeding up this tedious process is increasingly important. Our work looks to
speed up the process of x-ray crystallography by automating interpretation of the electron density
map, that is, taking the three-dimensional image of the protein and finding the corresponding
atomic coordinates.

The process by which x-ray crystallography is used to determine a protein’s structure is very
complex. First, the protein needs to be produced in significant quantities, purified, and
crystallized. The crystal must then be placed in an x-ray beam. The diffraction pattern of x-rays
through the crystal is collected and processed, producing the protein’s electron density map.
This map is nothing more than a three-dimensional snapshot of the protein. This map details the
actual structure of the protein. However, it is in such a large, unwieldy format, that it is all but
useless. To make this data usable by biologists, some core information – the protein's atomic
coordinates – needs to be extracted.

Thus, the final step in the crystallographic process is interpreting this map and building a
molecular model of the protein. Once the crystals have been prepared, map interpretation is the
most time-consuming step in the subsequent analysis. For most proteins this interpretation is
performed manually, although a number of attempts have been made at automated density map
interpretation [2,3,4,5,6]. The amino-acid sequence of the protein is known in advance. This
gives the complete topology of the protein for which we are searching. The main difficulty in
interpretation is the large number of possible conformations a protein can adopt, and the
similarity of "features" in the map, where each atom appears as a Gaussian blob, with little
distinction between atoms of different elements [7]. The fact that the protein's conformation
may involve free rotation about any single bond leads to an extremely large conformation space.
This makes building a model of the protein to match to the density map extremely difficult.

We describe a computational framework for building a flexible model of a protein, given the
protein's sequence, and the electron density map. An overview of our algorithm is shown in
Table 1. Pictorial structures [8] allow the representation of an object as a collection of parts,
which are linked, pairwise, by deformable spring-like connections. Each connection defines the
relationship between the two parts it connects. When building an atomic model, the connections
correspond to covalent bonds. The relationships they define maintain the "bond invariants" (e.g.,
interatomic distance, bond angles), while allowing the "bond variable" (torsion angle) to freely
vary. This model allows one to model arbitrary-sized protein fragments. A recent dynamic
programming-based matching algorithm of Felzenszwalb and Huttenlocher (hereafter referred to
as Felz-Hut) [9] allows pictorial structures to be quickly matched into a two-dimensional image.
Their matching algorithm finds the globally optimal position and orientation of each part in the
pictorial structure, by making some simplifying assumptions concerning independence of parts
and connections. A simple "face" pictorial structure is shown in Figure 1.

In the pictorial structure model, the parts and (pairwise) connections form a graph ,),(EVG =
where vvv ,,, K=V is the set of parts, and an edge { } E∈ijen21 connects neighboring parts vi and

Given: Amino-acid sequence of protein seq, electron density map densityMap
Predict: Atomic coordinates of the protein in the density map

Algorithm:

PS ← build pictorial structure from sequence seq
bestMatch ← run Felz-Hut algo to find match for PS in densityMap

while illegal_structure(bestMatch)

bestMatch ← run soft-max algo to heuristically find non-optimal match

return (bestMatch)

Table 1: A high level outline of our algorithm.

 2

vj if th
config

By asBy as

match
a part'
config
deform
certain
match
part at

The m

a part'
config
deform
certain
match
part at

The m

Marko
the co
Marko
the co

Notice

The F
Marko
the M
allowe
Hut q

1
jiT− sp

In the
metric

structu

config

A num

or mo
two br

Figure 1: A sample
pictorial structure for

 of
tures

locating a face in an
image. The collection
parts includes the pic
shown here. The dotted
lines indicate statistical
constraints between pairs
of parts
ere is an explicit dependency between the configuration of parts vi and vj. The
u vration li of a part ition a

bability of

l

lobally most probable configuration of each part in the image.
suming independence of parts for the matching function (i.e., ignoring occlusion) and the

 of

,(Itch l

lobally most probable configuration of each part in the image.
suming independence of parts for the matching function (i.e., ignoring occlusion) and the

i consists of both the part's pos nd orientation. The Felz.-Hut.
ing algorithm treats the graph as a Markov Random Field (MRF), where the pro
s configuration is conditionally independent of every other part in the model, given the
uration of all the part's neighbors in the graph. Each edge has associated with it a
ation cost),(ji llijd , which, probabilistically, is the negative log likelihood of seeing a
 configuration of a pair of parts in a model. Similarly, each edge has an associated

ing cost)ma i i , which is the negative log likelihood of the probability of seeing a
 configuration l

,(Itch
i in image I.

atching algorithm finds the g

s configuration is conditionally independent of every other part in the model, given the
uration of all the part's neighbors in the graph. Each edge has associated with it a
ation cost),(ji llijd , which, probabilistically, is the negative log likelihood of seeing a
 configuration of a pair of parts in a model. Similarly, each edge has an associated

ing cost)ma i i , which is the negative log likelihood of the probability of seeing a
 configuration li in image I.

atching algorithm finds the g

v Random Field assumption of independence of edges, the algorithm simply aims to find
nfiguration L of the parts in model Θ in image I, to minimize
v Random Field assumption of independence of edges, the algorithm simply aims to find
nfiguration L of the parts in model Θ in image I, to minimize

∑∑
=

ΘΘ∝Θ LPLIPILP)(),(),(

∈

−−
Ejviv

jiij

i
i

lldl

Z
),(

i
),(),(match

ee1 I

 that, by monotonicity, this is equivalent to minimizing the following

∑+∑
∈Evv

jiij
i

i
ji

lldl
),(

i),(),(match I .

elz-Hut matching algorithm places several additional limitations on the topology of the
v Random Field, and on the form that the deformation cost function dij must take. First,

RF defined by the pictorial structure must be tree structured; cyclic constraints are not
d. Secondly, the deformation cost function must take the following form, since the Felz-

uickly computes the minimization step in the DP algorithm as a distance transform in
ace:

)()(),(llll TTd −= . jiji jiijij

 preceding, Tij and Tji are some arbitrary functions and ⋅ is some norm (i.e., distance
). Under these conditions, the Felz-Hut matching algorithm can find the globally optimal

er).

res. They have been used in recognizing faces [8,10], general scenes, such as a waterfalls

uration of parts in linear time (with respect to the numb of configurations considered

ber of different objects have been located into two-dimensional images using pictorial

untains [11], cars, and bodies [9]. Felzenszwalb and Huttenlocher's paper also discusses
oad classes of connections: flexible revolute joints and prismatic joints. They provide

3

definitions for both classes of connection functions dij (and Tij). In building a general-purpose
molecule recognition framework, we construct another class of connection, the screw-joint.
Unlike previous work, this type of connection relates two objects in three-dimensional space.
The screw-joint, based upon the rotation about a covalent bond, allows free rotation only arou
a single axis.

Building a F

nd

lexible Atomic Model

 vision; given a three-dimensional image of a large
molecule and the topology (i.e. amino-acid sequence) of that molecule, find a molecular model

f

the prior probability of
seeing a certain configuration of that molecule. Ideally, our deformation cost function would be

o do so
.

d
interactions. We can then build a pictorial structure model such that each part in the model

er to

 allow low-cost rotation about (most) bonds, while steeply
penalizing any other rotation or translation. In order to do this, we introduce another broad class

cted
version of the MRF. Since the MRF is constrained by the fast matching algorithm to take a tree

Our task is basically a problem in computer

of the protein. That is, for each atom within the protein, determine the (Cartesian) coordinates o
the center of that atom. The method we describe attempts to find these atomic coordinates by
building a pictorial structure corresponding to the protein, then uses the Felz-Hut matching
algorithm to find the most probable location of the atoms of the protein.

We first focus our efforts on the deformation cost of the molecule, that is,

the inverse of the atomic potential function, since molecule configurations with lower potential
energy are more probable. However, the atomic potential function is a very complicated
expression that takes into account both bonded and non-bonded interactions. Although this
expression can be roughly approximated as a sum of pairwise potentials, it is impossible t
in a manner that maintains the tree-structured MRF that the fast matching algorithm requires

Alternatively, what we have done is to create a simplified atomic model by ignoring non-bonde

corresponds to an atom in the protein. Each connection, then, corresponds to a covalent bond.
Knowing the protein's sequence in advance makes construction of the model trivial. When
matching this model, the configuration we assign to each part consists of six parameters: three
translational, and three rotational. The rotational parameters are Euler angles, which we ref
as (α, β, γ), where α is a rotation about the z-axis, β is a rotation about the x-axis, and γ is
(another) rotation about the z-axis.

In this simplified model, we want to

of connection, the screw-joint. Much like a rotating screw, the screw joint only allows rotation
about a single axis. In order to simplify the cost function specification, we always consider this
axis of rotation to be the z-axis. Since our matching algorithm considers all possible orientations
of each part, this does not limit the model; instead, it requires all parts in the model to first be
rotated into a canonic orientation in which the corresponding axis of rotation is the z-axis.

In the atomic model, defining the relationship between parts involves first considering a dire

structure, an arbitrary root can be chosen. Then a directed graph corresponding to the MRF can
be constructed such that every edge points up the tree, toward the root node. Each edge now
concerns the relationship of a parent and a child. The deformation cost of each edge can be
defined in terms of three parameters stored at each edge, T),,(ijijij zyx=ijxv . These three
parameters define the optimal translation between parent and child, in the coordinate system of

 4

the parent. The model learns these parameters using a tec be discussed la
Since the z-axis is axis of free rotation, we rotate the child such that its +z axis is coincident with

ijxv in the parent's coordinate frame. Figure 2 presents this graphically.

 this point, we have all we need to construct each edge's deformation c

hnique that will ter.

ost function. Extending
the work of Felzenszwalb and Huttenlocher to joints in three-dimensional space, we define an

nd

At

optimal relationship between configuration li and configuration lj. The cost function is used for
each edge is the distance between)(ji ll − , a vector between li and lj in conformational space, a
the optimal configuration lij. The distance measure we use is the 1-norm, weighted in each
dimension, that is,

()
() () () ()

() () ()().

,atan22 ,atan2

),(wll rotate
ijji −= ααijd

22

zzzyyyxxxw

xyzyxw

jijiji
translate
ij

ijji
orient
ij

ji

′−−+′−−+′−−+

⎟
⎠
⎞⎜

⎝
⎛ ′′+−−+′−′+′+−+ πγγββ

In the preceding, is the rotation of the bond parameters to world
coordinates, i.e.,

e rotation matrix corresponding to Euler angles

),,(zyx ′′′),,(ijijij zyx

TT),,(),,(ijijij zyxzyx
iii γ,β,αR=′′′ ,

where R is th
iii γ,β,α),,(iii γβα .

There are several important things to note about the previous expre stssion. Fir , the complicated
expressions in the β and γ terms are trigonometric relationships defining the optimal orientation

are wi

nfiguration cost of the model is specified, the match function needs to be
constructed. This match function provides the probability of seeing a certain part at a specified

 image

of each child: pointing up the parent’s bond. Second, in the above equation, rotate
ijw is the cost of

rotating about a bond, orient
ijw is the cost of rotating around any other axis, and translate

ijw is the cost
of translating in x, y or z. For the screw-joint model, we set the weights such t rotate

ij is low,
while orient

ijw and transla
ijw high. This gives a high cost to any configuration ovements

other than bond rotations. The definitions of)(ilijT and)(jljiT follow straightforwardly from
this de n.

Now that the co

hat w
te th m

finitio

location in the image. Empirical evidence suggests setting the cost of placing a part in the
to the Euclidean distance between a local neighborhood in the image and a 3x3x3 template. We
learn the template during a model-training process (described later).

vi

vj
(x',y',z')

,γi)

(β

(βi

j,γj) (xi,yi,zi)

(xj,yj,zj)

αj

αFigure 2: Showing the screw-joint
connection between two parts in the

i

's ideal

model. In the directed version of the
MRF, vi is the parent of vj. By
definition, vj is oriented such that its
local z-axis is coincident with it
bond orientation T),,(ijijij zyx=ijxv in
vi. The bond parameters ijxv are
learned by our algorithm.

 5

Once we construct the model, the parameters for the model – including the optimal orientation
ijxv corresponding to each edge, and the template for each part – are learned by training the

model on a crystallographer-determined structure. Learning the orientation parameters is fairly
simple: we rotate each atom into a canonic orientation. In this orientation, the parent bond is in
the +z direction. For template averaging, to avoid averaging out useful features, we also require
that the first child bond be pointed in the +x direction in the x-y plane. If there is no child of this
atom, we don't worry about the second rotation. For the root, we specify a child that is rotated
into the +z direction instead; the other child (if one exists) becomes the +x direction. Then, for
each child of this atom, we record the distance r and orientation (θ,φ) in the canonic orientation.
We average over all atoms of a given type in our training set – e.g., we average over all lysine
Cβ’s – to determine average parameters ravg, θavg, and φavg. Converting these averages from
spherical to Cartesian coordinates gives precisely the ideal orientation parameters ij . A similar
rotation into canonic orientation is employed when learning the model templates; in this case, the
algorithm simply samples a 3x3x3 neighborhood around the atom and averages each of the 27
points over all atoms of a given type in out training set. It is important to note that the
supervised learning algorithm should train on data with a similar resolution to the test data!
Figure 3 shows an overview of the learning process.

xv

For each part in the model, the matching algorithm searches through a six-dimensional
conformation space),,,,,(γβαzyx . We consider breaking each dimension into a number of
discrete bins. The translational parameters x, y, and z are allowed to range over a region in the
unit cell, the rotational parameters range such that)2,0[πα ∈ ,],0[πβ ∈ , and)2,0[πγ ∈ .

One issue that arose in our implementation involved matching amino acids with rings. Several
amino-acid topologies include cycles. This presents a problem for our fast matching algorithm,
which requires an acyclic graph. However, this is not really a problem as all the rings can be
treated as rigid objects. While not entirely true (proline's ring has a somewhat variable "pucker"
to it), this approximation is close enough for this application. By disallowing rotation about ring
bonds, we can ignore one bond in the ring without letting the split ring freely flop around.

A much more difficult issue that arose involved collisions. Occasionally, the matching algorithm
would return a structure with overlapping atoms, or atoms so close together, the structure could
not have possibly occurred physically. Since such a structure corresponds to the global optimal
configuration of parts in this simplified model, it is not clear how to handle this case. What we
have opted to do is to explore the space of non-optimal solutions via "soft maximums". In the
Felz-Hut dynamic program, when considering all possible child locations, instead of taking the
maximal scoring (minimal cost) location, we take a location that scores x, with probability

∑ −

−

=
i

x

x

i
xP 22

22

e
e)(

σ

σ

 (where the denominator sums over all possible choices).

The parameter σ controls the softness of the maximum, i.e., the likelihood of a non-optimal
solution. Our algorithm repeats the soft-maximum process with softer and softer maximum until
a legal structure is found. The legal structure may not be the correct structure, though, it only
means that it is physically possible. Additionally, using soft maxima leads to quadratic running
time rather than the original DP algorithm's linear runtime. However, by "pruning" candidate
locations that are clearly impossible, the actual performance degradation is acceptable.

 6

Experimental Studies

We built pictorial-structure models for 4 of the 20 amino acids (alanine, valine, tyrosine, and
lysine), and learned the parameters using a single 1.7 Å resolution protein as our training set. A
single 1.9 Å resolution protein served as our test set. Both proteins structures had already been
elucidated by crystallographers, allowing us to compare our results to the "correct" mapping. As
a simple experiment, we tried locating a single amino acid within a 10 Å diameter sphere of
density. We chose these spheres such that they completely contained the entire amino acid for
which we were searching. To avoid (possibly correctly) matching the wrong region in the
density map, we assumed that we are given a 2.0 Å sphere in which each alpha carbon (one of
the backbone atoms) is known to exist.

Within this 10 Å sphere, we considered a 0.5 Å grid on which each atom must be centered.
While fairly crude, refinement techniques could later be used to fine tune the coarsely solved
structure. We considered 12 bins in α, 7 bins in β, and 12 bins in γ. Running time varies based
on the size of the amino acid for which we are looking, but on a 2.25 GHz Pentium IV, it took
about 30 seconds to find the globally optimal location. Using soft maximums took about 90
seconds for each additional non-optimal solution.

Our first task looked at, given a region of density and the type of amino acid contained within,
how closely could we place the atoms to the actual atom locations. We ran the pictorial-structure
matching algorithm on every instance of each of the four amino acids for which we had models.
We then compared, among the 599 atoms placed, the distance between the predicted and actual
distance. Figure 4 shows the accuracy with which atoms were placed. The curve in this figure

Figure 2: An overview of the parameter-learning process. For each atom of a given type – in this
case alanine Cα – we rotate the atom into a canonic orientation, where the parent bond is located
in the +z direction, and the first child is in the +x direction in the x-y plane. We then average over
every atom of that type to get an average template and average bond geometry.

O

N N

O

C

Cα

N

Cβ
N

C-1 Cα

C Cβ

O N+1

Averaged 3D Template

Averaged Bond Geometry

Canonic Orientation

Alanine Cα C

N

Cα Cβ

r = 1.51
θ = 118.4°
φ = -19.7°r = 1.53

θ = 0.0°
φ = -19.3°

 7

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8
placement accuracy (Angstroms)

fra
ct

io
n

of
 a

to
m

s

Figure 3: Amino
acid placement
accuracy. This plot
shows the fraction
(y-axis) of atoms
that were placed
with the specified
accuracy (x-axis) or
better.

shows the fraction of atoms that were placed with at least the corresponding accuracy. As the
plot shows, 30% of atoms were placed within 0.5 Å, 72% within 1.0 Å, and 93% within 2.0 Å.

While this result seems quite good, it does not allow for a very meaningful comparison to other
methods. Hence, we also used the pictorial-structure model for an artificial discrimination task.
Given the same spheres of density as before, we did not provide the matching algorithm the
amino acid type contained within. Instead, the algorithm matched each of the four pictorial
structures into the image, normalized the score, and returned the type of the highest-scoring
model. Table 2 shows a confusion matrix for this prediction task.

As Table 1 shows, the algorithm does not do a particularly good job on the discrimination task,
scoring 61% accuracy. These four amino acids vary quite wildly, however, and with quite good
1.9 Å data, the predictive accuracy should be somewhat better. This task is an artificial one,
though; the algorithm is designed to place a known molecule into a region rather than predict the
contents of a region.

Finally, Figures 5 and 6 show our algorithm's output for several good (Figure 5) and bad (Figure
6) matches. In cases where the match the pictorial structure matching algorithm found was poor,
usually the quality of the density map was poor as well. In some cases the correctness of the
crystallographer's solution is uncertain.

Related Work

A number of attempts have been made in the past several decades to automate the interpretation
of electron density maps. By far the most successful is ARP/wARP [4,5]. The rather proprietary
technique involves placing and moving atoms in the density map randomly, until they do a
sufficiently good job of explaining the density observed. By using this Monte Carlo approach
multiple times, and averaging the output, the results are quite good. This method has been used

 actual

 ala lys tyr val
 ala 7 0 0 2
 lys 1 6 1 3
 predicted

tyr 2 7 8 2
 val 0 1 0 9

Table 2:
Confusion
matrix showing
accuracy for
the predictive
benchmark.

 8

 9

TYROSINE

VALINE LYSINE

LYSINE LYSINE

TYROSINE

VALINE

Figure 4: Some examples of good matches. The crystallographer-determined structures are
shown in a lighter shade, while the algorithm-determined structures are shown in a darker
shade. The light and dark clouds show two different contours of density. Note that the actual
structure shows additional atoms not in the pictorial structure.

ALANINE

Figure 5: Some samples of poor matches. In all of these cases, the density map itself is of
poor quality, bringing into question the crytallographer's interpretation.

successfully a number of times in the past, but it has one fairly significant drawback: the density
map must be of a fairly high resolution, about 2.5 Å or better.

Two other attempts that have been made are MAID and Textal. In MAID [6], the computer
approaches interpretation "as a human would" – by first finding the major secondary structures,
alpha helices and beta sheets, and then filling in the remaining regions. Textal [7], on the other
hand, takes a pattern-recognition approach to solving the problem. It uses a set of fifteen
rotation-invariant features at each of four resolutions to try to determine the type of amino acid
contained in a certain region. The features used are mostly statistical, looking at the deviation
and skew, for example, of the contained densities. Once the amino acid type is known, a
database lookup attempts to place the atoms within the density map. The technique was shown
to have good results on moderate resolution (3.0 Å) data, provided it was given the locations of
every alpha carbon, in advance. Both of these techniques, unlike our approach, make use of a
hierarchy of routines in order to construct a protein model.

Finally, a fourth attempt, fffear [8] uses Fast Fourier Transforms to find secondary structures in
poor-quality density maps. For example, it can find alpha helices in maps with as poor as 5.0 Å
resolution; beta sheets can be located in maps with resolutions of 4.0 Å or better. Unlike our
algorithm, fffear is constrained to the use of rigid templates. None of the four approaches
constructs a flexible atomic model in order to interpret the electron density map.

Conclusions and Future Work

Pictorial structures seem to be a powerful tool for building a flexible molecular model, and the
fast matching algorithm seems to be useful at placing these models into a region of unknown
density. This paper extends the work of Felzenszwalb and Huttenlocher by extending the
pictorial-structure framework to three dimensions. It uses this framework to build a flexible
atomic model. However, the amount of information we assume is available – a precise 10 Å
sphere containing the entire amino acid and knowledge of the approximate alpha-carbon
locations – makes this method currently impractical for automated map interpretation.
Furthermore, while the matching algorithm is quite efficient, it will not scale to an entire protein,
which would require a pictorial structure with thousands of parts.

We next plan to use our current approach as the refinement phase that complements a coarser
method. Rather than model the configuration of each individual atom, as in our current method,
a coarser model would treat each amino acid as a single (rigid) feature, and only concern itself
with rotations along the backbone. This model could place large pieces of the protein at once
into the density map on a much coarser grid. Then, with approximate amino-acid locations and
alpha-carbon locations, our current finer-grained algorithm could place each individual atom.

There is also room in our current method for improvement within the matchi function.
Algorithms like fffear [8] have had much success finding rigid templates in poor-quality maps.
The modular nature of the matchi function in the pictorial-structure matching algorithm makes
taking advantage of another, more powerful matching algorithm quite easy. These
improvements would prove an important step in development of an accurate, automated density
map interpretation tool.

 10

Acknowledgements

This work was supported by NLM grant 1T15 LM007359-01, NLM grant 1R01 LM07050-01,
and NIH grant P50 GM64598.

References

[1] Z. Zolnai et al. (2003). Project Management System for Structural and Functional
Proteomics: Sesame. Journal of Structural and Functional Genomics.

[2] V. Lamzin & K. Wilson (1993). Automated refinement of protein models. Acta
Crystallographica. D49.

[3] A. Perrakis, T. Sixma, K. Wilson, & V. Lamzin (1997). wARP: improvement and
extension of crystallographic phases by weighted averaging of multiple refined dummy
atomic models. Acta Crystallographica. D53.

[4] D. Levitt (2001). A new software routine that automates the fitting of protein X-ray
crystallographic electron density maps. Acta Crystallographica. D57: pp. 1013-1019.

[5] T. Ioerger, T. Holton, J. Christopher, & J. Sacchettini (1999). TEXTAL: a pattern
recognition system for interpreting electron density maps. Intl. Conf. on Intelligent Systems
for Molecular Biology. pp. 130-137.

[6] K. Cowtan (1998). Modified phased translation functions and their application to
molecular-fragment location. Acta Crystallographica. 54(5): pp. 750-756.

[7] D. Cromer & J. Mann (1967). Compton scattering factors for spherically symmetric free
atoms. J. Chemical Physics. 47: pp. 1892-1983.

[8] M. Fischler & R. Elschlager (1973). The representation and matching of pictorial
structures. IEEE Transactions on Computers. 22(1): pp. 67-92.

[9] P. Felzenszwalb & D. Huttenlocher (2000). Efficient matching of pictorial structures.
IEEE Conference on Computer Vision and Pattern Recognition. pp. 66-73.

[10] M. Burl, T. Leung & P. Perona (1998). A probabilistic approach to object recognition using
local photometry and global geometry. European Conference on Computer Vision. 2: pp.
628-641.

[11] P. Lipson, E. Grimson & P. Sinha (1997). Configuration based scene classification and
image indexing. IEEE Conference on Computer Vision and Pattern Recognition. pp.
1001-1013.

 11

