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The task of somehow putting mind into a computer is one that has been pursued by
artificial intelligence researchers for decades, and though we are getting closer, we have
not caught it yet. Mind is an incredibly complex and poorly understood thing, but
we should not let this stop us from continuing to strive toward the goal of intelligent
computers. Two issues that are essential to this endeavor are knowledge and learning.
These form the basis of human intelligence, and most people believe they are fundamental
to achieving similar intelligence in computers. This paper explores issues surrounding
knowledge acquisition and learning in intelligent artificial systems in light of both current
philosophies of mind and the present state of artificial intelligence research. Its scope
ranges from the mundane to the (almost) outlandish, with the goal of stimulating serious
thought about where we are, where we would like to go, and how to get there in our
attempts to render an intelligence in silicon.

1 Introduction Perhaps our systems can use learning to ac-
quire and modify the knowledge they need largely
on their own. Instead of trying to stuff our own
brains into the computer one bit at a time (Fig-
ure 1), perhaps we can write programs that let the
computers learn for themselves what they need to
know. Learning is, after all, the way humans fill
their own brains with knowledge. But how much
can we gain from human analogies? Is psycho-
logical plausibility a necessity or a curse? Will
our machines need emotional motivation in order
to be truly successful learners? The questions, as

The ultimate goal of artificial intelligence (AI)
is to somehow implement a very wonderful and
complex thing we call “mind” within the confines
of an artificial computer. Even if undaunted by
the incredible paucity of our own understanding
of mind, we may nonetheless find ourselves put
off by the sheer complexity and size we usually
imagine this machinery must entail. Despite our
inability to satisfactorily define intelligence, one
component we generally feel must be present is

a large store of knowledge about every aspect of
the world. However, it helps us little to decide,
“Let us put everything we know into a computer.”
How do we represent this knowledge? How do we
refine it? And how do we get it into the system?
Surely we do not have time to put everything in
by hand!

always, come thick and fast.

In this paper we will take a moment to exam-
ine these issues of knowledge and learning in the
light of both current philosophies of mind and the
present state of artificial intelligence research. It
is not often, in the world of technical papers, that
we allow our thought processes to roam free. That
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Figure 1:

is the main goal of this paper—to visit some of
the wild pastures of imagination that spawned the
field of AT in the first place. We hear these days
that all those far-flung dreams of intelligent com-
puters from decades ago are still as out of reach as
ever. We spend too much of our time being apolo-
getic, trying to present Al advances in as narrow
a scope as possible, almost as if we wish them to
appear insignificant in order to avoid accusations
of chasing hopeless fantasies. It is indeed impor-
tant to keep a firm grip on reality—I do not think
anyone would argue otherwise. But if we are truly
to achieve wonders, we must first allow ourselves
to imagine them. I hope you will join me in doing
so!

2 How Should Our Systems
Acquire Knowledge?

The question of how to get knowledge into our
systems is a key issue in building intelligences.
Most expert systems currently acquire knowl-
edge through painstaking hand programming by
a knowledge engineer working closely with a do-
main expert. A major goal of Al is to produce
machines that perform intelligent tasks, so a ded-
icated Al researcher may suggest that the best
answer to our question, “How should our systems
acquire knowledge?” is, “Why, through machine
learning, of course!” Some obvious advantages

Figure 2:

of automating the knowledge acquisition process
through machine learning (ML) are speed and
accuracy of rule construction. However, to suc-
ceed in this endeavor we must somehow develop
ML techniques which are as good at creating sets
of rules for specific domains as an expert human
knowledge engineer. This just pushes the problem
of emulating expert behavior one level deeper: in
trying to avoid hand coding a program that em-
bodies the knowledge of a domain expert, we find
we must now hand code a program that embodies
that of a knowledge engineer!

We may still manage to tackle this problem if
we can find some way to make the knowledge en-
gineer’s knowledge easier to program than the do-
main expert’s. Humans use their knowledge and
intelligence to construct expert system knowledge
bases. Our comparatively dim-witted comput-
ers’ only chance to overcome their own lack of
insight is their blinding speed and tireless per-
sistence (Figure 2) and their utter disdain for the
human propensities toward fatigue, boredom, dis-
traction, careless mistakes, and other such egre-
gious vices. Since these are the computer’s fortes,
we must exploit them.

For instance, we can have our machines search
very large numbers of possible rules and rule frag-
ments to find a good set. Whereas a human
knowledge engineer examines only a few alterna-
tive rules, banking on the domain expert’s deep
understanding of the problem to insure a good so-
lution, the less knowledgeable computer must suc-
ceed through perseverance. The FOIL system [38]
is one example of a large-scale search approach
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to construct predicate calculus rules describing a
domain. Part of my own recent work [8, 9] has
concentrated on high-speed parallel search meth-
ods to sift through hundreds of thousands of po-
tentially useful features for representations that
make learning easier.

Computers have an advantage over people in
dealing with huge volumes of data. In many cases
a problem is too complex and poorly understood
for people to construct effective rules to solve it.
All that is really available is a large set of raw
data. Object recognition, image understanding,
speech production, argument construction, com-
plex motor skills, breast cancer prognosis, and
protein folding prediction are all real-world prob-
lems that fit this description. Some of these are
problems of perception and action that humans
accomplish effortlessly, yet we cannot articulate
how we do so. Others are more abstract prob-
lems of interest to science and medicine. All of
them have been the subject of machine learning
research (e.g. [7, 25, 35, 37, 40, 44, 45, 46]).

This is not to say we should require our
machines to learn absolutely everything from
scratch. We should certainly take advantage of
existing domain knowledge, both low- and high-
level, to the extent we can afford it. There is no
reason to learn logical inference rules from first
principles when we can easily code them into a
knowledge base. Likewise, if a domain expert can
provide partial sets of high-level rules or other
advice, this will jump-start the system and re-
duce the amount learning time and data required
[21, 34, 50]. Guidance from domain knowledge
may also be crucial to prevent so-called “over-
searching” [39], or the discovery of spurious cor-
relations during learning. Unfortunately, human
expertise is too expensive to allow us to hand code
everything in a system of the size and complex-
ity needed for intelligence. The builders of the
monumental CyC knowledge system, though will-
ing to invest large amounts of effort to hand code
much of the knowledge, nonetheless advocated au-
tomating this process as much as possible through
ML techniques even from the early stages [19],
and they continued to add learning mechanisms
over the years [17]. As the intelligent systems we
design become increasingly sophisticated, we have
no choice but to adopt machine learning tech-
niques as facilitators. To reach human-level intel-
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ligence, an artificial system must be enormously
more complex than anything we have created to
date. The journey to machine intelligence will be
shortest if we continue to develop and apply the
powers of machine learning on this quest.

3 What Form Should the
Knowledge Take?

A serious problem with using ML for knowledge
acquisition is what Michalski terms the “knowl-
edge ratification bottleneck” [23]. That is, for ap-
plications in which malfunction could have costly,
critical, or even life-threatening consequences,
any knowledge a system uses must be closely ex-
amined for correctness. It is difficult enough to
do this with large knowledge bases written by hu-
mans; the problem is only compounded if they
are cobbled together automatically by a machine.
Michalski contends that in such situations, the ex-
planation capabilities of ML systems must be well
developed, and the knowledge representation used
should be comprehensible to humans. These con-
straints seem to favor the symbolic, rule-like rep-
resentations we have spoken of so far over other
alternatives like connectionism.

Or do they? Are huge rule bases of the scale
needed to simulate human-level intelligence any
more comprehensible than artificial neural net-
works (ANNs)? On the other hand, why can
not connectionist representations be made as un-
derstandable as rules? Mitchell and Thrun [25]
develop ANNs which model various primitive
robot actions and then treat these networks as if
they were rules. Others have developed methods
that allow the extraction of symbolic rules from
trained neural networks [10, 13, 14, 42, 48, 49], so
the two representation styles are not as irrecon-
cilable as they look.

The question of what form knowledge should be
stored in relates to the question discussed in the
previous section of how a system acquires knowl-
edge. If learning is used to do this, many dif-
ferent internal representations are possible, rules
and ANNs among them. The hand coding ap-
proach, in which humans construct the knowledge
base, generally favors a symbolic storage represen-
tation. However, there exist machine learning sys-
tems that can store and refine initially symbolic
knowledge in connectionist ANNs (see Section 5),
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so there is no reason hand-coded knowledge must
remain in its original form.

There are arguments other than understand-
ability for preferring symbolic knowledge struc-
tures. Higher-level human cognitive processes op-
erate in an apparently symbolic fashion, perhaps
suggesting we should use similar approaches in
computers. However, a connectionist might reply
that the perceived symbolic nature of our rea-
soning processes is an illusion, as the brain is a
connectionist device. A third person might dis-
miss both of these arguments, claiming it does
not matter how humans solve problems if our goal
is to build machines to do the same. The clas-
sic conflicts over psychological and physiological
plausibility persist. Let us explore these conflicts
further in the next section.

4 Psychological Plausibility:
Friend or Foe?

A common argument against using rules to de-
scribe knowledge is that of psychological (and
sometimes physiological) plausibility. The brain
is physically a connectionist device. It is tempt-
ing thus to equate psychological plausibility with
connectionist implementations, but in fact it is
less clear how much the details of abstract cogni-
tion depend directly on the connectionist nature
of the hardware. It is not unknown for discussions
of these questions to become quite animated, es-
pecially as there seem to be almost as many points
of view as there are interested parties. An imag-
inary conversation may help us to better under-
stand the extent of the rifts that exist.!

Engineer: Psychological plausibility is just a
meaningless hoop to jump through, com-
pletely superfluous to our goal of building
thinking machines! It’s hard enough to get
anything like intelligence out of a computer
even without a bunch of arbitrary anthro-
pocentric constraints. Now you’re telling me
you won’t be satisfied with mere human-
like intelligence, but you insist on human-
structured intelligence to boot! Next you’ll
demand android bodies, vat-grown neural
brains, and probably even—emotions! We

LOf course, there are many more points of view within
a given field than these caricatures present.
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should just go with what works regardless of
what it looks like.

Psychologist: How can you take such a position
when the human mind is our only example of
advanced intelligence? Only incredible arro-
gance would let us imagine we can start from
scratch, ignoring everything psychology has
to tell us, and do a better job. If we ever want
our systems to speak to us as peers, they will
have to understand things the same way we
do. Tt is sheer folly to attempt a computer
intelligence that conflicts with our accumu-
lated body of psychological knowledge.

Neurobiologist: (Clapping hands.) Bravo! But
the psychologist does not go far enough. I'll
grant that we know a few things about hu-
man cognition, but we have even more spe-
cific knowledge about the hardware that im-
plements it. We know exactly how neu-
rons fire, what chemicals they use to trans-
mit signals across synapses—even their pat-
terns of connection in some parts of the brain.
AT’s best bet is to simulate this hardware as
closely as possible, as it is the only thing we
thing we have a concrete description of.

Engineer: Ah ha! (Dons a smug look.) 1 knew
someone would want vat-grown brains!

Philosopher: (With a sly look.) Hold on! Why
are we limiting our vision to puny, human-
like machine intelligences? Shouldn’t our
goal be to create machines that are smarter
than people? We can’t copy knowledge from
adults to babies or put people through a
thousand years of education, but we can
build computer memories big enough to hold
entire libraries and processors fast enough to
digest them. Does piscine plausibility help us
build nuclear submarines? Does avian plau-
sibility help us build airliners? (Throws up
hands.) Absolutely not! In fact, these things
merely hold us back!

Indeed, there seem to be two diametrically op-
posed and largely antagonistic camps with respect
to this issue: those who believe that psychological
(or even biological) plausibility is essential to pro-
ducing an intelligent artificial system, and those
who believe these requirements are merely con-
trived obstacles that slow our progress or limit the
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goals we set for AL. One is tempted to say that
what we need most of all is a moderate voice, a
compromiser, a fence-sitter—perhaps even a

Politician: Ah, you people are hopeless. The
problem is hard enough without all these re-
ligious schisms. We should use what ideas
we can from psychology without promising
to produce a psychologically plausible com-
puter system. We should look to neurobiol-
ogy for insight without promising vat-grown
brains—or even neural networks. We should
apply machine learning without promising
that every component of the final system will
be automatically generated instead of hand
programmed. We should follow visions from
philosophy without promising to realize them
without revision (if I may be so bold as to
pun). In short (waving hands), we should
take everything we can get our hands on
and guarantee nothing in return! (Er...that
didn’t come out quite right....)

Underlying all this waffling is an important is-
sue which has so far remained implicit, and that
is the distinction between the hardware on which
an algorithm is implemented and the algorithm it-
self. Von Neumann [27] states unequivocally that,
while we understand the abstract concepts of logic
and mathematics in a symbolic way, these con-
cepts must necessarily be implemented very dif-
ferently in human brains than in digital comput-
ers because of fundamental hardware differences.
The brain is a massively parallel, low-precision de-
vice that encodes information robustly via statis-
tical patterns and performs relatively short chains
of calculation. Digital computers are (much more)
serial and depend on long chains of brittle, high-
precision calculations in which a single corrupted
bit can cause a system crash. When we speak
of logic and mathematics, we are really using a
pseudocode that describes the algorithm without
saying anything about the details of implemen-
tation. Symbolic descriptions of high-level natu-
ral languages and reasoning systems tell us little
about their biological implementations. The im-
plication is that they will tell us no more about
how to implement them in digital computers.

For these reasons, I believe the most fruitful
approach to resolving the controversy of this sec-
tion is to view psychology and biology as tools
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for discovering the algorithms the human brain
runs. Knowing the algorithms, we can then focus
on producing the (radically different) implemen-
tations required for digital computers where this
appears suitable. We must keep in mind that the
brain’s massively parallel algorithms may often be
impractical under serial reimplementation due to
time or space requirements [43]. There will also
be many cases where psychological and biologi-
cal study are unable to glean the specific algo-
rithm the brain uses to solve a given problem. In
these situations, we must resort to more bottom-
up engineering that takes best advantage of the
strengths of digital computers to arrive at alter-
nate solutions. One example of success using this
approach is that of chess playing programs. Al-
though few would argue that human grand mas-
ters and computers implement the same chess
playing algorithms, it is impossible to deny that
computers can play chess at the grand master
level. In this problem, an alternate algorithm
based on high-speed serial search has achieved the
same quality of results as the very different pro-
cess of high-level human reasoning.

To summarize, psychology and biology should
be treated as two tools among many the AI re-
searcher can use to gain insight into methods of
intelligent problem solving, but they should not
be seen as the only legitimate tools in the arse-
nal. While the computational properties of the
brain and digital computers do overlap, they are
far from identical. We can gain algorithmic in-
sight from the brain’s solutions, but we will cer-
tainly need to tailor these solutions, and often
radically alter them, to fit the differing properties
of the computer. I do not think there is much
to gain by demanding psychological plausibility,
whatever that may be, in computer systems that
are by nature so unlike the brain, nor do I think
there is any real justification in this context to
prefer so-called “connectionist” over “symbolic”
computer implementations or vice versa.? Our
time is better spent developing and testing algo-
rithms than arguing about these points.

2Comprehensibility of the knowledge base, which favors
symbolic representations, is a separate issue.
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5 Knowledge Refinement

As research continues on the problem of using ML
for knowledge acquisition, we will develop more
guided approaches than the weak search methods.
One step that has already been taken in this di-
rection is that of automatically refining incorrect
or partial domain knowledge [4, 11, 12, 15, 16, 20,
21, 22, 26, 30, 31, 32, 33, 34, 47, 50]. Even if we do
not have a fully satisfactory set of rules for solving
a problem, our learning algorithms can still ben-
efit from the incomplete knowledge we do have.
Knowledge refinement systems such as those cited
are often able to use partial knowledge to produce
better solutions to real-world problems than was
previously possible with weak methods alone.

Knowledge refinement systems, like other learn-
ing systems, can be symbolic or connectionist. A
symbolic approach typically starts with a set of
imperfect rules from a human expert and iter-
atively modifies it in order to improve its cor-
rectness or coverage, e.g. by adding and deleting
terms. EITHER [32, 33] and NEITHER [4] are sys-
tems which refine propositional Horn clause rule
sets in such a manner, and FORTE [26] extends
the technique to function-free Horn clause repre-
sentations of logic programs.

The KBANN family of algorithms represents a
connectionist knowledge refinement approach. It
translates a set of propositional rules [50] or a de-
scription of a finite state automaton [20] into the
nodes and weights of an ANN. The network, and
therefore its embodied knowledge, is then refined
by standard ANN backpropagation training [41].
One can then either use the modified network as
it stands or apply methods to extract symbolic
rules from it [10, 13, 14, 42, 48, 49].

Knowledge refinement systems can take advan-
tage of partial knowledge and correct and em-
bellish it automatically through ML techniques.
Their use will greatly reduce the effort needed to
create knowledge bases for intelligent systems.

6 Are Rules Sufficient?

There is a possibility that some problems sim-
ply cannot be solved by symbolic rules. Perhaps
the reason human cognitive processes are so hard
to pin down is that they operate in a fundamen-
tally distributed and unrule-like way. Chaos the-
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ory tells us the only accurate model of the weather
is the weather itself. The idea that the world is its
own best model has sometimes been used to ar-
gue against knowledge representation in any form
[2, 3, 5, 6]. Perhaps the only way to model human
cognition is through a device that is similar in
structure and complexity to the human brain [27].
Penrose [36] suspects that the physics of brain op-
eration makes some of our thought processes (es-
pecially the feeling of awareness) nonalgorithmic,
questioning the “strong AI” position that all our
thinking is merely the enacting of some algorithm.
If this is true, we may have no hope of modeling
these aspects at all, either by symbolism or con-
nectionism, using current computer architectures.

I would like to challenge the extremity of these
positions. Though it is true that we cannot pre-
cisely model the weather at a micro scale, this
does not mean there is no high-level structure
amenable to abstraction. A meteorologist does
not need to predict the temperature of every cu-
bic centimeter of air to tell us it will drop when
a cold front moves in. This is a simple symbolic
rule with real predictive power.

In chaotic domains, any model at all—symbolic
or not—must approach the complexity of the sys-
tem itself in order to achieve arbitrary accuracy,
but this misses the point of having a model in the
first place. One needs only a very small set of
rules to do better than chance in predicting the
next day’s weather. One of the simplest and most
accurate systems for one-day weather forecasting
consists of a single rule: “Tomorrow’s weather will
be the same as today’s.” Simplification through
models allows us to find order and understanding
where there would otherwise be none.

In this vein, symbolic rules may be used to
model the processes of cognition, even though
the brain’s implementation is a distributed one.
Much of our thinking can be described symbol-
ically. We communicate with one another with
symbols, and we store knowledge in external li-
braries and other media in the same way. There is
thus plenty of reason to expect rule-driven symbol
manipulation & la the classic Physical Symbol Sys-
tem Hypothesis [29] to be a reasonable model for
many aspects of human intelligence. Just as we
need not reproduce every detail of bird anatomy
to make an airplane that flies, we need not re-
produce every cell and connection of the brain to
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make a machine that thinks. I believe symbolic
rules are sufficient to capture most aspects of hu-
man intelligence at the everyday level of granu-
larity most useful to us, even though at a micro
level they will operate differently than the human
brain.

7 Are Emotions Necessary for
Learning?

Whether we need to include emotions in our learn-
ing systems may seem like a strange question, but
with a moment’s thought we realize that much of
human learning is motivated by emotions. Our
engineer of Section 4 spoke of emotions as if they
were totally irrelevant to machine intelligence.
However, the same cannot be said of human in-
telligence. Children must receive love and nurture
to survive and thrive. Emotional involvement is a
powerful motivator in their development and suc-
cess and continues to be throughout adulthood.
In a classic essay, Hadamard [18] investigates the
role of human emotion in fostering creative dis-
covery and invention. If we hope to build truly
intelligent machines, might we not also need to
build in such a motivating drive? Even if it is not
completely necessary for artificial systems, can we
afford to ignore this complex and powerful urge to
learn?

In The Society of Mind [24], Minsky casts emo-
tions as fundamental to the success of our in-
telligence. They spur our creativity while pre-
venting us from obsessively fixating on a single
idea or purpose. Without them, we would be-
come robotic drones and accomplish little. Emo-
tions are important checks and balances in the
complex system of mind. However, Minsky does
not attribute any special status to emotions. He
views them simply as tools that interacting men-
tal agents use to accomplish their goals. For ex-
ample, he describes Anger as a tool agent Work
can exploit to prevent agent Sleep from gaining
control of the mind. No mysterious qualities need
be assigned to Anger to explain it. It is simply
one of many competing mechanisms which help
get things done in the mind.

Newell [28], on the other hand, defines intelli-
gence without reference to emotions. For Newell,
intelligence depends only on how well a system
uses the knowledge it has. Perfect use constitutes
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perfect intelligence, while a system that ignores
its knowledge has no intelligence.

I find Newell’s definition flawed specifically
where emotions and learning are concerned. A
system with emotions may have a curiosity that
leads it to formulate and test theories about the
world. It does not know whether these theories
are true, nor does it know it may benefit from
testing them, so any exploration and learning aris-
ing from this curiosity do not count in Newell’s
definition of intelligence. An otherwise identical
system that lacks the motivation of curiosity, and
so learns nothing, is considered equally intelligent.
Nonetheless, empirical investigation often leads to
new knowledge that can improve life for the sys-
tem. Would we not credit a curious, exploring, ex-
perimenting system that continually expands its
own knowledge base, capabilities, and efficiency
(and happiness, perhaps?) with more intelligence
than a mentally sedentary one that mechanically
applies the same old knowledge to just get by? 1
hope we would!

Does this imply that emotions are necessary for
learning? Not at all. While emotions play a key
role in motivating human learning, they are cer-
tainly not the only possible incentives for learning
in general. One may sharpen a skill simply by re-
peating a task many times, whether one intends to
become better at it or not. One may make a great
discovery purely by accident. Furthermore, com-
puters are not humans, and they can be motivated
in other ways. In a computer system, learning
may simply be something the machine is required
to do by its program. Both emotions and learning
should be important components of any definition
of intelligence, but emotions are not prerequisite
for learning to occur.

8 Building Superintelligences

Most of the time the ultimate goal of Al is stated
as building an artificial intelligence of human ca-
pabilities, as suggested by the famous Turing
test [51]. As long as we are being ambitious,
however, why not aim for intelligences that are
even greater? Why stop with a machine Albert
Einstein if we can hope for even more? Even
though this is far beyond our present capabili-
ties, it should still be a subject to think about
(Figure 3).
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Figure 3:

O Great One
— what is

S AN

| GR8-1 Universal Turing Machine |

Assuming we had already reached the goal of
creating machines as smart as individual humans,
what would be our next step toward the higher
goal of superintelligences? One avenue to explore
is that of societies of intelligent agents. We could
seek emergent superintelligence from the interac-
tions of “regular” intelligences in much the same
way Minsky seeks emergent intelligence from the
interactions of unintelligent agents in The Soci-
ety of Mind [24]. This may be a useful insight,
but we must examine it more closely to reap its
potential benefits. To wit, if our Einstein unit
(person or machine) has an IQ of 300, do three
average people (100 IQ each) equal one Einstein?
I doubt it. They are probably more like 0.4 Ein-
steins. One might therefore argue that we just
need ten or so average people to boost up to one
Einstein. I don’t buy this either—there is surely
a law of diminishing returns operating such that
each successive person adds progressively less to
the Einstein index, even if only due to communi-
cations problems.

Does a colony of thousands of micro-
Einsteinian ants ever approach an Einstein of
intelligence? Probably not, but ants may be
a bad example—their interagent communication
and knowledge storage capabilities are surely
quite limited. Perhaps the only real problem with
applying the extended society of mind metaphor
to humans is that humans are too loosely coupled
(i.e. our communication bandwidth is too low).
We can store as much knowledge as we want us-
ing external media. The problem is only in how
quickly we can process and apply it.

I postulate that sophisticated symbolic com-
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munication among intelligent agents is sufficient
to achieve emergent superintelligence. The main
reason we do not see obvious mega-FEinsteinian
strides in the intelligence of cooperating groups
of people is slow communication.

If low bandwidth is the only substantive ob-
stacle in the path of emergent superintelligence
in human societies, we should be able to see evi-
dence of mega-Einsteinian accomplishments if we
observe societies for a long enough period of time.
And lo—this is exactly what we do see in the
rise of technological societies! The knowledge and
achievements of these systems is vastly greater
than anything a single human could ever accom-
plish, no matter how smart. So without even
realizing it, we already have hard evidence of
the success of this approach to building super-
intelligences! If we could implement in a ma-
chine (or machines) a large number of intelli-
gent agents communicating and interacting men-
tally at high speeds, we might get somewhere in
our fantasy project of producing a time-localized,
mega-FEinsteinian reasoner.

Since humans will probably not be network-
ing their minds together telepathically any time
soon, our best hope for a high-speed, superintelli-
gent reasoning system is to build an artificial one.
Interacting conglomerations of intelligent agents
present a realistic paradigm for achieving this.
In the mean time, we should reexamine the idea
of human-level intelligence emerging from collec-
tions of interacting unintelligent agents. 1 believe
this is the most likely route to our first truly in-
telligent machine.

9 Conclusion

We have explored some important current issues
of knowledge and learning for the creation of ar-
tificial intelligence, raising many questions and,
hopefully, a few answers in the process. If my
presentation has also raised a few eyebrows, so
much the better. I believe that knowledge and
learning are both essential to the enormous task
of implementing intelligent artificial systems, and
research on these fronts is steadily progressing.
At the same time, as we toil through the techni-
cal details of basic research, we should not lose
the ability to dream of greater things for tomor-
row. It is these dreams that will make intelligent
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machines a reality.
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