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1 Introduction

The primary goal of machine learning research is to develop algorithms that enable computers
to learn to perform various tasks. These can range anywhere from guiding a robot’s motion
through complex environments to predicting tomorrow’s weather. The common goal which
all machine learning systems share is that of substituting learning for explicit programming,
in the hope that this may lead to easier, faster, and even better system construction than is
possible through hand coding.

A major category of machine learning systems is that of inductive classification systems.
Such systems learn to categorize observational instances, or examples, in some sensible way,
either according to a predefined set of classifications (supervised learning) or a set of freely
discovered regularities in the examples (unsupervised learning). This chapter is mainly con-
cerned with inductive classification systems within the paradigm of supervised learning from
examples.

Supervised learning algorithms examine sets of preclassified training examples and at-
tempt to discover regularities that determine their classifications. After learning, they can
then classify new examples from the same problem domain. We can evaluate system perfor-
mance by measuring post-learning correctness on a set of testing eramples, which are just
previously unseen examples whose proper classifications are known.

In order for a system to learn from examples, we must represent the examples in some
way it can understand. The abstract representation technique most often used is that of
feature vectors. That is, each example is simply a fixed set, or vector, of features along with
their instantiated values. We are concerned in this chapter with the choice of these features,
or the representation selection problem.



For the purposes of describing the representation selection problem, we divide all features
into two categories, measured features and constructed features. Measured features are those
one obtains directly from the world through some sort of measurement process. These are
generally chosen with an eye to the problem to be solved, although in some cases they may
be taken from data gathered for other purposes. A primary desire is that the available set of
measured features captures all the information about the world which is necessary to solve
the target classification problem. For instance, if one wishes to train a learning system to
predict the risk of individuals suffering heart disease in the next five years, one might decide
to measure such features as age, sex, weight, blood pressure, serum cholesterol level, and
so on. These features are chosen because one believes them to be those which are relevant
to the problem; thus, they attempt to capture the information which will make accurate
prediction possible.

There is no guarantee, however, that this will turn out to be the case. It may be that some
of the features measured are irrelevant and so serve only to confound the learning. Worse,
the measured features may not, in fact, include everything needed to solve the problem. For
example, the amount of exercise a person gets may be an important factor in determining the
incidence of heart disease, yet this information may not have been collected in the medical
histories of the patients studied. Unfortunately, there is usually not much one can do about
this in real-world problems short of going back and making more measurements. This process
is in general costly and (as in the case of medical records spanning a long period of time) may
even be impossible, so most of the time one will be “stuck,” so to speak, with the features
already collected. Because of the frequent infeasibility of gathering more measured features,
we will here operate under assumption that we cannot do so.

Given a set of measured features, then, our problem is to make the best use of the
information that they do in fact contain. At first glance, this seems like an easy problem
to solve: simply encode these features in some straightforward way that is amenable to
one’s favorite learning algorithm and let it run. This answer is somewhat naive, however,
because the form in which the information is presented can have a marked effect on the ease
of solving the problem. To make an analogy, if a skilled author is attempting to explain a
complicated point, he or she will probably do so in such a way as to minimize the reader’s
burden in understanding it. The presentation will be clear and concise, and can even turn
a difficult concept into something which is grasped in a few moments. Alas, we all too
often experience the other side of this coin: the writer may understand the concept perfectly
but nonetheless produce a description which is opaque, convoluted, and inscrutable. Both
articles may contain the same information, but this does not mean both are of equal value
in transmitting it in a meaningful or useful way.

The same is true of representations for machine learning, where the representation is
analogous to the written description and the learning algorithm is analogous to the reader.
That an example representation contains useful information is no guarantee that it makes the
problem easy to solve. On the contrary, it is just as possible for an example representation
to be opaque and inscrutable as it is for an author to produce indigestible descriptions. The
end result is the same: the clarity of the representation deeply affects the ease with which
a concept can be learned. Thus, we wish to make our example representation as clear and
“natural” for the given problem as possible. Since we have already ruled out the possibility
of collecting more measured features in this attempt, we must move instead to the second
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Figure 1: An arch.

type of feature mentioned above—the constructed feature.

Constructed features are what the name implies: new features which are constructed from
the measured features. Research in so-called “constructive induction” (Michalski, 1983; Ra-
gavan & Rendell, 1993; Matheus & Rendell, 1989; Pagallo & Haussler, 1990) deals with the
creation of this type of feature, which can involve logical combinations, numerical compar-
isons, or even complex computations which yield a final single value. Ideally, we would like
to construct new features which make the problem easier to solve. As an illustration, con-
sider the problem of determining whether an arch is present in a drawing containing three
rectangular blocks and a table. For simplicity, let us define an “arch” as any configuration in
which two of the blocks are positioned vertically, with space between them, and support the
third block in a horizontal position (e.g. as in Figure 1). Each particular block configuration
constitutes one example which must somehow be represented to the system. In this limited
scenario, we can completely represent the problem state by specifying, say, the (x,y) coor-
dinates of the upper-left corner of each block and each block’s width (horizontal extension)
and height (vertical extension).

This seems like a plausible enough representation in that it is small and also contains, in
principle, all the information needed to solve the problem. However, the form in which this
information is expressed has substantial ramifications for learning. As mentioned earlier,
the performance of inductive learning algorithms is intimately tied to the representation
used for example description. Final classification accuracy may vary widely depending on
this representation, even though other factors are held constant (e.g. Uberbacher & Mural,
1991; Blum & Rivest, 1992; Farber et al., 1992; Craven & Shavlik, 1993a, 1993b), simply
because the form of the representation introduces a bias as to what concepts are most easily
expressed.

To continue with our simple arch example, note that it is not the absolute positions and
dimensions of the blocks that are important in determining the quality called “arch,” but
rather the relationships which hold between them. For instance, it is essentially irrelevant
that the y coordinate of block A is five. It is much more important that it is equal to block
C’s y coordinate minus C’s height, because this indicates that A may plausibly support C



if their horizontal extensions overlap. Likewise, we are more interested in the fact that A’s
height is greater than its width (to establish a vertical orientation) than in the absolute
values of either of these attributes.

For many machine learning algorithms (and for people too!), the particular sets of features
used to describe examples can make the target concept either naturally intuitive or hopelessly
obscure. Most people would certainly find the arch classification task easier if the features
given are of the sort just discussed, e.g. “block A is vertical” and “block A supports block
C,” than if coordinates and sizes are specified instead. Unfortunately, the task of finding the
“right” kinds of features for a given problem is very difficult, because even simple methods
of feature construction can lead to combinatorially many new features. For instance, the
set of all possible conjunctions of a given set of Boolean-valued features has an exponential
number of members, since every subset of the original features could form a conjunct. If
more complex constructions are allowed or if the initial data contains, say, numeric features,
it is easy to see that an infinite number of new features can be constructed.

In the arch example, we can easily judge which constructed features are of the most
utility, i.e. that a comparison between the width and height of a single block is relevant to
the task whereas a comparison of the width of one block to the height of another is not.
However, in more interesting problems such a priori intuition will probably be much more
vague, so the relatively few important constructed features will be buried amidst the vast
numbers of possible ones. Thus, the problem of finding a small set of highly informative
constructed features is a daunting one—so much so that in fact most of the time little effort
is put into the choice of a representation other than to encode the available measured features
in some straightforward fashion and leave it at that.

The difficulty of the representation-choice problem, coupled with the potential rewards
for its successful solution, provides the main motivation for our attempt to develop an au-
tomated parallel method of feature selection. Our system, DT-SELECT (“Decision Tree
feature Selection”), searches in the space of measured and constructed features for represen-
tations that make particular learning problems easier. (It is so-named because its core is
essentially an efficient parallel implementation of Quinlan’s ID3 (1986) decision-tree-building
algorithm.) Because of the combinatorial number of possible constructed features, we cannot
hope to blindly stumble across treasures; we need to employ some kind of high-level guidance
if we are to prevail. Nevertheless, just because there are so many possible features, once we
have chosen an area of the space to examine we would like to explore it as thoroughly as
possible in order to find the riches which may be hiding like a needle in a haystack.

DT-SELECT attempts to balance these two opposing needs. It allows the user to guide
the search in directions which seem promising by specifying the types of features that should
be investigated. Just as we had the intuition in the arch example that making certain sorts
of comparisons would lead us to the discovery of predictive features for that problem, so
too may we have similar intuitions in more complex domains. The problem here (unlike
in the arch example) is that we probably will not know which particular instantiations of
a certain type of feature are likely to contain the most information. It is here that the
parallel search of DT-SELECT plays its part: given a set of user-specified feature types,
DT-SELECT performs an exhaustive search of their instantiations to find economical sets
of individually salient features which together capture the information needed to solve the
problem. Thus human and machine offset each other’s weaknesses, the human providing the
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necessary intuitive guidance while the machine provides the thoroughness and accuracy to
put it to use.

In the following section we lay out our desiderata for an ideal example representation,
which our DT-SELECT algorithm then attempts to address. The remainder of the chapter
describes DT-SELECT in detail and presents some initial experiments with its use in the
molecular biology task of predicting the folded shapes of globular proteins.

2 In Search of the Ideal Representation

To make the task of inductive learning as easy as possible, we would ideally like to find a
representation that simultaneously maximizes three desirable characteristics:

e Coverage
e Economy

e Transparency

A representation’s coverage indicates the degree to which it captures, in principle, all the
information needed to solve the given problem. For instance, the naive representation in our
earlier arch example, in which the drawing was described in terms of the widths, heights,
and (z,y) coordinates of the three blocks, exhibits complete coverage in that everything
necessary to separate arches from nonarches is encoded in these values.

This representation is also laudable in its economy, the second of our three dimensions.
Economy refers to the representation’s compactness, or succinctness. We wish to avoid
hampering the learning task with the inclusion of many features which represent nearly
the same thing (i.e. redundant features). Indeed, it is economy in which the simple arch
representation best excels, as it captures the entire problem state in a mere twelve numbers,
none of which are derivable from others and all of which contain information needed to
determine the correct classification.

However, this simple representation falls short on the third point, for it does not manifest
transparency. By this we mean that the features in the representation do not present the
information needed to separate the examples into their respective classes in a straightforward
fashion which would make solving the problem easy. Instead, a learning algorithm using this
representation is forced to somehow discover the salient higher-order relationships between
the raw features—a feat that is made difficult by the combinatorial number of possibili-
ties. A more transparent representation would provide a more direct route from features to
classifications. The most extreme (and also unrealistic) form of transparency would specify
the example classifications explicitly as an input feature, making problem solving trivial.
(Transparency can be thought of as the inverse of Ragavan and Rendell’s (1993) “blurring.”)

In attempting to generate a representation which satisfies the three criteria of coverage,
economy, and transparency, there are obviously tradeoffs that must be considered (e.g. cov-
erage versus economy and economy versus transparency). As we have seen in the example
of the arch, a representation that is strong in one or two of these aspects but poor in the
others will not necessarily facilitate easy learning. DT-SELECT uses decision trees as a



Figure 2: A fictional decision tree for predicting heart disease.

means of choosing sets of features having a balance of all three characteristics. The next
section provides a quick tutorial describing what decision trees are and how they can be used
to select features satisfying our three desiderata. Following that, we describe the complete
DT-SELECT algorithm in detail.

3 Decision Trees
A decision tree is simply a tree data structure with the following properties:

e Kach internal node is labeled with the name of a feature
e Each leaf is labeled with the name of an example category

e Every internal node has a set of at least two children, where the branches to the children
are labeled with disjoint values or sets of values of that node’s feature such that the
union of these constitutes the set of all possible values for that feature

Thus, the labels on the arcs leaving a parent node form a partition of the set of legal
values for the parent’s feature. Figure 2 provides a simple illustration of part of a decision
tree which might apply to our earlier heart disease example.! Leaves labeled “Yes” indicate
people at high risk for heart disease, while those labeled “No” indicate low risk. Two subtrees
at the lower right are not shown.

IThe “information” about heart disease this example contains is fictional—so please do not become
concerned!



Decision trees are commonly built inductively and used as classifiers (Quinlan, 1986). An
example can be classified by a decision tree by starting at the root of the tree and, for each
internal node visited, traversing the child branch whose associated set of values contains the
value of that node’s feature seen in the example. When a leaf is reached, its label gives
the (hopefully correct) classification of that example. While DT-SELECT does construct
decision trees, we are here interested in using them not as classifiers in themselves (though
this is also a possibility) but instead as a means to a further end—that of feature selection.

The typical approach to building decision trees inductively is to pick as the root of the tree
the feature whose values best separate a collection of training examples into their categories.
These values define a partition of the training examples, where each subset contains examples
having the same value for the chosen feature. Children of the root are then added to the tree
by performing a similar feature-selection step recursively for each subset in the partition.
The process stops when every training example set contains examples of only one class.

DT-SELECT uses this general approach to build a decision tree for a given set of training
examples, except that the features chosen may be constructed as well as measured features.
The features used by the final decision tree then constitute the new example representation
which the system has selected.? Selecting sets of features in this fashion allows us to approx-
imate all three representation ideals (coverage, economy, and transparency) in an efficient
way. First of all, features are chosen specifically according to their transparency: the feature
that is most predictive in isolation is always selected at each step.

Secondly, because each feature added to the tree partitions its training data better than
any other, coverage (or ability to separate the data entirely) is increased steadily as the tree
is built.

Finally, once a particular feature is chosen as the root of a subtree, other highly correlated
(i.e. redundant) features will not be included in the body of the subtree since they have little
power to further separate the subsets of training examples that the root feature has already
defined. This provides a kind of “piecewise orthogonality” to the final set of features, lending
it descriptive economy. In contrast, if we simply chose the k£ individually most informative
features as our new representation, we might instead obtain a highly redundant feature set
with poor discriminatory power—a problem which is especially acute if we wish, as we do, to
select from a very large space of features. This is because many slightly different versions of
the few best features would be chosen, rather than a mix of features which apply to different
types of examples. Using decision trees for selection helps control this problem of highly
correlated features.

Almuallim and Dietterich (1991) offer a different feature selection method, but its em-
phasis is on finding a minimal set of features which can separate the data. Their approach
thus concentrates on optimizing economy while guaranteeing coverage, but it does nothing
to insure transparency. Yet it is this last attribute which would seem to be the crux of
representation selection: the primary reason we wish to construct new representations is to
provide a transparency which will make solving the target problem easier. We postulate
that optimization of economy will, in fact, necessitate the selection of convoluted “wholis-
tic” encodings in which information is encrypted in the interactions of many features—an

2We describe DT-SELECT’s tree-building process in greater detail in Section 4, which presents the entire
algorithm.



Table 1: Top-level DT-SELECT algorithm.

Construct a large pool of potentially useful features
Initialize an empty decision tree

Initialize training partition to all training examples

- W

Select a feature (add a decision tree node):
4a. Score all features in parallel on current partition

4b. Add the most informative feature to the decision tree
(or terminate the branch if stopping criterion met)

4c. Subpartition the current training examples according
to the values of the chosen feature, if any, and recur
(step 4) on each subpartition to build each subtree

5. Output the internal-node features as the new representation

outcome precisely at odds with our desire for transparency. In addition, optimization in the
large search spaces of the problems we wish to address is too computationally expensive to
be feasible.

Because DT-SELECT searches a very large candidate set containing complex general and
domain-specific constructed features, our hypothesis is that the selected features will capture
important information about the domain which is not available in a more standard represen-
tation. The availability of these features may then enhance the abilities of other inductive
learning algorithms to solve the target problem. The use of decision tree construction to
select particular sets of features balances the competing desires of coverage, transparency,
and economy in a computationally efficient manner.

4 DT-Select

Table 1 gives an outline of the top level of DT-SELECT. We expand on each segment of the
algorithm in the following subsections.

4.1 Constructing the Feature Pool

Perhaps the most important component of DT-SELECT is the feature pool, because in it
reside all features from which the selection algorithm will choose. It is here that the balancing
act between intuitive guidance and large-scale search is performed.

In our current implementation, all features in the pool are Boolean-valued (for efficiency
reasons discussed later). Aside from this restriction, they may range anywhere from simple
ground-level features from the original dataset to general-purpose relational features to highly
complex, domain-specific constructed features. The specific forms of the features is left to
the discretion of the user. By designing feature types which one suspects may provide useful
information for a problem, one directs the search into areas that appear to be most fruitful



without, however, restricting the search so tightly as to prevent the examination of many
different individual features.

To return to our example of recognizing arches, suppose one did not know that the
specific comparison between the width and height of a single block was particularly crucial
to the problem, yet one suspected that comparisons of block dimensions in general might be
important. One could then choose to include in the pool a general class of features of the
form, “Is (width/height value U) greater than (width/height value V'),” where U and V may
each be instantiated with the width or height of any block. Every possible instantiation of
this feature type will then be included in the feature pool constructed in step 1 of Table 1.
While in this example the number of such features is small and the most important ones are
obvious, in general feature instantiations may be much more numerous and feature types
much more complex, so that one could not possibly hope to find the best instantiations by
hand.

To summarize, the user loosely guides the search by defining feature types, and DT-
SELECT then considers all instantiations of these types, allowing the discovery of the most
important features from among the many instantiations automatically. In this way we retain
a thoroughness of search which is not possible by hand in areas of the search space deemed
important while sidestepping the combinatorial problems of a blind search.

We mentioned earlier the fact that all features in the pool are Boolean-valued. The
primary reasons for this are space and time efficiency. We wish to be able to search as many
features as possible (hundreds of thousands or even millions) so that feature types with many
instantiations may be included. However, because constructed features may be arbitrarily
complex (depending only on the user’s definitions), it is in general expensive to compute the
value of a constructed feature for a given example. If we must recompute each feature value
every time it is needed during tree building, it becomes impossible to include more than a
few thousand features in the pool without incurring prohibitive run times.

The alternative we choose is to precompute and store the value of every feature in the
pool for every training example. If there are several thousand training examples and we wish
to include at least a few hundred thousand features (a scenario which is not uncommon in
difficult real-world problems), this amounts to a substantial number of values which must
be stored and accessed efficiently. By using Boolean-valued features, we are able to pack
each feature value into a single bit. In addition, the computations needed for tree building
can then be accomplished with maximum efficiency through simple logical operations (i.e.
AND, XOR) between vectors of these bits as described in later sections. Examples of specific
types of features which we implemented for the protein-folding problem are given in the
“Experiments” section.

4.2 Building the Decision Tree

Tree building occurs in Table 1’s recursive steps 4a-4c. Conceptually, the most informative
feature over all the training data is chosen as the root of the tree. The two values of this
feature partition the training examples into two subsets, one for which the feature is true
and another for which it is false. This process is then repeated recursively for each of the
two subsets until a stopping criterion is met. Thus, during each feature selection cycle, all
features in the pool are evaluated for their ability to separate the current training partition



into their correct categories (step 4a). This is currently done using Quinlan’s information
gain metric (Quinlan, 1986) modified for multiple categories.® Information gain is a method
for measuring how well the different values of a feature separate a set of examples into
their respective categories; the better the separation, the higher the information gain. The
information needed to correctly partition a given set of training examples according to their
proper classifications is

c
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where c is the number of categories, n; is the number of examples in category ¢, and N =
¢ 1m;. Then the amount of information gained by partitioning the examples according to
the value of a particular feature F' is

v
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where ¢, n;, and IV are as before and F' has v possible values. n;; represents the number
of examples of category ¢ having feature value j, so the sum over 7 in the above formula is
simply the total number of examples of all categories for which feature F' has value j.

The feature which scores best according to this metric is attached to the decision tree
at the point where this particular recursion began (step 4b). Finally, the training examples
at this node are partitioned according to the chosen feature’s two values (step 4c) and the
process is repeated for each such subset which contains examples of more than one class.

This tree-building algorithm is essentially an efficient parallel implementation of ID3
(Quinlan, 1986) except that the features which are used to split the training data are all and
only those which reside in the user-defined feature pool. Because all of these are Boolean-
valued, the resulting decision trees are binary.

If the only stopping criterion were the complete separation of the training examples
into a partition of homogeneous subsets, the tree is likely to overfit the data. To help
prevent such overfitting, our current implementation of DT-Select includes a statistical x?
test, extended from Quinlan (1986) to multiple categories, which attempts to compare the
observed discrimination power of a feature relative to that expected by chance.?

If the value of a feature F' is independent of the classifications of examples in the current
training set (that is, it is an irrelevant feature), then the expected value n;; of n;; (number
of examples of category ¢ having value j for feature F') is

(4
I Di—1 Mij
Ny =Ny (T)

This is just the number of examples of category ¢ times the proportion of all examples which
have value j for feature F'. Since F' is irrelevant to example classification, we expect each

3We also intend to explore the use of Fayyad and Irani’s (1992) orthogonality measure, which exhibits
better performance on several tasks, as a substitute for information gain.

4We intend to replace this criterion with more a sophisticated overfitting prevention technique, such as
the tree pruning methodology of C4.5 (Quinlan, 1992), in the near future.
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individual category to have the same proportion of examples with value j for F' as the total
set of examples does.

Given the expected values, we can compute the familiar X? goodness-of-fit statistic (e.g.
Fienberg, 1980)

1])2

-y

i=1j=1 nij
which is approximately x? with (¢ —1) X (v — 1) degrees of freedom. Thus, if the integral of
the appropriate x? distribution from 0 to X2 is > 0.95, the feature discriminates better than
chance at the 0.05 confidence level according to this test. If on a given recursion no features
in the pool exhibit a discriminatory power which exceeds a user-specified confidence level,
feature selection along that branch of the tree is terminated. The current node in the tree
then becomes a leaf which is labeled with the most common class of the training examples
in its partition.

4.3 The Parallel Implementation

In order to deal with large numbers of features and training examples, we have imple-
mented the feature scoring portion of our tree-building algorithm (step 4a in Table 1) on the
Wisconsin Thinking Machines CM-5, a message-passing Multiple-Instruction Multiple-Data
machine. This gains us additional processor cycles as well as the memory needed to store
vast numbers of precomputed feature values, both of which are necessary to apply this al-
gorithm to real-world problems in reasonable time. This subsection describes the details of
the parallel implementation.

At each cycle of tree-building, the program must find the feature of highest information
gain which passes the x? confidence test. Thus, these values must be computed for every
feature in the pool at each selection step. These calculations require only that we know how
many examples of each class have the value true and how many the value false. Because
these calculations can be done for each feature in isolation without affecting computations
for other features, the problem of finding the most informative feature is perfectly suited
to parallelization by giving each processor responsibility for a particular group of features.
After precomputing the feature values, the same amount of computation is required to do the
evaluation for each feature regardless of its original complexity. Hence, we simply partition
the features evenly across processors without regard for the mix of feature types each one
gets, and the processing load is perfectly balanced.

We use a host-node processing paradigm for our implementation, in which one program
running on a front-end, or host, machine acts as an overseer and bookkeeper for another
program which runs in parallel on the CM-5’s processing nodes. Communication occurs only
between the host and nodes. Because the communication requirements of our algorithm are
extremely low, this paradigm does not produce the communications bottleneck which might
occur in more message-intensive programs.

The tree-building inner loop in which the parallelism occurs is shown in Table 2. Each
step is described in more detail below.

First, the features in the pool are partitioned evenly across the nodes (step 1 in Table 2).
The global pool itself is never constructed explicitly as a single entity. Instead, its features
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Table 2: Tree-building inner loop.

1. Determine local features and receive training examples
Precompute feature vectors
3. Repeat until host says to stop
3a. Receive active example vector
3b. Find best local feature and send to host
(Host updates decision tree)

N

have an implicit canonical ordering, and each processing node generates only those whose
index, modulo the number of nodes, equals its node address.

Each node receives a copy of all training examples from the host. Then, in parallel,
the nodes precompute the values of their features for the training examples (step 2). Each
feature has an associated bit vector in which its (Boolean) value for every training example
is stored. The values for all examples of a particular class are contiguous. Feature values are
stored in the same order as the array of examples, which is constant across host and nodes.
Thus, a particular example’s value is always in the same bit position in every feature vector
in every node processor.

Figure 3 (top) gives a visual presentation of the feature value table of the node processor
with address 7. One bit vector denotes the current training partition (active examples), while
a table of isomorphic vectors stores the precomputed values of each of this node’s features
for every training example. A given position in any bit vector corresponds to a fixed single
example, and these are grouped together by category, beginning on double-word boundaries
for access efficiency. (Thus, there may be some unused bits at the end of each category,
shown to the right of the dashed vertical lines in the table.)

To denote the current training partition, or active examples, a bit vector of the same
morphology as the feature vectors is distributed to the nodes by the host (step 3a in Table 2).
This is the first vector at the top of Figure 3. Active examples are denoted by one bits and
inactive examples by zero bits. Thus, in order for a node to determine the number of active
examples of each class which evaluate to true for a given feature, it need only perform a
logical AND operation between the active example vector and the feature vector and then
count the number of remaining one bits in each category. The number of false outcomes for
each class is just the total number of examples of that class minus the true outcomes.

The first vector at the bottom of Figure 3 shows the outcome of such an AND operation
between the active example vector and feature number 7 + n shown at the top of the figure.
The one-bits in this result vector indicate all the active examples which had the value true for
that feature, and hence constitutes one set in the partition that feature defines with respect
to the given active examples. The last vector at the bottom of the figure shows the other
set in the partition, namely, those active examples with feature value false. This vector is
found by an XOR operation between the true partition vector and the original actives vector
at the top of the figure. The AND operation is performed once for every feature during a
feature selection cycle. The XOR, however, is only performed for the best feature, once this
has been determined. This is because we only need to know the number of examples of each

12



Processing Node i’s Main Data Structures

Active Exanpl es

Feat ure Nunber

Category 1

Category 2

Category c

11010001 ;000
|

010010000000
I

11101110000 |. .
I

Feat ure val ues for each exanple
(categories as in Active Exanpl es vector)

10111001000
I

0011001 :0000 |. . .
I

11110110 10000
I

01001110000
|

1010011 :0000 |. .
I

00111000 10000
I

01101001 ;000
I

0100110 :0000 |. . .
I

11010110 10000
I

11001001 ;000
|

0111011 :0000 . ..
I

01001110 :0000
I

]
11111110,000
|

11111110000 |. .
I

11011101 10000
I

The Active Example Partition Produced by Feature (i + n)

(Feat i+n) AND Act
(pos partition)

(pos part) XOR Act
(neg partition)

01000000, 000
|

1010011 0000 |. .
I

00001000 ;0000
I

]
10010001 ;000
|

0100100 :0000 |. . .
I

01000000 10000
I

Figure 3: Top: the main data structures of the node with address i (n here is the number
of nodes). Bottom: the partition of the active examples produced by the feature numbered

1+ n.
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class in each partition, not their actual identities, to calculate information gain, and these
numbers are readily available from the result of the AND.

All nodes may thus process their own features in parallel, computing the needed infor-
mation gains and x? values with great efficiency to determine the best feature (step 3b in
Table 2). Each node sends the information gain of its best feature to the host, which then
determines the global most informative feature (if any pass the x? test) and adds it to the
tree. Nodes keep track of the result of the AND operation for their best feature, so the node
with the winning feature can provide this to the host for distribution as the active example
vector for the positive-outcome recursion. The active vector for the negative-outcome recur-
sion is found via an exclusive-OR with the positive-outcome actives vector and the original
actives vector.

The majority of node processing time is spent doing logical AND operations and counting
the one bits in the results. Double-word loads are used to minimize bit-vector access time.
Currently, the bit counting is implemented using a 16-bit table lookup, where the table stores
the number of one bits in every possible 16-bit number. Other methods are possible. For
example, one bits could be counted by repeated shifts and comparisons to see if the high
bit is set. This increases the number of operations but decreases the number of memory
accesses. In a similar vein, a smaller 8-bit lookup table, though it requires twice the number
of operations as the 16-bit lookup, could conceivably exhibit better cache performance than
the larger table. In practice, the 16-bit lookup appears to be slightly faster than the 8-bit
lookup. At this time we have not done performance analyses to compare table lookup to
shifts and compares.®

It is of note in this implementation that, because feature values are stored in bit vectors
of constant morphology, the values of every feature for every training example are accessed
at each feature selection cycle (Figure 2’s step 3b), even though only some of the examples
are active. This means each node of a decision tree requires constant time to produce. A
more typical tree-building algorithm would recompute feature values as needed and thus
only look at the values of the active examples. Since examples are partitioned across each
level of a decision tree, this requires only constant time per level. However, in general it is
orders of magnitude more expensive to compute individual feature values than to perform
register operations on precomputed bit vectors. This leads to a very large constant for the
typical approach, whereas the constant in our implementation is small. Early experience
with serial prototypes indicated that a more standard approach requiring recomputation
would be too slow for the trees we typically build in practice. In addition, tree growth is
limited in our implementation by the y? test, thus preventing the constructions of extremely
branchy trees which might begin to exhibit combinatorial blow-up. In short, even though
the theoretical growth rate of our implementation is worse for dense trees than that of more
familiar implementations, in practice we currently stay well below the point at which the
two curves cross each other.

5 A fourth possibility is to do some assembly-language programming in order to make use of a bit-counting
instruction available on the CM-5’s accompanying vector processing units.
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Table 3: An example of a possible protein fragment. The top line gives the primary sequence
as single-character amino acid abbreviations. The bottom line classifies each AA into the
type of secondary structure in which it participates: “a” = « helix, “b” = 3 strand, and “.”
= random coil.

Input: NRQYGGGRHMGRQYNVVTQESSPSACADNVGINGGSLAENTTKFLNLKDSNY
Output: ....aaaaaaaa..... aaaaaaaaaaaaaa...... bbbbb..........

4.4 The Selected Feature Set

The final step of DT-SELECT (step 5 in Table 1) is to output the features of the internal
nodes of the decision tree. This set of features serves as the representation selected by the
algorithm. It may seem odd that we inductively build a decision tree to select features for
other inductive learning algorithms. After all, a decision tree is a classifier in itself, so why not
just stop there? The fact is, it is entirely possible to do so. However, in our experiments with
predicting protein secondary structure, detailed in the following sections, we have found that
the decision trees themselves do not perform well on this task. In addition, we are interested
in the general feature-selection problem itself, and several advantages of using decision trees
to accomplish this have already been discussed.

5 Protein Secondary-Structure Prediction

Our first test of the DT-SELECT approach involved the task of predicting protein secondary
structures.® This is a problem from molecular biology in which one attempts to predict the
high-level shapes, or secondary structures, which globular protein molecules will fold into
when in solution. Proteins are large molecules in the form of linear chains of amino acids
(AAs; see Table 3), and there are 20 common AAs generally found in protein sequences. A
given protein’s AA sequence can be determined with relative ease in modern laboratories.
However, a much more important factor in a globular protein’s functioning is its three-
dimensional shape when in solution, which determines the structures and configurations of
binding sites. Thus, it is the three-dimensional structure, called tertiary structure, which
biologists would like to find. This includes the coordinates, orientations, and secondary
bonds of each amino acid molecule in space. Knowing the tertiary structure is a main step in
understanding how a protein works and therefore is important in such areas as determining
protein functional similarity, combating genetic diseases which involve the production of
defective proteins, and designing drugs to produce specific desired effects.

While the primary structure is believed to fully determine the tertiary structure, the
problem of mapping from primary structures directly to tertiary structures is a very difficult
one because interactions on an atomic level are both significant and complex. Thus much
work has instead concentrated on predicting the more abstract shapes of a protein’s sec-

6Sections 5-refDiscussion constitute an expanded presentation of work previously reported in Cherkauer
and Shavlik (1993).
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ondary structure as an intermediate step on the way to this goal. The most commonly used
secondary-structure elements are denoted « heliz, 3 strand, and random coil (Table 3).

An « helix is a regular spring-shaped structure formed by a section of a protein’s amino
acid chain. There are 3.6 AAs in one turn of an « helix. The number of AAs involved in a
complete a helix varies widely from about four to over 40, with the average being about ten
(Branden & Tooze, 1991).

A [ strand is a linear (i.e. roughly straight) structure formed by usually five to ten
consecutive AAs (Branden & Tooze, 1991). § strands do not occur singly; instead, several
such strands must align themselves next to each other to form a stable, relatively planar
structure. The entire configuration is called a 3 sheet.

Finally, all structures which are not either « helices or [ strands are put into the catch-all
category of random coil.” Branden and Tooze (1991) provide a good introduction to protein
structure for the reader who wishes to learn further details.

The problem of predicting protein secondary structures is one that is the subject of
much research. For quite some time, researchers in both molecular biology and computer
science have attempted to develop rules or algorithms which can accurately predict these
structures (e.g. Lim, 1974a, 1974b; Chou & Fasman, 1978; Qian & Sejnowski, 1988; Zhang
et al., 1992). Researchers often make use of inductive learning techniques, whereby a system
is trained with a set of sample proteins of known conformation and then uses what it has
learned to predict the secondary structures of previously unseen proteins. However, the form
in which the examples are represented is an issue which is often not well addressed. As we
have already noted, the performance of inductive learning algorithms is intimately tied to
the representation chosen to describe the examples, yet in most cases the learning systems
are given only the names of the amino acids in a segment of protein with which to make
their predictions. There is a wealth of other information available about the properties of
individual amino acids (e.g. see Kidera et al., 1985; Hunter, 1991) which is ignored by these
representations. The experiments reported in the following sections test the hypothesis that
inclusion of this information should improve the predictive accuracy of inductive algorithms
for secondary-structure prediction.

6 Features for Protein Secondary-Structure Prediction

Because of the complexity of the secondary-structure prediction task, it is difficult to know
what features, from the myriad of possibilities, might be the most propitious for learning.
The biological literature provides some clues to the kinds of features which are important for
this problem (Lim, 1974a, 1974b; Chou & Fasman, 1978; Kidera et al., 1985); it is entirely
possible, however, that different combinations or variations of these may also prove valuable
for the learning task. Humans cannot be expected to analyze by hand extensive numbers of
such features, yet this kind of search may yield valuable fruit for such a challenging problem.
Thus, this problem is a perfect testbed for the DT-SELECT approach. The subsections that
follow describe the features which comprised the pools for our protein folding experiments.
(The individual pools are summarized in Table 4.)

7Secondary structures other than o helix, 3 strand, and random coil are occasionally defined, but these
are the structures we deal with in the current experiments.
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Table 4: Feature pools for Tree 1 through Tree 4.

| | Treel | Tree2 | Tree3 | Treed |
Nominal Vv V V Vv
Unary Numeric Vv vV vV V
Binary Numeric Vv V V N4
Unary Cluster Vv vV V Vv
Binary Cluster vV vV V Vv
Unary Average Vv Vv
All but All but
Template XX XX All All
o000 [ N N J
Thresholds i 0 % i % 1 i 0 % i % 1
| Total Features | 60,990 208,290 64,890 227,790

Table 5: Partitionings of amino acids according to high-level attributes. Duplicate partitions

are given identical numbers.

Structural partition

2. External

3. Internal {FIL MV}

Chemical partition

4. Acidic {D E}

5. Aliphatic {A GIL V}
6. Amide {N Q}

7. Aromatic {F W Y}

8. Basic {HKR}

9. Hydroxyl {S T}

10. Imino  {P}

11. Sulfur  {C M}

1. Ambivalent {A CGP ST W Y}
(DEHKN QR}

Functional partition
4. Acidic {D E}
8. Basic {H K R}
12. Hydrophobic non-polar {A FIL M P V W}
13. Polar uncharged {CGNQSTY}

Charge partition
4. Acidic {D E}
8. Basic {H K R}
14. Neutral {ACFGILMNPQSTV WY}

Hydrophobic partition
12. Hydrophobic {A FILM P V W}
15. Hydrophilic {CDEGHKNQRSTY}
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6.1 The Raw Representation

In order to detail the types of features the pool includes, first we must briefly describe the
raw example representation from which they are constructed. The proteins we use are those
of Zhang et al. (1992) and are provided as primary sequences of amino acids (AAs). There
are 113 protein subunits derived from 107 proteins in this dataset, and each subunit has less
than 50% homology with any other. Each position in a sequence is classified as either «
helix, §# strand, or random coil. For all of the experiments reported here, each possible 15-
AA subwindow of a protein constitutes an ezample, for a total of 19,861 examples (one per
residue). The overall task is to learn to correctly predict the classifications of the center AA
of unseen examples, given a set of classified examples for training. Subwindow sections which
overhang the end of a sequence are filled in with a code denoting complete ambiguity. The
same code is also occasionally present within the dataset’s proteins themselves; since some
of the primary sequences are actually protein fragments, there may be more AAs following
the end of a sequence as given, so it is reasonable to represent these areas using the same
code as for internal ambiguity. This follows the representation of Zhang et al. (1992).

DT-SELECT has available the raw primary representation of each example. In addition,
in order to tap AA physical and chemical property information which is not available from
the primary representation alone, the implementation also has access to two other sources
of information about amino acids. The first is a table of ten statistical factors from Kidera
et al. (1985). These are small floating point numbers (ranging from -2.33 to 2.41), different
for each amino acid, which summarize 86% of the variance of 188 physical AA properties.
Since the value of each factor averages to zero across amino acids, we simply use zero as the
value of all factors for unknown AAs.

The second collection of AA information is the knowledge of various partitionings of the
set of amino acids into groups which share common higher-level aspects. These are shown
in Table 5. Though the figure shows 20 labeled subgroups of AAs, there are only fifteen
unique partitions, and it is membership in these which the program uses. (The partitions
are numbered in the figure such that duplicate partitions share the same number.)

6.2 Constructed Features

All features in the feature pool are constructed from the example information specified in
the preceding section. Currently we have implemented several types of general-purpose and
domain-specific features, some of which are quite complex. As mentioned earlier, all features
have Boolean values.

The types of implemented features are summarized in Table 6. Of these, nominal, unary
numeric, and binary numeric comparisons may all be considered general-purpose. Templates
and unary and binary clusters are specific to the domain. Average unary features may be
viewed as both: though they were inspired by the ideas of Chou and Fasman (1978), they
could easily be applied to any domain whose examples contain numeric attributes for which
averaging makes sense. FEach particular feature type is described in more detail in the
following subsections.
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Table 6: A brief summary of feature types. See Sections 6.2.1-6.2.7 for further details.

Name Domain

Nominal Single amino acid names

Unary Numeric Single-factor comparisons

Binary Numeric Two-factor comparisons

Unary Average Single-factor average comparisons
Template Salient multi-factor comparisons
Unary Cluster Single amino acid group memberships
Binary Cluster  Paired amino acid group memberships

6.2.1 Nominal Features

This type of feature asks, “Does example position P contain amino acid A?” Since there are
twenty AAs and one ambiguity code in our data, for 15-AA examples there are

21 AAs x 15 positions = 315

nominal features. We note that these are often the only features a typical artificial neural
network is given as inputs for this problem.

6.2.2 TUnary Numeric Features

These features compare a particular statistical factor of the amino acid at a given example
position with the neutral value of zero. While this is technically a binary comparison, we call
these “unary numeric” features because only one statistical factor is involved. The possible
comparisons are less-than, equal-to, and greater-than, all of which are performed relative to
one of a set of user-specified positive thresholds. A factor is greater than zero with respect to
a threshold if it is strictly greater than the threshold. Likewise, it is less than zero w.r.t. the
threshold if it is strictly less than the negated threshold. Otherwise it is considered equal to
zero. A typical set of thresholds is {0.0 0.125 0.25 0.5 1.0}.

An individual unary numeric feature asks, “Is factor F' of the AA in example position P
{less-than | equal-to | greater-than} zero w.r.t. threshold 77" where the comparison is one
of the three possible ones. Thus, using five threshold values there are

10 factors x 15 positions X 3 comparisons X 5 thresholds = 2,250
potential unary numeric features. Calculations in the following subsections also assume five
threshold values.
6.2.3 Binary Numeric Features

Binary numeric features are similar to unary numeric ones except that they compare statis-
tical factors of amino acids in two example positions with each other. A feature of this type
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is of the form, “Is factor Fj of the AA in position P; {less-than | equal-to | greater-than} the
factor Fy of the AA in position P, w.r.t. threshold T?” F| may be the same as F, as long
as P, and P, are different. Similarly, P, and P, may be the same if F| and F; are different.
Thus, there are

{ ((10 x 10) ordered factor pairs x < 15

9 ) unique position pairs) when P # Py

+ (< 120 ) unique factor pairs® x 15 positions) when P, = Py, F1 # F }

X 3 comparisons X 5 thresholds
= 167,625

possible binary numeric features.

6.2.4 Unary Average Features

These are identical to unary numeric features except that instead of comparing a single
statistical factor to zero, they compare the average of a factor over a given subwindow of
an example to zero. To wit, these features ask, “Is the average value of factor F' of the
subwindow with leftmost position P and width W {less-than | equal-to | greater-than} zero
w.r.t threshold 777 Subwindows from width two to the full example width of 15 are allowed
and can be placed in any position in which they fit fully within the example. Thus, there
are 14 subwindows of width two, 13 of width three, ..., and only one of width 15. Summing,
there are
14

10 factors x Zz subwindows X 3 comparisons X b thresholds = 15,750
i=1

possible unary average features.

6.2.5 Template Features

Template features are the first wholly domain-specific features we describe. They essentially
represent particular conjunctions of unary numeric features as single features. A template
feature picks out several example positions and performs the same unary numeric compar-
ison with the same factor and threshold for all of them. The feature has value true if the
test succeeds for all positions and false otherwise. Currently, three- and four-place templates
are implemented. Because template features consolidate the information from several unary
numeric features into one, they may have larger information gains than any of the unary
numeric features would individually. This is important, because the patterns of AAs exam-
ined are restricted to ones which appear to operate in conjunction during protein folding, as
explained in the next paragraph.

The three or four positions of a template feature are chosen such that they lie in one
of a few user-specified spatial relations to one another (hence the name “template”). For

8The set of possible comparisons itself provides symmetry, alleviating the need to include ordered factor
pairs in this case.
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Table 7: Three- and four-place templates used.

Three-place templates

eee Local interactions

ecece (B-strands

eecoe a-helices (hydrophobic triple)
ecoee a-helices (hydrophobic triple)
eco0ecOe a-helices

eco0e0cO0Oe a-helices

eco00eOCOe a-helices

e000e@00O0 e a-helices (hydrophobic run)

Four-place templates

XXX Local interactions

eecocee a-helices (overlapping 1-5 pairs)

ececece (-strands (alternating),
a-helices (overlapping 1-5 pairs)

eco0eecOe a-helices (overlapping 1-5 pairs)

ecooecooecooe  a-helices (long hydrophobic run)

example, triplets of amino acids which are four apart in the sequence may be important for
« helix formation, since they will all be on approximately the same “face” of the helix. Thus,
the user may choose to specify a three-place template of the form “(1 5 9).” We represent
this graphically as “(eccoeoooe).” This notation defines a spatial relationship, or template,
among three amino acids; it is not meant to restrict a template feature to looking only at the
first, fifth, and ninth amino acid in an example. On the contrary, the template may be “slid”
to any position on an example, provided the entire template fits within the example. Thus,
this particular template would also generate features which examined the second, sixth, and
tenth AAs, as well as ones which accessed the seventh, eleventh, and fifteenth.

To summarize, a template feature asks, “Is factor F' {less-than | equal-to | greater-
than} zero w.r.t. threshold 7 for all AA’s in template M with its left end at position P?”
Table 7 gives graphic representations of all the templates used in these experiments, along
with annotations as to their expected areas of value. Most of them were suggested by Lim
(1974b, 1974b). Using the set of templates in Table 7, there are a total of

10 factors x 120 template positions X 3 comparisons X b thresholds = 18,000

template features.

21



6.2.6 Unary Cluster Features

These are domain-specific features similar to nominal features, but instead of directly using
the names of AAs, they check for membership in one of the groups, or “clusters,” of related
AAs given in Table 6. These features ask, “Does the AA in position P belong to cluster C?”
There are

15 clusters x 15 positions = 225

unary cluster features.

6.2.7 Binary Cluster Features

Binary cluster features comprise all pairwise conjunctions of unary cluster features which
examine different positions. That is, they ask, “Does the AA in position P; belong to cluster
C: and the AA in position P, to cluster Cy?” where P; and P, are distinct. Thus there are

(15 x 15) ordered cluster pairs X ( 125

) positions = 23,625

binary cluster features.

7 Experiments

In order to evaluate the worth of feature sets selected by DT-SELECT, we have compared
the classification correctnesses of artificial neural networks (ANNs) which use a standard
input representation to those of ANNs whose representations are augmented with these sets.
The “standard” ANN input representation encodes only the particular amino acid sequence
present in an example. The representations of augmented ANNs add to this the features
chosen by DT-SELECT. (Preliminary experiments indicated that, for this particular task,
augmentation of the standard feature set results in better performance than simply using the
features chosen by DT-SELECT alone, perhaps indicating that the stopping criterion during
tree building was too strict to allow full representational coverage.) To the fullest extent
possible, all experimental conditions except the different representations (and attendant
network topologies) were held constant for the corresponding standard and augmented ANNs
compared.

7.1 Cross-Validation

All experiments followed a ten-fold cross-validation (CV) paradigm. It is important to ensure
that all the examples from a single protein subunit are either in the training or the testing
set during all cycles of CV to avoid artificially overestimating correctness through effects of
training on the testing set. Thus, the experiments were set up by first separating the 113
subunits into ten separate files. Nine of these are used for training and the tenth for testing
in each cycle, so each file is the testing set once. These files were created by first ordering
the subunits randomly and then, for each subunit in the list, placing it in the file which at
that time contained the shortest total sequence length. This method balances the desires for
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a completely random partitioning of the data and the obtainment of files of approximately
equal size. The same ten files were used in all experiments.

7.2 The Networks

All networks were feed-forward with one layer of hidden units and full connection between
layers. (We ran each cross validation experiment using networks having 5, 10, 20, and 30
hidden units.) We initialized network weights to small random values between -0.5 and 0.5,
and we trained the ANNs with backpropagation for 35 epochs. On each epoch, correctness
on a tuning set consisting of 10% of the training data was tracked, and the weights from the
epoch with the highest tuning-set correctness were used for the final, trained network. The
output layers contained three units, one for each of « helix, § strand, and random coil, and
the one with highest activation indicated a network’s classification of an example.

The standard ANNs used a typical “unary” input encoding of the amino acids in an
example (which corresponds to the 315 nominal features of DT-SELECT). Specifically, this
encoding uses 315 input units: 21 for each of the 15 example positions. For each position, only
one of the 21 units is on (set to 1.0) to indicate which amino acid (or the ambiguity code) is
present. The remaining input units are set to 0.0. ANNs using an augmented representation
have the 315 inputs of the standard ANNs plus additional binary inputs corresponding to
the values of the features chosen by DT-SELECT.

To preserve the cross-validation paradigm employed, augmenting features for each fold of
the CV had to be chosen separately using only the data in that fold’s training set. Therefore,
the ten augmented networks for a particular CV run did not always have identical augmenting
features or even the same number of features. This is unavoidable if contamination with
information from the testing sets is to be avoided. However, the resulting network size
differences were small relative to the overall network sizes.

7.3 Augmentations

To explore the utility of representation augmentation by our method, we performed four
separate network augmentation experiments using features chosen by DT-SELECT from
differing pools of features with varying stopping criterion strictnesses. For each of these
experiments, DT-SELECT built ten decision trees, one from each training set, using a fixed
feature pool. For convenience, we will lump the first experiment’s ten sets of augmenting
features under the label “Tree 1.” Likewise, we shall call the other sets “Tree 2,” “Tree3,”
and “Tree 4.”

The features in the pools used to build these trees are summarized in Table 4. The sizes
of the resulting individual trees are given in Table 8. The differences in average sizes of the
four sets of trees are due to varying the strictness of the stopping criterion.

7.4 Performance Notes

The use of the Wisconsin CM-5 was crucial in making these experiments possible, both
because of its large memory and its parallel computing power. Our CM-5 currently has
one gigabyte of main memory for each of two independent 32-node partitions. The largest
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of the experiments reported here required approximately 586 megabytes of this. Since the
precomputed feature values occupy most of this space, the mere availability of so much real
(as opposed to virtual) memory alone adds substantially to tree-building performance by
eliminating paging.

Table 8: Average tree sizes (number of Table 9: Best test-set percent
features) for Tree 1-Tree 4. correctnesses (averaged over the ten folds)
of the standard and augmented ANNs.

| ANN Type | % Correct |

‘ Decision Tree ‘ Avg. Size ‘

| Standard | 615 |
Tree 1 31.8 v 1
Tree 2 46.7 Tree ; 61'2
Tree 3 175 T 61'
Tree 4 32.5 ee 3 61.9
Tree 4 61.0

We were able to run all of the tree-building experiments in only a few hours of total CPU
time on the CM-5. The longest-running (affected by both number of features and strictness
of stopping criterion) of the four cross-validated tree-building experiments was Tree 2, which
took approximately 3.35 hours on the CM-5 to build and test all ten trees. These trees
include a total of 467 features (internal nodes) and 477 leaves.? Since each of these required
one feature selection cycle (step 4 in Table 1), this implies a total of 944 such cycles for the
complete run. (A leaf requires a cycle to determine that no features perform well enough to
merit inclusion in the tree at that point.) Since the Tree 2 feature pool contained 208,290
features, and each tree was built from roughly 17,875 training examples, each cycle accessed
roughly 3.72 x10° feature values, for a total of about 3.51 x10'? feature value accesses over
all 944 cycles. This was accomplished in approximately 12,060 seconds using a 32-processing
node CM-5 partition, yielding an aggregate search rate in the neighborhood of 2.91 x10® (or
291 million) feature values per second. (The time needed to construct each node is constant,
so about 12.8 seconds were used per node.)'® Note that the time taken also includes overhead
in reading and distributing the examples, precomputing feature values, and evaluating tree
performance on the testing sets, so the actual search rate is somewhat higher.

7.5 Results

The best test-set correctnesses (averaged over the ten folds) observed across the four different
numbers of hidden units for the standard and augmented networks are given in Table 9
(There was little variation in correctness over the differing numbers of hidden units.) We
see that the augmented networks unfortunately did not produce the performance gains we
had anticipated achieving with DT-SELECT. The Tree 1 and Tree 3 networks did obtain

9A binary tree with n internal nodes always has n + 1 leaves, regardless of configuration. Since there were
ten trees, the number of leaves is just ten more than the total number of internal nodes.

10Gystem software development for the CM-5 is currently ongoing. These performance analyses should be
taken as rough estimates only and may vary with different versions of the system software.
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Table 10: Average correctnesses of the decision trees on the test sets.

‘Treel‘Tree2‘Tre63‘Tree4‘
| 55.9% | 56.7 | 572 | 576 |

slightly higher correctnesses than the best standard network, however the improvements are
not statistically significant.

It is of some interest to see how well the original sets of decision trees themselves classify
the data. This information is given in Table 10. It is evident that the neural networks do
substantially better for this problem than the decision trees by themselves.

8 Discussion

It was surprising to us to find that the addition of apparantly salient domain-specific fea-
tures of great sophistication to the input representations of ANNs does not lead to gains in
classification performance. The reasons for this remain unclear at this time, although several
possibilities exist.

First, it could be that the ANNs themselves are capable of deriving similar types of
features on their own using their hidden units. If this is true, it demonstrates that the
power of backpropagation to develop useful internal representations is indeed substantial,
given the complexity of the features available to DT-SELECT during tree construction. This
implies that perhaps the implementation of even more complex types of salient features which
backpropagation is not capable of deriving itself is necessary for the use of DT-SELECT to
yield performance improvements.

Second, it is possible that we have not yet implemented the best types of features for
augmentation. There are always new types of features one can think of adding to the
system; for instance, binary average features which examine two factors in two subwindows,
or templates which average factors over the AAs they examine. Indeed, we have observed
that, in general, adding new feature types tailored to the secondary-structure prediction
task, such as the cluster and average features, tends to displace the more general types of
features from decision trees out of all proportion to their numbers. In Tree 2, the cluster-type
features account for approximately one third of all features chosen, though they constitute
only about 10% of the features in the pool. Even more remarkable, the addition of the unary
average feature in Tree 3 and Tree 4 resulted in more than half of the features of each of these
tree sets being of this type, though they comprise only about one quarter of the features in
the pool for Tree 3 and about 7% of those in Tree 4’s pool. This indicates that these features
are higher in information “density” than the more general-purpose features they displace,
yet, strangely, we do not see great advances in either decision-tree or augmented-network
correctnesses when such features are added to the pool.

Thus, a third possible explanation for the lack of observed gain is that, for ANNs of this
form, the 315 inputs of the standard unary encoding actually capture in a workable form
all the information such networks are capable of using. This is an interesting hypothesis
in itself, and the reasons behind it, if it is true, would be worth uncovering—especially
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considering the effects of input representation on DNA coding-region prediction mentioned
earlier (Uberbacher & Mural, 1991; Farber et al. 1992; Craven & Shavlik, 1993a, 1993b).
Our standard ANNs were used as controls, so the learning parameters were not extensively
optimized for maximal performance. (The augmented networks naturally used the same
parameters as the standard ones.) However, though the complete system of Zhang et al.
(1992) attained a considerably higher correctness, the ANN component of their system alone
achieved an accuracy only slightly higher than our ANNs did. Some researchers postulate
an upper bound of about 80% correctness on this problem using only local information, but
it is possible that techniques more sophisticated than feed-forward ANNs are needed to get
beyond the low-60% range when using datasets of the size currently available.

9 Future Work

Our current work includes the addition of other protein-specific features to our implementa-
tion, the replacement of the x? stopping criterion with a more modern pruning methodology
(Quinlan, 1992), and the investigation of a possible improvement over the information gain
criterion for feature selection (Fayyad & Irani, 1992). We are also beginning to test D'T-
SELECT on two other problems: DNA coding-region prediction and handwritten character
recognition.

A more general issue we intend to explore is the use of feature-selection methods other
than decision trees. We have performed a few initial experiments with two other algorithms,
one which builds Foil-like rules (Quinlan, 1990) to describe the individual example classes
and another which applies statistical independence tests to select features that are largely
orthogonal, but more work is needed to determine the strengths and weaknesses of different
selection approaches.

10 Conclusion

In this chapter we motivated the need for automated methods of choosing example repre-
sentations for machine learning and identified three criteria an ideal representation should
satisfy: coverage, economy, and transparency. We then introduced the DT-SELECT system
to address these concerns. DT-SELECT uses decision trees constructed through parallel com-
putation to produce representations which manifest our three desiderata: features are chosen
for their transparency; coverage of the training data is increased as features are added to
the tree; and the selection of redundant features is discouraged by the characteristics of the
information-gain metric and decision-tree structure. The parallel nature of the algorithm al-
lows us to search large candidate pools of features, making it possible to perform automated
representation construction for real-world problems.

We tested the utility of our approach by using the sets of features chosen by DT-SELECT
to augment the input representations of artificial neural networks that attempt to predict
protein secondary structure. Unfortunately, no significant gains in correctness were observed
on this difficult problem, leading us to surmise three possible explanations for the negative
result:
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e The ANNSs could derive the features we used on their own
e Additional feature types are needed for performance gains
e The simple, standard encoding is already nearly optimal for ANNs

Regardless of which of these, if any, is correct, we believe our method exhibits potential
for extension in this domain and for application to other problems, both inside and outside
molecular biology, as a representation-selection technique.

The core of DT-SELECT is essentially a fast parallel implementation of ID3 (Quinlan,
1986) that has access to a set of user-defined, Boolean-valued constructed features. The
implementation can thus be used to construct decision trees from large feature spaces as an
end in itself. For problems where decision trees work well, the ability to do this large-scale
search may lead directly to improved classification performance. However, even for problems
where decision trees work poorly, the features they select can be used as representations for
more appropriate learning algorithms.

Machine learning is in general a computationally intensive field. In order to tackle real-
world problems in a nontrivial manner, we believe it is important to make use of the parallel
computing power which is now becoming available. DT-SELECT is our first effort in the
exciting direction of massively parallel methods for machine learning. As parallel machines
become more common, we hope other researchers will also take advantage of the CPU cycles
they offer by developing additional parallel machine learning algorithms, enabling learning
methods to be applied to increasingly large and complex problems.
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