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Abstract

The ability of an inductive learning system to find a good solution to a given problem is
dependent upon the representation used for the features of the problem. A number of factors,
including training-set size and the ability of the learning algorithm to perform constructive
induction, can mediate the effect of an input representation on the accuracy of a learned
concept description. We present experiments that evaluate the effect of input representation
on generalization performance for the real-world problem of finding genes in DNA. Our ex-
periments that demonstrate that: (1) two different input representations for this task result
in significantly different generalization performance for both neural networks and decision
trees; and (2) both neural and symbolic methods for constructive induction fail to bridge
the gap between these two representations. We believe that this real-world domain provides
an interesting challenge problem for the machine learning subfield of constructive induction
because the relationship between the two representations is well known, and because concep-
tually, the representational shift involved in constructing the better representation should
not be too imposing.



1 Introduction

The ability of an inductive learning system to find a good solution to a given problem is often
dependent upon the representation used for the features of the problem (Flann & Dietterich,
1986). However, there are a number of factors that can mediate the effect of an input
representation on the accuracy of a learned concept description. These factors include the
training-set size and the ability of the learning algorithm to perform constructive induction
(Michalski, 1983). Constructive induction involves automatically constructing new features
from given ones, thereby changing the problem representation.

In this paper we investigate, for a real-world problem, the difference in generalization
performance that results from using two different input representations. We evaluate the
efficacy of both connectionist and symbolic methods for constructive induction in bridging
the gap between these two representations. Our experiments indicate that common feature-
construction approaches are not able to compensate for the weaker input representation. We
suggest that this real-world problem provides an interesting challenge problem for systems
that perform constructive induction.

The real-world task that we discuss is the problem of identifying genes in DNA sequences.
As part of the Human Genome Project, many biological laboratories are now in the process of
ascertaining the DNA sequence of humans and several other organisms. One of the primary
challenges of these efforts is to distinguish the more interesting parts of the DNA sequences
from the parts with little or no functionality. Several researchers have addressed this prob-
lem using neural networks and have found that the input representation has a significant
impact on the generalization performance of the trained networks (Craven & Shavlik, 1993;
Farber et al., 1992; Lapedes et al., 1989). In this paper we further investigate two input
representations in particular. The performance difference between these two representations
is especially intriguing because the relationship between the representations is well known.
Furthermore, the representational shift involved in going from the weaker representation to
the stronger one involves only forming an appropriate set of conjunctions.

We present two sets of experiments. We first demonstrate the effect of input repre-
sentation on generalization performance for this problem domain, using both a symbolic
learning method (Quinlan’s C4.5) and a neural learning technique (Rosenblatt’s percep-
trons) which lacks the ability to construct features. The second set of experiments evaluates
two constructive-induction approaches on this problem. The first approach to constructive
induction that we consider involves simply adding hidden units to the networks used in the
previous experiment. One of the touted virtues of multi-layer artificial neural networks is
that their hidden units are able to construct new features from the given input features
(Rumelhart et al., 1986). The other system that we investigate is CITRE (Matheus, 1990a),
which performs constructive induction on decision trees. In our experiments, neither of
these approaches are able to construct the features needed for good generalization in the
gene-finding domain.

The next section provides a brief introduction to the biology underlying the problem of
finding genes in DNA. Section 3 describes the two input representations used in our experi-
ments, and presents an experiment that demonstrates the effect of input representation on
generalization performance for this problem domain. In Section 4 we argue our case for
why gene finding is a challenging problem for constructive-induction research. The following
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Figure 1: DNNA and protein translation. Depicted here is a DNA sequence and the
amino-acid sequence (protein) that results from its translation. Each bracket delineates a
codon; collectively, the brackets show the reading frame for this sequence.

two sections investigate constructive-induction approaches to the gene-finding problem: Sec-
tion 5 investigates using hidden units to construct features in neural networks, and Section 6
explores using CITRE to construct features for a decision-tree learning system. The final
section discusses the significance of these experiments and provides conclusions.

2 The Problem Domain

This section provides a brief description of the problem that serves as a testbed for our
experiments. A more thorough treatment of the biology underlying the problem can be
found elsewhere (Watson et al., 1987).

A DNA strand is a linear sequence of nucleotides composed from the alphabet {A, G, T, C}.
A DNA molecule comprises two strands organized as a double helix. Certain subsequences
of a DNA strand, called genes, encode proteins. Proteins are important because they provide
most of the structure, function, and regulatory mechanisms of cells. Interspersed between
the genes are areas, termed noncoding regions, that do not encode proteins. An important
problem in biology is to be able to distinguish the coding from the noncoding regions of
DNA sequences.

Proteins are also linear sequences; they are composed from the 20-character alphabet of
amino acids. As illustrated in Figure 1, each consecutive string of three nucleotides in a
gene encodes a single amino acid (e.g., “GGA” encodes glycine). The nucleotide triplets are
called codons and the mapping from codons to amino acids is called the genetic code. The
genetic code is almost universal across species and is well known. The process of translating
a gene into protein involves grouping nucleotides into codons and inserting the amino acid
encoded by each codon into the protein chain being synthesized.

In order to determine the amino-acid sequence encoded by a given DNA sequence, it
is necessary to know the reading frame of the sequence. The reading frame refers to how
the nucleotides of a DNA sequence are grouped into triplets as a gene is translated. As an
analogy, consider trying to decode a bit stream that contains a message encoded in ASCII.
Unless the bits are correctly grouped into bytes, the decoded message will be nonsense.

The problem that we address is the following: given a relatively small, fixed-length
“window” on a DNA sequence, predict whether or not the sequence is part of a gene that is
“in-frame ” with the window. The window is considered to be in-frame with a gene when
the leftmost nucleotide in the window is the first nucleotide in a codon of the translated
gene. Thus the problem involves classifying input sequences into two classes: coding and
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Figure 2: Representing the input window as nucleotides using a local encoding.
The nucleotides in the window determine the activations of the input units. Shaded input
units have activations of 1, the other input units have activations of 0. In this figure, the
input window is three nucleotides wide.

noncoding. The classifiers need to learn to recognize coding regions only in one frame;
all out-of-frame sequences are treated as noncoding examples. Other researchers have also
investigated neural-network approaches (Farber et al., 1992; Lapedes et al., 1989; Uberbacher
& Mural, 1991) to the problem of finding genes in DNA sequences.

3 The Effect of Input Representation

As part of the Wisconsin E. coli Genome Project (Daniels et al., 1992), we have been
investigating the use of neural networks to find genes in DNA sequences of the bacterium
E. coli (Craven & Shavlik, 1993). In the course of this research, we have found that the
choice of input representation has a significant effect on how well the task is learned; other
researchers have reached the same conclusion (Lapedes et al., 1989). It was this finding that
motivated us to explore the effect of input representation on generalization performance. In
this section we describe the two different representations that are used for DNA sequences
in our experiments.

Both representations that we investigate represent DNA sequences as feature-value pairs.
The first approach uses a binary encoding of the nucleotides that are present in the input
window. This input representation requires four features for every nucleotide position in the
input window, where each feature represents one of the four nucleotides that could occupy
the position. We will refer to this as the nucleotides representation. The second approach
involves representing the codons that are present in the window and are in-frame with respect
to the window. This input representation involves sixty-four binary features for every codon
position in the window, where each feature represents one of the codons that could occupy
the position. We will refer to this as the codons representation. Figure 2 and Figure 3 depict
artificial neural nets using the nucleotides and codons representations respectively.
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Figure 3: Representing the input window as codons. There are sixty-four input units
for each codon in the window. In this figure, the input window is two codons wide.

In order to evaluate the effect of input representation for the problem of recognizing
genes in DNA, we construct generalization curves for both the nucleotides and the codons
representations. A generalization curve plots test-set error on the g-axis against training-
set size on the z-axis. We construct these curves using the C4.5 decision tree algorithm
(Quinlan, 1993), and perceptrons (Rosenblatt, 1958). A perceptron is a neural network with
no hidden units and a linear-threshold output unit.

A window size of 15 nucleotides is used to determine the input features for both repre-
sentations. For both representations, classifiers are trained on example sets that range from
100 to 10,000 examples. For a given run, each successive training set is a superset of the pre-
vious training set. The classifiers are tested on a disjoint set of 5,000 examples after learning
each training set, and the accuracies on this set are plotted. The results are averaged over
four runs for each training-set size. All training and testing sets contain approximately 50%
coding sequences and 50% noncoding sequences.

The networks are actually trained using sigmoidal output units instead of linear threshold
units, so technically, they are not perceptrons during the learning process. When we use the
networks to classify instances, however, we treat the output units as threshold units, and
hence the networks can be considered to be perceptrons. We train networks until convergence
using a conjugate-gradient algorithm (Kramer & Sangiovanni-Vincentelli, 1989). Conjugate-
gradient learning obviates the need for learning-rate and momentum parameters. A tuning
set consisting of 10% of each training set is used to determine when the network weights are
saved so that networks do not “overfit” the training data. Overfitting means that a network
has represented too much about specific examples in the training set and not enough about
the general characteristics of the training set. Error is not backward-propagated and weights
are not updated for members of the tuning set; they are simply classified by the network in
order to estimate the accuracy of the network on unseen examples. For the decision trees,
pessimistic pruning (Quinlan, 1993) is used to avoid overfitting.

Figure 4 shows the observed generalization curves for perceptrons using the nucleotides
and codons input representations. Figure 5 shows the observed generalization curves for
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Figure 4: Perceptron generalization curves for the nucleotides and the codons
representations. The solid line shows the observed generalization curve for the nucleotides
representation. The dashed line shows the observed generalization curve for the codons
representation. Generalization error is the percentage of misclassified test-set examples.
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Figure 5: C4.5 generalization curves for the nucleotides and the codons repre-
sentations. The solid line shows the observed generalization curve for the nucleotides
representation. The dashed line shows the observed generalization curve for the codons
representation. Generalization error is the percentage of misclassified test-set examples.



decision trees using both representations. For both learning methods, using the codons
representation results in classifiers that generalize substantially better than those using the
nucleotides representation.

4 Gene Recognition and Constructive Induction

Because the defining characteristics of genes are more readily apparent at the codon level
than the nucleotide level, the codons representation of DNA sequences is obviously a better
representation for the task of recognizing genes. However, what if we did not know a prior:
that the codons representation was a reasonable input representation to try for this task?
Would this representation be discovered by state-of-the-art learning systems that perform
constructive induction?

There are several reasons why the problem of finding genes provides an interesting testbed
for constructive-induction research. First, it is a real-world problem that can be “reverse-
engineered.” We know that codons provide a good representation for the problem, and the
mapping between nucleotides and codons is known. Second, the representational shift in-
volved in going from nucleotides to codons is neither trivial nor overly-complex. The features
of the codons representation, namely the codons themselves, are simply ternary conjunctions
of adjacent nucleotides. Thus we would expect that a fairly general feature-construction al-
gorithm would be able to construct codon features from the nucleotide features. Third, the
process of finding the codons representation is, to some extent, a problem of scientific discov-
ery. The process of “cracking” the genetic code in the early 1960’s involved discovering the
mapping between sequences of nucleotides and sequences of amino acids. Two parts of this
discovery, in particular, are manifested in the process of learning the codons representation:
(1) determining that each consecutive nucleotide triplet encodes a single amino acid; and (2)
determining that the code is non-overlapping (i.e., , codons do not overlap each other).

In the following sections we describe experiments that involve applying both neural and
symbolic constructive-induction approaches to the problem of recognizing genes. The ques-
tion that motivates these experiments is whether or not general methods for constructive
induction are able to discover a good representation (e.g., the codons representation) for this
problem when given only the nucleotides representation?

5 Constructing Features in Neural Networks

The neural networks used in the previous experiment were perceptrons, meaning that they
did not have any hidden units. When used for classification tasks, such as the gene-
recognition problem, perceptrons are able only to make linear discriminations in their input
space. For many problems, a linear boundary may be inadequate for separating instances of
different classes. The role of hidden units in a neural network is to transform the input space
into a different representation — one in which two classes may be separated by a single linear
boundary. Thus, the concepts represented by hidden units can be thought of as constructed
features. The question that we address in this section is whether or not neural networks
using the nucleotides representation, when given a sufficient number of hidden units, are
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Figure 6: Generalization curves for multi-layer networks and perceptrons. The
curves show observed generalization for 120-hidden-unit networks using the nucleotides rep-
resentation and for perceptrons using the nucleotides and the codons representations.

able to construct features that enable them to approach the generalization performance of
networks using the codons input representation. It is important to note that we are not
particularly concerned with exactly what features the networks learn to encode with their
hidden units. It is possible that the hidden units could learn a local encoding of codons, or
they may learn a distributed representation (Hinton et al., 1986) of codons, or some entirely
different, but useful, set of features.

In order to investigate this question, we construct a set of generalization curves using
networks with different numbers of hidden units. The methodology and the data sets used
to train and test the multi-layer networks are the same as in the previous experiment. The
networks that we test have 5, 10, 20, 40, 80, 120 and 160 hidden units. The hidden units
are arranged in a single layer and each unit is fully-connected to the set of input units. The
number of free parameters (weights + biases) in a neural network gives a rough indication
of the capacity of the network (Baum & Haussler, 1989). The 40-hidden-unit networks used
in this experiment have 2481 parameters. In contrast, it would take only 1601 parameters
to encode by hand a network that had a layer of 320 hidden units hard-wired to represent
each of the 64 codons in each of the five codon positions in the window. Thus, although the
networks in this experiment do not provide a topology that enables them to form a local
representation of the codons in the window, they should have sufficient complexity to form
an alternative, distributed encoding of similar features.

Figure 6 shows the generalization curve for the networks with 120 hidden units as well
as the generalization curves for the perceptrons used in the first experiment. The networks
with 120 hidden units provided the best test-set performance of the multi-layer networks
evaluated in this experiment. Although networks with hidden units offer an improvement
over the generalization performance of perceptrons using the nucleotides representation, this



improvement is not enough to match the performance of the perceptrons using the codons
representation. This result indicates that the fully-connected networks are failing to represent
codons with their hidden units.

6 Constructing Features in Decision Trees

A number of algorithms have been developed to perform feature construction using decision
trees as the concept description language (Matheus & Rendell, 1989; Pagallo & Haussler,
1990). The CITRE system (Matheus & Rendell, 1989) provides a general approach for
constructive induction on decision trees. In this section we describe an experiment in which
we train decision trees using the nucleotides representation, and then use CITRE to construct
features on these trees. The motivation for this experiment is to see if a symbolic system for
constructive induction, such as CITRE, is able to bridge the generalization gap between the
nucleotides representation and the codons representation.

The CITRE approach to feature construction involves an iterative cycle of learning a
decision tree, constructing new features, and then learning a new tree using the constructed
and original features. CITRE uses a learned decision tree to suggest constituent features to
be used in the constructed features. As outlined by Matheus, the CITRE approach has four
aspects:

1. the detection of when new features are required
2. the selection of relationships used to define new features
3. the generalization of new features

4. the global evaluation of constructed features

Below we discuss how we address these four aspects in our experiment.

Matheus’ criterion for detection is that feature construction should be performed when-
ever disjunctive regions, as evidenced by the presence of more than one positively-labelled
leaf, are detected in a decision tree (for our purposes, a positively-labelled leaf is one labelled
coding). We believe that for many real-world tasks this is probably too stringent of a crite-
rion because it requires the concept to eventually be represented as a conjunction. In our
experiment, we finesse the issue of defining a good detection criterion; instead we just try to
estimate a lower bound on the generalization error over a fixed number of iterations of tree
building and feature construction.

The selection process involves forming conjunctions of pairs of Boolean features. Matheus
describes a number of ways in which pairs of features can be selected (Matheus, 1990a). In
this experiment we use the adjacent method, which selects all adjacent pairs of tests that
occur on decision-tree branches that lead to positively-labelled leaves. For example, consider
a branch in a decision tree that leads to a leaf labelled coding. If one node along this
branch tests if the first nucleotide in the window is ‘A’, and the next node tests if the third
nucleotide is ‘C’, then the adjacent operator would construct a new Boolean feature that is
true when the first nucleotide is ‘A’ and the third nucleotide is ‘C’. The selection process can
also exploit domain knowledge to narrow the set of candidate constructed features. In this
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Figure 7: Generalization for the CITRE trees. The initial set of features is simply
the nucleotides representation. The z-axis represents the number of feature-construction
iterations, and the y-axis represents the test-set error for a decision tree induced using the
features of a given iteration. Fixed-size training sets of 5,000 examples are used to generate
the trees.

experiment we do not use any domain knowledge in this process because we are interested
in determining how well we can do without using such information.

The generalization step enables CITRE to generalize the features constructed in the se-
lection process. For example, constructed features could be generalized by introducing dis-
junctions or by dropping terms from conjunctions. (Obviously, such generalization operators
should be restricted so that they do not simply undo steps that were just performed by the
selection process.) In this experiment we do not perform any generalization of constructed
features.

The evaluation process serves to limit the number of new features constructed. The
evaluation criterion we use is the information gained when an individual feature is used to
partition the entire training set. For this experiment we limit the number of constructed
features to 320 at any given time. Since there are 60 original features, the total number of
features never exceeds 380. When the number of features is restricted in this manner, CITRE
can be thought of as performing a beam search through the space of constructed features.
Note that 320 features is the number necessary to represent each codon in each position in
the input window.

In order to evaluate the ability of CITRE to construct useful features, we test the feature-
construction process starting only with nucleotides as features. In this experiment we use
four fixed-size training sets of 5,000 examples. The training and test sets are the same 5,000-
example sets used in the previous experiment. For each training set, we run CITRE for 40
iterations of feature construction.

Figure 7 shows the test set error for each of the four training sets on each iteration of
CITRE. From this figure it can be seen that the generalization performance fluctuates as



Table 1: Generalization error for the decision tree and neural network approaches. Reported
values are averages for four training sets of 5,000 examples each. The CITRE result is an average of the
values from the iterations with the best performance for each data set.

| approach | % error |
C4.5 with nucleotides 33.6
CITRE starting with nucleotides 28.8
C4.5 with codons 25.6
perceptron with nucleotides 29.5
120 HU network with nucleotides 26.7
perceptron with codons 22.6

the feature set changes. Over the course of the feature-construction process, however, test
set accuracies do improve somewhat. Table 1 shows the generalization performance of the
CITRE-induced trees relative to the performance of C4.5 trees using both representations.
The numbers in this table represent averages over all four test sets. The CITRE error rate
was determined by taking the tree from the iteration with the best performance for each
data set. Thus, the error rate for the CITRE approach is a lower bound on what it would
be if we used, say, a tuning set to decide when to stop iterating. All differences in this table
(except CITRE vs. the nucleotides perceptrons and CITRE vs. 120-hidden unit networks)
are significant to at least the 0.025 level using a paired, 1-tailed #-test.

The results of this experiment indicate that CITRE, when given no domain knowledge,
is able to improve upon the performance of a decision tree using only the nucleotides rep-
resentation, but that this improvement is not enough to match the performance of trees
using the codons representation. We have also conducted this experiment using the fringe
feature selection method (Pagallo & Haussler, 1990), and competitive evaluation of features
(Matheus, 1990b). However, we found that the adjacent selection method and information-
based evaluation provided the best results. Further experimentation needs to be conducted
to explore the effects of using domain knowledge, feature-generalization operators, and more
iterations of feature construction.

7 Conclusions

We have investigated the effect of input representation on generalization performance for the
real-world problem of finding genes in DNA sequences. Our experiments demonstrate that
two different input representations result in significantly different generalization performance
for neural networks and decision trees trained using them. We investigated the ability of
learning algorithms that perform constructive induction to achieve the generalization per-
formance of the codons representation given the weaker nucleotides representation. Our
experiments indicate that neither multi-layer neural networks nor the symbolic CITRE algo-
rithm perform the representational shift necessary to bridge the generalization gap between
the two representations.

We believe that the task of finding genes in DNA is an interesting problem for research



in representation and constructive induction for several reasons. First, it embodies the
complexity inherent in an important real-world problem. Second, two different, yet natural,
input representations result in significantly different generalization performance for neural
networks and decision trees trained using them. Finally, the relationship between the two
representations is well known, and the representational shift involved in constructing the
better one is not too imposing.

An interesting question to address in future research is to determine what is necessary
to enable multi-layer neural networks and CITRE to successfully construct features, such as
codons, that provide a good representation for the gene-finding problem. Domain knowledge,
changes to the feature-construction algorithms, and topological hints are among the issues
that could be investigated. One obvious piece of domain knowledge that could be exploited is
information about the sequential nature of DNA. For example, in a neural network we could
connect hidden units so that each one is connected only to a spatially-local part of the input
window. Similarly, we could bias CITRE so that conjunctions of neighboring nucleotides are
preferred. Although we know the mapping between nucleotides and codons, it is important
to find feature-construction methods which are as general as possible so that they can be
extended to problems in which a good representation is not known.

The issue of input representation is an important one in machine learning. Often it is not
obvious what the best input representation is for a given problem. It is therefore important
to develop learning techniques that are able construct better representations when they
are initially given weak representations. We believe that the problem of finding genes in
DNA can help guide research in constructive induction towards its goal of finding effective
domain-independent biases for feature construction.
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