
Open Source
Computer Vision
Library

Reference Manual

Copyright © 2001 Intel Corporation
All Rights Reserved
Issued in U.S.A.
Order Number: A77028-004

World Wide Web: http://developer.intel.com

http://developer.intel.com

ii

This OpenCV Reference Manual as well as the software described in it is furnished under license and may only be used or copied in accor-
dance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any
errors or inaccuracies that may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means without the express written consent of Intel Corporation.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCU-
MENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES
NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE
AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES, RELATING TO FITNESS FOR A PARTICU-
LAR PURPOSE , MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS. INTEL MAY MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME, WITH-
OUT NOTICE.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them.

The OpenCV may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Intel, the Intel logo and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2001.

Version Version History Date

-001 Original Issue. 12/2000

-002 Document OpenCV Reference Manual Beta 1 version.
Changed Manual structure.

04/2001

-003 Document OpenCV Reference Manual Beta 2 version.
Added ContourBoundingRect function.

08/2001

-004 Document OpenCV Reference Manual Beta 2 version.
Updated 22 and added 35 functions to Basic Structures and
Operations Reference.

12/2001

1

Contents

Chapter Contents

Chapter 1
Overview

About This Software .. 1-1
Why We Need OpenCV Library.. 1-2
Relation Between OpenCV and Other Libraries 1-2
Data Types Supported .. 1-3
Error Handling .. 1-3
Hardware and Software Requirements .. 1-3
Platforms Supported ... 1-4

About This Manual .. 1-4
Manual Organization ... 1-4
Function Descriptions .. 1-8
Audience for This Manual ... 1-8
On-line Version ... 1-8
Related Publications... 1-8

Notational Conventions ... 1-8
Font Conventions .. 1-9
Naming Conventions .. 1-9
Function Name Conventions .. 1-9

Chapter 2
Motion Analysis and Object Tracking

Background Subtraction ... 2-1
Motion Templates ... 2-2

OpenCV Reference Manual Contents

2

Motion Representation and Normal Optical Flow Method 2-2
Motion Representation .. 2-2
A) Updating MHI Images... 2-3
B) Making Motion Gradient Image .. 2-3
C) Finding Regional Orientation or Normal Optical Flow 2-6
Motion Segmentation .. 2-7

CamShift... 2-9
Mass Center Calculation for 2D Probability Distribution 2-11
CamShift Algorithm ... 2-12
Calculation of 2D Orientation .. 2-14

Active Contours .. 2-15
Optical Flow.. 2-18

Lucas & Kanade Technique .. 2-19
Horn & Schunck Technique... 2-19
Block Matching.. 2-20

Estimators... 2-20
Models... 2-20
Estimators ... 2-21
Kalman Filtering .. 2-22
ConDensation Algorithm ... 2-23

Chapter 3
Image Analysis

Contour Retrieving.. 3-1
Basic Definitions.. 3-1
Contour Representation .. 3-3
Contour Retrieving Algorithm .. 3-4

Features ... 3-5
Fixed Filters .. 3-5

Sobel Derivatives .. 3-6
Optimal Filter Kernels with Floating Point Coefficients 3-9

First Derivatives .. 3-9
Second Derivatives ... 3-10

OpenCV Reference Manual Contents

3

Laplacian Approximation... 3-10
Feature Detection ... 3-10
Corner Detection... 3-11
Canny Edge Detector ... 3-11
Hough Transform .. 3-14

Image Statistics .. 3-15
Pyramids... 3-15
Morphology... 3-19

Flat Structuring Elements for Gray Scale.. 3-21
Distance Transform .. 3-23
Thresholding... 3-24
Flood Filling .. 3-25
Histogram ... 3-25

Histograms and Signatures... 3-26
Example Ground Distances .. 3-29
Lower Boundary for EMD.. 3-30

Chapter 4
Structural Analysis

Contour Processing .. 4-1
Polygonal Approximation .. 4-1
Douglas-Peucker Approximation .. 4-4
Contours Moments.. 4-5
Hierarchical Representation of Contours .. 4-8

Geometry.. 4-14
Ellipse Fitting... 4-14
Line Fitting .. 4-15
Convexity Defects ... 4-16

Chapter 5
Object Recognition

Eigen Objects ... 5-1
Embedded Hidden Markov Models .. 5-2

OpenCV Reference Manual Contents

4

Chapter 6
3D Reconstruction

Camera Calibration... 6-1
Camera Parameters.. 6-1
Pattern... 6-3

View Morphing.. 6-3
Algorithm ... 6-4
Using Functions for View Morphing Algorithm 6-7

POSIT... 6-8
Geometric Image Formation ... 6-8

Pose Approximation Method... 6-10
Algorithm ... 6-12

Gesture Recognition... 6-14

Chapter 7
Basic Structures and Operations

Image Functions ... 7-1
Dynamic Data Structures.. 7-4

Memory Storage ... 7-4
Sequences.. 7-5
Writing and Reading Sequences .. 7-6
Sets... 7-8
Graphs .. 7-11

Matrix Operations ... 7-15
Interchangability between IplImage and CvMat. 7-18

Drawing Primitives.. 7-18
Utility... 7-19

Chapter 8
Library Technical Organization and System Functions

Error Handling .. 8-1

OpenCV Reference Manual Contents

5

Memory Management... 8-1
Interaction With Low-Level Optimized Functions 8-1
User DLL Creation.. 8-1

Chapter 9
Motion Analysis and Object Tracking Reference

Background Subtraction Functions... 9-3
Acc... 9-3
SquareAcc ... 9-4
MultiplyAcc... 9-4
RunningAvg ... 9-5

Motion Templates Functions... 9-6
UpdateMotionHistory ... 9-6
CalcMotionGradient ... 9-6
CalcGlobalOrientation.. 9-7
SegmentMotion.. 9-8

CamShift Functions .. 9-9
CamShift .. 9-9
MeanShift... 9-10

Active Contours Function ... 9-11
SnakeImage... 9-11

Optical Flow Functions ... 9-12
CalcOpticalFlowHS.. 9-12
CalcOpticalFlowLK .. 9-13
CalcOpticalFlowBM ... 9-13
CalcOpticalFlowPyrLK ... 9-14

Estimators Functions .. 9-16
CreateKalman.. 9-16
ReleaseKalman ... 9-16
KalmanUpdateByTime ... 9-17
KalmanUpdateByMeasurement ... 9-17
CreateConDensation ... 9-17

OpenCV Reference Manual Contents

6

ReleaseConDensation... 9-18
ConDensInitSampleSet ... 9-18
ConDensUpdateByTime .. 9-19

Estimators Data Types ... 9-19

Chapter 10
Image Analysis Reference

Contour Retrieving Functions ... 10-6
FindContours ... 10-6
StartFindContours .. 10-7
FindNextContour.. 10-8
SubstituteContour .. 10-9
EndFindContours... 10-9

Features Functions... 10-10
Fixed Filters Functions.. 10-10
Laplace .. 10-10
Sobel.. 10-10
Feature Detection Functions... 10-11
Canny .. 10-11
PreCornerDetect .. 10-12
CornerEigenValsAndVecs.. 10-12
CornerMinEigenVal .. 10-13
FindCornerSubPix ... 10-14
GoodFeaturesToTrack ... 10-16
Hough Transform Functions ... 10-17
HoughLines.. 10-17
HoughLinesSDiv .. 10-18
HoughLinesP ... 10-19

Image Statistics Functions.. 10-20
CountNonZero ... 10-20
SumPixels.. 10-20
Mean.. 10-21
Mean_StdDev .. 10-21

OpenCV Reference Manual Contents

7

MinMaxLoc .. 10-22
Norm .. 10-22
Moments .. 10-24
GetSpatialMoment ... 10-25
GetCentralMoment .. 10-25
GetNormalizedCentralMoment .. 10-26
GetHuMoments.. 10-27

Pyramid Functions.. 10-28
PyrDown .. 10-28
PyrUp... 10-28
PyrSegmentation ... 10-29

Morphology Functions .. 10-30
CreateStructuringElementEx ... 10-30
ReleaseStructuringElement ... 10-31
Erode ... 10-31
Dilate.. 10-32
MorphologyEx.. 10-33

Distance Transform Function.. 10-34
DistTransform .. 10-34

Threshold Functions ... 10-36
AdaptiveThreshold ... 10-36
Threshold ... 10-38

Flood Filling Function ... 10-40
FloodFill ... 10-40

Histogram Functions... 10-41
CreateHist .. 10-41
ReleaseHist ... 10-42
MakeHistHeaderForArray .. 10-42
QueryHistValue_1D ... 10-43
QueryHistValue_2D ... 10-43
QueryHistValue_3D ... 10-44
QueryHistValue_nD ... 10-44

OpenCV Reference Manual Contents

8

GetHistValue_1D ... 10-45
GetHistValue_2D ... 10-45
GetHistValue_3D ... 10-46
GetHistValue_nD ... 10-46
GetMinMaxHistValue ... 10-47
NormalizeHist .. 10-47
ThreshHist ... 10-48
CompareHist .. 10-48
CopyHist .. 10-49
SetHistBinRanges.. 10-50
CalcHist ... 10-50
CalcBackProject .. 10-51
CalcBackProjectPatch ... 10-52
CalcEMD.. 10-54
CalcContrastHist .. 10-55

Pyramid Data Types ... 10-56
Histogram Data Types .. 10-57

Chapter 11
Structural Analysis Reference

Contour Processing Functions ... 11-3
ApproxChains .. 11-3
StartReadChainPoints.. 11-4
ReadChainPoint... 11-5
ApproxPoly .. 11-5
DrawContours .. 11-6
ContourBoundingRect ... 11-7
ContoursMoments.. 11-8
ContourArea .. 11-8
MatchContours .. 11-9
CreateContourTree .. 11-10
ContourFromContourTree... 11-11
MatchContourTrees ... 11-12

OpenCV Reference Manual Contents

9

Geometry Functions ... 11-12
FitEllipse .. 11-12
FitLine2D ... 11-13
FitLine3D ... 11-15
Project3D ... 11-16
ConvexHull .. 11-17
ContourConvexHull.. 11-18
ConvexHullApprox ... 11-18
ContourConvexHullApprox .. 11-20
CheckContourConvexity .. 11-21
ConvexityDefects ... 11-21
MinAreaRect .. 11-22
CalcPGH.. 11-23
MinEnclosingCircle .. 11-24

Contour Processing Data Types... 11-24
Geometry Data Types... 11-25

Chapter 12
Object Recognition Reference

Eigen Objects Functions... 12-3
CalcCovarMatrixEx .. 12-3
CalcEigenObjects .. 12-4
CalcDecompCoeff.. 12-5
EigenDecomposite... 12-6
EigenProjection.. 12-7

Use of Eigen Object Functions ... 12-7
Embedded Hidden Markov Models Functions.................................... 12-12

Create2DHMM... 12-12
Release2DHMM .. 12-13
CreateObsInfo ... 12-13
ReleaseObsInfo ... 12-14
ImgToObs_DCT ... 12-14
UniformImgSegm... 12-15

OpenCV Reference Manual Contents

10

InitMixSegm ... 12-16
EstimateHMMStateParams.. 12-17
EstimateTransProb .. 12-17
EstimateObsProb... 12-18
EViterbi .. 12-18
MixSegmL2.. 12-19

HMM Structures.. 12-19

Chapter 13
3D Reconstruction Reference

Camera Calibration Functions .. 13-4
CalibrateCamera.. 13-4
CalibrateCamera_64d.. 13-5
FindExtrinsicCameraParams ... 13-6
FindExtrinsicCameraParams_64d ... 13-7
Rodrigues .. 13-7
Rodrigues_64d .. 13-8
UnDistortOnce ... 13-9
UnDistortInit ... 13-9
UnDistort .. 13-10
FindChessBoardCornerGuesses... 13-11

View Morphing Functions ... 13-12
FindFundamentalMatrix ... 13-12
MakeScanlines .. 13-13
PreWarpImage... 13-13
FindRuns ... 13-14
DynamicCorrespondMulti .. 13-15
MakeAlphaScanlines ... 13-16
MorphEpilinesMulti .. 13-16
PostWarpImage ... 13-17
DeleteMoire ... 13-18

POSIT Functions .. 13-19
CreatePOSITObject ... 13-19

OpenCV Reference Manual Contents

11

POSIT .. 13-19
ReleasePOSITObject... 13-20

Gesture Recognition Functions .. 13-21
FindHandRegion.. 13-21
FindHandRegionA ... 13-22
CreateHandMask... 13-23
CalcImageHomography ... 13-23
CalcProbDensity .. 13-24
MaxRect... 13-25

Chapter 14
Basic Structures and Operations Reference

Image Functions Reference ... 14-9
CreateImageHeader .. 14-9
CreateImage .. 14-9
ReleaseImageHeader .. 14-10
ReleaseImage.. 14-10
CreateImageData... 14-11
ReleaseImageData .. 14-12
SetImageData .. 14-12
SetImageCOI ... 14-13
SetImageROI ... 14-13
GetImageRawData .. 14-14
InitImageHeader .. 14-14
CopyImage .. 14-15

Pixel Access Macros .. 14-15
CV_INIT_PIXEL_POS ... 14-17
CV_MOVE_TO .. 14-17
CV_MOVE ... 14-18
CV_MOVE_WRAP .. 14-18
CV_MOVE_PARAM... 14-19
CV_MOVE_PARAM_WRAP.. 14-19

Dynamic Data Structures Reference .. 14-21

OpenCV Reference Manual Contents

12

Memory Storage Reference.. 14-21
CreateMemStorage.. 14-22
CreateChildMemStorage ... 14-22
ReleaseMemStorage ... 14-23
ClearMemStorage.. 14-23
SaveMemStoragePos .. 14-24
RestoreMemStoragePos.. 14-24
Sequence Reference .. 14-26
CreateSeq.. 14-29
SetSeqBlockSize ... 14-30
SeqPush .. 14-30
SeqPop .. 14-31
SeqPushFront .. 14-31
SeqPopFront.. 14-32
SeqPushMulti... 14-32
SeqPopMulti .. 14-33
SeqInsert ... 14-33
SeqRemove ... 14-34
ClearSeq.. 14-34
GetSeqElem .. 14-35
SeqElemIdx ... 14-35
CvtSeqToArray... 14-36
MakeSeqHeaderForArray .. 14-36
Writing and Reading Sequences Reference................................... 14-37
StartAppendToSeq... 14-37
StartWriteSeq... 14-38
EndWriteSeq.. 14-39
FlushSeqWriter .. 14-39
StartReadSeq... 14-40
GetSeqReaderPos... 14-41
SetSeqReaderPos ... 14-41
Sets Reference ... 14-42

OpenCV Reference Manual Contents

13

CreateSet... 14-42
SetAdd ... 14-42
SetRemove .. 14-43
GetSetElem ... 14-43
ClearSet ... 14-44
Graphs Reference .. 14-46
CreateGraph .. 14-46
GraphAddVtx ... 14-46
GraphRemoveVtx .. 14-47
GraphRemoveVtxByPtr .. 14-47

GraphAddEdge .. 14-48
GraphAddEdgeByPtr ... 14-49
GraphRemoveEdge ... 14-50
GraphRemoveEdgeByPtr .. 14-50
FindGraphEdge ... 14-51
FindGraphEdgeByPtr... 14-52
GraphVtxDegree.. 14-52
GraphVtxDegreeByPtr ... 14-53
ClearGraph .. 14-54
GetGraphVtx.. 14-54
GraphVtxIdx ... 14-54
GraphEdgeIdx.. 14-55
Graphs Data Structures .. 14-55

Matrix Operations Reference ... 14-57
CreateMat .. 14-58
CreateMatHeader .. 14-58
ReleaseMat.. 14-59
ReleaseMatHeader .. 14-60
InitMatHeader .. 14-60
CloneMat ... 14-61
SetData .. 14-62
GetMat ... 14-62

OpenCV Reference Manual Contents

14

GetAt.. 14-63
SetAt .. 14-64
GetAtPtr ... 14-65
GetSubArr .. 14-65
GetRow.. 14-66
GetCol.. 14-66
GetDiag.. 14-67
GetRawData .. 14-67
GetSize .. 14-68
CreateData... 14-69
AllocArray .. 14-69
ReleaseData .. 14-69
FreeArray ... 14-70
Copy .. 14-70
Set ... 14-71
Add .. 14-71
AddS .. 14-72
Sub .. 14-73
SubS .. 14-73
SubRS ... 14-74
Mul ... 14-75
And .. 14-75
AndS .. 14-76
Or ... 14-77
OrS .. 14-78
Xor ... 14-79
XorS... 14-80
DotProduct ... 14-81
CrossProduct ... 14-82
ScaleAdd ... 14-82
MatMulAdd... 14-83
MatMulAddS .. 14-84

OpenCV Reference Manual Contents

15

MulTransposed .. 14-85
Invert .. 14-85
Trace.. 14-86
Det ... 14-86
Mahalonobis .. 14-86
Transpose .. 14-87
Flip ... 14-87
Reshape .. 14-88
SetZero .. 14-89
SetIdentity .. 14-90
SVD ... 14-90
PseudoInv.. 14-91
EigenVV... 14-92
PerspectiveTransform.. 14-93

Drawing Primitives Reference .. 14-94
Line .. 14-94
LineAA ... 14-94
Rectangle... 14-95
Circle.. 14-96
Ellipse .. 14-96
EllipseAA.. 14-98
FillPoly ... 14-98
FillConvexPoly ... 14-99
PolyLine ... 14-100
PolyLineAA .. 14-100
InitFont ... 14-101
PutText ... 14-102
GetTextSize ... 14-102

Utility Reference ... 14-103
AbsDiff ... 14-103
AbsDiffS ... 14-104
MatchTemplate .. 14-104

OpenCV Reference Manual Contents

16

CvtPixToPlane ... 14-107
CvtPlaneToPix ... 14-107
ConvertScale ... 14-108
LUT .. 14-109
InitLineIterator .. 14-110
SampleLine... 14-111
GetRectSubPix ... 14-111
bFastArctan.. 14-112
Sqrt .. 14-112
bSqrt .. 14-113
InvSqrt ... 14-113
bInvSqrt ... 14-114
bReciprocal .. 14-114
bCartToPolar .. 14-115
bFastExp.. 14-115
bFastLog.. 14-116
RandInit ... 14-116
bRand .. 14-117
Rand .. 14-117
FillImage .. 14-118
RandSetRange .. 14-118
KMeans.. 14-119

Chapter 15
System Functions

LoadPrimitives ... 15-1
GetLibraryInfo .. 15-2

Bibliography

Appendix A

OpenCV Reference Manual Contents

17

Supported Image Attributes and Operation Modes

Glossary

Index

1-1

1Overview

This manual describes the structure, operation, and functions of the Open Source
Computer Vision Library (OpenCV) for Intel® architecture. The OpenCV Library is
mainly aimed at real time computer vision. Some example areas would be
Human-Computer Interaction (HCI); Object Identification, Segmentation, and
Recognition; Face Recognition; Gesture Recognition; Motion Tracking, Ego Motion,
and Motion Understanding; Structure From Motion (SFM); and Mobile Robotics.

The OpenCV Library is a collection of low-overhead, high-performance operations
performed on images.

This manual explains the OpenCV Library concepts as well as specific data type
definitions and operation models used in the image processing domain. The manual
also provides detailed descriptions of the functions included in the OpenCV Library
software.

This chapter introduces the OpenCV Library software and explains the organization of
this manual.

About This Software
The OpenCV implements a wide variety of tools for image interpretation. It is
compatible with Intel® Image Processing Library (IPL) that implements low-level
operations on digital images. In spite of primitives such as binarization, filtering,
image statistics, pyramids, OpenCV is mostly a high-level library implementing
algorithms for calibration techniques (Camera Calibration), feature detection (Feature)
and tracking (Optical Flow), shape analysis (Geometry, Contour Processing), motion

OpenCV Reference Manual Overview 1

1-2

analysis (Motion Templates, Estimators), 3D reconstruction (View Morphing), object
segmentation and recognition (Histogram, Embedded Hidden Markov Models, Eigen
Objects).

The essential feature of the library along with functionality and quality is performance.
The algorithms are based on highly flexible data structures (Dynamic Data Structures)
coupled with IPL data structures; more than a half of the functions have been
assembler-optimized taking advantage of Intel® Architecture (Pentium® MMX ,
Pentium® Pro, Pentium® III, Pentium® 4).

Why We Need OpenCV Library

The OpenCV Library is a way of establishing an open source vision community that
will make better use of up-to-date opportunities to apply computer vision in the
growing PC environment. The software provides a set of image processing functions,
as well as image and pattern analysis functions. The functions are optimized for Intel®

architecture processors, and are particularly effective at taking advantage of MMX
technology.

The OpenCV Library has platform-independent interface and supplied with whole C
sources. OpenCV is open.

Relation Between OpenCV and Other Libraries

OpenCV is designed to be used together with Intel® Image Processing Library (IPL)
and extends the latter functionality toward image and pattern analysis. Therefore,
OpenCV shares the same image format (IplImage) with IPL.

Also, OpenCV uses Intel® Integrated Performance Primitives (IPP) on lower-level, if
it can locate the IPP binaries on startup.

IPP provides cross-platform interface to highly-optimized low-level functions that
perform domain-specific operations, particularly, image processing and computer
vision primitive operations. IPP exists on multiple platforms including IA32, IA64,
and StrongARM. OpenCV can automatically benefit from using IPP on all these
platforms.

OpenCV Reference Manual Overview 1

1-3

Data Types Supported

There are a few fundamental types OpenCV operates on, and several helper data types
that are introduced to make OpenCV API more simple and uniform.

The fundamental data types include array-like types: IplImage (IPL image), CvMat
(matrix), growable collections: CvSeq (deque), CvSet, CvGraph and mixed types:
CvHistogram (multi-dimensional histogram). See Basic Structures and Operations
chapter for more details.

Helper data types include: CvPoint (2d point), CvSize (width and height),
CvTermCriteria (termination criteria for iterative processes), IplConvKernel
(convolution kernel), CvMoments (spatial moments), etc.

Error Handling

Error handling mechanism in OpenCV is similar to IPL.

There are no return error codes. Instead, there is a global error status that can be set or
retrieved via cvError and cvGetErrStatus functions, respectively. The error
handling mechanism is adjustable, e.g., it can be specified, whether cvError prints out
error message and terminates the program execution afterwards, or just sets an error
code and the execution continues.

See Library Technical Organization and System Functions chapter for list of possible
error codes and details of error handling mechanism.

Hardware and Software Requirements

The OpenCV software runs on personal computers that are based on Intel® architecture
processors and running Microsoft* Windows* 95, Windows 98, Windows 2000, or
Windows NT*. The OpenCV integrates into the customer’s application or library
written in C or C++.

OpenCV Reference Manual Overview 1

1-4

Platforms Supported

The OpenCV software run on Windows platforms. The code and syntax used for
function and variable declarations in this manual are written in the ANSI C style.
However, versions of the OpenCV for different processors or operating systems may,
of necessity, vary slightly.

About This Manual
This manual provides a background for the computer image processing concepts used
in the OpenCV software. The manual includes two major parts, one is the Programmer
Guide and the other is Reference. The fundamental concepts of each of the library
components are extensively covered in the Programmer Guide. The Reference
provides the user with specifications of each OpenCV function. The functions are
combined into groups by their functionality (chapters 10 through 16). Each group of
functions is described along with appropriate data types and macros, when applicable.
The manual includes example codes of the library usage.

Manual Organization

This manual includes two principal parts: Programmer Guide and Reference.

The Programmer Guide contains

Overview (Chapter 1) that provides information on the OpenCV software, application
area, overall functionality, the library relation to IPL, data types and
error handling, along with manual organization and notational
conventions.

and the following functionality chapters:

Chapter 2 Motion Analysis and Object Tracking comprising sections:

• Background Subtraction. Describes basic functions that enable
building statistical model of background for its further
subtraction.

OpenCV Reference Manual Overview 1

1-5

• Motion Templates. Describes motion templates functions
designed to generate motion template images that can be used to
rapidly determine where a motion occurred, how it occurred, and
in which direction it occurred.

• Cam Shift. Describes the functions implemented for realization
of “Continuously Adaptive Mean-SHIFT” algorithm (CamShift)
algorithm.

• Active Contours. Describes a function for working with active
contours (snakes).

• Optical Flow. Describes functions used for calculation of optical
flow implementing Lucas & Kanade, Horn & Schunck, and
Block Matching techniques.

• Estimators. Describes a group of functions for estimating
stochastic models state.

Chapter 3 Image Analysis comprising sections:

• Contour Retrieving. Describes contour retrieving functions.

• Features. Describes various fixed filters, primarily derivative
operators (1st & 2nd Image Derivatives); feature detection
functions; Hough Transform method of extracting geometric
primitives from raster images.

• Image Statistics. Describes a set of functions that compute
different information about images, considering their pixels as
independent observations of a stochastic variable.

• Pyramids. Describes functions that support generation and
reconstruction of Gaussian and Laplacian Pyramids.

• Morphology. Describes an expanded set of morphological
operators that can be used for noise filtering, merging or splitting
image regions, as well as for region boundary detection.

• Distance Transform. Describes the distance transform functions
used for calculating the distance to an object.

OpenCV Reference Manual Overview 1

1-6

• Thresholding. Describes threshold functions used mainly for
masking out some pixels that do not belong to a certain range,
for example, to extract blobs of certain brightness or color from
the image, and for converting grayscale image to bi-level or
black-and-white image.

• Flood Filling. Describes the function that performs flood filling
of a connected domain.

• Histogram. Describes functions that operate on
multi-dimensional histograms.

Chapter 4 Structural Analysis comprising sections:

• Contour Processing. Describes contour processing functions.

• Geometry. Describes functions from computational geometry
field: line and ellipse fitting, convex hull, contour analysis.

Chapter 5 Image Recognition comprising sections:

• Eigen Objects. Describes functions that operate on eigen objects.

• Embedded HMM. Describes functions for using Embedded
Hidden Markov Models (HMM) in face recognition task.

Chapter 6 3D Reconstruction comprising sections:

• Camera Calibration. Describes undistortion functions and
camera calibration functions used for calculating intrinsic and
extrinsic camera parameters.

• View Morphing. Describes functions for morphing views from
two cameras.

• POSIT. Describes functions that together perform POSIT
algorithm used to determine the six degree-of-freedom pose of a
known tracked 3D rigid object.

• Gesture Recognition. Describes specific functions for the static
gesture recognition technology.

Chapter 7 Basic Structures and Operations comprising sections:

OpenCV Reference Manual Overview 1

1-7

• Image Functions. Describes basic functions for manipulating
raster images: creation, allocation, destruction of images. Fast
pixel access macros are also described.

• Dynamic Data Structures. Describes several resizable data
structures and basic functions that are designed to operate on
these structures.

• Matrix Operations. Describes functions for matrix operations:
basic matrix arithmetics, eigen problem solution, SVD, 3D
geometry and recognition-specific functions.

• Drawing Primitives. Describes simple drawing functions
intended mainly to mark out recognized or tracked features in

• Utility. Describes unclassified OpenCV functions.

Chapter 8 Library Technical Organization and System Fuctions comprising
sections:

• Error Handling.

• Memory Management.

• Interaction With Low-Level Optimized Functions.

• User DLL Creation.

Reference contains the following chapters describing respective functions, data types
and applicable macros:

Chapter 9 Motion Analysis and Object Tracking Reference.

Chapter 10 Image Analysis Reference.

Chapter 11 Structural Analysis Reference.

Chapter 12 Image Recognition Reference.

Chapter 13 3D Reconstruction Reference.

Chapter 14 Basic Structures and Operations Reference.

Chapter 15 System Functions Reference.

The manual also includes Appendix A that describes supported image attributes and
operation modes, a Glossary of terms, a Bibliography, and an Index.

OpenCV Reference Manual Overview 1

1-8

Function Descriptions

In Chapters 10 through 16, each function is introduced by name and a brief description
of its purpose. This is followed by the function call sequence, definitions of its
arguments, and more detailed explanation of the function purpose. The following
sections are included in function description:

Arguments Describes all the function arguments.

Discussion Defines the function and describes the operation performed
by the function. This section also includes descriptive
equations.

Audience for This Manual

The manual is intended for all users of OpenCV: researchers, commercial software
developers, government and camera vendors.

On-line Version

This manual is available in an electronic format (Portable Document Format, or PDF).
To obtain a hard copy of the manual, print the file using the printing capability of
Adobe* Acrobat*, the tool used for the on-line presentation of the document.

Related Publications

For more information about signal processing concepts and algorithms, refer to the
books and materials listed in the Bibliography.

Notational Conventions
In this manual, notational conventions include:

• Fonts used for distinction between the text and the code

• Naming conventions

• Function name conventions

OpenCV Reference Manual Overview 1

1-9

Font Conventions

The following font conventions are used:

THIS TYPE STYLE Used in the text for OpenCV constant identifiers; for
example, CV_SEQ_KIND_GRAPH.

This type style Mixed with the uppercase in structure names as in
CvContourTree; also used in function names, code
examples and call statements; for example, int
cvFindContours().

This type style Variables in arguments discussion; for example, value, src.

Naming Conventions

The OpenCV software uses the following naming conventions for different items:

• Constant identifiers are in uppercase; for example, CV_SEQ_KIND_GRAPH.

• All names of the functions used for image processing have the cv prefix. In code
examples, you can distinguish the OpenCV interface functions from the
application functions by this prefix.

• All OpenCV external functions’ names start with cv prefix, all structures’ names
start with Cv prefix.

Each new part of a function name starts with an uppercase character, without
underscore; for example, cvContourTree.

Function Name Conventions

The function names in the OpenCV library typically begin with cv prefix and have the
following general format:

NOTE. In this manual, the cv prefix in function names is always
used in the code examples. In the text, this prefix is usually omitted
when referring to the function group.

OpenCV Reference Manual Overview 1

1-10

cv <action> <target> <mod> ()

where

action indicates the core functionality, for example, -Set-,
-Create-, -Convert-.

target indicates the area where the image processing is being
enacted,forexample,-FindContoursor-ApproxPoly.

In a number of cases the target consists of two or more
words, for example, -MatchContourTree. Some function
names consist of an action or target only; for example,
the functions cvUnDistort or cvAcc respectively.

mod an optional field; indicates a modification to the core
functionality of a function. For example, in the function
name cvFindExtrinsicCameraParams_64d, _64d
indicates that this particular function works with double
precision numbers.

OpenCV Reference Manual Overview 1

1-11

2-1

2
Motion Analysis and Object
Tracking

Background Subtraction
This section describes basic functions that enable building statistical model of
background for its further subtraction.

In this chapter the term "background" stands for a set of motionless image pixels, that
is, pixels that do not belong to any object, moving in front of the camera. This
definition can vary if considered in other techniques of object extraction. For example,
if a depth map of the scene is obtained, background can be determined as parts of scene
that are located far enough from the camera.

The simplest background model assumes that every background pixel brightness
varies independently, according to normal distribution.The background characteristics
can be calculated by accumulating several dozens of frames, as well as their squares.
That means finding a sum of pixel values in the location S(x,y) and a sum of squares of
the values Sq(x,y) for every pixel location.

Then mean is calculated as , where N is the number of the frames
collected, and

standard deviation as .

After that the pixel in a certain pixel location in certain frame is regarded as belonging
to a moving object if condition is met, where C is a certain
constant. If C is equal to 3, it is the well-known "three sigmas" rule. To obtain that
background model, any objects should be put away from the camera for a few seconds,
so that a whole image from the camera represents subsequent background observation.

The above technique can be improved. First, it is reasonable to provide adaptation of
background differencing model to changes of lighting conditions and background
scenes, e.g., when the camera moves or some object is passing behind the front object.

m x y),(
S x y),(
N

----------------=

σ x y,() sqrt
Sq x y,()

N

S x(y),
N

2

–

=

abs m x y),(p x y),() Cσ x y),(>–(

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-2

The simple accumulation in order to calculate mean brightness can be replaced with
running average. Also, several techniques can be used to identify moving parts of the
scene and exclude them in the course of background information accumulation. The
techniques include change detection, e.g., via cvAbsDiff with cvThreshold, optical
flow and, probably, others.

The functions from the section (See Motion Analysis and Object Tracking Reference)
are simply the basic functions for background information accumulation and they can
not make up a complete background differencing module alone.

Motion Templates
The functions described in Motion Templates Functions section are designed to
generate motion template images that can be used to rapidly determine where a motion
occurred, how it occurred, and in which direction it occurred. The algorithms are based
on papers by Davis and Bobick [Davis97] and Bradski and Davis [Bradsky00]. These
functions operate on images that are the output of background subtraction or other
image segmentation operations; thus the input and output image types are all
grayscale, that is, have a single color channel.

Motion Representation and Normal Optical Flow Method

Motion Representation

Figure 2-1 (left) shows capturing a foreground silhouette of the moving object or
person. Obtaining a clear silhouette is achieved through application of some of
background subtraction techniques briefly described in the section on Background
Subtraction. As the person or object moves, copying the most recent foreground
silhouette as the highest values in the motion history image creates a layered history of
the resulting motion; typically this highest value is just a floating point timestamp of
time elapsing since the application was launched in milliseconds. Figure 2-1 (right)

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-3

shows the result that is called the Motion History Image (MHI). A pixel level or a time
delta threshold, as appropriate, is set such that pixel values in the MHI image that fall
below that threshold are set to zero.

The most recent motion has the highest value, earlier motions have decreasing values
subject to a threshold below which the value is set to zero. Different stages of creating
and processing motion templates are described below.

A) Updating MHI Images

Generally, floating point images are used because system time differences, that is, time
elapsing since the application was launched, are read in milliseconds to be further
converted into a floating point number which is the value of the most recent silhouette.
Then follows writing this current silhouette over the past silhouettes with subsequent
thresholding away pixels that are too old (beyond a maximum mhiDuration) to create
the MHI.

B) Making Motion Gradient Image
1. Start with the MHI image as shown in Figure 2-2(left).

2. Apply 3x3 Sobel operators X and Y to the image.

Figure 2-1 Motion History Image From Moving Silhouette

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-4

3. If the resulting response at a pixel location (X,Y) is to the Sobel
operator X and to the operator Y, then the orientation of the gradient is
calculated as:

,

and the magnitude of the gradient is:

.

4. The equations are applied to the image yielding direction or angle of a flow
image superimposed over the MHI image as shown in Figure 2-2.

Figure 2-2 Direction of Flow Image

Sx x y,()
Sy x y,()

A x y,() arc Sy x y,() Sx x y,()⁄()tan=

M x y,() Sx
2
x y,() S+ y

2
x y,()=

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-5

5. The boundary pixels of the MH region may give incorrect motion angles and
magnitudes, as Figure 2-2 shows. Thresholding away magnitudes that are
either too large or too small can be a remedy in this case. Figure 2-3 shows the
ultimate results.

Figure 2-3 Resulting Normal Motion Directions

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-6

C) Finding Regional Orientation or Normal Optical Flow

Figure 2-4 shows the output of the motion gradient function described in the section
above together with the marked direction of motion flow.

The current silhouette is in bright blue with past motions in dimmer and dimmer blue.
Red lines show where valid normal flow gradients were found. The white line shows
computed direction of global motion weighted towards the most recent direction of
motion.

To determine the most recent, salient global motion:

Figure 2-4 MHI Image of Kneeling Person

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-7

1. Calculate a histogram of the motions resulting from processing (see
Figure 2-3).

2. Find the average orientation of a circular function: angle in degrees.

a. Find the maximal peak in the orientation histogram.

b. Find the average of minimum differences from this base angle. The more
recent movements are taken with lager weights.

Motion Segmentation

Representing an image as a single moving object often gives a very rough motion
picture. So, the goal is to group MHI pixels into several groups, or connected regions,
that correspond to parts of the scene that move in different directions. Using then a
downward stepping floodfill to label motion regions connected to the current
silhouette helps identify areas of motion directly attached to parts of the object of
interest.

Once MHI image is constructed, the most recent silhouette acquires the maximal
values equal to the most recent timestamp in that image. The image is scanned until
any of these values is found, then the silhouette’s contour is traced to find attached
areas of motion, and searching for the maximal values continues. The algorithm for
creating masks to segment motion region is as follows:

1. Scan the MHI until a pixel of the most recent silhouette is found, use floodfill
to mark the region the pixel belongs to (see Figure 2-5 (a)).

2. Walk around the boundary of the current silhouette region looking outside for
unmarked motion history steps that are recent enough, that is, within the
threshold. When a suitable step is found, mark it with a downward floodfill. If
the size of the fill is not big enough, zero out the area (see Figure 2-5 (b)).

3. [Optional]:

— Record locations of minimums within each downfill (see Figure 2-5 (c));

— Perform separate floodfills up from each detected location (see Figure 2-5
(d));

— Use logical AND to combine each upfill with downfill it belonged to.

4. Store the detected segmented motion regions into the mask.

5. Continue the boundary “walk” until the silhouette has been circumnavigated.

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-8

6. [Optional] Go to 1 until all current silhouette regions are found.

Figure 2-5 Creating Masks to Segment Motion Region

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-9

CamShift
This section describes CamShift algorithm realization functions.

CamShift stands for the “Continuously Adaptive Mean-SHIFT” algorithm. Figure 2-6
summarizes this algorithm. For each video frame, the raw image is converted to a color
probability distribution image via a color histogram model of the color being tracked,
e.g., flesh color in the case of face tracking. The center and size of the color object are
found via the CamShift algorithm operating on the color probability image. The
current size and location of the tracked object are reported and used to set the size and
location of the search window in the next video image. The process is then repeated for
continuous tracking. The algorithm is a generalization of the Mean Shift algorithm,
highlighted in gray in Figure 2-6.

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-10

CamShift operates on a 2D color probability distribution image produced from
histogram back-projection (see the section on Histogram in Image Analysis). The core
part of the CamShift algorithm is the Mean Shift algorithm.

The Mean Shift part of the algorithm (gray area in Figure 2-6) is as follows:

1. Choose the search window size.

2. Choose the initial location of the search window.

Figure 2-6 Block Diagram of CamShift Algorithm

Choose initial
search window

size and location
HSV Image

Set calculation
region at search
window center
but larger in
size than the
search window

Color histogram look-
up in calculation

region

Color probability distribution

image

Find center of mass
within the search

window

Center search window
at the center of mass
and find area under it

Converged?YES NOReport X,
Y, Z, and

Roll

Use (X,Y) to set
search window
center, 2*area1/2

to set size.

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-11

3. Compute the mean location in the search window.

4. Center the search window at the mean location computed in Step 3.

5. Repeat Steps 3 and 4 until the search window center converges, i.e., until it has
moved for a distance less than the preset threshold.

Mass Center Calculation for 2D Probability Distribution

For discrete 2D image probability distributions, the mean location (the centroid) within
the search window, that is computed at step 3 above, is found as follows:

Find the zeroth moment

.

Find the first moment for x and y

; .

Mean search window location (the centroid) then is found as

; ,

where I(x,y) is the pixel (probability) value in the position (x,y) in the image, and x

and y range over the search window.

Unlike the Mean Shift algorithm, which is designed for static distributions, CamShift
is designed for dynamically changing distributions. These occur when objects in video
sequences are being tracked and the object moves so that the size and location of the
probability distribution changes in time. The CamShift algorithm adjusts the search
window size in the course of its operation. Initial window size can be set at any
reasonable value. For discrete distributions (digital data), the minimum window length
or width is three. Instead of a set, or externally adapted window size, CamShift relies
on the zeroth moment information, extracted as part of the internal workings of the
algorithm, to continuously adapt its window size within or over each video frame.

M00 I x y,()
y

∑
x

∑=

M10 xI x y,()
y

∑
x

∑= M01 yI x y,()
y

∑
x

∑=

xc
M10

M00
--------= yc

M01

M00
--------=

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-12

CamShift Algorithm
1. Set the calculation region of the probability distribution to the whole image.

2. Choose the initial location of the 2D mean shift search window.

3. Calculate the color probability distribution in the 2D region centered at the
search window location in an ROI slightly larger than the mean shift window
size.

4. Run Mean Shift algorithm to find the search window center. Store the zeroth

moment (area or size) and center location.

5. For the next video frame, center the search window at the mean location stored
in Step 4 and set the window size to a function of the zeroth moment found
there. Go to Step 3.

Figure 2-7 shows CamShift finding the face center on a 1D slice through a face and
hand flesh hue distribution. Figure 2-8 shows the next frame when the face and hand
flesh hue distribution has moved, and convergence is reached in two iterations.

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-13

Rectangular CamShift window is shown behind the hue distribution, while triangle in
front marks the window center. CamShift is shown iterating to convergence down the
left then right columns.

Figure 2-7 Cross Section of Flesh Hue Distribution

1 4 7

10 13 16 19 22

0

50

100

150

200

250

Step 1

1 4 7

10 13 16 19 22

0

50

100

150

200

250

Step 2

1 3 5 7 9

11 13 15 17 19 21 23

0

50

100

150

200

250

Step 3

1 3 5 7 9

11 13 15 17 19 21 23

0

50

100

150

200

250

Step 4

1 3 5 7 9

11 13 15 17 19 21 23

0

50

100

150

200

250

Step 5

1 3 5 7 9

11 13 15 17 19 21 23
0

50

100

150

200

250

Step 6

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-14

Starting from the converged search location in Figure 2-7 bottom right, CamShift
converges on new center of distribution in two iterations.

Calculation of 2D Orientation

The 2D orientation of the probability distribution is also easy to obtain by using the
second moments in the course of CamShift operation, where the point (x,y) ranges
over the search window, and I(x,y) is the pixel (probability) value at the point (x,y).

Second moments are

, .

Then the object orientation, or direction of the major axis, is

.

The first two eigenvalues, that is, length and width, of the probability distribution of
the blob found by CamShift may be calculated in closed form as follows:

Figure 2-8 Flesh Hue Distribution (Next Frame)

1 4 7

10 13 16 19 22

0

50

100

150

200

250

Step 1

1 4 7

10 13 16 19 22

0

50

100

150

200

250

Step 2

M20 x
2
I x y,()

y

∑
x

∑= M02 x
2
I x y,()

y

∑
x

∑=

θ

arc

2
M11

M00
-------- xcyc–

M20

M00
-------- xc

2
–

 M02

M00
-------- yc

2
–

 –

tan

2
---=

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-15

Let

, , and .

Then length l and width w from the distribution centroid are

,

.

When used in face tracking, the above equations give head roll, length, and width as
marked in the source video image in Figure 2-9.

Active Contours
This section describes a function for working with active contours, also called snakes.

The snake was presented in [Kass88] as an energy-minimizing parametric closed curve
guided by external forces. Energy function associated with the snake is

,

where is the internal energy formed by the snake configuration, is the
external energy formed by external forces affecting the snake. The aim of the snake is
to find a location that minimizes energy.

Figure 2-9 Orientation of Flesh Probability Distribution

a
M20

M00
-------- xc

2
–= b 2

M11

M00
-------- xcyc–
 = c

M02

M00
-------- yc

2
–=

l
a c+() b

2
a c–()2

++
2

--=

w
a c+() b

2
a c–()2

+–
2

---=

E Eint Eext+=

Eint Eext

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-16

Let be a discrete representation of a snake, that is, a sequence of points on an
image plane.

In OpenCV the internal energy function is the sum of the contour continuity energy
and the contour curvature energy, as follows:

, where

is the contour continuity energy. This energy is
, where is the average distance between all

pairs . Minimizing over all the snake points
, causes the snake points become more equidistant.

is the contour curvature energy. The smoother the contour is, the less
is the curvature energy. .

In [Kass88] external energy was represented as , where

– image energy and - energy of additional constraints.

Two variants of image energy are proposed:

1. , where I is the image intensity. In this case the snake is attracted to
the bright lines of the image.

2. . The snake is attracted to the image edges.

A variant of external constraint is described in [Kass88]. Imagine the snake points
connected by springs with certain image points. Then the spring force k(x – x0)

produces the energy . This force pulls the snake points to fixed positions, which
can be useful when

snake points need to be fixed. OpenCV does not support this option now.

Summary energy at every point can be written as

, (2.1)

where are the weights of every kind of energy. The full snake energy is the sum
of over all the points.

The meanings of are as follows:

is responsible for contour continuity, that is, a big makes snake points more
evenly spaced.

p1 … pn, ,

Eint Econt Ecurv+=

Econt
Econt d pi pi 1–––= d

pi pi 1––() Econt
p1 … pn, ,

Ecurv
Ecurv pi 1– 2pi– pi 1++

2
=

Eext Eimg Econ+=

Eimg Econ

Eimg I–=

Eimg grad I()–=

kx
2

2

Ei αiEcont i, βiEcurv i, γiEimg i,+ +=

α β γ, ,
Ei

α β γ, ,

α α

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-17

is responsible for snake corners, that is, a big for a certain point makes the angle
between snake edges more obtuse.

is responsible for making the snake point more sensitive to the image energy, rather
than to continuity or curvature.

Only relative values of in the snake point are relevant.

The following way of working with snakes is proposed:

• create a snake with initial configuration;

• define weights at every point;

• allow the snake to minimize its energy;

• evaluate the snake position. If required, adjust , and, possibly, image data,
and repeat the previous step.

There are three well-known algorithms for minimizing snake energy. In [Kass88] the
minimization is based on variational calculus. In [Yuille89] dynamic programming is
used. The greedy algorithm is proposed in [Williams92].

The latter algorithm is the most efficient and yields quite good results. The scheme of
this algorithm for each snake point is as follows:

1. Use Equation (3.1) to compute E for every location from point neighborhood.
Before computing E, each energy term must be normalized
using formula , where max and min are
maximal and minimal energy in scanned neighborhood.

2. Choose location with minimum energy.

3. Move snakes point to this location.

4. Repeat all the steps until convergence is reached.

Criteria of convergence are as follows:

• maximum number of iterations is achieved;

• number of points, moved at last iteration, is less than given threshold.

In [Williams92] the authors proposed a way, called high-level feedback, to adjust b
coefficient for corner estimation during minimization process. Although this feature is
not available in the implementation, the user may build it, if needed.

β β

γ

α β γ, ,

α β γ, ,

α β γ, ,

Econt Ecurv Eimg, ,
Enormalized Eimg min–() max min–()⁄=

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-18

Optical Flow
This section describes several functions for calculating optical flow between two
images.

Most papers devoted to motion estimation use the term optical flow. Optical flow is
defined as an apparent motion of image brightness. Let I(x,y,t) be the image
brightness that changes in time to provide an image sequence. Two main assumptions
can be made:

1. Brightness I(x,y,t) smoothly depends on coordinates x, y in greater part of
the image.

2. Brightness of every point of a moving or static object does not change in time.

Let some object in the image, or some point of an object, move and after time dt the
object displacement is (dx, dy). Using Taylor series for brightness I(x,y,t) gives
the following:

, (2.2)

where “…” are higher order terms.

Then, according to Assumption 2:

, (2.3)

and

. (2.4)

Dividing (18.3) by dt and defining

, (2.5)

gives an equation

, (2.6)

usually called optical flow constraint equation, where u and v are components of
optical flow field in x and y coordinates respectively. Since Equation (2.6) has more
than one solution, more constraints are required.

Some variants of further steps may be chosen. Below follows a brief overview of the
options available.

I x dx y dy t dt+,+,+() I x y t, ,() ∂I
∂x
------dx

∂I
∂y
------dy

∂I
∂t
------dt …+ + + +=

I x dx y dy t dt+,+,+() I x y t, ,()=

∂I
∂x
------dx

∂I
∂y
------dy

∂I
∂t
------dt …+ + + 0=

dx
dt
------- u=

dy
dt
------- v=

∂I
∂t
------–

∂I
∂x
------u

∂I
∂y
------v+=

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-19

Lucas & Kanade Technique

Using the optical flow equation for a group of adjacent pixels and assuming that all of
them have the same velocity, the optical flow computation task is reduced to solving a
linear system.

In a non-singular system for two pixels there exists a single solution of the system.
However, combining equations for more than two pixels is more effective. In this case
the approximate solution is found using the least square method. The equations are
usually weighted. Here the following 2x2 linear system is used:

,

,

where W(x,y) is the Gaussian window. The Gaussian window may be represented as a
composition of two separable kernels with binomial coefficients. Iterating through the
system can yield even better results. It means that the retrieved offset is used to
determine a new window in the second image from which the window in the first
image is subtracted, while It is calculated.

Horn & Schunck Technique

Horn and Schunck propose a technique that assumes the smoothness of the estimated
optical flow field [Horn81]. This constraint can be formulated as

. (2.7)

This optical flow solution can deviate from the optical flow constraint. To express this
deviation the following integral can be used:

. (2.8)

The value , where is a parameter, called Lagrangian multiplier, is to be
minimized. Typically, a smaller must be taken for a noisy image and a larger one for
a quite accurate image.

To minimize , a system of two second-order differential equations for the whole
image must be solved:

W x y,()IxIyu W x y,()Iy
2
v

x y,
∑+

x y,
∑ W x y,()IyIt

x y,
∑–=

W x y,()Ix
2
u W x y,()IxIyv

x y,
∑+

x y,
∑ W x y,()IxIt

x y,
∑–=

S
∂u
∂x

 2 ∂u

∂y

 2 ∂v

∂x

 2 ∂v

∂y

 2

+ + + xd() y
image

d∫∫=

C
∂I

∂ximage
------------------u

∂I
∂y
------v

∂I
∂t
------+ +

 2
xd yd∫∫=

S λC+ λ
λ

S λC+

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-20

(2.9)

Iterative method could be applied for the purpose when a number of iterations are
made for each pixel. This technique for two consecutive images seems to be
computationally expensive because of iterations, but for a long sequence of images
only an iteration for two images must be done, if the result of the previous iteration is
chosen as initial approximation.

Block Matching

This technique does not use an optical flow equation directly. Consider an image
divided into small blocks that can overlap. Then for every block in the first image the
algorithm tries to find a block of the same size in the second image that is most similar
to the block in the first image. The function searches in the neighborhood of some
given point in the second image. So all the points in the block are assumed to move by
the same offset that is found, just like in Lucas & Kanade method. Different metrics
can be used to measure similarity or difference between blocks - cross correlation,
squared difference, etc.

Estimators
This section describes group of functions for estimating stochastic models state.

State estimation programs implement a model and an estimator. A model is analogous
to a data structure representing relevant information about the visual scene. An
estimator is analogous to the software engine that manipulates this data structure to
compute beliefs about the world. The OpenCV routines provide two estimators:
standard Kalman and condensation.

Models

Many computer vision applications involve repeated estimating, that is, tracking, of
the system quantities that change over time. These dynamic quantities are called the
system state. The system in question can be anything that happens to be of interest to a
particular vision task.

∂2
u

∂x2

∂2
u

∂y2
---------+ λ ∂I

∂x
------u

∂I
∂y
------v

∂I
∂t
------+ +

 ∂I
∂x
------,=

∂2
v

∂x2

∂2
v

∂y2
---------+ λ ∂I

∂x
------u

∂I
∂y
------v

∂I
∂t
------+ +

 ∂I
∂x
------.=

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-21

To estimate the state of a system, reasonably accurate knowledge of the system model
and parameters may be assumed. Parameters are the quantities that describe the model
configuration but change at a rate much slower than the state. Parameters are often
assumed known and static.

In OpenCV a state is represented with a vector. In addition to this output of the state
estimation routines, another vector introduced is a vector of measurements that are
input to the routines from the sensor data.

To represent the model, two things are to be specified:

• Estimated dynamics of the state change from one moment of time to the next

• Method of obtaining a measurement vector zt from the state.

Estimators

Most estimators have the same general form with repeated propagation and update
phases that modify the state's uncertainty as illustrated in Figure 2-10.

The time update projects the current state estimate ahead in time. The measurement
update adjusts the projected estimate using an actual measurement at that time.

Figure 2-10 Ongoing Discrete Kalman Filter Cycle

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-22

An estimator should be preferably unbiased when the probability density of estimate
errors has an expected value of 0. There exists an optimal propagation and update
formulation that is the best, linear, unbiased estimator (BLUE) for any given model of
the form. This formulation is known as the discrete Kalman estimator, whose standard
form is implemented in OpenCV.

Kalman Filtering

The following explanation was taken from University of North Carolina at Chapel Hill
technical report TR 95-041 by Greg Welch and Gary Bishop [Welsh95].

The Kalman filter addresses the general problem of trying to estimate the state x of a
discrete-time process that is governed by the linear stochastic difference equation

(2.10)

with a measurement z, that is

(2.11)

The random variables wk and vk respectively represent the process and measurement
noise. They are assumed to be independent of each other, white, and with normal
probability distributions

, (2.12)

. (2.13)

The N x N matrix A in the difference equation (2.10) relates the state at time step k

to the state at step k+1, in the absence of process noise. The M x N matrix H in the
measurement equation (2.11) relates the state to the measurement zk.

If denotes a priori state estimate at step k provided the process prior to step k is
known, and Xk denotes a posteriori state estimate at step k provided measurement zk is
known, then a priori and a posteriori estimate errors can be defined

as . The a priori estimate error covariance is then and the a

posteriori estimate error covariance is .

The Kalman filter estimates the process by using a form of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of noisy
measurements. As such, the equations for the Kalman filter fall into two groups: time

xk 1+ Axk wk+=

zk Hxk vk+=

p w() N 0 Q,()=

p w() N 0 R,()=

X
k

ek xk Xk–=

ek xk Xk–=
P
k

E e
k
ek

T–[]=

Pk E ekek
T[]=

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-23

update equations and measurement update equations. The time update equations are
responsible for projecting forward in time the current state and error covariance
estimates to obtain the a priori estimates for the next time step. The measurement
update equations are responsible for the feedback, that is, for incorporating a new
measurement into the a priori estimate to obtain an improved a posteriori estimate. The
time update equations can also be viewed as predictor equations, while the
measurement update equations can be thought of as corrector equations. Indeed, the
final estimation algorithm resembles that of a predictor-corrector algorithm for solving
numerical problems as shown in Figure 2-10. The specific equations for the time and
measurement updates are presented below.

Time Update Equations

,

.

Measurement Update Equations:

,

,

,

where K is the so-called Kalman gain matrix and I is the identity operator. See
CvKalman in Motion Analysis and Object Tracking Reference.

ConDensation Algorithm

This section describes the ConDensation (conditional density propagation) algorithm,
based on factored sampling. The main idea of the algorithm is using the set of
randomly generated samples for probability density approximation. For simplicity,
general principles of ConDensation algorithm are described below for linear stochastic
dynamical system:

(2.14)

with a measurement Z.

Xk 1+ AkXk=

P
k 1+ AkPkAk

T
Qk+=

Kk P
k
Hk
T
HkPkHk

T
Rk+()

1–
=

Xk Xk Kk zk HkXk–()+=

Pk I KkHk–()P
k

=

xk 1+ Axk wk+=

OpenCV Reference Manual Motion Analysis and Object Tracking 2

2-24

To start the algorithm, a set of samples Xn must be generated. The samples are
randomly generated vectors of states. The function ConDensInitSampleSet does it in
OpenCV implementation.

During the first phase of the condensation algorithm every sample in the set is updated
according to Equation (3.14).

Further, when the vector of measurement Z is obtained, the algorithm estimates
conditional probability densities of every sample . The OpenCV
implementation of the ConDensation algorithm enables the user to define various
probability density functions. There is no such special function in the library. After the
probabilities are calculated, the user may evaluate, for example, moments of tracked
process at the current time step.

If dynamics or measurement of the stochastic system is non-linear, the user may
update the dynamics (A) or measurement (H) matrices, using their Taylor series at each
time step. See CvConDensation in Motion Analysis and Object Tracking Reference.

P X
n
Z()

3-1

3Image Analysis

Contour Retrieving
This section describes contour retrieving functions.

Below follow descriptions of:

• several basic functions that retrieve contours from the binary image and store them
in the chain format;

• functions for polygonal approximation of the chains.

Basic Definitions

Most of the existing vectoring algorithms, that is, algorithms that find contours on the
raster images, deal with binary images. A binary image contains only 0-pixels, that is,
pixels with the value 0, and 1-pixels, that is, pixels with the value 1. The set of
connected 0- or 1-pixels makes the 0-(1-) component. There are two common sorts of
connectivity, the 4-connectivity and 8-connectivity. Two pixels with coordinates (x’,
y’) and (x”, y”) are called 4-connected if, and only if, and
8-connected if, and only if, . Figure 1-1 shows these relations.:

Figure 3-1 Pixels Connectivity Patterns

x′ x″– y ′ y″–+ 1=

max x′ x″– , y′ y″–() 1=

Pixels, 8-connected to the black one

Pixels, 4- and 8-connected to the black one

OpenCV Reference Manual Image Analysis 3

3-2

Using this relationship, the image is broken into several non-overlapped 1-(0-)
4-connected (8-connected) components. Each set consists of pixels with equal values,
that is, all pixels are either equal to 1 or 0, and any pair of pixels from the set can be
linked by a sequence of 4- or 8-connected pixels. In other words, a 4-(8-) path exists
between any two points of the set. The components shown in Figure 1-2 may have
interrelations.

1-components W1, W2, and W3 are inside the frame (0-component B1), that is,
directly surrounded by B1.

0-components B2 and B3 are inside W1.

1-components W5 and W6 are inside B4, that is inside W3, so these 1-components
are inside W3 indirectly. However, neither W5 nor W6 enclose one another, which
means they are on the same level.

In order to avoid a topological contradiction, 0-pixels must be regarded as 8-(4-)
connected pixels in case 1-pixels are dealt with as 4-(8-) connected. Throughout this
document 8-connectivity is assumed to be used with 1-pixels and 4-connectivity with
0-pixels.

Figure 3-2 Hierarchical Connected Components

OpenCV Reference Manual Image Analysis 3

3-3

Since 0-components are complementary to 1-components, and separate 1-components
are either nested to each other or their internals do not intersect, the library considers
1-components only and only their topological structure is studied, 0-pixels making up
the background. A 0-component directly surrounded by a 1-component is called the
hole of the 1-component. The border point of a 1-component could be any pixel that
belongs to the component and has a 4-connected 0-pixel. A connected set of border
points is called the border.

Each 1-component has a single outer border that separates it from the surrounding
0-component and zero or more hole borders that separate the 1-component from the
0-components it surrounds. It is obvious that the outer border and hole borders give a
full description of the component. Therefore all the borders, also referred to as
contours, of all components stored with information about the hierarchy make up a
compressed representation of the source binary image. See Reference for description
of the functions FindContours, StartFindContours, and FindNextContour

that build such a contour representation of binary images.

Contour Representation

The library uses two methods to represent contours. The first method is called the
Freeman method or the chain code (Figure 1-3). For any pixel all its neighbors with
numbers from 0 to 7 can be enumerated:

Figure 3-3 Contour Representation in Freeman Method

0

123

4

5 6 7

OpenCV Reference Manual Image Analysis 3

3-4

The 0-neighbor denotes the pixel on the right side, etc. As a sequence of 8-connected
points, the border can be stored as the coordinates of the initial point, followed by
codes (from 0 to 7) that specify the location of the next point relative to the current one
(see Figure 1-4).

The chain code is a compact representation of digital curves and an output format of
the contour retrieving algorithms described below.

Polygonal representation is a different option in which the curve is coded as a
sequence of points, vertices of a polyline. This alternative is often a better choice for
manipulating and analyzing contours over the chain codes; however, this
representation is rather hard to get directly without much redundancy. Instead,
algorithms that approximate the chain codes with polylines could be used.

Contour Retrieving Algorithm

Four variations of algorithms described in [Suzuki85] are used in the library to retrieve
borders.

1. The first algorithm finds only the extreme outer contours in the image and
returns them linked to the list. Figure 1-2 shows these external boundaries of
W1, W2, and W3 domains.

2. The second algorithm returns all contours linked to the list. Figure 1-2 shows
the total of 8 such contours.

Figure 3-4 Freeman Coding of Connected Components

I Initial Point

Chain Code for the Curve: 34445670007654443

OpenCV Reference Manual Image Analysis 3

3-5

3. The third algorithm finds all connected components by building a two-level
hierarchical structure: on the top are the external boundaries of 1-domains and
every external boundary contains a link to the list of holes of the
corresponding component. The third algorithm returns all the connected
components as a two-level hierarchical structure: on the top are the external
boundaries of 1-domains and every external boundary contour header contains
a link to the list of holes in the corresponding component. The list can be
accessed via v_next field of the external contour header. Figure 1-2 shows
that W2, W5, and W6 domains have no holes; consequently, their boundary
contour headers refer to empty lists of hole contours. W1 domain has two holes
- the external boundary contour of W1 refers to a list of two hole contours.
Finally, W3 external boundary contour refers to a list of the single hole
contour.

4. The fourth algorithm returns the complete hierarchical tree where all the
contours contain a list of contours surrounded by the contour directly, that is,
the hole contour of W3 domain has two children: external boundary contours
of W5 and W6 domains.

All algorithms make a single pass through the image; there are, however, rare
instances when some contours need to be scanned more than once. The algorithms do
line-by-line scanning.

Whenever an algorithm finds a point that belongs to a new border the border following
procedure is applied to retrieve and store the border in the chain format. During the
border following procedure the algorithms mark the visited pixels with special positive
or negative values. If the right neighbor of the considered border point is a 0-pixel and,
at the same time, the 0-pixel is located in the right hand part of the border, the border
point is marked with a negative value. Otherwise, the point is marked with the same
magnitude but of positive value, if the point has not been visited yet. This can be easily
determined since the border can cross itself or tangent other borders. The first and
second algorithms mark all the contours with the same value and the third and fourth
algorithms try to use a unique ID for each contour, which can be used to detect the
parent of any newly met border.

OpenCV Reference Manual Image Analysis 3

3-6

Features

Fixed Filters

This section describes various fixed filters, primarily derivative operators.

Sobel Derivatives

Figure 1-5 shows first x derivative Sobel operator. The grayed bottom left number
indicates the origin in a “p-q” coordinate system. The operator can be expressed as a
polynomial and decomposed into convolution primitives.

For example, first x derivative Sobel operator may be expressed as a polynomial
and

decomposed into convolution primitives as shown in Figure 1-5.

This may be used to express a hierarchy of first x and y derivative Sobel operators as
follows:

(3.1)

(3.2)

for .

Figure 3-5 First x Derivative Sobel Operator

1

1

1

2

1

0

0

0

-1

-2

-1

2

1

0

0 1 2

q

p

1 1*
1

1
1 -1* *

(1+q) (1+q) (1+p) (1-p)

1 2q q
2

p
2

– 2p
2
q– p

2
q

2
–+ + 1 q+()2

1 p
2

–() 1 q+() 1 q+() 1 p+() 1 p–()= =

∂
∂x
------ 1 p+()n 1–

1 q+()n 1 p–()⇒

∂
∂x
------ 1 p+()n 1 q+()n 1–

1 q–()⇒

n 0>

OpenCV Reference Manual Image Analysis 3

3-7

Figure 1-6 shows the Sobel first derivative filters of equations (3.1) and (3.2) for n = 2,
4. The Sobel filter may be decomposed into simple “add-subtract” convolution
primitives.

Figure 3-6 First Derivative Sobel Operators for n=2 and n= 4

1

1
1 -1*-12

1

4

6

2

8

12

0

0

0

4

1

8

2

0

0

-2

-8

-1

-4

-6

-8

-2

-4

-1

-12

-1

-2

0

-4

-8

0

-6

0

2

1

8

4

12

6

-4

-8

0

-1

-2

0

8

4

2

1

1 1 *
-1

1

1 1
1

1 * * 1 1
1

1 * * 1 1**
1

1

* 1 1
1

1 *

1

1
1 -1*

01

2

1

-1

0

0

-2

-1

0

-1

1

-2

0

2

-1

0

1
1 1 *

-1

1

n = 4

n = 2

Filter AverageDifferentiate
dx

dy

dx

dy

1

1
1 -1*-12

1

4

6

2

8

12

0

0

0

4

1

8

2

0

0

-2

-8

-1

-4

-6

-8

-2

-4

-1

-12

-1

-2

0

-4

-8

0

-6

0

2

1

8

4

12

6

-4

-8

0

-1

-2

0

8

4

2

1

1 1 *
-1

1

1 1
1

1 * * 1 1
1

1 * * 1 1**
1

1

* 1 1
1

1 *

1

1
1 -1*

01

2

1

-1

0

0

-2

-1

0

-1

1

-2

0

2

-1

0

1
1 1 *

-1

1

n = 4

n = 2
Filter AverageDifferentiate

dx

dy

dx

dy

OpenCV Reference Manual Image Analysis 3

3-8

Second derivative Sobel operators can be expressed in polynomial decomposition
similar to equations (3.1) and (3.2). The second derivative equations are:

, (3.3)

, (3.4)

(3.5)

for n = 2, 3,….

Figure 1-7 shows the filters that result for n = 2 and 4. Just as shown in Figure 1-6,
these filters can be decomposed into simple “add-subtract” separable convolution
operators as indicated by their polynomial form in the equations.

∂2

∂x2
--------- 1 p+()n 2–

1 q+()n 1 p–()2⇒

∂2

∂y2
--------- 1 p+()n 1–

1 q+()n 2–
1 q–()2⇒

∂2

∂x∂y
-------------- 1 p+()n 1–

1 q+()n 1–
1 p–() 1 q–()⇒

OpenCV Reference Manual Image Analysis 3

3-9

Third derivative Sobel operators can also be expressed in the polynomial
decomposition form:

Figure 3-7 Sobel Operator Second Order Derivators for n = 2 and n = 4

The polynomial decomposition is shown above each operator.

-12 0

1

4

6

0

0

0

-2

-4

4

1

0

0

-8

-2

0

0

1

4

6

0

0

4

1

-12

0 0 0 0 0

-2 -8 -8 -2

0 0 0 0 0

1 4 6 4 1

1 4 6 4 1

-21

2

1

1

-4

-2

2

1

0

-1

1

0

0

0

1

0

-1

-2

1

1

2

-4

2

1

-2

1

0

-1

-2

0

-2

-4

0

0

0

0

2

1

4

2

0

0

2

4

1

2

0

-4

-2

-2

-1

δ2/δx2 = (1+p)2(1+q)4(1-p)2 δ2/δy2 = (1+q)2(1+p)4(1-q)2

δ2/δxδy = (1+p)3(1+q)3(1-p)(1-q)

δ2/δxδy = (1+q)(1+p)(1-q)(1-p)δ2/δy2 = (1+p)2(1-q)2δ2/δx2 = (1+q)2(1-p)2

OpenCV Reference Manual Image Analysis 3

3-10

, (3.6)

, (3.7)

, (3.8)

(3.9)

for n =3, 4,…. The third derivative filter needs to be applied only for the cases n = 4

and general.

Optimal Filter Kernels with Floating Point Coefficients

First Derivatives

Table 1-1 gives coefficients for five increasingly accurate x derivative filters, the y

filter derivative coefficients are just column vector versions of the x derivative filters.

Table 3-1 Coefficients for Accurate First Derivative Filters

Anchor DX Mask Coefficients

0 0.74038 -0.12019

0 0.833812 -0.229945 0.0420264

0 0.88464 -0.298974 0.0949175 -0.0178608

0 0.914685 -0.346228 0.138704 -0.0453905 0.0086445

0 0.934465 -0.378736 0.173894 -0.0727275 0.0239629 -0.00459622

Five increasingly accurate separable x derivative filter coefficients. The table gives half
coefficients only. The full table can be obtained by mirroring across the central anchor
coefficient. The greater the number of coefficients used, the less distortion from the
ideal derivative filter.

∂3

∂x3
--------- 1 p+()n 3–

1 q+()n 1 p–()3⇒

∂3

∂y3
--------- 1 p+()n 1 q+()n 3–

1 q–()3⇒

∂3

∂x2∂y
---------------- 1 p–()2

1 p+()n 2–
1 q+()n 1–

1 q–()⇒

∂3

∂x∂y2
---------------- 1 p–() 1 p+()n 1–

1 q+()n 2–
1 q–()2⇒

OpenCV Reference Manual Image Analysis 3

3-11

Second Derivatives

Table 1-2 gives coefficients for five increasingly accurate x second derivative filters.
The y second derivative filter coefficients are just column vector versions of the x

second derivative filters.

Laplacian Approximation

The Laplacian operator is defined as the sum of the second derivatives x and y:

. (3.10)

Thus, any of the equations defined in the sections for second derivatives may be used
to calculate the Laplacian for an image.

Feature Detection

A set of Sobel derivative filters may be used to find edges, ridges, and blobs, especially
in a scale-space, or image pyramid, situation. Below follows a description of methods
in which the filter set could be applied.

• Dx is the first derivative in the direction x just as Dy.

• Dxx is the second derivative in the direction x just as Dyy.

• Dxy is the partial derivative with respect to x and y.

• Dxxx is the third derivative in the direction x just as Dyyy.

Table 3-2 Coefficients for Accurate Second Derivative Filters

Anchor DX Mask Coefficients

-2.20914 1.10457

-2.71081 1.48229 -0.126882

-2.92373 1.65895 -0.224751 0.0276655

-3.03578 1.75838 -0.291985 0.0597665 -0.00827

-3.10308 1.81996 -0.338852 0.088077 -0.0206659 0.00301915

The table gives half coefficients only. The full table can be obtained by
mirroring across the central anchor coefficient. The greater the number of
coefficients used, the less distortion from the ideal derivative filter.

L
∂2

∂x2

∂2

∂y2
---------+=

OpenCV Reference Manual Image Analysis 3

3-12

• Dxxy and Dxyy are the third partials in the directions x, y.

Corner Detection

Method 1

Corners may be defined as areas where level curves multiplied by the gradient
magnitude raised to the power of 3 assume a local maximum

. (3.11)

Method 2

Sobel first derivative operators are used to take the derivatives x and y of an image,
after which a small region of interest is defined to detect corners in. A 2x2 matrix of
the sums of the derivatives x and y is subsequently created as follows:

(3.12)

The eigenvalues are found by solving , where is a column vector of
the eigenvalues and I is the identity matrix. For the 2x2 matrix of the equation above,
the solutions may be written in a closed form:

. (3.13)

If , where t is some threshold, then a corner is found at that location. This can
be very useful for object or shape recognition.

Canny Edge Detector

Edges are the boundaries separating regions with different brightness or color. J.Canny
suggested in [Canny86] an efficient method for detecting edges. It takes grayscale
image on input and returns bi-level image where non-zero pixels mark detected edges.
Below the 4-stage algorithm is described.

Dx
2
Dyy Dy

2
Dxx 2DxDyDxy–+

C
Dx

2
∑ DxDy∑
DxDy∑ Dy

2
∑

=

det C λI–() 0= λ

λ
Dx

2
Dy

2
Dx

2
Dy

2
∑+∑()

2
4 Dx

2
Dy

2
DxDy∑(–∑∑()

2

–±∑+∑

2
--=

λ1, λ2 t>

OpenCV Reference Manual Image Analysis 3

3-13

Stage 1. Image Smoothing

The image data is smoothed by a Gaussian function of width specified by the user
parameter.

Stage 2. Differentiation

The smoothed image, retrieved at Stage 1, is differentiated with respect to the
directions x and y.

From the computed gradient values x and y, the magnitude and the angle of the
gradient can be calculated using the hypotenuse and arctangen functions.

In the OpenCV library smoothing and differentiation are joined in Sobel operator.

Stage 3. Non-Maximum Suppression

After the gradient has been calculated at each point of the image, the edges can be
located at the points of local maximum gradient magnitude. It is done via suppression
of non-maximums, that is points, whose gradient magnitudes are not local maximums.
However, in this case the non-maximums perpendicular to the edge direction, rather
than those in the edge direction, have to be suppressed, since the edge strength is
expected to continue along an extended contour.

The algorithm starts off by reducing the angle of gradient to one of the four sectors
shown in Figure 1-8. The algorithm passes the 3x3 neighborhood across the magnitude
array. At each point the center element of the neighborhood is compared with its two
neighbors along line of the gradient given by the sector value.

If the central value is non-maximum, that is, not greater than the neighbors, it is
suppressed.

OpenCV Reference Manual Image Analysis 3

3-14

Stage 4. Edge Thresholding

The Canny operator uses the so-called “hysteresis” thresholding. Most thresholders
use a single threshold limit, which means that if the edge values fluctuate above and
below this value, the line appears broken. This phenomenon is commonly referred to
as “streaking”. Hysteresis counters streaking by setting an upper and lower edge value
limit. Considering a line segment, if a value lies above the upper threshold limit it is
immediately accepted. If the value lies below the low threshold it is immediately
rejected. Points which lie between the two limits are accepted if they are connected to
pixels which exhibit strong response. The likelihood of streaking is reduced drastically
since the line segment points must fluctuate above the upper limit and below the lower
limit for streaking to occur. J. Canny recommends in [Canny86] the ratio of high to
low limit to be in the range of two or three to one, based on predicted signal-to-noise
ratios.

Figure 3-8 Gradient Sectors

OpenCV Reference Manual Image Analysis 3

3-15

Hough Transform

The Hough Transform (HT) is a popular method of extracting geometric primitives
from raster images. The simplest version of the algorithm just detects lines, but it is
easily generalized to find more complex features. There are several classes of HT that
differ by the image information available. If the image is arbitrary, the Standard Hough
Transform (SHT, [Trucco98]) should be used.

SHT, like all HT algorithms, considers a discrete set of single primitive parameters. If
lines should be detected, then the parameters are and , such that the line equation is

. Here

is the distance from the origin to the line, and

is the angle between the axis x and the perpendicular to the line
vector that points from the origin to the line.

Every pixel in the image may belong to many lines described by a set of parameters. In
other words, the accumulator is defined which is an integer array A(,) containing
only zeroes initially. For each non-zero pixel in the image all accumulator elements
corresponding to lines that contain the pixel are incremented by 1. Then a threshold is
applied to distinguish lines and noise features, that is, select all pairs (,) for which
A(,) is greater than the threshold value. All such pairs characterize detected lines.

Multidimensional Hough Transform (MHT) is a modification of SHT. It performs
precalculation of SHT on rough resolution in parameter space and detects the regions
of parameter values that possibly have strong support, that is, correspond to lines in the
source image. MHT should be applied to images with few lines and without noise.

[Matas98] presents advanced algorithm for detecting multiple primitives, Progressive
Probabilistic Hough Transform (PPHT). The idea is to consider random pixels one by
one. Every time the accumulator is changed, the highest peak is tested for threshold
exceeding. If the test succeeds, points that belong to the corridor specified by the peak
are removed. If the number of points exceeds the predefined value, that is, minimum
line length, then the feature is considered a line, otherwise it is considered a noise.
Then the process repeats from the very beginning until no pixel remains in the image.
The algorithm improves the result every step, so it can be stopped any time. [Matas98]
claims that PPHT is easily generalized in almost all cases where SHT could be
generalized. The disadvantage of this method is that, unlike SHT, it does not process
some features, for instance, crossed lines, correctly.

ρ θ
ρ x θ() y θ()sin+cos=

ρ

θ

ρ θ

ρ θ
ρ θ

OpenCV Reference Manual Image Analysis 3

3-16

For more information see [Matas98] and [Trucco98].

Image Statistics
This section describes a set of functions that compute various information about
images, considering their pixels as independent observations of a stochastic variable.

The computed values have statistical character and most of them depend on values of
the pixels rather than on their relative positions. These statistical characteristics
represent integral information about a whole image or its regions.

The functions CountNonZero, SumPixels, Mean, Mean_StdDev, MinMaxLoc

describe the characteristics that are typical for any stochastic variable or deterministic
set of numbers, such as mean value, standard deviation, min and max values.

The function Norm describes the function for calculating the most widely used norms
for a single image or a pair of images. The latter is often used to compare images.

The functions Moments, GetSpatialMoment, GetCentralMoment,

GetNormalizedCentralMoment, GetHuMoments describe moments functions for
calculating integral geometric characteristics of a 2D object, represented by grayscale
or bi-level raster image, such as mass center, orientation, size, and rough shape
description. As opposite to simple moments, that are used for characterization of any
stochastic variable or other data, Hu invariants, described in the last function
discussion, are unique for image processing because they are specifically designed for
2D shape characterization. They are invariant to several common geometric
transformations.

Pyramids
This section describes functions that support generation and reconstruction of
Gaussian and Laplacian Pyramids.

Figure 1-9 shows the basics of creating Gaussian or Laplacian pyramids. The original
image G0 is convolved with a Gaussian, then down-sampled to get the reduced image
G1. This process can be continued as far as desired or until the image size is one pixel.

OpenCV Reference Manual Image Analysis 3

3-17

The Laplacian pyramid can be built from a Gaussian pyramid as follows: Laplacian
level “k” can be built by up-sampling the lower level image Gk+1. Convolving the
image with a Gaussian kernel “g” interpolates the pixels “missing” after up-sampling.
The resulting image is subtracted from the image Gk. To rebuild the original image, the
process is reversed as Figure 1-9 shows.

Figure 3-9 A Three-Level Gaussian and Laplacian Pyramid.

G2

G1

I = G0

g

L0 G0 = I

L1 G1

G2

g g

g g

g

OpenCV Reference Manual Image Analysis 3

3-18

The Gaussian image pyramid on the left is used to create the Laplacian pyramid in the
center, which is used to reconstruct the Gaussian pyramid and the original image on
the right. In the figure, I is the original image, G is the Gaussian image, L is the
Laplacian image. Subscripts denote level of the pyramid. A Gaussian kernel g is used
to convolve the image before down-sampling or after up-sampling.

Image Segmentation by Pyramid

Computer vision uses pyramid based image processing techniques on a wide scale
now. The pyramid provides a hierarchical smoothing, segmentation, and hierarchical
computing structure that supports fast analysis and search algorithms.

P. J. Burt suggested a pyramid-linking algorithm as an effective implementation of a
combined segmentation and feature computation algorithm [Burt81]. This algorithm,
described also in [Jahne97], finds connected components without preliminary
threshold, that is, it works on grayscale image. It is an iterative algorithm.

Burt’s algorithm includes the following steps:

1. Computation of the Gaussian pyramid.

2. Segmentation by pyramid-linking.

3. Averaging of linked pixels.

Steps 2 and 3 are repeated iteratively until a stable segmentation result is reached.

After computation of the Gaussian pyramid a son-father relationship is defined
between nodes (pixels) in adjacent levels. The following attributes may be defined for
every node (i,j) on the level l of the pyramid:

c[i,j,l][t] is the value of the local image property, e.g., intensity;

a[i,j,l][t] is the area over which the property has been computed;

p[[i,j,l][t] is pointer to the node’s father, which is at level l+1;

s[i,j,l][t] is the segment property, the average value for the entire segment
containing the node.

The letter t stands for the iteration number . For , .

For every node (i,j) at level l there are 16 candidate son nodes at level l-1 (i’,j’),
where

t 0≥() t 0= c i j l, ,[] 0[] Gi j,
l

=

OpenCV Reference Manual Image Analysis 3

3-19

, . (3.14)

For every node (i,j) at level l there are 4 candidate father nodes at level l+1
(i’’,j’’), (see Figure 1-10), where

, . (3.15)

Son-father links are established for all nodes below the top of pyramid for every
iteration t. Let d[n][t] be the absolute difference between the c value of the node
(i,j)at level l and its nth candidate father, then

(3.16)

After the son-father relationship is defined, the t, c, and a values are computed from
bottom to the top for the as

, , ,

where sum is calculated over all (i,j)node sons, as indicated by the links p in (3.16).

Figure 3-10 Connections between Adjacent Pyramid Levels

i' 2i 1 2i 2i 1 2i 2+,+,,–{ }∈ j' 2j 1 2j 2j 1 2j 2+,+,,–{ }∈

i'' i(1) 2⁄ i 1) 2⁄+,–{ }∈ j'' j(1) 2⁄ j 1) 2⁄+,–{ }∈

p i j l, ,[] t[] min d n[] t[]
1 n 4≤ ≤

arg=

],,[lji]1,","[+lji

0 l n≤ ≤

a i j 0, ,[] t[] 1= c i j 0, ,[] t[] c i j 0, ,[] 0[]= a i j l, ,[] t[] a i' j' l 1–, ,[] t[]∑=

OpenCV Reference Manual Image Analysis 3

3-20

If then ,
but if , the node has no sons, is set to the value of one of its
candidate sons selected at random. No segment values are calculated in the top down
order. The value of the initial level L is an input parameter of the algorithm. At the
level L the segment value of each node is set equal to its local property value:

.

For lower levels each node value is just that of its father
.

Here node (i’’,j’’) is the father of (i,j), as established in Equation (3.16).

After this the current iteration t finishes and the next iteration begins. Any
changes in pointers in the next iteration result in changes in the values of local image
properties.

The iterative process is continued until no changes occur between two successive
iterations.

The choice of L only determines the maximum possible number of segments. If the
number of segments less than the numbers of nodes at the level L, the values of

are clustered into a number of groups equal to the desired number of
segments. The group average value is computed from the c values of its members,
weighted by their areas a, and replaces the value c for each node in the group.

See Pyramid Data Types in Image Analysis Reference.

Morphology
This section describes an expanded set of morphological operators that can be used for
noise filtering, merging or splitting image regions, as well as for region boundary
detection.

Mathematical Morphology is a set-theory method of image analysis first developed by
Matheron and Serra at the Ecole des Mines, Paris [Serra82]. The two basic
morphological operations are erosion, or thinning, and dilation, or thickening. All
operations involve an image A, called the object of interest, and a kernel element B,
called the structuring element. The image and structuring element could be in any
number of dimensions, but the most common use is with a 2D binary image, or with a

a i j l, ,[] t[] 0> c i j l, ,[] t[] i' j' l' 1–, ,[] t[] c i' j' l 1–, ,[] t[]⋅() a i j l, ,[] t[]⁄∑=

a i j 0, ,[] t[] 0= c i j 0, ,[] t[]

s i j L, ,[] t[] c i j L, ,[] t[]=

l L<
s i j l, ,[] t[] c i'' j'' l 1+, ,[] t[]=

t 1+

c i j L, ,[] t[]

OpenCV Reference Manual Image Analysis 3

3-21

3D grayscale image. The element B is most often a square or a circle, but could be any
shape. Just like in convolution, B is a kernel or template with an anchor point.
Figure 1-11 shows dilation and erosion of object A by B. The element B is rectangular
with an anchor point at upper left shown as a dark square.

If is the translation of B around the image, then dilation of object A by structuring
element B is

.

It means every pixel is in the set, if the intersection is not null. That is, a pixel under
the anchor point of B is marked “on”, if at least one pixel of B is inside of A.

indicates the dilation is done n times.

Erosion of object A by structuring element B is

.

That is, a pixel under the anchor of B is marked “on”, if B is entirely within A.

Figure 3-11 Dilation and Erosion of A by B

.

B

A

Dilation by B

Erosion by B

Bt

A B⊕ t:Bt A 0≠∩

=

A nB⊕

AΘB t:Bt A⊆{ }=

OpenCV Reference Manual Image Analysis 3

3-22

indicates the erosion is done n times and can be useful in finding , the
boundary of A:

.

Opening of A by B is

. (3.17)

Closing of A by B is

, (3.18)

where n > 0.

Flat Structuring Elements for Gray Scale

Erosion and dilation can be done in 3D, that is, with gray levels. 3D structuring
elements can be used, but the simplest and the best way is to use a flat structuring
element B as shown in Figure 1-12. In the figure, B has an anchor slightly to the right of
the center as shown by the dark mark on B. Figure 1-12 shows 1D cross-section of both
dilation and erosion of a gray level image A by a flat structuring element B.

AΘnB ∂A

∂A A AΘnB()–=

A °B AΘnB() nB⊕=

A B• A nB⊕()ΘnB=

OpenCV Reference Manual Image Analysis 3

3-23

In Figure 1-12 dilation is mathematically

,

Figure 3-12 Dilation and Erosion of Gray Scale Image.

B A

Dilation of A by B

Erosion of A by B

sup A
y Bt∈

OpenCV Reference Manual Image Analysis 3

3-24

and erosion is

.

Open and Close Gray Level with Flat Structuring Element

The typical position of the anchor of the structuring element B for opening and closing
is in the center. Subsequent opening and closing could be done in the same manner as
in the Opening (3.17) and Closing (3.18) equations above to smooth off jagged objects
as opening tends to cut off peaks and closing tends to fill in valleys.

Morphological Gradient Function

A morphological gradient may be taken with the flat gray scale structuring elements as
follows:

.

Top Hat and Black Hat

Top Hat (TH) is a function that isolates bumps and ridges from gray scale objects. In
other words, it can detect areas that are lighter than the surrounding neighborhood of A
and smaller compared to the structuring element. The function subtracts the opened
version of A from the gray scale object A:

.

Black Hat (THd) is the dual function of Top Hat in that it isolates valleys and “cracks
off” ridges of a gray scale object A, that is, the function detects dark and thin areas by
subtracting A from the closed image A:

.

Thresholding often follows both Top Hat and Black Hat operations.

Distance Transform
This section describes the distance transform used for calculating the distance to an
object. The input is an image with feature and non-feature pixels. The function labels
every non-feature pixel in the output image with a distance to the closest feature pixel.

inf A
y Bt∈

grad A()
A Bflat⊕() AΘBflat()–

2
---=

THB A() A A °nBflat()–=

THB
d
A() A nBflat•() A–=

OpenCV Reference Manual Image Analysis 3

3-25

Feature pixels are marked with zero. Distance transform is used for a wide variety of
subjects including skeleton finding and shape analysis. The [Borgefors86] two-pass
algorithm is implemented.

Thresholding
This section describes threshold functions group.

Thresholding functions are used mainly for two purposes:

— masking out some pixels that do not belong to a certain range, for example, to
extract blobs of certain brightness or color from the image;

— converting grayscale image to bi-level or black-and-white image.

Usually, the resultant image is used as a mask or as a source for extracting higher-level
topological information, e.g., contours (see Active Contours), skeletons (see Distance
Transform), lines (see Hough Transform functions), etc.

Generally, threshold is a determined function t(x,y) on the image:

The predicate function f(x,y,p(x,y)) is typically represented as g(x,y) < p(x,y)

< h(x,y), where g and h are some functions of pixel value and in most cases they are
simply constants.

There are two basic types of thresholding operations. The first type uses a predicate
function, independent from location, that is, g(x,y) and h(x,y)are constants over the
image. However, for concrete image some optimal, in a sense, values for the constants
can be calculated using image histograms (see Histogram) or other statistical criteria
(see Image Statistics). The second type of the functions chooses g(x,y) and
h(x,y)depending on the pixel neigborhood in order to extract regions of varying
brightness and contrast.

The functions, described in this chapter, implement both these approaches. They
support single-channel images with depth IPL_DEPTH_8U, IPL_DEPTH_8S or
IPL_DEPTH_32F and can work in-place.

t x y,()
A p x y,()(), f x y p x y,(), ,() true=

B p x y,()(), f x y p x y,(), ,() false=

=

OpenCV Reference Manual Image Analysis 3

3-26

Flood Filling
This section describes the function performing flood filling of a connected domain.

Flood filling means that a group of connected pixels with close values is filled with, or
is set to, a certain value. The flood filling process starts with some point, called “seed”,
that is specified by function caller and then it propagates until it reaches the image ROI
boundary or cannot find any new pixels to fill due to a large difference in pixel values.
For every pixel that is just filled the function analyses:

• 4 neighbors, that is, excluding the diagonal neighbors; this kind of connectivity is
called 4-connectivity, or

• 8 neighbors, that is, including the diagonal neighbors; this kind of connectivity is
called 8-connectivity.

The parameter connectivity of the function specifies the type of connectivity.

The function can be used for:

• segmenting a grayscale image into a set of uni-color areas,

• marking each connected component with individual color for bi-level images.

The function supports single-channel images with the depth IPL_DEPTH_8U or
IPL_DEPTH_32F.

Histogram
This section describes functions that operate on multi-dimensional histograms.

Histogram is a discrete approximation of stochastic variable probability distribution.
The variable can be either a scalar or a vector. Histograms are widely used in image
processing and computer vision. For example, one-dimensional histograms can be
used for:

• grayscale image enhancement

• determining optimal threshold levels (see Thresholding)

• selecting color objects via hue histograms back projection (see CamShift), and
other operations.

Two-dimensional histograms can be used for:

OpenCV Reference Manual Image Analysis 3

3-27

• analyzing and segmenting color images, normalized to brightness (e.g. red-green
or hue-saturation images),

• analyzing and segmenting motion fields (x-y or magnitude-angle histograms),

• analyzing shapes (see CalcPGH in Geometry Functions section of Structural
Analysis Reference) or textures.

Multi-dimensional histograms can be used for:

• content based retrieval (see the function CalcPGH),

• bayesian-based object recognition (see [Schiele00]).

To store all the types of histograms (1D, 2D, nD), OpenCV introduces special
structure CvHistogram described in Example 2-2 in Image Analysis Reference.

Any histogram can be stored either in a dense form, as a multi-dimensional array, or in
a sparse form with a balanced tree used now. However, it is reasonable to store 1D or
2D histograms in a dense form and 3D and higher dimensional histograms in a sparse
form.

The type of histogram representation is passed into histogram creation function and
then it is stored in type field of CvHistogram. The function
MakeHistHeaderForArray can be used to process histograms allocated by the user
with Histogram Functions.

Histograms and Signatures

Histograms represent a simple statistical description of an object, e.g., an image. The
object characteristics are measured during iterating through that object: for example,
color histograms for an image are built from pixel values in one of the color spaces.
All possible values of that multi-dimensional characteristic are further quantized on
each coordinate. If the quantized characteristic can take different k1 values on the first
coordinate, k2 values on second, and kn on the last one, the resulting histogram has

the size

.size ki
i 1=

n

∏=

OpenCV Reference Manual Image Analysis 3

3-28

The histogram can be viewed as a multi-dimensional array. Each dimension
corresponds to a certain object feature. An array element with coordinates [i1, i2 …
in], otherwise called a histogram bin, contains a number of measurements done for the
object with quantized value equal to i1 on first coordinate, i2 on the second
coordinate, and so on. Histograms can be used to compare respective objects:

, or

.

But these methods suffer from several disadvantages. The measure sometimes
gives too small difference when there is no exact correspondence between histogram
bins, that is, if the bins of one histogram are slightly shifted. On the other hand,

gives too large difference due to cumulative property.

Another drawback of pure histograms is large space required, especially for
higher-dimensional characteristics. The solution is to store only non-zero histogram
bins or a few bins with the highest score. Generalization of histograms is termed
signature and defined in the following way:

1. Characteristic values with rather fine quantization are gathered.

2. Only non-zero bins are dynamically stored.

This can be implemented using hash-tables, balanced trees, or other sparse structures.
After processing, a set of clusters is obtained. Each of them is characterized by the
coordinates and weight, that is, a number of measurements in the neighborhood.
Removing clusters with small weight can further reduce the signature size. Although
these structures cannot be compared using formulas written above, there exists a robust
comparison method described in [RubnerJan98] called Earth Mover Distance.

Earth Mover Distance (EMD)

Physically, two signatures can be viewed as two systems - earth masses, spread into
several localized pieces. Each piece, or cluster, has some coordinates in space and
weight, that is, the earth mass it contains. The distance between two systems can be
measured then as a minimal work needed to get the second configuration from the first
or vice versa. To get metric, invariant to scale, the result is to be divided by the total
mass of the system.

DL1
H K,() hi ki–

i

∑=

D H K,() h k–()TA h k–()=

DL1

DL2

OpenCV Reference Manual Image Analysis 3

3-29

Mathematically, it can be formulated as follows.

Consider m suppliers and n consumers. Let the capacity of ith supplier be xi and the
capacity of jth consumer be yj. Also, let the ground distance between ith supplier and
jth consumer be cij. The following restrictions must be met:

,

,

.

Then the task is to find the flow matrix , where is the amount of earth,
transferred from ith supplier to jth consumer. This flow must satisfy the restrictions
below:

,

,

and minimize the overall cost:

.

If is the optimal flow, then Earth Mover Distance is defined as

.

The task of finding the optimal flow is a well known transportation problem, which
can be solved, for example, using the simplex method.

xi 0 yj 0 ci j, 0≥,≥,≥

xi yj
j

∑≥
i

∑

0 i m 0 j n<≤,<≤

fij fij

fi j, 0≥

fi j, xi≤
i

∑

fi j,
j

∑ y=

min ci j, fi j,,
j

∑
i

∑

fij

EMD x y,()

ci j, fi j,
j

∑
i

∑

fi j,
j

∑
i

∑
--------------------------------------=

OpenCV Reference Manual Image Analysis 3

3-30

Example Ground Distances

As shown in the section above, physically intuitive distance between two systems can
be found if the distance between their elements can be measured. The latter distance is
called ground distance and, if it is a true metric, then the resultant distance between
systems is a metric too. The choice of the ground distance depends on the concrete task
as well as the choice of the coordinate system for the measured characteristic. In
[RubnerSept98], [RubnerOct98] three different distances are considered.

1. The first is used for human-like color discrimination between pictures. CIE
Lab model represents colors in a way when a simple Euclidean distance gives
true human-like discrimination between colors. So, converting image pixels
into CIE Lab format, that is, representing colors as 3D vectors (L,a,b), and
quantizing them (in 25 segments on each coordinate in [RubnerSept98]),
produces a color-based signature of the image. Although in experiment, made
in [RubnerSept98], the maximal number of non-zero bins could be 25x25x25
= 15625, the average number of clusters was ~8.8, that is, resulting signatures
were very compact.

2. The second example is more complex. Not only the color values are
considered, but also the coordinates of the corresponding pixels, which makes
it possible to differentiate between pictures of similar color palette but
representing different color regions placements: e.g., green grass at the bottom
and blue sky on top vs. green forest on top and blue lake at the bottom. 5D
space is used and metric is: , where
regulates importance of the spatial correspondence. When = 0, the first
metric is obtained.

3. The third example is related to texture metrics. In the example Gabor
transform is used to get the 2D vector texture descriptor (l,m), which is a
log-polar characteristic of the texture. Then, no-invariance ground distance is
defined as: , ,

, where is the scale parameter of Gabor transform, L is the
number of different angles used (angle resolution), and M is the number of
scales used (scale resolution). To get invariance to scale and rotation, the user
may calculate minimal EMD for several scales and rotations:

,

L∆()2
a∆()2

b∆()2 λ x∆()2
y∆()2

+()+ + +[]
1 2⁄

λ
λ

d l1 m1,() l2 m2,(),() l∆ α m∆+= l∆ min l1 l2– L l1 l2––,()=

m∆ m1 m2–= α

l1 m1,() l2 m2,(),

OpenCV Reference Manual Image Analysis 3

3-31

where d is measured as in the previous case, but and look slightly different:

, .

Lower Boundary for EMD

If ground distance is metric and distance between points can be calculated via the norm
of their difference, and total suppliers’ capacity is equal to total consumers’ capacity,
then it is easy to calculate lower boundary of EMD because:

As it can be seen, the latter expression is the distance between the mass centers of the
systems. Poor candidates can be efficiently rejected using this lower boundary for EMD
distance, when searching in the large image database.

EMD t1 t2,() min EMD t1 t2 l0 m0, , ,(),
0 l0 L<≤
M m0 M< <–

=

∆l ∆m

l∆ min l1 l2– l0 modL()+ L l1 l2– l0 modL()+–,()= m∆ m1 m2– m0+=

ci j, fi j,,
j

∑
i

∑ pi qj– fi j,
j

∑
i

∑ pi qj– fi j,

pi qi– fi j,
j

∑
i

∑≥

j

∑
i

∑

fi j,
j

∑

pi fi j,
i

∑

qj
j

∑–

i

∑

xipi yjqj
j

∑–

i

∑

= =

=

=

4-1

4Structural Analysis

Contour Processing
This section describes contour processing functions.

Polygonal Approximation

As soon as all the borders have been retrieved from the image, the shape representation
can be further compressed. Several algorithms are available for the purpose, including
RLE coding of chain codes, higher order codes (see Figure 4-1), polygonal
approximation, etc.

Figure 4-1 Higher Order Freeman Codes

24-Point Extended Chain Code

OpenCV Reference Manual Structural Analysis 4

4-2

Polygonal approximation is the best method in terms of the output data simplicity for
further processing. Below follow descriptions of two polygonal approximation
algorithms. The main idea behind them is to find and keep only the dominant points,
that is, points where the local maximums of curvature absolute value are located on the
digital curve, stored in the chain code or in another direct representation format. The
first step here is the introduction of a discrete analog of curvature. In the continuous
case the curvature is determined as the speed of the tangent angle changing:

.

In the discrete case different approximations are used. The simplest one, called L1
curvature, is the difference between successive chain codes:

. (4.1)

This method covers the changes from 0, that corresponds to the straight line, to 4, that
corresponds to the sharpest angle, when the direction is changed to reverse.

The following algorithm is used for getting a more complex approximation. First, for
the given point (xi, yi) the radius mi of the neighborhood to be considered is selected.
For some algorithms mi is a method parameter and has a constant value for all points;
for others it is calculated automatically for each point. The following value is
calculated for all pairs (xi-k, yi-k) and (xi+k, yi+k) (k=1...m):

,

where , .

The next step is finding the index hi such that . The value
is regarded as the curvature value of the ith point. The point value changes from

–1 (straight line) to 1 (sharpest angle). This approximation is called the k-cosine
curvature.

Rosenfeld-Johnston algorithm [Rosenfeld73] is one of the earliest algorithms for
determining the dominant points on the digital curves. The algorithm requires the
parameter m, the neighborhood radius that is often equal to 1/10 or 1/15 of the number
of points in the input curve. Rosenfeld-Johnston algorithm is used to calculate
curvature values for all points and remove points that satisfy the condition

; .

k
x′y″ x″y′–

x ′2 y′2+()
3 2⁄-----------------------------------=

ci
1()

fi fi 1–– 4)mod8+(() 4–=

cik
aik bik⋅()
aik bik

---------------------------- aik,bik()cos= =

aik xi k– xi,yi k–– yi–()= bik xi k+ xi,yi k–– yi–()=

cim cim 1– … cihi
cihi 1–≥< < <

cihi

j, i j– hi 2⁄≤∃ cihi
cjhj

<

OpenCV Reference Manual Structural Analysis 4

4-3

The remaining points are treated as dominant points. Figure 4-2 shows an example of
applying the algorithm.

The disadvantage of the algorithm is the necessity to choose the parameter m and
parameter identity for all the points, which results in either excessively rough, or
excessively precise contour approximation.

The next algorithm proposed by Teh and Chin [Teh89] includes a method for the
automatic selection of the parameter m for each point. The algorithm makes several
passes through the curve and deletes some points at each pass. At first, all points with
zero curvatures are deleted (see Equation 5.1). For other points the parameter mi
and the curvature value are determined. After that the algorithm performs a
non-maxima suppression, same as in Rosenfeld-Johnston algorithm, deleting points
whose curvature satisfies the previous condition where for the metric hi is set to
mi. Finally, the algorithm replaces groups of two successive remaining points with a
single point and groups of three or more successive points with a pair of the first and
the last points. This algorithm does not require any parameters except for the curvature
to use. Figure 4-3 shows the algorithm results.

Figure 4-2 Rosenfeld-Johnston Output for F-Letter Contour

Source Image Rosenfeld-Johnston Algorithm Output

ci
1()

ci
1()

OpenCV Reference Manual Structural Analysis 4

4-4

Douglas-Peucker Approximation

Instead of applying a rather sophisticated Teh-Chin algorithm to the chain code, the
user may try another way to get a smooth contour on a little number of vertices. The
idea is to apply some very simple approximation techniques to the chain code with
polylines, such as substituting ending points for horizontal, vertical, and diagonal
segments, and then use the approximation algorithm on polylines. This preprocessing
reduces the amount of data without any accuracy loss. Teh-Chin algorithm also
involves this step, but uses removed points for calculating curvatures of the remaining
points.

The algorithm to consider is a pure geometrical algorithm by Douglas-Peucker for
approximating a polyline with another polyline with required accuracy:

1. Two points on the given polyline are selected, thus the polyline is
approximated by the line connecting these two points. The algorithm
iteratively adds new points to this initial approximation polyline until the

Figure 4-3 Teh-Chin Output for F-Letter Contour

Source picture TC89 algorithm outputSource picture Teh-Chin algorithm outputSource Picture Teh-Chin Algorithm Output

OpenCV Reference Manual Structural Analysis 4

4-5

required accuracy is achieved. If the polyline is not closed, two ending points
are selected. Otherwise, some initial algorithm should be applied to find two
initial points. The more extreme the points are, the better.

2. The algorithm iterates through all polyline vertices between the two initial
vertices and finds the farthest point from the line connecting two initial
vertices. If this maximum distance is less than the required error, then the
approximation has been found and the next segment, if any, is taken for
approximation. Otherwise, the new point is added to the approximation
polyline and the approximated segment is split at this point. Then the two parts
are approximated in the same way, since the algorithm is recursive. For a
closed polygon there are two polygonal segments to process.

Contours Moments

The moment of order (p; q) of an arbitrary region R is given by

. (4.2)

If , we obtain the area a of R. The moments are usually normalized by the
area a of R. These moments are called normalized moments:

. (4.3)

Thus . For normalized central moments of R are usually the ones of
interest:

(4.4)

It is an explicit method for calculation of moments of arbitrary closed polygons.
Contrary to most implementations that obtain moments from the discrete pixel data,
this approach calculates moments by using only the border of a region. Since no
explicit region needs to be constructed, and because the border of a region usually
consists of significantly fewer points than the entire region, the approach is very
efficient. The well-known Green’s formula is used to calculate moments:

νpq x
p

y
q⋅ xd yd

R

∫∫=

p q 0= =

αpq 1 a⁄() x
p

y
q⋅ xd yd

R
∫∫=

α00 1= p q 2≥+

µpq 1 a x a10–()
R
∫∫⁄

p
y a01–()qdxdy⋅=

OpenCV Reference Manual Structural Analysis 4

4-6

,

where b is the border of the region R.

It follows from the formula (4.2) that:

,

hence

.

Therefore, the moments from (4.2) can be calculated as follows:

. (4.5)

If the border b consists of n points , , , it follows that:

,

where , is defined as

.

Therefore, (4.5) can be calculated in the following manner:

(4.6)

After unnormalized moments have been transformed, (4.6) could be written as:

∂(Q ∂x ∂P ∂y⁄–()⁄ xd yd

R

∫∫ P(x Q+d y)d

b

∫=

∂Q ∂x⁄ x
p

y
q

, ∂P ∂y⁄⋅ 0= =

P x, y() 0, Q x, y() 1 p 1+()⁄ x
p 1+

y
q⋅= =

vpq 1 p 1+()xp 1+
y
q⋅⁄() yd

b

∫=

pi xi, yi()= 0 i n≤ ≤ p0 pn=

b t() bi t()
i 1=

n

∪=

bi t() t 0 1[,]∈

bi t() tp 1 t–()pi 1–+=

vpq 1 p 1+()xp 1+
y
q⋅⁄() yd

bj

∫
i 1=

n

∑=

vpA
1

p q 2+ +() p q 1+ +()
p q+

p

xi 1– yi xiyi 1––()
k t+

t
 p q k– t–+

q t–

i 0=

q

∑
k 0=

p

∑
i 1=

n

∑× xi
k
xi 1–
p k–

yi
t
yi 1–
q t–

=

OpenCV Reference Manual Structural Analysis 4

4-7

Central unnormalized and normalized moments up to order 3 look like

,

,

,

,

,

,

,

a 1 2 xi 1–

i 1=

n

∑⁄ yi xiyi 1––=

a10 1 6a() xi 1– yi xiyi 1––() xi 1– xi+()
i 1=

n

∑⁄ ,=

a01 1 6a() xi 1– yi xiyi 1––() yi 1– yi+()
i 1=

n

∑⁄=

a20 1 12a() xi 1– yi xiyi 1––() xi 1–
2

xi 1– xi xi
2

+ +()
i 1=

n

∑⁄=

a11 1 24a() xi 1– yi xiyi 1––() 2xi 1– xi 1– yi xiyi 1– 2xiyi+ + +()
i 1=

n

∑⁄=

a02 1 12a() xi 1– yi xiyi 1––() yi 1–
2

yi 1– yi yi
2

+ +()
i 1=

n

∑⁄=

a30 1 20a() xi 1– yi xiyi 1––() xi 1–
3

xi 1–
2

xi xi
2
xi 1– xi

3
+ + +()

i 1=

n

∑⁄=

a21 1 60a() xi 1– yi xiyi 1––() xi 1–
2

3yi 1– yi+() 2xi 1– xi yi 1– yi+()

xi
2
yi 1– 3yi+()

+

+

(

),

i 1=

n

∑⁄=

a12 1 60a() xi 1– yi xiyi 1––() yi 1–
2

3xi 1– xi+() 2yi 1– yi xi 1– xi+()

yi
2
xi 1– 3xi+()

+ +(

),

i 1=

n

∑⁄=

a03 1 20a() xi 1– yi xiyi 1––() yi 1–
3

yi 1–
2

yi yi
2
yi 1– yi

3
+ + +(),

i 1=

n

∑⁄=

µ20 α20 α10
2

–=

OpenCV Reference Manual Structural Analysis 4

4-8

,

,

,

,

,

.

Hierarchical Representation of Contours

Let T be the simple closed boundary of a shape with n points
and n runs: . Every run is formed by the two points

. For every pair of the neighboring runs and a triangle is
defined by the two runs and the line connecting the two far ends of the two runs
(Figure 4-4).

Triangles are called neighboring triangles of
(Figure 4-5).

Figure 4-4 Triangles Numbering

µ11 α11 α10α01–=

µ02 α02 α01
2

–=

µ30 α30 2α10
3

3α10α20–+=

µ21 α21 2α10
3 α01 2α10α11– α20α01–+=

µ12 α12 2α01
3 α10 2α01α11– α02α10–+=

µ03 α03 2α01
3

3α01α02–+=

T: p 1(), p 2(), …, p n() }{
s 1(), s 2(), …, s n() }{ s i()

p i(), p i 1+()() s i() s i 1+()

)(is

)1(+is

)(it

)(ip
)1(+ip

t i 2–(), t i 1–(), t i 1+(), t i 2+() t i()

OpenCV Reference Manual Structural Analysis 4

4-9

For every straight line that connects any two different vertices of a shape, the line
either cuts off a region from the original shape or fills in a region of the original shape,
or does both. The size of the region is called the interceptive area of that line
(Figure 4-6). This line is called the base line of the triangle.

A triangle made of two boundary runs is the locally minimum interceptive area
triangle (LMIAT) if the interceptive area of its base line is smaller than both its
neighboring triangles areas.

Figure 4-5 Location of Neighboring Triangles

)2(−it

)1(−it

)(it

)1(+it

)2(+it

OpenCV Reference Manual Structural Analysis 4

4-10

The shape-partitioning algorithm is multilevel. This procedure subsequently removes
some points from the contour; the removed points become children nodes of the tree.
On each iteration the procedure examines the triangles defined by all the pairs of the
neighboring edges along the shape boundary and finds all LMIATs. After that all
LMIATs whose areas are less than a reference value, which is the algorithm parameter,
are removed. That actually means removing their middle points. If the user wants to
get a precise representation, zero reference value could be passed. Other LMIATs are
also removed, but the corresponding middle points are stored in the tree. After that
another iteration is run. This process ends when the shape has been simplified to a
quadrangle. The algorithm then determines a diagonal line that divides this quadrangle
into two triangles in the most unbalanced way.

Thus the binary tree representation is constructed from the bottom to top levels. Every
tree node is associated with one triangle. Except the root node, every node is connected
to its parent node, and every node may have none, or single, or two child nodes. Each
newly generated node becomes the parent of the nodes for which the two sides of the
new node form the base line. The triangle that uses the left side of the parent triangle is
the left child. The triangle that uses the right side of the parent triangle is the right child
(See Figure 4-7).

Figure 4-6 Interceptive Area

Base Line

OpenCV Reference Manual Structural Analysis 4

4-11

The root node is associated with the diagonal line of the quadrangle. This diagonal line
divides the quadrangle into two triangles. The larger triangle is the left child and the
smaller triangle is its right child.

For any tree node we record the following attributes:

• Coordinates x and y of the vertex P that do not lie on the base line of LMIAT, that
is, coordinates of the middle (removed) point;

• Area of the triangle;

• Ratio of the height of the triangle h to the length of the base line a (Figure 4-8);

• Ratio of the projection of the left side of the triangle on the base line b to the length
of the base line a;

• Signs “+” or “-”; the sign “+” indicates that the triangle lies outside of the new
shape due to the ‘cut’ type merge; the sign “-” indicates that the triangle lies inside
the new shape.

Figure 4-7 Classification of Child Triangles

R child
L child

OpenCV Reference Manual Structural Analysis 4

4-12

Figure 4-9 shows an example of the shape partitioning.

It is necessary to note that only the first attribute is sufficient for source contour
reconstruction; all other attributes may be calculated from it. However, the other four
attributes are very helpful for efficient contour matching.

Figure 4-8 Triangles Properties

Figure 4-9 Shape Partitioning

h

a
h

b
h

h

a
h

b
h

E

D A

B

C

S

S

A+
B+

C+
D- E+

()

E

D A

B

C

S

S

A+
B+

C+
D- E+

()

OpenCV Reference Manual Structural Analysis 4

4-13

The shape matching process that compares two shapes to determine whether they are
similar or not can be effected by matching two corresponding tree representations, e.g.,
two trees can be compared from top to bottom, node by node, using the breadth-first
traversing procedure.

Let us define the corresponding node pair (CNP) of two binary tree representations TA
and TB. The corresponding node pair is called , if A(i) and B(i) are at the
same level and same position in their respective trees.

The next step is defining the node weight. The weight of N(i) denoted as is
defined as the ratio of the size of N(i) to the size of the entire shape.

Let N(i) and N(j) be two nodes with heights h(i) and h(j) and base lengths a(i)
and a(j) respectively. The projections of their left sides on their base lines are b(i)

and b(j) respectively. The node distance between N(i) and N(j) is
defined as:

In the above equation, the “+” signs are used when the signs of attributes in two nodes
are different and the “-” signs are used when the two nodes have the same sign.

For two trees TA and TB representing two shapes SA and SB and with the corresponding
node pairs the tree distance dt(TA,TB)between
TA and TB is defined as:

.

If the two trees are different in size, the smaller tree is enlarged with trivial nodes so
that the two trees can be fully compared. A trivial node is a node whose size attribute is
zero. Thus, the trivial node weight is also zero. The values of other node attributes are
trivial and not used in matching. The sum of the node distances of the first k CNPs of
TA and TB is called the cumulative tree distance dt(TA,TB,k) and is defined as:

.

A i(), B i()[]

W N i()[]

dn N i(), N j()[]

dn N i(), N j()[] h i) a i(⁄) W N i()[] h j() a j() W N j()[]⋅⁄+−⋅(
b i) a i(⁄) W N i()[] b j() a j() W N j()[]⋅⁄+−⋅(+

=

A 1(), B 1()[] , A 2(), B 2()[] ,…, A n(), B n()[]

dt TA, TB() dn A i(), B i()[]
i 1=

k

∑=

dc TA, TB, k() dn A i(), B i()[]
i 1=

k

∑=

OpenCV Reference Manual Structural Analysis 4

4-14

Cumulative tree distance shows the dissimilarity between the approximations of the
two shapes and exhibits the multiresolution nature of the tree representation in shape
matching.

The shape matching algorithm is quite straightforward. For two given tree
representations the two trees are traversed according to the breadth-first sequence to
find CNPs of the two trees. Next dn[A(i),B(i)] and dc(TA,TB,i)are calculated for
every i. If for some i dc(TA,TB,i)is larger than the tolerance threshold value, the
matching procedure is terminated to indicate that the two shapes are dissimilar,
otherwise it continues. If dt(TA,TB) is still less than the tolerance threshold value,
then the procedure is terminated to indicate that there is a good match between TA and
TB.

Geometry
This section describes functions from computational geometry field.

Ellipse Fitting

Fitting of primitive models to the image data is a basic task in pattern recognition and
computer vision. A successful solution of this task results in reduction and
simplification of the data for the benefit of higher level processing stages. One of the
most commonly used models is the ellipse which, being a perspective projection of the
circle, is of great importance for many industrial applications.

The representation of general conic by the second order polynomial is
with the vectors denoted as

and .

is called the “algebraic distance between point and conic “.

Minimizing the sum of squared algebraic distances may approach the fitting
of conic.

In order to achieve ellipse-specific fitting polynomial coefficients must be constrained.
For ellipse they must satisfy .

F a,(x) a
T

, x a= x
2

bxy cy
2

dx ey f+ + + + + 0= =

a a, b, c, d, e, f[]T= x x
2
, xy, y

2
, x, y, 1[]

T
=

F a, x() x0, y0() F a, x()

F x0()
2

i 1=

n

∑

b
2

4ac 0<–

OpenCV Reference Manual Structural Analysis 4

4-15

Moreover, the equality constraint can be imposed in order to incorporate
coefficients scaling into constraint.

This constraint may be written as a matrix .

Finally, the problem could be formulated as minimizing with constraint
, where is the nx6 matrix .

Introducing the Lagrange multiplier results in the system

, which can be re-written as

The system solution is described in [Fitzgibbon95].

After the system is solved, ellipse center and axis can be extracted.

Line Fitting

M-estimators are used for approximating a set of points with geometrical primitives
e.g., conic section, in cases when the classical least squares method fails. For example,
the image of a line from the camera contains noisy data with many outliers, that is, the
points that lie far from the main group, and the least squares method fails if applied.

The least squares method searches for a parameter set that minimizes the sum of
squared distances:

,

where is the distance from the ith point to the primitive. The distance type is
specified as the function input parameter. If even a few points have a large , then the
perturbation in the primitive parameter values may be prohibitively big. The solution is
to minimize

,

4ac b
2

– 1=

a
T
Ca 1=

Da
2

a
T
Ca 1= D x1, x2,…, xn[]

T

2D
T
Da 2λCa– 0

a
T
Ca 1

=

=

Sa 2λCa
a
T
Ca 1,

=

=

m di
2

i

∑=

di
di

m ρ di()
i

∑=

OpenCV Reference Manual Structural Analysis 4

4-16

where grows slower than . This problem can be reduced to weighted least
squares [Fitzgibbon95], which is solved by iterative finding of the minimum of

,

where k is the iteration number, is the minimizer of the sum on the previous
iteration, and . If is a linear function of parameters

then the minimization vector of the is the eigenvector of matrix that
corresponds to the smallest eigenvalue.

For more information see [Zhang96].

Convexity Defects

Let be a closed simple polygon, or contour, and a convex
hull. A sequence of contour points exists normally between two consecutive convex
hull vertices. This sequence forms the so-called convexity defect for which some
useful characteristics can be computed. Computer Vision Library computes only one
such characteristic, named “depth” (see Figure 4-10).

Figure 4-10 Convexity Defects

ρ di() di
2

mk W di
k 1–()di

2

i

∑=

di
k 1–

W x() 1
x

dρ
dx
-------= di pj di– Aijpj

j

∑=

mk A
T∗
A

p1(, p2, …pn) h1(, h2, …hm)

OpenCV Reference Manual Structural Analysis 4

4-17

The black lines belong to the input contour. The red lines update the contour to its
convex hull.

The symbols “s” and “e” signify the start and the end points of the convexity defect.
The symbol “d” is a contour point located between “s” and “e” being the farthermost
from the line that includes the segment “se”. The symbol “h” stands for the convexity
defect depth, that is, the distance from “d” to the “se” line.

See CvConvexityDefect structure definition in Structural Analysis Reference.

5-1

5Object Recognition

Eigen Objects
This section describes functions that operate on eigen objects.

Let us define an object as a vector in the n-dimensional space. For
example, u can be an image and its components ul are the image pixel values. In this
case n is equal to the number of pixels in the image. Then, consider a group of input
objects , where and usually m << n. The averaged, or
mean, object of this group is defined as follows:

.

Covariance matrix C = |cij| is a square symmetric matrix :

.

Eigen objects basis , i = 1, … , of the input objects group
may be calculated using the following relation:

,

where and are eigenvalues and the corresponding eigenvectors
of matrix C.

u u1 u2… un,,{ }=

u
i

u1
i
u2
i … un

i, , ,{ }= i 1 … m, ,=

u u1 u2 … un, , ,{ }=

ul
1
m
--- ul

k

k 1=

m

∑=

m m×

cij ul
i

ul) ul
j

ul)–(⋅–(
l 1=

n

∑=

e
i

e1
i
e2
i … en

i, , ,{ }= m1 m≤

el
i 1

λi
---------- vk

i
ul
k

ul–()⋅
k 1=

m

∑=

λi v
i

v1
i
v2
i … vm

i, , ,{ }=

OpenCV Reference Manual Object Recognition 5

5-2

Any input object ui as well as any other object u may be decomposed in the eigen
objects m1-D sub-space. Decomposition coefficients of the object u are:

.

Using these coefficients, we may calculate projection of the object u
to the eigen objects sub-space, or, in other words, restore the object u in that sub-space:

.

For examples of use of the functions and relevant data types see Image Recognition
Reference Chapter.

Embedded Hidden Markov Models
This section describes functions for using Embedded Hidden Markov Models (HMM)
in face recognition task. See Reference for HMM Structures.

wi el
i

ul ul–()⋅
l 1=

n

∑=

ũ ũ1 ũ2… ũn,,{ }=

ũl wkel
k

ul+

k 1=

m1

∑=

6-1

63D Reconstruction

Camera Calibration
This section describes camera calibration and undistortion functions.

Camera Parameters

Camera calibration functions are used for calculating intrinsic and extrinsic camera
parameters.

Camera parameters are the numbers describing a particular camera configuration.

The intrinsic camera parameters specify the camera characteristics proper; these
parameters are:

• focal length, that is, the distance between the camera lens and the image plane,

• location of the image center in pixel coordinates,

• effective pixel size,

• radial distortion coefficient of the lens.

The extrinsic camera parameters describe spatial relationship between the camera and
the world; they are

• rotation matrix,

• translation vector.

They specify the transformation between the camera and world reference frames.

A usual pinhole camera is used. The relationship between a 3D point and its image
projection is given by the formula

,

where is the camera intrinsic matrix:

M

m

m A Rt[]M=

A

OpenCV Reference Manual 3D Reconstruction 6

6-2

,where

are coordinates of the principal point;

are the focal lengths by the axes x and y;

are extrinsic parameters: the rotation matrix and translation vector that
relate the world coordinate system to the camera coordinate system:

, .

Camera usually exhibits significant lens distortion, especially radial distortion. The
distortion is characterized by four coefficients: k1, k2, p1, p2. The functions
UnDistortOnce and UnDistortInit + UnDistort correct the image from the
camera given the four coefficients:

where x, y are ideal, that is, distortion-free image physical coordinates and , are
real, that is, distorted image physical coordinates, while r2 = x2 + y2.

The following algorithm, described in [Zhang99] and [Zhang00], was used for camera
calibration:

1. Find homography for all points on series of images, where homography is a
matrix of perspective transform between calibration pattern plane and camera
view plane.

2. Initialize intrinsic parameters; distortion is set to 0.

3. Find extrinsic parameters for each image of pattern.

A

fx 0 cx

0 fy cy

0 0 1

=

cx cy,()

fx fy,()

R t,() R t

R

r11 r12 r13

r21 r22 r23

r31 r32 r33

= t

t1

t2

t3

=

x̃ x x k1r
2

k2r
4] 2p1xy p2 r

2
2x

2)+(+[]++[+=

ỹ y y k1r
2

k2r
4] 2p2xy p2 r

2
2y

2)+(+[] ,++[+=

x̃ ỹ

OpenCV Reference Manual 3D Reconstruction 6

6-3

4. Make main optimization by minimizing error of projection points with all
parameters.

Pattern

To calibrate the camera, the calibration routine is supplied with several views of a
planar model object, or pattern, of known geometry. For every view the points on the
model plane and their projections onto the image are passed to the calibration routine.
In OpenCV a chessboard pattern is used (see Figure 6-1). To achieve more accurate
calibration results, print out the pattern at high resolution on high-quality paper and put
it on a hard, preferably glass, substrate.

View Morphing
This section describes functions for morphing views from two cameras.

The View Morphing technique is used to get an image from a virtual camera that could
be placed between two real cameras. The input for View Morphing algorithms are two
images from real cameras and information about correspondence between regions in
the two images. The output of the algorithms is a synthesized image - "a view from the
virtual camera".

Figure 6-1 Pattern

OpenCV Reference Manual 3D Reconstruction 6

6-4

This section addresses the problem of synthesizing images of real scenes under
three-dimensional transformation in viewpoint and appearance. Solving this problem
enables interactive viewing of remote scenes on a computer, in which a user can move
the virtual camera through the environment. A three-dimensional scene transformation
can be rendered on a video display device through applying simple transformation to a
set of basis images of the scene. The virtue of these transformations is that they operate
directly on the image and recover only the scene information that is required to
accomplish the desired effect. Consequently, the transformations are applicable in a
situation when accurate three-dimensional models are difficult or impossible to obtain.

The algorithm for synthesis of a virtual camera view from a pair of images taken from
real cameras is shown below.

Algorithm
1. Find fundamental matrix, for example, using correspondence points in the

images.

2. Find scanlines for each image.

3. Warp the images across the scanlines.

4. Find correspondence of the warped images.

5. Morph the warped images across position of the virtual camera.

6. Unwarp the image.

OpenCV Reference Manual 3D Reconstruction 6

6-5

7. Delete moire from the resulting image.

Figure 6-2 Original Images

Figure 6-3 Correspondence Points

Original Image From Left Camera Original Image From Right Camera

Correspondence Points on Left Image Correspondence Points on Right Image

OpenCV Reference Manual 3D Reconstruction 6

6-6

Figure 6-4 Scan Lines

Figure 6-5 Moire in Morphed Image

Some Scanlines on Left Iimage Some Scanlines on Right Image

OpenCV Reference Manual 3D Reconstruction 6

6-7

Using Functions for View Morphing Algorithm
1. Find the fundamental matrix using the correspondence points in the two

images of cameras by calling the function FindFundamentalMatrix.

2. Find the number of scanlines in the images for the given fundamental matrix
by calling the function FindFundamentalMatrix with null pointers to the
scanlines.

3. Allocate enough memory for:

— scanlines in the first image, scanlines in the second image, scanlines in the
virtual image (for each numscan*2*4*sizeof(int));

— lengths of scanlines in the first image, lengths of scanlines in the second
image, lengths of scanlines in the virtual image (for each
numscan*2*4*sizeof(int));

— buffer for the prewarp first image, the second image, the virtual image (for
each width*height*2*sizeof(int));

— data runs for the first image and the second image (for each
width*height*4*sizeof(int));

— correspondence data for the first image and the second image (for each
width*height*2*sizeof(int));

Figure 6-6 Resulting Morphed Image

Morphed Image From Virtual Camera With Deleted Moire

OpenCV Reference Manual 3D Reconstruction 6

6-8

— numbers of lines for the first and second images (for each
width*height*4*sizeof(int)).

4. Find scanlines coordinates by calling the function FindFundamentalMatrix.

5. Prewarp the first and second images using scanlines data by calling the
function PreWarpImage.

6. Find runs on the first and second images scanlines by calling the function
FindRuns.

7. Find correspondence information by calling the function
DynamicCorrespondMulti.

8. Find coordinates of scanlines in the virtual image for the virtual camera
position alpha by calling the function MakeAlphaScanlines.

9. Morph the prewarp virtual image from the first and second images using
correspondence information by calling the function MorphEpilinesMulti.

10. Postwarp the virtual image by calling the function PostWarpImage.

11. Delete moire from the resulting virtual image by calling the function
DeleteMoire.

POSIT
This section describes functions that together perform POSIT algorithm.

The POSIT algorithm determines the six degree-of-freedom pose of a known tracked
3D rigid object. Given the projected image coordinates of uniquely identified points on
the object, the algorithm refines an initial pose estimate by iterating with a weak
perspective camera model to construct new image points; the algorithm terminates
when it reaches a converged image, the pose of which is the solution.

Geometric Image Formation

The link between world points and their corresponding image points is the projection
from world space to image space. Figure 6-8 depicts the perspective (or pinhole)
model, which is the most common projection model because of its generality and
usefulness.

OpenCV Reference Manual 3D Reconstruction 6

6-9

The points in the world are projected onto the image plane according to their distance
from the center of projection. Using similar triangles, the relationship between the
coordinates of an image point and its world point can be
determined as

, . (6.1)

The weak-perspective projection model simplifies the projection equation by replacing
all with a representative so that is a constant scale for all points. The
projection equations are then

, . (6.2)

Because this situation can be modelled as an orthographic projection (,
) followed by isotropic scaling, weak-perspective projection is sometimes

called scaled orthographic projection. Weak-perspective is a valid assumption only
when the distances between any are much smaller than the distance between the

Figure 6-7 Perspective Geometry Projection

pi xi yi,()= Pi Xi Yi Zi, ,()=

xi
f
Zi
------Xi= yi

f
Zi
------Yi=

Focal
Length

O ptical A xis

Center of
Projection

Image Plane

ĵ

k̂

î

),,(iiii ZYXP =),,(fyxp iii =

Zi Z̃ s f Z̃⁄=

xi sXi= yi sYi=

xi Xi=

yi Yi=

Zi Zi

OpenCV Reference Manual 3D Reconstruction 6

6-10

and the center of projection; in other words, the world points are clustered and far
enough from the camera. can be set either to any or to the average computed over
all .

More detailed explanations of this material can be found in [Trucco98].

Pose Approximation Method

Using weak-perspective projection, a method for determining approximate pose,
termed Pose from Orthography and Scaling (POS) in [DeMenthon92], can be derived.
First, a reference point in the world is chosen from which all other world points can
be described as vectors: (see Figure 6-9).

Similarly, the projection of this point, namely , is a reference point for the image
points: . As follows from the weak-perspective assumption, the x

component of is a scaled-down form of the x component of :

. (6.3)

Figure 6-8 Scaling of Vectors in Weak-Perspective Projection

Z̃ Zi
Zi

P0

P Pi P0–=

Image Object

0p 0P

ip

iP

Center of
Projection

p0

pi pi p0–=

pi Pi

xi x0– s Xi X0–() s P0 î⋅()= =

OpenCV Reference Manual 3D Reconstruction 6

6-11

This is also true for their y components. If and are defined as scaled-up versions
of the unit vectors and (and), then

and (6.4)

as two equations for each point for which and are unknown. These equations,
collected over all the points, can be put into matrix form as

and , (6.5)

where and are vectors of x and y components of respectively, and is a matrix
whose rows are the vectors. These two sets of equations can be further joined to
construct a single set of linear equations:

, (6.6)

where is a matrix whose rows are . The latter equation is an overconstrained
system of linear equations that can be solved for and in a least-squares sense as

, (6.7)

where is the pseudo-inverse of .

Now that we have and , we construct the pose estimate as follows. First, and
are estimated as and normalized, that is, scaled to unit length. By construction,
these are the first two rows of the rotation matrix, and their cross-product is the third
row:

. (6.8)

The average of the magnitudes of and is an estimate of the weak-perspective scale
. From the weak-perspective equations, the world point in camera coordinates is

the image point in camera coordinates scaled by s:

, (6.9)

which is precisely the translation vector being sought.

I J

î ĵ I sî= J sĵ=

xi x0– Pi I⋅= yi y0– Pi J⋅=

I J

x MI= y MJ=

x y pi M

Pi

x y[] M I J[] p
i
C⇒ M I J[]= =

p
i

pi
I J

I J[] M
+
p
i

=

M
+

M

I J î ĵ

I J

R

î
T

ĵ
T

î ĵ×()
T

=

I J

s P0

p0

P0 p0 s⁄ x0 y0 f[] s⁄= =

OpenCV Reference Manual 3D Reconstruction 6

6-12

Algorithm

The POSIT algorithm was first presented in the paper by DeMenthon and Davis
[DeMenthon92]. In this paper, the authors first describe their POS (Pose from
Orthography and Scaling) algorithm. By approximating perspective projection with
weak-perspective projection POS produces a pose estimate from a given image. POS
can be repeatedly used by constructing a new weak perspective image from each pose
estimate and feeding it into the next iteration. The calculated images are estimates of
the initial perspective image with successively smaller amounts of “perspective
distortion” so that the final image contains no such distortion. The authors term this
iterative use of POS as POSIT (POS with ITerations).

POSIT requires three pieces of known information:

• The object model, consisting of N points, each with unique 3D coordinates. N must
be greater than 3, and the points must be non-degenerate (non-coplanar) to avoid
algorithmic difficulties. Better results are achieved by using more points and by
choosing points as far from coplanarity as possible. The object model is an N x 3
matrix.

• The object image, which is the set of 2D points resulting from a camera projection
of the model points onto an image plane; it is a function of the object current pose.
The object image is an N x 2 matrix.

• The camera intrinsic parameters, namely, the focal length of the camera.

Given the object model and the object image, the algorithm proceeds as follows:

1. The object image is assumed to be a weak perspective image of the object,
from which a least-squares pose approximation is calculated via the object
model pseudoinverse.

2. From this approximate pose the object model is projected onto the image plane
to construct a new weak perspective image.

3. From this image a new approximate pose is found using least-squares, which
in turn determines another weak perspective image, and so on.

OpenCV Reference Manual 3D Reconstruction 6

6-13

For well-behaved inputs, this procedure converges to an unchanging weak perspective
image, whose corresponding pose is the final calculated object pose.

As the first step assumes, the object image is a weak perspective image of the object. It
is a valid assumption only for an object that is far enough from the camera so that
“perspective distortions” are insignificant. For such objects the correct pose is
recovered immediately and convergence occurs at the second iteration. For less ideal
situations, the pose is quickly recovered after several iterations. However, convergence
is not guaranteed when perspective distortions are significant, for example, when an
object is close to the camera with pronounced foreshortening. DeMenthon and Davis
state that “convergence seems to be guaranteed if the image features are at a distance
from the image center shorter than the focal length.”[DeMenthon92] Fortunately, this
occurs for most realistic camera and object configurations.

Example 6-1 POSIT Algorithm in Pseudo-Code

POSIT (imagePoints, objectPoints, focalLength) {
count = converged = 0;
modelVectors = modelPoints – modelPoints(0);
oldWeakImagePoints = imagePoints;
while (!converged) {

if (count == 0)
imageVectors = imagePoints – imagePoints(0);

else {
weakImagePoints = imagePoints .*

((1 + modelVectors*row3/translation(3)) * [1
1]);

imageDifference = sum(sum(abs(round(weakImagePoints) –
round(oldWeakImagePoints))));

oldWeakImagePoints = weakImagePoints;
imageVectors = weakImagePoints – weakImagePoints(0);

}
[I J] = pseudoinverse(modelVectors) * imageVectors;
row1 = I / norm(I);
row2 = J / norm(J);
row3 = crossproduct(row1, row2);
rotation = [row1; row2; row3];
scale = (norm(I) + norm(J)) / 2;
translation = [imagePoints(1,1); imagePoints(1,2); focalLength] /

scale;
converged = (count > 0) && (diff < 1);
count = count + 1;

}
return {rotation, translation};

}

OpenCV Reference Manual 3D Reconstruction 6

6-14

Gesture Recognition
This section describes specific functions for the static gesture recognition technology.

The gesture recognition algorithm can be divided into four main components as
illustrated in Figure 6-10.

The first component computes the 3D arm pose from range image data that may be
obtained from the standard stereo correspondence algorithm. The process includes 3D
line fitting, finding the arm position along the line and creating the arm mask image.

Figure 6-9 Gesture Recognition Algorithm

OpenCV Reference Manual 3D Reconstruction 6

6-15

The second component produces a frontal view of the arm image and arm mask
through a planar homograph transformation. The process consists of the homograph
matrix calculation and warping image and image mask (See Figure 6-11).

The third component segments the arm from the background based on the probability
density estimate that a pixel with a given hue and saturation value belongs to the arm.
For this 2D image histogram, image mask histogram, and probability density
histogram are calculated. Following that, initial estimate is iteratively refined using the
maximum likelihood approach and morphology operations (See Figure 6-12)

Figure 6-10 Arm Location and Image Warping

OpenCV Reference Manual 3D Reconstruction 6

6-16

The fourth step is the recognition step when normalized central moments or seven Hu
moments are calculated using the resulting image mask. These invariants are used to
match masks by the Mahalanobis distance metric calculation.

The functions operate with specific data of several types. Range image data is a set of
3D points in the world coordinate system calculated via the stereo correspondence
algorithm. The second data type is a set of the original image indices of this set of 3D
points, that is, projections on the image plane. The functions of this group

• enable the user to locate the arm region in a set of 3D points (the functions
FindHandRegion and FindHandRegionA),

• create an image mask from a subset of 3D points and associated subset indices
around the arm center (the function CreateHandMask),

• calculate the homography matrix for the initial image transformation from the
image plane to the plane defined by the frontal arm plane (the function
CalcImageHomography),

• calculate the probability density histogram for the arm location (the function
CalcProbDensity).

Figure 6-11 Arm Segmentation by Probability Density Estimation

7-1

7
Basic Structures and
Operations

Image Functions
This section describes basic functions for manipulating raster images.

OpenCV library represents images in the format IplImage that comes from Intel®

Image Processing Library (IPL). IPL reference manual gives detailed information
about the format, but, for completeness, it is also briefly described here.

Example 7-1 IplImage Structure Definition

typedef struct _IplImage {
int nSize; /* size of iplImage struct */
int ID; /* image header version */
int nChannels;
int alphaChannel;
int depth; /* pixel depth in bits */
char colorModel[4];
char channelSeq[4];
int dataOrder;
int origin;
int align; /* 4- or 8-byte align */
int width;
int height;
struct _IplROI *roi; /* pointer to ROI if any */
struct _IplImage *maskROI; /*pointer to mask ROI if any */
void *imageId; /* use of the application */
struct _IplTileInfo *tileInfo; /* contains information on tiling

*/
int imageSize; /* useful size in bytes */
char *imageData; /* pointer to aligned image */
int widthStep; /* size of aligned line in bytes */
int BorderMode[4]; /* the top, bottom, left,
and right border mode */
int BorderConst[4]; /* constants for the top, bottom,

left, and right border */
char *imageDataOrigin; /* ptr to full, nonaligned image */

} IplImage;

OpenCV Reference Manual Basic Structures and Operations 7

7-2

Only a few of the most important fields of the structure are described here. The fields
width and height contain image width and height in pixels, respectively. The field
depth contains information about the type of pixel values.

All possible values of the field depth listed in ipl.h header file include:

IPL_DEPTH_8U - unsigned 8-bit integer value (unsigned char),

IPL_DEPTH_8S - signed 8-bit integer value (signed char or simply char),

IPL_DEPTH_16S - signed 16-bit integer value (short int),

IPL_DEPTH_32S - signed 32-bit integer value (int),

IPL_DEPTH_32F - 32-bit floating-point single-precision value (float).

In the above list the corresponding types in C are placed in parentheses. The parameter
nChannels means the number of color planes in the image. Grayscale images contain a
single channel, while color images usually include three or four channels. The
parameter origin indicates, whether the top image row (origin == IPL_ORIGIN_TL)
or bottom image row (origin == IPL_ORIGIN_BL) goes first in memory. Windows
bitmaps are usually bottom-origin, while in most of other environments images are
top-origin. The parameter dataOrder indicates, whether the color planes in the color
image are interleaved (dataOrder == IPL_DATA_ORDER_PIXEL) or separate
(dataOrder == IPL_DATA_ORDER_PLANE). The parameter widthStep contains the
number of bytes between points in the same column and successive rows. The
parameter width is not sufficient to calculate the distance, because each row may be
aligned with a certain number of bytes to achieve faster processing of the image, so
there can be some gaps between the end of ith row and the start of (i+1)th row. The
parameter imageData contains pointer to the first row of image data. If there are
several separate planes in the image (when dataOrder == IPL_DATA_ORDER_PLANE),
they are placed consecutively as separate images with height*nChannels rows total.

OpenCV Reference Manual Basic Structures and Operations 7

7-3

It is possible to select some rectangular part of the image or a certain color plane in the
image, or both, and process only this part. The selected rectangle is called "Region of
Interest" or ROI. The structure IplImage contains the field roi for this purpose. If the
pointer not NULL, it points to the structure IplROI that contains parameters of selected
ROI, otherwise a whole image is considered selected.

As can be seen, IplROI includes ROI origin and size as well as COI (“Channel of
Interest”) specification. The field coi, equal to 0, means that all the image channels are
selected, otherwise it specifies an index of the selected image plane.

Unlike IPL, OpenCV has several limitations in support of IplImage:

— Each function supports only a few certain depths and/or number of channels.
For example, image statistics functions support only single-channel or
three-channel images of the depth IPL_DEPTH_8U, IPL_DEPTH_8S or
IPL_DEPTH_32F. The exact information about supported image formats is
usually contained in the description of parameters or in the beginning of the
chapter if all the functions described in the chapter are similar. It is quite
different from IPL that tries to support all possible image formats in each
function.

— OpenCV supports only interleaved images, not planar ones.

— The fields colorModel, channelSeq, BorderMode, and BorderConst are
ignored.

— The field align is ignored and widthStep is simply used instead of
recalculating it using the fields width and align.

— The fields maskROI and tileInfo must be zero.

— COI support is very limited. Now only image statistics functions accept
non-zero COI values. Use the functions CvtPixToPlane and CvtPlaneToPix

as a work-around.

Example 7-2 IplROI Structure Definition

typedef struct _IplROI {
int coi; /* channel of interest or COI */
int xOffset;
int yOffset;
int width;
int height;

} IplROI;

OpenCV Reference Manual Basic Structures and Operations 7

7-4

— ROIs of all the input/output images have to match exactly one another. For
example, input and output images of the function Erode must have ROIs with
equal sizes. It is unlike IPL again, where the ROIs intersection is actually
affected.

Despite all the limitations, OpenCV still supports most of the commonly used image
formats that can be supported by IplImage and, thus, can be successfully used with
IPL on common subset of possible IplImage formats.

The functions described in this chapter are mainly short-cuts for operations of creating,
destroying, and other common operations on IplImage, and they are often
implemented as wrappers for original IPL functions.

Dynamic Data Structures
This chapter describes several resizable data structures and basic functions that are
designed to operate on these structures.

Memory Storage

Memory storages provide the space for storing all the dynamic data structures
described in this chapter. A storage consists of a header and a double-linked list of
memory blocks. This list is treated as a stack, that is, the storage header contains a
pointer to the block that is not occupied entirely and an integer value, the number of
free bytes in this block. When the free space in the block has run out, the pointer is
moved to the next block, if any, otherwise, a new block is allocated and then added to
the list of blocks. All the blocks are of the same size and, therefore, this technique
ensures an accurate memory allocation and helps avoid memory fragmentation if the
blocks are large enough (see Figure 7-1).

OpenCV Reference Manual Basic Structures and Operations 7

7-5

Sequences

A sequence is a resizable array of arbitrary type elements located in the memory
storage. The sequence is discontinuous. Sequence data may be partitioned into several
continuous blocks, called sequence blocks, that can be located in different memory
blocks. Sequence blocks are connected into a circular double-linked list to store large
sequences in several memory blocks or keep several small sequences in a single
memory block. For example, such organization is suitable for storing contours. The
sequence implementation provides fast functions for adding/removing elements
to/from the head and tail of the sequence, so that the sequence implements a deque.
The functions for inserting/removing elements in the middle of a sequence are also
available but they are slower. The sequence is the basic type for many other dynamic
data structures in the library, e.g., sets, graphs, and contours; just like all these types,
the sequence never returns the occupied memory to the storage. However, the
sequence keeps track of the memory released after removing elements from the

Figure 7-1 Memory Storage Organization

.

Storage Header

BOTTOM

TOP

Memory Blocks

Free Space

OpenCV Reference Manual Basic Structures and Operations 7

7-6

sequence; this memory is used repeatedly. To return the memory to the storage, the
user may clear a whole storage, or use save/restoring position functions, or keep
temporary data in child storages.

Figure 7-2 Sequence Structure

Writing and Reading Sequences

Although the functions and macros described below are irrelevant in theory because
functions like SeqPush and GetSeqElem enable the user to write to sequences and
read from them, the writing/reading functions and macros are very useful in practice
because of their speed.

The following problem could provide an illustrative example. If the task is to create a
function that forms a sequence from N random values, the PUSH version runs as
follows:

CvSeq* create_seq1(CvStorage* storage, int N) {

CvSeq* seq = cvCreateSeq(0, sizeof(*seq), sizeof(int), storage);

for(int i = 0; i < N; i++) {

int a = rand();

cvSeqPush(seq, &a);

}

return seq;

Storage Header

Sequence Header and, probably,
the First Sequence Block.

Sequence Blocks.

Links Between Blocks.

OpenCV Reference Manual Basic Structures and Operations 7

7-7

}

The second version makes use of the fast writing scheme, that includes the following
steps: initialization of the writing process (creating writer), writing, closing the writer
(flush).

CvSeq* create_seq1(CvStorage* storage, int N) {

CvSeqWriter writer;

cvStartWriteSeq(0, sizeof(*seq), sizeof(int),

storage, &writer);

for(int i = 0; i < N; i++) {

int a = rand();

CV_WRITE_SEQ_ELEM(a, writer);

}

return cvEndWriteSeq(&writer);

}

If N = 100000 and 500 MHz Pentium® III processor is used, the first version takes 230
milliseconds and the second one takes 111 milliseconds to finish. These characteristics
assume that the storage already contains a sufficient number of blocks so that no new
blocks are allocated. A comparison with the simple loop that does not use sequences
gives an idea as to how effective and efficient this approach is.

int* create_seq3(int* buffer, int N) {

for(i = 0; i < N; i++) {

buffer[i] = rand();

}

return buffer;

}

This function takes 104 milliseconds to finish using the same machine.

Generally, the sequences do not make a great impact on the performance and the
difference is very insignificant (less than 7% in the above example). However, the
advantage of sequences is that the user can operate the input or output data even
without knowing their amount in advance. These structures enable him/her to allocate
memory iteratively. Another problem solution would be to use lists, yet the sequences
are much faster and require less memory.

OpenCV Reference Manual Basic Structures and Operations 7

7-8

Sets

The set structure is mostly based on sequences but has a totally different purpose. For
example, the user is unable to use sequences for location of the dynamic structure
elements that have links between one another because if some elements have been
removed from the middle of the sequence, other sequence elements are moved to
another location and their addresses and indices change. In this case all links have to be
fixed anew. Another aspect of this problem is that removing elements from the middle
of the sequence is slow, with time complexity of O(n), where n is the number of
elements in the sequence.

The problem solution lies in making the structure sparse and unordered, that is,
whenever a structure element is removed, other elements must stay where they have
been, while the cell previously occupied by the element is added to the pool of three
cells; when a new element is inserted into the structure, the vacant cell is used to store
this new element. The set operates in this way (See Example 7-3).

The set looks like a list yet keeps no links between the structure elements. However,
the user is free to make and keep such lists, if needed. The set is implemented as a
sequence subclass; the set uses sequence elements as cells and organizes a list of free
cells.

OpenCV Reference Manual Basic Structures and Operations 7

7-9

See Figure 7-3 for an example of a set. For simplicity, the figure does not show
division of the sequence/set into memory blocks and sequence blocks.

The set elements, both existing and free cells, are all sequence elements. A special bit
indicates whether the set element exists or not: in the above diagram the bits marked
by 1 are free cells and the ones marked by 0 are occupied cells. The macro
CV_IS_SET_ELEM_EXISTS(set_elem_ptr) uses this special bit to return a non-zero
value if the set element specified by the parameter set_elem_ptr belongs to the set,
and 0 otherwise. Below follows the definition of the structure CvSet:

In other words, a set is a sequence plus a list of free cells.

Figure 7-3 Set Structure

Example 7-3 CvSet Structure Definition

#define CV_SET_FIELDS() \
CV_SEQUENCE_FIELDS() \
CvMemBlock* free_elems;

typedef struct CvSet
{

CV_SET_FIELDS()
}
CvSet;

0 1 1 0 1 0

Set Header

ll List of Free Cells

Free Cells, Linked Together

le Existing Set Elements

OpenCV Reference Manual Basic Structures and Operations 7

7-10

There are two modes of working with sets:

1. Using indices for referencing the set elements within a sequence

2. Using pointers for the same purpose.

Whereas at times the first mode is a better option, the pointer mode is faster because it
does not need to find the set elements by their indices, which is done in the same way
as in simple sequences. The decision on which method should be used in each
particular case depends on:

• the type of operations to be performed on the set and

• the way the operations on the set should be performed.

The ways in which a new set is created and new elements are added to the existing set
are the same in either mode, the only difference between the two being the way the
elements are removed from the set. The user may even use both methods of access
simultaneously, provided he or she has enough memory available to store both the
index and the pointer to each element.

Like in sequences, the user may create a set with elements of arbitrary type and specify
any size of the header subject to the following restrictions:

• size of the header may not be less than sizeof(CvSet).

• size of the set elements should be divisible by 4 and not less than 8 bytes.

The reason behind the latter restriction is the internal set organization: if the set has a
free cell available, the first 4-byte field of this set element is used as a pointer to the
next free cell, which enables the user to keep track of all free cells. The second 4-byte
field of the cell contains the cell to be returned when the cell becomes occupied.

When the user removes a set element while operating in the index mode, the index of
the removed element is passed and stored in the released cell again. The bit indicating
whether the element belongs to the set is the least significant bit of the first 4-byte
field. This is the reason why all the elements must have their size divisible by 4. In this
case they are all aligned with the 4-byte boundary, so that the least significant bits of
their addresses are always 0.

In free cells the corresponding bit is set to 1 and, in order to get the real address of the
next free cell, the functions mask this bit off. On the other hand, if the cell is occupied,
the corresponding bit must be equal to 0, which is the second and last restriction: the

OpenCV Reference Manual Basic Structures and Operations 7

7-11

least significant bit of the first 4-byte field of the set element must be 0, otherwise the
corresponding cell is considered free. If the set elements comply with this restriction,
e.g., if the first field of the set element is a pointer to another set element or to some
aligned structure outside the set, then the only restriction left is a non-zero number of
4- or 8-byte fields after the pointer. If the set elements do not comply with this
restriction, e.g., if the user wants to store integers in the set, the user may derive his or
her own structure from the structure CvSetElem or include it into his or her structure as
the first field.

The first field is a dummy field and is not used in the occupied cells, except the least
significant bit, which is 0. With this structure the integer element could be defined as
follows:

typedef struct _IntSetElem

{

CV_SET_ELEM_FIELDS()

int value;

}

IntSetElem;

Graphs

The structure set described above helps to build graphs because a graph consists of two
sets, namely, vertices and edges, that refer to each other.

Example 7-4 CvSetElem Structure Definition

#define CV_SET_ELEM_FIELDS() \
int* aligned_ptr;

typedef struct _CvSetElem
{

CV_SET_ELEM_FIELDS()
}
CvSetElem;

Example 7-5 CvGraph Structure Definition

#define CV_GRAPH_FIELDS() \
CV_SET_FIELDS() \
CvSet* edges;

typedef struct _CvGraph

OpenCV Reference Manual Basic Structures and Operations 7

7-12

In OOP terms, the graph structure is derived from the set of vertices and includes a set
of edges. Besides, special data types exist for graph vertices and graph edges.

The graph vertex has a single predefined field that assumes the value of 1 when
pointing to the first edge incident to the vertex, or 0 if the vertex is isolated. The edges
incident to a vertex make up the single linked non-cycle list. The edge structure is
more complex: and are the starting and ending vertices of the edge,
next[0] and next[1] are the next edges in the incident lists for and

{
CV_GRAPH_FIELDS()

}
CvGraph;

Example 7-6 Definitions of CvGraphEdge and CvGraphVtx Structures

#define CV_GRAPH_EDGE_FIELDS() \
struct _CvGraphEdge* next[2]; \
struct _CvGraphVertex* vtx[2];

#define CV_GRAPH_VERTEX_FIELDS() \
struct _CvGraphEdge* first;

typedef struct _CvGraphEdge
{

CV_GRAPH_EDGE_FIELDS()
}
CvGraphEdge;

typedef struct _CvGraphVertex
{

CV_GRAPH_VERTEX_FIELDS()
}
CvGraphVtx;

Example 7-5 CvGraph Structure Definition (continued)

vtx 0[] vtx 1[]
vtx 0[] vtx 1[]

OpenCV Reference Manual Basic Structures and Operations 7

7-13

respectively. In other words, each edge is included in two incident lists since any edge
is incident to both the starting and the ending vertices. For example, consider the
following oriented graph (see below for more information on non-oriented graphs).

The structure can be created with the following code:

CvGraph* graph = cvCreateGraph(CV_SEQ_KIND_GRAPH |

CV_GRAPH_FLAG_ORIENTED,

sizeof(CvGraph),

sizeof(CvGraphVtx)+4,

sizeof(CvGraphEdge),

storage);

for(i = 0; i < 5; i++)

{

cvGraphAddVtx(graph, 0, 0);/* arguments like in

cvSetAdd*/

}

cvGraphAddEdge(graph, 0, 1, 0, 0); /* connect vertices 0

Figure 7-4 Sample Graph

0

1

2

3

4

OpenCV Reference Manual Basic Structures and Operations 7

7-14

and 1, other two arguments like in cvSetAdd */

cvGraphAddEdge(graph, 1, 2, 0, 0);

cvGraphAddEdge(graph, 2, 0, 0, 0);

cvGraphAddEdge(graph, 2, 3, 0, 0);

The internal structure comes to be as follows:

Undirected graphs can also be represented by the structure CvGraph. If the
non-oriented edges are substituted for the oriented ones, the internal structure remains
the same. However, the function used to find edges succeeds only when it finds the
edge from 3 to 2, as the function looks not only for edges from 3 to 2 but also from 2 to
3, and such an edge is present as well. As follows from the code, the type of the graph
is specified when the graph is created, and the user can change the behavior of the edge
searching function by specifying or omitting the flag CV_GRAPH_FLAG_ORIENTED. Two
edges connecting the same vertices in undirected graphs may never be created because
the existence of the edge between two vertices is checked before a new edge is inserted

Figure 7-5 Internal Structure for Sample Graph Shown in Figure 7-4

Graph vertices

0 1 2 4 5

Graph edges

Graph vertices

0 1 2 4 5

Graph edges

Graph Vertices

0 1 2 4 5

Graph Edges

OpenCV Reference Manual Basic Structures and Operations 7

7-15

between them. However, internally the edge can be coded from the first vertex to the
second or vice versa. Like in sets, the user may work with either indices or pointers.
The graph implementation uses only pointers to refer to edges, but the user can choose
indices or pointers for referencing vertices.

Matrix Operations
Besides IplImage support, OpenCV introduces special data type CvMat, instances of
which can be stored as real or complex matrices as well as multi-channel raster data.

The fist member of the structure type contains several bit fields:

• Bits 0..3: type of matrix elements (depth). Can be one of the following:

CV_8U = 0 8-bit, unsigned (unsigned char)

CV_8S = 1 8-bit, signed (signed char)

CV_16S = 2 16-bit, signed (short)

Example 7-7 CvMat Structure Definition

typedef struct CvMat {

int type; /* the type of matrix elements */

union
{

int rows; /* number of rows in the matrix */
int height; /* synonym for <rows> */

};

union
{

int cols; /* number of columns */
int width; /* synonym for <cols> */

};

int step; /* matrix stride */
union
{

float* fl;
double* db;
uchar* ptr;

} data; /* pointer to matrix data */
};

OpenCV Reference Manual Basic Structures and Operations 7

7-16

CV_32S = 3 32-bit, signed (int)

CV_32F = 4 32-bit, single-precision floating point number (float)

CV_64F = 5 64-bit, double-precision floating point number (double)

• Bits 4..5: number of channels minus 1, that is:

0 – 1 channel

1 – 2 channels

2 – 3 channels

3 – 4 channels

• Bits 6-15: for internal use.

• Bits 16-31: always equal to 4224 heximal – this magic number is a CvMat

signature.

The constants CV_<depth>C<number_of_channels> are defined to describe possible
combinations of the matrix depth and number of channels, for example:

CV_8UC1 – unsigned 8-bit single-channel data; can be used for grayscale
image or binary image – mask.

CV_8SC1 – signed 8-bit single-channel data.

…

CV_32FC1 – single-precision real numbers, or real valued matrices.

…

CV_64FC2 – double-precision complex numbers.

…

CV_8UC3 – unsigned 8-bit, 3 channels; used for color images.

…

CV_64FC4 – double-precision floating point number quadruples, e.g.,
quaternions.

OpenCV Reference Manual Basic Structures and Operations 7

7-17

Multiple-channel data is stored in interleaved order, that is, different channels of the
same element are stored sequentially, one after another.

CvMat is generalization of matrices in usual sense of the word. It can store data of all
most common IplImage formats . All the basic matrix and image operations on this
type are supported. They include:

— arithmetics and logics,

— matrix multiplication,

— dot and cross product,

— perspective transform,

— Mahalonobis distance,

— SVD,

— eigen values problem solution, etc.

While some of operations operate only on arrays, that is, images or matrices, a few
operations have both arrays and scalars on input/output. For example, a specific
operation adds the same scalar value to all elements of the input array.

OpenCV introduces type CvScalar for representing arbitrary scalar value.

Inline functions cvScalar, cvScalarAll and cvRealScalar can be used to construct
the structure from scalar components.

Operations that operate on arrays and scalars have S suffix in their names. E.g., cvAddS
adds a scalar to array elements.

Example 7-8 CvScalar Definition

typedef struct CvScalar
{

double val[4];
}
CvScalar;

OpenCV Reference Manual Basic Structures and Operations 7

7-18

Interchangability between IplImage and CvMat.

Most of OpenCV functions that operate on dense arrays accept pointers to both
IplImage and CvMat types in any combinations. It is done via introduction of dummy
type CvArr, which is defined as follows:

The function analyzes the first integer field at the beginning of the passed structure and
thus distinguishes between IplImage, the first field of which is equal to the size of
IplImage structure, and CvMat, the first field of which is 0x4224xxxx.

Drawing Primitives
This section describes simple drawing functions.

The functions described in this chapter are intended mainly to mark out recognized or
tracked features in the image. With tracking or recognition pipeline implemented it is
often necessary to represent results of the processing in the image. Despite the fact that
most Operating Systems have advanced graphic capabilities, they often require an
image, where one is going to draw, to be created by special system functions. For
example, under Win32 a graphic context (DC) must be created in order to use GDI
draw functions. Therefore, several simple functions for 2D vector graphic rendering
have been created. All of them are platform-independent and work with IplImage

structure. Now supported image formats include byte-depth images with depth =
IPL_DEPTH_8U or depth = IPL_DEPTH_8S. The images are either

• single channel, that is, grayscale or

• three channel, that is RGB or, more exactly, BGR as the blue channel goes first.

Several preliminary notes can be made that are relevant for each drawing function of
the library:

• All of the functions take color parameter that means brightness for grayscale
images and RGB color for color images. In the latter case a value, passed to the
function, can be composed via CV_RGB macro that is defined as:

#define CV_RGB(r,g,b) ((((r)&255) << 16)|(((g)&255) << 8)|((b)&255)).

Example 7-9 CvArr Type Definition

typedef void CvArr;

OpenCV Reference Manual Basic Structures and Operations 7

7-19

• Any function in the group takes one or more points (CvPoint structure instance(s))
as input parameters. Point coordinates are counted from top-left ROI corner for
top-origin images and from bottom-left ROI corner for bottom-origin images.

• All the functions are divided into two classes - with or without antialiasing. For
several functions there exist antialiased versions that end with AA suffix. The
coordinates, passed to AA-functions, can be specified with sub-pixel accuracy, that
is, they can have several fractional bits, which number is passed via scale

parameter. For example, if cvCircleAA function is passed center =

cvPoint(34,18)and scale = 2, then the actual center coordinates are
(34/4.,19/4.)==(16.5,4.75).

Simple (that is, non-antialiased) functions have thickness parameter that specifies
thickness of lines a figure is drawn with. For some functions the parameter may take
negative values. It causes the functions to draw a filled figure instead of drawing its
outline. To improve code readability one may use constant CV_FILLED = -1 as a
thickness value to draw filled figures.

Utility
Utility functions are unclassified OpenCV functions described in Reference.

8-1

8
Library Technical
Organization and System
Functions

Error Handling
TBD

Memory Management
TBD

Interaction With Low-Level Optimized Functions
TBD

User DLL Creation
TBD

9-1

9
Motion Analysis and Object
Tracking Reference

Table 9-1 Motion Analysis and Object Tracking Functions and Data Types

Group Name Description

Functions

Background Subtraction
Functions

Acc Adds a new image to
the accumulating sum.

SquareAcc Calculates square of the
source image and adds
it to the destination
image.

MultiplyAcc Calculates product of
two input images and
adds it to the destination
image.

RunningAvg Calculates weighted
sum of two images.

Motion Templates Functions UpdateMotionHistory Updates the motion
history image by moving
the silhouette.

CalcMotionGradient Calculates gradient
orientation of the motion
history image.

CalcGlobalOrientation Calculates the general
motion direction in the
selected region.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-2

SegmentMotion Segments the whole
motion into separate
moving parts.

CamShift Functions CamShift Finds an object center
using the MeanShift
algorithm, calculates the
object size and
orientation.

MeanShift Iterates to find the object
center.

Active Contours Function SnakeImage Changes contour
position to minimize its
energy.

Optical Flow Functions CalcOpticalFlowHS Calculates optical flow
for two images
implementing Horn and
Schunk technique.

CalcOpticalFlowLK Calculates optical flow
for two images
implementing Lucas and
Kanade technique.

CalcOpticalFlowBM Calculates optical flow
for two images
implementing the Block
Matching algorithm.

CalcOpticalFlowPyrLK Calculates optical flow
for two images using
iterative Lucas-Kanade
method in pyramids.

Estimators Functions CreateKalman Allocates Kalman filter
structure.

ReleaseKalman Deallocates Kalman
filter structure.

KalmanUpdateByTime Estimates the
subsequent stochastic
model state.

Table 9-1 Motion Analysis and Object Tracking Functions and Data Types (continued)

Group Name Description

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-3

Background Subtraction Functions

Acc
Adds frame to accumulator.

void cvAcc (IplImage* img, IplImage* sum, IplImage* mask=0);

img Input image.

sum Accumulating image.

mask Mask image.

KalmanUpdateByMeasurement Adjusts the stochastic
model state on the basis
of the true
measurements.

CreateConDensation Allocates a
ConDensation filter
structure.

ReleaseConDensation Deallocates a
ConDensation filter
structure.

ConDensInitSampleSet Initializes a sample set
for condensation
algorithm.

ConDensUpdateByTime Estimates the
subsequent model state
by its current state.

Data Types

Estimators Data Types CvKalman

CvConDensation

Table 9-1 Motion Analysis and Object Tracking Functions and Data Types (continued)

Group Name Description

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-4

Discussion

The function Acc adds a new image img to the accumulating sum sum. If mask is not
NULL, it specifies what accumulator pixels are affected.

SquareAcc
Calculates square of source image and adds it to
destination image.

void cvSquareAcc(IplImage* img, IplImage* sqSum, IplImage* mask=0);

img Input image.

sqSum Accumulating image.

mask Mask image.

Discussion

The function SquareAcc adds the square of the new image img to the accumulating
sum sqSum of the image squares. If mask is not NULL, it specifies what accumulator
pixels are affected.

MultiplyAcc
Calculates product of two input images and adds
it to destination image.

void cvMultiplyAcc(IplImage* imgA, IplImage* imgB, IplImage* acc, IplImage*
mask=0);

imgA First input image.

imgB Second input image.

acc Accumulating image.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-5

mask Mask image.

Discussion

The function MultiplyAcc multiplies input imgA by imgB and adds the result to the
accumulating sum acc of the image products. If mask is not NULL, it specifies what
accumulator pixels are affected.

RunningAvg
Calculates weighted sum of two images.

void cvRunningAvg(IplImage* imgY, IplImage* imgU, double alpha,
IplImage* mask=0);

imgY Input image.

imgU Destination image.

alpha Weight of input image.

mask Mask image.

Discussion

The function RunningAvg calculates weighted sum of two images. Once a statistical
model is available, slow updating of the value is often required to account for slowly
changing lighting, etc. This can be done by using a simple adaptive filter:

,

where (imgU) is the updated value, is an averaging constant, typically set to
a small value such as 0.05, and y (imgY) is a new observation at time t. When the
function is applied to a frame sequence, the result is called the running average of the
sequence.

If mask is not NULL, it specifies what accumulator pixels are affected.

µt αy 1 α–()µt 1–+=

µ 0 α 1≤ ≤

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-6

Motion Templates Functions

UpdateMotionHistory
Updates motion history image by moving
silhouette.

void cvUpdateMotionHistory (IplImage* silhouette, IplImage* mhi, double
timestamp, double mhiDuration);

silhouette Silhouette image that has non-zero pixels where the motion occurs.

mhi Motion history image, both an input and output parameter.

timestamp Floating point current time in milliseconds.

mhiDuration Maximal duration of motion track in milliseconds.

Discussion

The function UpdateMotionHistory updates the motion history image with a
silhouette, assigning the current timestamp value to those mhi pixels that have
corresponding non-zero silhouette pixels. The function also clears mhi pixels older
than timestamp – mhiDuration if the corresponding silhouette values are 0.

CalcMotionGradient
Calculates gradient orientation of motion history
image.

void cvCalcMotionGradient(IplImage* mhi, IplImage* mask, IplImage*
orientation, double maxTDelta, double minTDelta, int apertureSize=3);

mhi Motion history image.

mask Mask image; marks pixels where motion gradient data is correct.
Output parameter.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-7

orientation Motion gradient orientation image; contains angles from 0 to ~360
degrees.

apertureSize Size of aperture used to calculate derivatives. Value should be odd,
e.g., 3, 5, etc.

maxTDelta Upper threshold. The function considers the gradient orientation
valid if the difference between the maximum and minimum mhi

values within a pixel neighborhood is lower than this threshold.

minTDelta Lower threshold. The function considers the gradient orientation
valid if the difference between the maximum and minimum mhi

values within a pixel neighborhood is greater than this threshold.

Discussion

The function CalcMotionGradient calculates the derivatives Dx and Dy for the image
mhi and then calculates orientation of the gradient using the formula

Finally, the function masks off pixels with a very small (less than minTDelta) or very
large (greater than maxTDelta) difference between the minimum and maximum mhi

values in their neighborhood. The neighborhood for determining the minimum and
maximum has the same size as aperture for derivative kernels - apertureSize x

apertureSize pixels.

CalcGlobalOrientation
Calculates global motion orientation of some
selected region.

void cvCalcGlobalOrientation(IplImage* orientation, IplImage* mask, IplImage*
mhi, double currTimestamp, double mhiDuration);

ϕ
0 x, 0 y, o= =

arc y x⁄()elsetan

=

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-8

orientation Motion gradient orientation image; calculated by the
function CalcMotionGradient.

mask Mask image. It is a conjunction of valid gradient mask,
calculated by the function CalcMotionGradient and mask
of the region, whose direction needs to be calculated.

mhi Motion history image.

currTimestamp Current time in milliseconds.

mhiDuration Maximal duration of motion track in milliseconds.

Discussion

The function CalcGlobalOrientation calculates the general motion direction in the
selected region.

At first the function builds the orientation histogram and finds the basic orientation as
a coordinate of the histogram maximum. After that the function calculates the shift
relative to the basic orientation as a weighted sum of all orientation vectors: the more
recent is the motion, the greater is the weight. The resultant angle is <basic
orientation> + <shift>.

SegmentMotion
Segments whole motion into separate moving
parts.

void cvSegmentMotion(IplImage* mhi, IplImage* segMask, CvMemStorage* storage,
CvSeq** components, double timestamp, double segThresh);

mhi Motion history image.

segMask Image where the mask found should be stored.

Storage Pointer to the memory storage, where the sequence of components
should be saved.

components Sequence of components found by the function.

timestamp Floating point current time in milliseconds.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-9

segThresh Segmentation threshold; recommended to be equal to the interval
between motion history “steps” or greater.

Discussion

The function SegmentMotion finds all the motion segments, starting from
connected components in the image mhi that have value of the current timestamp. Each
of the resulting segments is marked with an individual value (1,2 ...).

The function stores information about each resulting motion segment in the structure
CvConnectedComp (See Example 10-1 in Image Analysis Reference). The function
returns a sequence of such structures.

CamShift Functions

CamShift
Finds object center, size, and orientation.

intcvCamShift(IplImage*imgProb,CvRect windowIn,CvTermCriteria criteria,
CvConnectedComp* out, CvBox2D* box=0);

imgProb 2D object probability distribution.

windowIn Initial search window.

criteria Criteria applied to determine when the window search should be
finished.

out Resultant structure that contains converged search window
coordinates (rect field) and sum of all pixels inside the window
(area field).

box Circumscribed box for the object. If not NULL, contains object size
and orientation.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-10

Discussion

The function CamShift finds an object center using the Mean Shift algorithm and,
after that, calculates the object size and orientation. The function returns number of
iterations made within the Mean Shift algorithm.

MeanShift
Iterates to find object center.

int cvMeanShift(IplImage* imgProb, CvRect windowIn, CvTermCriteria
criteria, CvConnectedComp* out);

imgProb 2D object probability distribution.

windowIn Initial search window.

criteria Criteria applied to determine when the window search should be
finished.

out Resultant structure that contains converged search window
coordinates (rect field) and sum of all pixels inside the window
(area field).

Discussion

The function MeanShift iterates to find the object center given its 2D color
probability distribution image. The iterations are made until the search window center
moves by less than the given value and/or until the function has done the maximum
number of iterations. The function returns the number of iterations made.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-11

Active Contours Function

SnakeImage
Changes contour position to minimize its energy.

void cvSnakeImage(IplImage* image, CvPoint* points, int length,
float* alpha, float* beta, float* gamma, int coeffUsage, CvSize win,
CvTermCriteria criteria, int calcGradient=1);

image Pointer to the source image.

points Points of the contour.

length Number of points in the contour.

alpha Weight of continuity energy.

beta Weight of curvature energy.

gamma Weight of image energy.

coeffUsage Variant of usage of the previous three parameters:

• CV_VALUE indicates that each of alpha, beta, gamma is a pointer
to a single value to be used for all points;

• CV_ARRAY indicates that each of alpha, beta, gamma is a pointer
to an array of coefficients different for all the points of the snake.
All the arrays must have the size equal to the snake size.

win Size of neighborhood of every point used to search the minimum;
must be odd.

criteria Termination criteria.

calcGradient Gradient flag. If not 0, the function counts source image gradient
magnitude as external energy, otherwise the image intensity is
considered.

Discussion

The function SnakeImage uses image intensity as image energy.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-12

The parameter criteria.epsilon is used to define the minimal number of points that
must be moved during any iteration to keep the iteration process running.

If the number of moved points is less than criteria.epsilon or the function
performed criteria.maxIter iterations, the function terminates.

Optical Flow Functions

CalcOpticalFlowHS
Calculates optical flow for two images.

void cvCalcOpticalFlowHS(IplImage* imgA, IplImage* imgB, int usePrevious,
IplImage* velx, IplImage* vely, double lambda, CvTermCriteria criteria);

imgA First image.

imgB Second image.

usePrevious Uses previous (input) velocity field.

velx Horizontal component of the optical flow.

vely Vertical component of the optical flow.

lambda Lagrangian multiplier.

criteria Criteria of termination of velocity computing.

Discussion

The function CalcOpticalFlowHS computes flow for every pixel, thus output images
must have the same size as the input. Horn & Schunck Technique is implemented.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-13

CalcOpticalFlowLK
Calculates optical flow for two images.

void cvCalcOpticalFlowLK(IplImage* imgA, IplImage* imgB, CvSize winSize,
IplImage* velx, IplImage* vely);

imgA First image.

imgB Second image.

winSize Size of the averaging window used for grouping pixels.

velx Horizontal component of the optical flow.

vely Vertical component of the optical flow.

Discussion

The function CalcOpticalFlowLK computes flow for every pixel, thus output images
must have the same size as input. Lucas & Kanade Technique is implemented.

CalcOpticalFlowBM
Calculates optical flow for two images by block
matching method.

void cvCalcOpticalFlowBM(IplImage* imgA, IplImage* imgB, CvSize blockSize,
CvSize shiftSize, CvSize maxRange, int usePrevious, IplImage* velx,
IplImage* vely);

imgA First image.

imgB Second image.

blockSize Size of basic blocks that are compared.

shiftSize Block coordinate increments.

maxRange Size of the scanned neighborhood in pixels around block.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-14

usePrevious Uses previous (input) velocity field.

velx Horizontal component of the optical flow.

vely Vertical component of the optical flow.

Discussion

The function CalcOpticalFlowBM calculates optical flow for two images using the
Block Matching algorithm. Velocity is computed for every block, but not for every
pixel, so velocity image pixels correspond to input image blocks and the velocity
image must have the following size:

CalcOpticalFlowPyrLK
Calculates optical flow for two images using
iterative Lucas-Kanade method in pyramids.

void cvCalcOpticalFlowPyrLK(IplImage* imgA, IplImage* imgB, IplImage* pyrA,
IplImage* pyrB, CvPoint2D32f* featuresA, CvPoint2D32f* featuresB, int
count, CvSize winSize, int level, char* status, float* error,
CvTermCriteria criteria, int flags);

imgA First frame, at time t.

imgB Second frame, at time t+dt.

pyrA Buffer for the pyramid for the first frame. If the pointer is not NULL,
the buffer must have a sufficient size to store the pyramid from
level 1 to level #<level> ; the total size of
(imgSize.width+8)*imgSize.height/3 bytes is sufficient.

pyrB Similar to pyrA, applies to the second frame.

featuresA Array of points for which the flow needs to be found.

featuresB Array of 2D points containing calculated new positions of input
features in the second image.

velocityFrameSize.width
imageSize.width
blockSize.width
-- ,=

velocityFrameSize.height
imageSize.height
blockSize.height
-- .=

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-15

count Number of feature points.

winSize Size of the search window of each pyramid level.

level Maximal pyramid level number. If 0, pyramids are not used (single
level), if 1, two levels are used, etc.

status Array. Every element of the array is set to 1 if the flow for the
corresponding feature has been found, 0 otherwise.

error Array of double numbers containing difference between patches
around the original and moved points. Optional parameter; can be
NULL.

criteria Specifies when the iteration process of finding the flow for each
point on each pyramid level should be stopped.

flags Miscellaneous flags:

• CV_LKFLOW_PYR_A_READY, pyramid for the first frame is
precalculated before the call;

• CV_LKFLOW_PYR_B_READY, pyramid for the second frame is
precalculated before the call;

• CV_LKFLOW_INITIAL_GUESSES, array B contains initial
coordinates of features before the function call.

Discussion

The function CalcOpticalFlowPyrLK calculates the optical flow between two images
for the given set of points. The function finds the flow with sub-pixel accuracy.

Both parameters pyrA and pyrB comply with the following rules: if the image pointer
is 0, the function allocates the buffer internally, calculates the pyramid, and releases
the buffer after processing. Otherwise, the function calculates the pyramid and stores it
in the buffer unless the flag CV_LKFLOW_PYR_A[B]_READY is set. The image should be
large enough to fit the Gaussian pyramid data. After the function call both pyramids
are calculated and the ready flag for the corresponding image can be set in the next
call.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-16

Estimators Functions

CreateKalman
Allocates Kalman filter structure.

CvKalman* cvCreateKalman(int DynamParams, int MeasureParams);

DynamParams Dimension of the state vector.

MeasureParams Dimension of the measurement vector.

Discussion

The function CreateKalman creates CvKalman structure and returns pointer to the
structure.

ReleaseKalman
Deallocates Kalman filter structure.

void cvReleaseKalman(CvKalman** Kalman);

Kalman Double pointer to the structure to be released.

Discussion

The function ReleaseKalman releases the structure CvKalman (see Example 9-1) and
frees the memory previously allocated for the structure.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-17

KalmanUpdateByTime
Estimates subsequent model state.

void cvKalmanUpdateByTime (CvKalman* Kalman);

Kalman Pointer to the structure to be updated.

Discussion

The function KalmanUpdateByTime estimates the subsequent stochastic model state
by its current state.

KalmanUpdateByMeasurement
Adjusts model state.

void cvKalmanUpdateByMeasurement (CvKalman* Kalman,CvMat* Measurement);

Kalman Pointer to the structure to be updated.

Measurement Pointer to the structure CvMat containing the measurement vector.

Discussion

The function KalmanUpdateByMeasurement adjusts stochastic model state on the
basis of the true measurements of the model state.

CreateConDensation
Allocates ConDensation filter structure.

CvConDensation* cvCreateConDensation(int DynamParams, int MeasureParams, int
SamplesNum);

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-18

DynamParams Dimension of the state vector.

MeasureParams Dimension of the measurement vector.

SamplesNum Number of samples.

Discussion

The function CreateConDensation creates cvConDensation (see Example 9-2)
structure and returns pointer to the structure.

ReleaseConDensation
Deallocates ConDensation filter structure.

void cvReleaseConDensation(CvConDensation** ConDens);

ConDens Pointer to the pointer to the structure to be released.

Discussion

The function ReleaseConDensation releases the structure CvConDensation (see
Example 9-2) and frees all memory previously allocated for the structure.

ConDensInitSampleSet
Initializes sample set for condensation algorithm.

void cvConDensInitSampleSet(CvConDensation* ConDens, CvMat* lowerBound CvMat*
upperBound);

ConDens Pointer to a structure to be initialized.

lowerBound Vector of the lower boundary for each dimension.

upperBound Vector of the upper boundary for each dimension.

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-19

Discussion

The function ConDensInitSampleSet fills the samples arrays in the structure
CvConDensation (see Example 9-2) with values within specified ranges.

ConDensUpdateByTime
Estimates subsequent model state.

void cvConDensUpdateByTime(CvConDensation* ConDens);

ConDens Pointer to the structure to be updated.

Discussion

The function ConDensUpdateByTime estimates the subsequent stochastic model
state from its current state.

Estimators Data Types

Example 9-1 CvKalman

typedef struct CvKalman
{
int MP; //Dimension of measurement vector
int DP; // Dimension of state vector
float* PosterState; // Vector of State of the System in k-th step
float* PriorState; // Vector of State of the System in (k-1)-th step
float* DynamMatr; // Matrix of the linear Dynamics system
float* MeasurementMatr; // Matrix of linear measurement
float* MNCovariance; // Matrix of measurement noice covariance
float* PNCovariance; // Matrix of process noice covariance
float* KalmGainMatr; // Kalman Gain Matrix
float* PriorErrorCovariance; //Prior Error Covariance matrix
float* PosterErrorCovariance;//Poster Error Covariance matrix
float* Temp1; // Temporary Matrixes
float* Temp2;
}CvKalman;

OpenCV Reference Manual Motion Analysis and Object Tracking Reference 9

9-20

Example 9-2 CvConDensation

typedef struct
{
int MP; //Dimension of measurement vector
int DP; // Dimension of state vector
float* DynamMatr; // Matrix of the linear Dynamics system
float* State; // Vector of State
int SamplesNum; // Number of the Samples
float** flSamples; // array of the Sample Vectors
float** flNewSamples; // temporary array of the Sample Vectors
float* flConfidence; // Confidence for each Sample
float* flCumulative; // Cumulative confidence
float* Temp; // Temporary vector
float* RandomSample; // RandomVector to update sample set
CvRandState* RandS; // Array of structures to generate random vectors
}CvConDensation;

10-1

10Image Analysis Reference

Table 10-1 Image Analysis Reference

Group Name Description

Functions

Contour Retrieving
Functions

FindContours Finds contours in a binary
image.

StartFindContours Initializes contour
scanning process.

FindNextContour Finds the next contour on
the raster.

SubstituteContour Replaces the retrieved
contour.

EndFindContours Finishes scanning
process.

Features Functions Laplace Calculates convolution of
the input image with
Laplacian operator.

Sobel Calculates convolution of
the input image with Sobel
operator.

Canny Implements Canny
algorithm for edge
detection.

PreCornerDetect Calculates two constraint
images for corner
detection.

OpenCV Reference Manual Image Analysis Reference 10

10-2

CornerEigenValsAndVecs Calculates eigenvalues
and eigenvectors of image
blocks for corner
detection.

CornerMinEigenVal Calculates minimal
eigenvalues of image
blocks for corner
detection.

FindCornerSubPix Refines corner locations.

GoodFeaturesToTrack Determines strong
corners on the image.

HoughLines Finds lines in a binary
image, SHT algorithm.

HoughLinesSDiv Finds lines in a binary
image, MHT algorithm.

HoughLinesP Finds line segments in a
binary image, PPHT
algorithm.

Image Statistics
Functions

CountNonZero Counts non-zero pixels in
an image.

SumPixels Summarizes pixel values
in an image.

Mean Calculates mean value in
an image region.

Mean_StdDev Calculates mean and
standard deviation in an
image region.

MinMaxLoc Finds global minimum and
maximum in an image
region.

Norm Calculates image norm,
difference norm or relative
difference norm.

Table 10-1 Image Analysis Reference (continued)

Group Name Description

OpenCV Reference Manual Image Analysis Reference 10

10-3

Moments Calculates all moments up
to the third order of the
image plane and fills the
moment state structure.

GetSpatialMoment Retrieves spatial moment
from the moment state
structure.

GetCentralMoment Retrieves the central
moment from the moment
state structure.

GetNormalizedCentralMoment Retrieves the normalized
central moment from the
moment state structure.

GetHuMoments Calculates seven Hu
moment invariants from
the moment state
structure.

Pyramid Functions PyrDown Downsamples an image.

PyrUp Upsamples an image.

PyrSegmentation Implements image
segmentation by
pyramids.

Morphology Functions CreateStructuringElementEx Creates a structuring
element.

ReleaseStructuringElement Deletes the structuring
element.

Erode Erodes the image by
using an arbitrary
structuring element.

Dilate Dilates the image by using
an arbitrary structuring
element.

MorphologyEx Performs advanced
morphological
transformations.

Table 10-1 Image Analysis Reference (continued)

Group Name Description

OpenCV Reference Manual Image Analysis Reference 10

10-4

Distance Transform
Function

DistTransform Calculates distance to the
closest zero pixel for all
non-zero pixels of the
source image.

Threshold Functions AdaptiveThreshold Provides an adaptive
thresholding binary
image.

Threshold Thresholds the binary
image.

Flood Filling Function FloodFill Makes flood filling of the
image connected domain.

Histogram Functions CreateHist Creates a histogram.

ReleaseHist Releases the histogram
header and the underlying
data.

MakeHistHeaderForArray Initializes the histogram
header.

QueryHistValue_1D Queries the value of a 1D
histogram bin.

QueryHistValue_2D Queries the value of a 2D
histogram bin

QueryHistValue_3D Queries the value of a 3D
histogram bin

QueryHistValue_nD Queries the value of an
nD histogram bin

GetHistValue_1D Returns the pointer to 1D
histogram bin.

GetHistValue_2D Returns the pointer to 2D
histogram bin.

GetHistValue_3D Returns the pointer to 3D
histogram bin.

GetHistValue_nD Returns the pointer to nD
histogram bin.

Table 10-1 Image Analysis Reference (continued)

Group Name Description

OpenCV Reference Manual Image Analysis Reference 10

10-5

GetMinMaxHistValue Finds minimum and
maximum histogram bins.

NormalizeHist Normalizes a histogram.

ThreshHist Thresholds a histogram.

CompareHist Compares two
histograms.

CopyHist Makes a copy of a
histogram.

SetHistBinRanges Sets bounds of histogram
bins.

CalcHist Calculates a histogram of
an array of single-channel
images.

CalcBackProject Calculates back projection
of a histogram.

CalcBackProjectPatch Calculates back projection
by comparing histograms
of the source image
patches with the given
histogram.

CalcEMD Computes earth mover
distance and/or a lower
boundary of the distance.

CalcContrastHist Calculates a histogram of
contrast for the
one-channel image.

Data Types

Pyramid Data Types CvConnectedComp Represents an element
for each single connected
components
representation in memory.

Histogram Data Types CvHistogram Stores all the types of
histograms (1D, 2D,
nD).

Table 10-1 Image Analysis Reference (continued)

Group Name Description

OpenCV Reference Manual Image Analysis Reference 10

10-6

Contour Retrieving Functions

FindContours
Finds contours in binary image.

int cvFindContours (IplImage* img, CvMemStorage* storage, CvSeq**
firstContour, int headerSize=sizeof(CvContour),
CvContourRetrievalMode mode=CV_RETR_LIST,CvChainApproxMethod
method=CV_CHAIN_APPROX_SIMPLE);

img Single channel image of IPL_DEPTH_8U type. Non-zero
pixels are treated as 1-pixels. The function modifies the
content of the input parameter.

storage Contour storage location.

firstContour Output parameter. Pointer to the first contour on the highest
level.

headerSize Size of the sequence header; must be equal to or greater than
sizeof(CvChain) when the method CV_CHAIN_CODE is
used, and equal to or greater than sizeof(CvContour)

otherwise.

mode Retrieval mode.

• CV_RETR_EXTERNAL retrieves only the extreme outer
contours (list);

• CV_RETR_LIST retrieves all the contours (list);

• CV_RETR_CCOMP retrieves the two-level hierarchy (list
of connected components);

• CV_RETR_TREE retrieves the complete hierarchy (tree).

method Approximation method.

• CV_CHAIN_CODE outputs contours in the Freeman chain
code.

OpenCV Reference Manual Image Analysis Reference 10

10-7

• CV_CHAIN_APPROX_NONE translates all the points from
the chain code into points;

• CV_CHAIN_APPROX_SIMPLE compresses horizontal,
vertical, and diagonal segments, that is, it leaves only
their ending points;

• CV_CHAIN_APPROX_TC89_L1,
CV_CHAIN_APPROX_TC89_KCOS are two versions of the
Teh-Chin approximation algorithm.

Discussion

The function FindContours retrieves contours from the binary image and returns the
pointer to the first contour. Access to other contours may be gained through the h_next
and v_next fields of the returned structure. The function returns total number of
retrieved contours.

StartFindContours
Initializes contour scanning process.

CvContourScanner cvStartFindContours (IplImage* img, CvMemStorage* storage,
int headerSize, CvContourRetrievalMode mode, CvChainApproxMethod method);

img Single channel image of IPL_DEPTH_8U type. Non-zero
pixels are treated as 1-pixels. The function damages the
image.

storage Contour storage location.

headerSize Must be equal to or greater than sizeof(CvChain) when
the method CV_CHAIN_CODE is used, and equal to or greater
than sizeof(CvContour) otherwise.

mode Retrieval mode.

• CV_RETR_EXTERNAL retrieves only the extreme outer
contours (list);

OpenCV Reference Manual Image Analysis Reference 10

10-8

• CV_RETR_LIST retrieves all the contours (list);

• CV_RETR_CCOMP retrieves the two-level hierarchy (list
of connected components);

• CV_RETR_TREE retrieves the complete hierarchy (tree).

method Approximation method.

• CV_CHAIN_CODE codes the output contours in the chain
code;

• CV_CHAIN_APPROX_NONE translates all the points from
the chain code into points;

• CV_CHAIN_APPROX_SIMPLE substitutes ending points for
horizontal, vertical, and diagonal segments;

• CV_CHAIN_APPROX_TC89_L1,
CV_CHAIN_APPROX_TC89_KCOS are two versions of the
Teh-Chin approximation algorithm.

Discussion

The function StartFindContours initializes the contour scanner and returns the
pointer to it. The structure is internal and no description is provided.

FindNextContour
Finds next contour on raster.

CvSeq* cvFindNextContour (CvContourScanner scanner);

scanner Contour scanner initialized by the function cvStartFindContours.

Discussion

The function FindNextContour returns the next contour or 0, if the image contains no
other contours.

OpenCV Reference Manual Image Analysis Reference 10

10-9

SubstituteContour
Replaces retrieved contour.

void cvSubstituteContour (CvContourScanner scanner, CvSeq* newContour);

scanner Contour scanner initialized by the function cvStartFindContours.

newContour Substituting contour.

Discussion

The function SubstituteContour replaces the retrieved contour, that was returned
from the preceding call of the function FindNextContour and stored inside the
contour scanner state, with the user-specified contour. The contour is inserted into the
resulting structure, list, two-level hierarchy, or tree, depending on the retrieval mode. If
the parameter newContour is 0, the retrieved contour is not included into the resulting
structure, nor all of its children that might be added to this structure later.

EndFindContours
Finishes scanning process.

CvSeq* cvEndFindContours (CvContourScanner* scanner);

scanner Pointer to the contour scanner.

Discussion

The function EndFindContours finishes the scanning process and returns the pointer
to the first contour on the highest level.

OpenCV Reference Manual Image Analysis Reference 10

10-10

Features Functions

Fixed Filters Functions

For background on fundamentals of Fixed Filters Functions see Fixed Filters in Image
Analysis Chapter.

Laplace
Calculates convolution of input image with
Laplacian operator.

void cvLaplace (IplImage* src, IplImage* dst, int apertureSize=3);

src Input image.

dst Destination image.

apertureSize Size of the Laplacian kernel.

Discussion

The function Laplace calculates the convolution of the input image src with the
Laplacian kernel of a specified size apertureSize and stores the result in dst.

Sobel
Calculates convolution of input image with Sobel
operator.

void cvSobel (IplImage* src, IplImage* dst, int dx, int dy, int
apertureSize=3);

src Input image.

dst Destination image.

OpenCV Reference Manual Image Analysis Reference 10

10-11

dx Order of the derivative x.

dy Order of the derivative y.

apertureSize Size of the extended Sobel kernel. The special value CV_SCHARR,
equal to -1, corresponds to the Scharr filter 1/16[-3,-10,-3; 0,

0, 0; 3, 10, 3]; may be transposed.

Discussion

The function Sobel calculates the convolution of the input image src with a specified
Sobel operator kernel and stores the result in dst.

Feature Detection Functions

For background on fundamentals of Feature Detection Functions see Feature Detection
in Image Analysis Chapter.

Canny
Implements Canny algorithm for edge detection.

void cvCanny (IplImage* img, IplImage* edges, double lowThresh, double
highThresh, int apertureSize=3);

img Input image.

edges Image to store the edges found by the function.

lowThresh Low threshold used for edge searching.

highThresh High threshold used for edge searching.

apertureSize Size of the Sobel operator to be used in the algorithm.

Discussion

The function Canny finds the edges on the input image img and puts them into the
output image edges using the Canny algorithm described above.

OpenCV Reference Manual Image Analysis Reference 10

10-12

PreCornerDetect
Calculates two constraint images for corner
detection.

void cvPreCornerDetect (IplImage* img, IplImage* corners, Int apertureSize);

img Input image.

corners Image to store the results.

apertureSize Size of the Sobel operator to be used in the algorithm.

Discussion

The function PreCornerDetect finds the corners on the input image img and stores
them into the output image corners in accordance with Method 1for corner detection.

CornerEigenValsAndVecs
Calculates eigenvalues and eigenvectors of
image blocks for corner detection.

void cvCornerEigenValsAndVecs (IplImage* img, IplImage* eigenvv, int
blockSize, int apertureSize=3);

img Input image.

eigenvv Image to store the results.

blockSize Linear size of the square block over which derivatives averaging is
done.

apertureSize Derivative operator aperture size in the case of byte source format. In
the case of floating-point input format this parameter is the number
of the fixed float filter used for differencing.

OpenCV Reference Manual Image Analysis Reference 10

10-13

Discussion

For every raster pixel the function CornerEigenValsAndVecs takes a block of
pixels with the top-left corner, or top-bottom corner for

bottom-origin images, at the pixel, computes first derivatives Dx and Dy within the
block and then computes eigenvalues and eigenvectors of the matrix:

, where summations are performed over the block.

The format of the frame eigenvv is the following: for every pixel of the input image
the frame contains 6 float values ().

are eigenvalues of the above matrix, not sorted by value.

are coordinates of the normalized eigenvector that corresponds to .

are coordinates of the normalized eigenvector that corresponds to .

In case of a singular matrix or if one of the eigenvalues is much less than another, all
six values are set to 0. The Sobel operator with aperture width aperureSize is used for
differentiation.

CornerMinEigenVal
Calculates minimal eigenvalues of image blocks
for corner detection.

void cvCornerMinEigenVal (IplImage* img, IplImage* eigenvv, int blockSize, int
apertureSize=3);

img Input image.

eigenvv Image to store the results.

blockSize Linear size of the square block over which derivatives averaging is
done.

blockSize blockSize×

C
Dx

2
∑ DxDy∑
DxDy∑ Dy

2
∑

=

λ1, λ2, x1, y1, x2, y2

λ1, λ2

x1, y1 λ1

x2, y2 λ2

OpenCV Reference Manual Image Analysis Reference 10

10-14

apertureSize Derivative operator aperture size in the case of byte source format. In
the case of floating-point input format this parameter is the number
of the fixed float filter used for differencing.

Discussion

For every raster pixel the function CornerMinEigenVal takes a block of
pixels with the top-left corner, or top-bottom corner for

bottom-origin images, at the pixel, computes first derivatives Dx and Dy within the
block and then computes eigenvalues and eigenvectors of the matrix:

, where summations are made over the block.

In case of a singular matrix the minimal eigenvalue is set to 0. The Sobel operator
with aperture width aperureSize is used for differentiation.

FindCornerSubPix
Refines corner locations.

void cvFindCornerSubPix (IplImage* img, CvPoint2D32f* corners, int count,
CvSize win, CvSize zeroZone, CvTermCriteria criteria);

img Input raster image.

corners Initial coordinates of the input corners and refined coordinates on
output.

count Number of corners.

win Half sizes of the search window. For example, if win = (5,5), then
pixel window to be used.

zeroZone Half size of the dead region in the middle of the search zone to avoid
possible singularities of the autocorrelation matrix. The value of
(-1,-1)indicates that there is no such zone.

blockSize blockSize×

C
Dx

2
∑ DxDy∑
DxDy∑ Dy

2
∑

=

5∗ 2 1 5∗ 2 1+×+ 11 11×=

OpenCV Reference Manual Image Analysis Reference 10

10-15

criteria Criteria for termination of the iterative process of corner refinement.
Iterations may specify a stop when either required precision is
achieved or the maximal number of iterations done.

Discussion.

The function FindCornerSubPix iterates to find the accurate sub-pixel location of a
corner, or “radial saddle point”, as shown in Figure 10-1.

Sub-pixel accurate corner (radial saddle point) locator is based on the observation that
any vector from q to p is orthogonal to the image gradient.

The core idea of this algorithm is based on the observation that every vector from the
center q to a point p located within a neighborhood of q is orthogonal to the image
gradient at p subject to image and measurement noise. Thus:

,

where is the image gradient at the one of the points p in a neighborhood of q. The
value of q is to be found such that is minimized. A system of equations may be set
up with ‘s set to zero:

Figure 10-1 Sub-Pixel Accurate Corner

εi Ipi
T∇ q pi)–(⋅=

Ipi
∇

εi
εi

OpenCV Reference Manual Image Analysis Reference 10

10-16

,

where the gradients are summed within a neighborhood (“search window”) of q.
Calling the first gradient term G and the second gradient term b gives:

.

The algorithm sets the center of the neighborhood window at this new center q and
then iterates until the center keeps within a set threshold.

GoodFeaturesToTrack
Determines strong corners on image.

void cvGoodFeaturesToTrack (IplImage* image, IplImage* eigImage, IplImage*
tempImage, CvPoint2D32f* corners, int* cornerCount, double qualityLevel,
double minDistance);

image Source image with byte, signed byte, or floating-point depth, single
channel.

eigImage Temporary image for minimal eigenvalues for pixels: floating-point,
single channel.

tempImage Another temporary image: floating-point, single channel.

corners Output parameter. Detected corners.

cornerCount Output parameter. Number of detected corners.

qualityLevel Multiplier for the maxmin eigenvalue; specifies minimal accepted
quality of image corners.

minDistance Limit, specifying minimum possible distance between returned
corners; Euclidian distance is used.

Ipi
∇

i

∑ Ipi
T∇⋅

q• Ipi
∇

i

∑ Ipi
T∇ pi⋅ ⋅

0=–

q G
1–
b⋅=

OpenCV Reference Manual Image Analysis Reference 10

10-17

Discussion

The function GoodFeaturesToTrack finds corners with big eigenvalues in the image.
The function first calculates the minimal eigenvalue for every pixel of the source
image and then performs non-maxima suppression (only local maxima in 3x3
neighborhood remain). The next step is rejecting the corners with the minimal
eigenvalue less than qualityLevel*<max_of_min_eigen_vals>. Finally, the function
ensures that all the corners found are distanced enough from one another by getting
two strongest features and checking that the distance between the points is satisfactory.
If not, the point is rejected.

Hough Transform Functions

For background on fundamentals of Hough Transform Functions see Hough Transform
in Image Analysis Chapter.

HoughLines
Finds lines in binary image, SHT algorithm.

void cvHoughLines (IplImage* src, double rho, double theta, int threshold,
float* lines, int linesNumber);

src Source image.

rho Radius resolution.

theta Angle resolution.

threshold Threshold parameter.

lines Pointer to the array of output lines parameters. The array should have
2*linesNumber elements.

linesNumber Maximum number of lines.

OpenCV Reference Manual Image Analysis Reference 10

10-18

Discussion

The function HoughLines implements Standard Hough Transform (SHT) and
demonstrates average performance on arbitrary images. The function returns number
of detected lines. Every line is characterized by pair (,), where is distance from
line to point (0,0) and is the angle between the line and horizontal axis.

HoughLinesSDiv
Finds lines in binary image, MHT algorithm.

int cvHoughLinesSDiv (IplImage* src, double rho, int srn, double theta, int
stn, int threshold, float* lines, int linesNumber);

src Source image.

rho Rough radius resolution.

srn Radius accuracy coefficient, rho/srn is accurate rho resolution.

theta Rough angle resolution.

stn Angle accuracy coefficient, theta/stn is accurate angle resolution.

threshold Threshold parameter.

lines Pointer to array of the detected lines parameters. The array should
have 2*linesNumber elements.

linesNumber Maximum number of lines.

Discussion

The function HoughLinesSDiv implements coarse-to-fine variant of SHT and is
significantly faster than the latter on images without noise and with a small number of
lines. The output of the function has the same format as the output of the function
HoughLines.

ρ θ ρ
θ

OpenCV Reference Manual Image Analysis Reference 10

10-19

HoughLinesP
Finds line segments in binary image, PPHT
algorithm.

int cvHoughLinesP (IplImage* src, double rho, double theta, int threshold,
int lineLength, int lineGap, int* lines, int linesNumber);

src Source image.

rho Rough radius resolution.

theta Rough angle resolution.

threshold Threshold parameter.

lineLength Minimum accepted line length.

lineGap Maximum length of accepted line gap.

lines Pointer to array of the detected line segments' ending coordinates.
The array should have linesNumber*4 elements.

linesNumber Maximum number of line segments.

Discussion

The function HoughLinesP implements Progressive Probabilistic Standard Hough
Transform. It retrieves no more than linesNumber line segments; each of those must
be not shorter than lineLength pixels. The method is significantly faster than SHT on
noisy images, containing several long lines. The function returns number of detected
segments. Every line segment is characterized by the coordinates of its
ends(x1,y1,x2,y2).

OpenCV Reference Manual Image Analysis Reference 10

10-20

Image Statistics Functions

CountNonZero
Counts non-zero pixels in image.

int cvCountNonZero (IplImage* image);

image Pointer to the source image.

Discussion

The function CountNonZero returns the number of non-zero pixels in the whole image
or selected image ROI.

SumPixels
Summarizes pixel values in image.

double cvSumPixels (IplImage* image);

image Pointer to the source image.

Discussion

The function SumPixels returns sum of pixel values in the whole image or selected
image ROI.

OpenCV Reference Manual Image Analysis Reference 10

10-21

Mean
Calculates mean value in image region.

double cvMean(IplImage* image, IplImage* mask=0);

image Pointer to the source image.

mask Mask image.

Discussion

The function Mean calculates the mean of pixel values in the whole image, selected
ROI or, if mask is not NULL,in an image region of arbitrary shape.

Mean_StdDev
Calculates mean and standard deviation in image
region.

void cvMean_StdDev (IplImage* image, double* mean, double* stddev,
IplImage* mask=0);

image Pointer to the source image.

mean Pointer to returned mean.

stddev Pointer to returned standard deviation.

mask Pointer to the single-channel mask image.

Discussion

The function Mean_StdDev calculates mean and standard deviation of pixel values in
the whole image, selected ROI or, if mask is not NULL,in an image region of arbitrary
shape. If the image has more than one channel, the COI must be selected.

OpenCV Reference Manual Image Analysis Reference 10

10-22

MinMaxLoc
Finds global minimum and maximum in image
region.

void cvMinMaxLoc (IplImage* image, double* minVal, double* maxVal,
CvPoint* minLoc, CvPoint* maxLoc, IplImage* mask=0);

image Pointer to the source image.

minVal Pointer to returned minimum value.

maxVal Pointer to returned maximum value.

minLoc Pointer to returned minimum location.

maxLoc Pointer to returned maximum location.

mask Pointer to the single-channel mask image.

Discussion

The function MinMaxLoc finds minimum and maximum pixel values and their
positions. The extremums are searched over the whole image, selected ROI or, if mask
is not NULL,in an image region of arbitrary shape. If the image has more than one
channel, the COI must be selected.

Norm
Calculates image norm, difference norm or
relative difference norm.

double cvNorm (IplImage* imgA, IplImage* imgB, int normType, IplImage*
mask=0);

imgA Pointer to the first source image.

imgA Pointer to the second source image if any, NULL otherwise.

normType Type of norm.

OpenCV Reference Manual Image Analysis Reference 10

10-23

mask Pointer to the single-channel mask image.

Discussion

The function Norm calculates images norms defined below. If imgB = NULL, the
following three norm types of image A are calculated:

NormType = CV_C: ,

NormType = CV_L1: ,

NormType = CV_L2: .

If NULL, the difference or relative difference norms are calculated:

NormType = CV_C: ,

NormType = CV_L1: ,

NormType = CV_L2: ,

NormType = CV_RELATIVEC: ,

NormType = CV_RELATIVEL1 : ,

A C max Aij()=

A L1
Aij

j 1=

Ny

∑
i 1=

Nx

∑=

A L2
Aij

2

j 1=

Ny

∑
i 1=

Nx

∑=

imgB ≠

A B– C max Ai Bi–()=

A B– L1
Aij Bij–

j 1=

Ny

∑
i 1=

Nx

∑=

A B– L2
A(ij Bij)2

–

j 1=

Ny

∑
i 1=

Nx

∑=

A B– C B C⁄
max Aij Bij–)(

max Bij()
--=

A B– L1
B L1

⁄

Aij Bij–

j 1=

Ny

∑
i 1=

Nx

∑

Bij
j 1=

Ny

∑
i 1=

Nx

∑

---=

OpenCV Reference Manual Image Analysis Reference 10

10-24

NormType = CV_RELATIVEL2: .

The function Norm returns the calculated norm.

Moments
Calculates all moments up to third order of image
plane and fills moment state structure.

void cvMoments (IplImage* image, CvMoments* moments, int isBinary=0);

image Pointer to the image or to top-left corner of its ROI.

moments Pointer to returned moment state structure.

isBinary If the flag is non-zero, all the zero pixel values are treated as zeroes,
all the others are treated as ones.

Discussion

The function Moments calculates moments up to the third order and writes the result to
the moment state structure. This structure is used then to retrieve a certain spatial,
central, or normalized moment or to calculate Hu moments.

A B– L2
B L2

⁄

A(ij Bij)2
–

j 1=

Ny

∑
i 1=

Nx

∑

B(ij)2

j 1=

Ny

∑
i 1=

Nx

∑

---=

OpenCV Reference Manual Image Analysis Reference 10

10-25

GetSpatialMoment
Retrieves spatial moment from moment state
structure.

double cvGetSpatialMoment (CvMoments* moments, int x_order, int y_order);

moments Pointer to the moment state structure.

x_order Order x of required moment.

y_order Order y of required moment

(0<= x_order, y_order; x_order + y_order <= 3).

Discussion

The function GetSpatialMoment retrieves the spatial moment, which is defined as:

, where

is the intensity of the pixel (x,y).

GetCentralMoment
Retrieves central moment from moment state
structure.

double cvGetCentralMoment (CvMoments* moments, int x_order, int y_order);

moments Pointer to the moment state structure.

x_order Order x of required moment.

y_order Order y of required moment

(0<= x_order, y_order; x_order + y_order <= 3).

Mx_order y_order, I x y,()xx_order
y
y_order

x y,
∑=

I x y,()

OpenCV Reference Manual Image Analysis Reference 10

10-26

Discussion

The function GetCentralMoment retrieves the central moment, which is defined as:

, where

is the intensity of pixel (x,y), is the coordinate x of the mass center, is the
coordinate y of the mass center:

, .

GetNormalizedCentralMoment
Retrieves normalized central moment from
moment state structure.

double cvGetNormalizedCentralMoment (CvMoments* moments, int x_order, int
y_order);

moments Pointer to the moment state structure.

x_order Order x of required moment.

y_order Order y of required moment

(0<= x_order, y_order; x_order + y_order <= 3).

Discussion

The function GetNormalizedCentralMoment retrieves the normalized central
moment, which is defined as:

.

µx_order y_order, I x y,() x x–()x_order
y y–()y_order

x y,
∑=

I x y,() x y

x
M1 0,
M0 0,
----------= y

M0 1,
M0 0,
----------=

ηx_order y_order,
µx_order y_order,

M0 0,
x_order y_order+() 2 1+⁄()---=

OpenCV Reference Manual Image Analysis Reference 10

10-27

GetHuMoments
Calculates seven moment invariants from moment
state structure.

void cvGetHuMoments (CvMoments* moments, CvHuMoments* HuMoments);

moments Pointer to the moment state structure.

HuMoments Pointer to Hu moments structure.

Discussion

The function GetHuMoments calculates seven Hu invariants using the following
formulas:

,

,

,

,

,

These values are proved to be invariants to the image scale, rotation, and reflection
except the seventh one, whose sign is changed by reflection.

h1 η20 η02+=

h2 η(20 η02)2
– 4η11

2
+=

h3 η(30 3η12)2
– 3η21 η03–()2

+=

h4 η(30 η12)2 η21 η03+()2
+ +=

h5 η(30 3η12) η30 η12+() η30 η12+()2
3 η21 η03+()2

–[]–

3η21 η03–() η21 η03+() 3 η30 η12+()2 η21 η03+()2
–[]+

=

h6 η(20 η02) η30 η12+()2[– η21 η03+()2]– 4η11 η30 η12+() η21 η03+()+=

h7 3η21 η03–() η21 η03+() 3 η30 η12+()2 η21 η03+()2
–[]

η(30 3η12) η21 η03+() 3 η30 η12+()2 η21 η03+()2
–[]––

=

OpenCV Reference Manual Image Analysis Reference 10

10-28

Pyramid Functions

PyrDown
Downsamples image.

void cvPyrDown (IplImage* src, IplImage* dst, IplFilter
filter=IPL_GAUSSIAN_5x5);

src Pointer to the source image.

dst Pointer to the destination image.

filter Type of the filter used for convolution; only IPL_GAUSSIAN_5x5 is
currently supported.

Discussion

The function PyrDown performs downsampling step of Gaussian pyramid
decomposition. First it convolves source image with the specified filter and then
downsamples the image by rejecting even rows and columns. So the destination image
is four times smaller than the source image.

PyrUp
Upsamples image.

void cvPyrUp (IplImage* src, IplImage* dst, IplFilter
filter=IPL_GAUSSIAN_5x5);

src Pointer to the source image.

dst Pointer to the destination image.

filter Type of the filter used for convolution; only IPL_GAUSSIAN_5x5 is
currently supported.

OpenCV Reference Manual Image Analysis Reference 10

10-29

Discussion

The function PyrUp performs up-sampling step of Gaussian pyramid decomposition.
First it upsamples the source image by injecting even zero rows and columns and then
convolves result with the specified filter multiplied by 4 for interpolation. So the
destination image is four times larger than the source image.

PyrSegmentation
Implements image segmentation by pyramids.

void cvPyrSegmentation (IplImage* srcImage, IplImage* dstImage, CvMemStorage*
storage, CvSeq** comp, int level, double threshold1, double threshold2);

srcImage Pointer to the input image data.

dstImage Pointer to the output segmented data.

storage Storage; stores the resulting sequence of connected components.

comp Pointer to the output sequence of the segmented components.

level Maximum level of the pyramid for the segmentation.

threshold1 Error threshold for establishing the links.

threshold2 Error threshold for the segments clustering.

Discussion

The function PyrSegmentation implements image segmentation by pyramids. The
pyramid builds up to the level level. The links between any pixel a on level i and its
candidate father pixel b on the adjacent level are established if

. After the connected components are defined, they are
joined into several clusters. Any two segments A and B belong to the same cluster, if

. The input image has only one channel, then
. If the input image has three channels (red, green and blue), then

. There may be more than one
connected component per a cluster.

ρ c a) c b(,()() threshold1<

ρ c A) c B(,()() threshold2<
ρ c

1
c

2,() c
1

c
2

–=

ρ c
1
c

2,() 0,3 cr
1

cr
2

–() 0,59 cg
1

cg
2

–() 0,11 cb
1

cb
2

–()⋅+⋅+⋅=

OpenCV Reference Manual Image Analysis Reference 10

10-30

Input srcImage and output dstImage should have the identical IPL_DEPTH_8U depth
and identical number of channels (1 or 3).

Morphology Functions

CreateStructuringElementEx
Creates structuring element.

IplConvKernel* cvCreateStructuringElementEx (int nCols, int nRows, int
anchorX, int anchorY, CvElementShape shape, int* values);

nCols Number of columns in the structuring element.

nRows Number of rows in the structuring element.

anchorX Relative horizontal offset of the anchor point.

anchorY Relative vertical offset of the anchor point.

shape Shape of the structuring element; may have the following values:

• CV_SHAPE_RECT, a rectangular element;

• CV_SHAPE_CROSS, a cross-shaped element;

• CV_SHAPE_ELLIPSE, an elliptic element;

• CV_SHAPE_CUSTOM, a user-defined element. In this case the
parameter values specifies the mask, that is, which neighbors of
the pixel must be considered.

values Pointer to the structuring element data, a plane array, representing
row-by-row scanning of the element matrix. Non-zero values
indicate points that belong to the element. If the pointer is NULL, then
all values are considered non-zero, that is, the element is of a
rectangular shape. This parameter is considered only if the shape is
CV_SHAPE_CUSTOM.

OpenCV Reference Manual Image Analysis Reference 10

10-31

Discussion

The function CreateStructuringElementEx allocates and fills the structure
IplConvKernel, which can be used as a structuring element in the morphological
operations.

ReleaseStructuringElement
Deletes structuring element.

void cvReleaseStructuringElement (IplConvKernel** ppElement);

ppElement Pointer to the deleted structuring element.

Discussion

The function ReleaseStructuringElement releases the structure IplConvKernel

that is no longer needed. If *ppElement is NULL, the function has no effect. The
function returns created structuring element.

Erode
Erodes image by using arbitrary structuring
element.

void cvErode (IplImage* src, IplImage* dst, IplConvKernel* B, int iterations);

src Source image.

dst Destination image.

B Structuring element used for erosion. If NULL, a 3x3 rectangular
structuring element is used.

iterations Number of times erosion is applied.

OpenCV Reference Manual Image Analysis Reference 10

10-32

Discussion

The function Erode erodes the source image. The function takes the pointer to the
structuring element, consisting of “zeros” and “minus ones”; the minus ones determine
neighbors of each pixel from which the minimum is taken and put to the corresponding
destination pixel. The function supports the in-place mode when the source and
destination pointers are the same. Erosion can be applied several times (iterations
parameter). Erosion on a color image means independent transformation of all the
channels.

Dilate
Dilates image by using arbitrary structuring
element.

void cvDilate (IplImage* pSrc, IplImage* pDst, IplConvKernel* B, int
iterations);

pSrc Source image.

pDst Destination image.

B Structuring element used for dilation. If NULL, a 3x3 rectangular
structuring element is used.

iterations Number of times dilation is applied.

Discussion

The function Dilate performs dilation of the source image. It takes pointer to the
structuring element that consists of “zeros” and “minus ones”; the minus ones
determine neighbors of each pixel from which the maximum is taken and put to the
corresponding destination pixel. The function supports in-place mode. Dilation can be
applied several times (iterations parameter). Dilation of a color image means
independent transformation of all the channels.

OpenCV Reference Manual Image Analysis Reference 10

10-33

MorphologyEx
Performs advanced morphological
transformations.

void cvMorphologyEx (IplImage* src, IplImage* dst, IplImage* temp,
IplConvKernel* B, CvMorphOp op, int iterations);

src Source image.

dst Destination image.

temp Temporary image, required in some cases.

B Structuring element.

op Type of morphological operation:

• CV_MOP_OPEN, opening;

• CV_MOP_CLOSE, closing;

• CV_MOP_GRADIENT, morphological gradient;

• CV_MOP_TOPHAT, top hat;

• CV_MOP_BLACKHAT, black hat.

(See Morphology for description of these operations).

iterations Number of times erosion and dilation are applied during the complex
operation.

Discussion

The function MorphologyEx performs advanced morphological transformations. The
function uses Erode and Dilate to perform more complex operations. The parameter
temp must be non-NULL and point to the image of the same size and format as src and
dst when op is CV_MOP_GRADIENT, or when op is CV_MOP_TOPHAT or op is
CV_MOP_BLACKHAT and src is equal to dst (in-place operation).

OpenCV Reference Manual Image Analysis Reference 10

10-34

Distance Transform Function

DistTransform
Calculates distance to closest zero pixel for all
non-zero pixels of source image.

void cvDistTransform (IplImage* src, IplImage* dst, CvDisType disType,
CvDisMaskType maskType, float* mask);

src Source image.

dst Output image with calculated distances.

disType Type of distance; can be CV_DIST_L1, CV_DIST_L2, CV_DIST_C or
CV_DIST_USER.

maskType Size of distance transform mask; can be CV_DIST_MASK_3x3 or
CV_DIST_MASK_5x5.

mask Pointer to the user-defined mask used with the distance type
CV_DIST_USER.

OpenCV Reference Manual Image Analysis Reference 10

10-35

Discussion

The function DistTransform approximates the actual distance from the closest zero
pixel with a sum of fixed distance values: two for 3x3 mask and three for 5x5 mask.
Figure 10-2 shows the result of the distance transform of a 7x7 image with a zero
central pixel.

This example corresponds to a 3x3 mask; in case of user-defined distance type the user
sets the distance between two pixels, that share the edge, and the distance between the
pixels, that share the corner only. For this case the values are 1 and 1.5
correspondingly. Figure 10-3 shows the distance transform for the same image, but for
a 5x5 mask. For the 5x5 mask the user sets an additional distance that is the distance
between pixels corresponding to the chess knight move. In this example the additional
distance is equal to 2. For CV_DIST_L1, CV_DIST_L2, and CV_DIST_C the optimal
precalculated distance values are used.

Figure 10-2 3x3 Mask

4.5 4 3.5 3 3.5 4 4.5

4 3 2.5 2 2.5 3 4

3.5 2.5 1.5 1 1.5 2.5 3.5

3 2 1 0 1 2 3

3.5 2.5 1.5 1 1.5 2.5 3.5

4 3 2.5 2 2.5 3 4

4.5 4 3.5 3 3.5 4 4.5

OpenCV Reference Manual Image Analysis Reference 10

10-36

Threshold Functions

AdaptiveThreshold
Provides adaptive thresholding binary image.

void cvAdaptiveThreshold (IplImage* src, IplImage* dst, double max,
CvAdaptiveThreshMethod method, CvThreshType type, double* parameters);

src Source image.

dst Destination image.

Figure 10-3 5x5 Mask

4.5 3.5 3 3 3 3.5 4

3.5 3 2 2 2 3 3.5

3 2 1.5 1 1.5 2 3

3 2 1 0 1 2 3

3 2 1.5 1 1.5 2 3

3.5 3 2 2 2 3 3.5

4 3.5 3 3 3 3.5 4

OpenCV Reference Manual Image Analysis Reference 10

10-37

max Max parameter used with the types CV_THRESH_BINARY and
CV_THRESH_BINARY_INV only.

method Method for the adaptive threshold definition; now
CV_STDDEF_ADAPTIVE_THRESH only.

type Thresholding type; must be one of

• CV_THRESH_BINARY, ;

• CV_THRESH_BINARY_INV, ;

• CV_THRESH_TOZERO, ;

• CV_THRESH_TOZERO_INV, .

parameters Pointer to the list of method-specific input parameters. For the
method CV_STDDEF_ADAPTIVE_THRESH the value parameters[0] is
the size of the neighborhood: 1-(3x3), 2-(5x5), or 3-(7x7), and
parameters[1] is the value of the minimum variance.

Discussion

The function AdaptiveThreshold calculates the adaptive threshold for every input
image pixel and segments image. The algorithm is as follows.

Let be the input image. For every pixel the mean and
variance are calculated as follows:

, ,

where is the neighborhood.

Local threshold for pixel is for , and for
, where is the minimum variance value. If , then ,
, where and for .

Output segmented image is calculated as in the function Threshold.

val val Thresh?MAX:0>()=

val val Thresh?0:MAX>()=

val val Thresh?val:0>()=

val val Thresh?0:val>()=

fij{ } 1 i l 1 j J≤ ≤,≤ ≤, i j, mij
vij

mij 1 2⁄ p fi s j t+,+

t p–=

p

∑
s p–=

p

∑⋅= vij 1 2⁄ p fi s j t+,+ mij–

t p–=

p

∑
s p–=

p

∑⋅=

p p×

i j, tij mij vij+= vij vmin> tij tij 1–=

vij vmin≤ vmin j 1= tij ti 1 j,–=

t11 ti0j0
= vi0j0

vmin> vij vmin≤ i i0<() i((∨ i0) j j0))<(∧=

OpenCV Reference Manual Image Analysis Reference 10

10-38

Threshold
Thresholds binary image.

void cvThreshold (IplImage* src, IplImage* dst, float thresh, float maxvalue,
CvThreshType type);

src Source image.

dst Destination image; can be the same as the parameter src.

thresh Threshold parameter.

maxvalue Maximum value; parameter, used with threshold types
CV_THRESH_BINARY, CV_THRESH_BINARY_INV, and
CV_THRESH_TRUNC.

type Thresholding type; must be one of

• CV_THRESH_BINARY, ;

• CV_THRESH_BINARY_INV, ;

• CV_THRESH_TRUNC, ;

• CV_THRESH_TOZERO, ;

• CV_THRESH_TOZERO_INV, .

Discussion

The function Threshold applies fixed-level thresholding to grayscale image. The
result is either a grayscale image or a bi-level image. The former variant is typically
used to remove noise from the image, while the latter one is used to represent a
grayscale image as composition of connected components and after that build contours
on the components via the function FindContours. Figure 10-4 illustrates meanings of
different threshold types:

val val thresh maxvalue:0>()=

val val thresh 0:maxvalue>()=

val val thresh?thresh:maxvalue>()=

val val thresh val:0>()=

val val thresh 0:val>()=

OpenCV Reference Manual Image Analysis Reference 10

10-39

Figure 10-4 Meanings of Threshold Types

OpenCV Reference Manual Image Analysis Reference 10

10-40

Flood Filling Function

FloodFill
Makes flood filling of image connected domain.

void cvFloodFill (IplImage* img, CvPoint seedPoint, double newVal, double
loDiff, double upDiff, CvConnectedComp* comp, int connectivity=4);

img Input image; repainted by the function.

seedPoint Coordinates of the seed point inside the image ROI.

newVal New value of repainted domain pixels.

loDiff Maximal lower difference between the values of pixel belonging to
the repainted domain and one of the neighboring pixels to identify
the latter as belonging to the same domain.

upDiff Maximal upper difference between the values of pixel belonging to
the repainted domain and one of the neighboring pixels to identify
the latter as belonging to the same domain.

comp Pointer to structure the function fills with the information about the
repainted domain.

connectivity Type of connectivity used within the function. If it is four, which is
default value, the function tries out four neighbors of the current
pixel, otherwise the function tries out all the eight neighbors.

Discussion

The function FloodFill fills the seed pixel neighborhoods inside which all pixel
values are close to each other. The pixel is considered to belong to the repainted
domain if its value v meets the following conditions:

,v0 dlw v v0 dup+≤ ≤–

OpenCV Reference Manual Image Analysis Reference 10

10-41

where is the value of at least one of the current pixel neighbors, which already
belongs to the repainted domain. The function checks 4-connected neighborhoods of
each pixel, that is, its side neighbors.

Histogram Functions

CreateHist
Creates histogram.

CvHistogram* cvCreateHist (int cDims, int* dims, CvHistType type,
float** ranges=0, int uniform=1);

cDims Number of histogram dimensions.

dims Array, elements of which are numbers of bins per each dimension.

type Histogram representation format: CV_HIST_ARRAY means that
histogram data is represented as an array; CV_HIST_TREE means that
histogram data is represented as a sparse structure, that is, the
balanced tree in this implementation.

ranges 2D array, or more exactly, an array of arrays, of bin ranges for every
histogram dimension. Its meaning depends on the uniform
parameter value.

uniform Uniformity flag; if not 0, the histogram has evenly spaced bins and
every element of ranges array is an array of two numbers: lower and
upper boundaries for the corresponding histogram dimension. If the
parameter is equal to 0, then ith element of ranges array
contains dims[i]+1 elements: l(0), u(0) == l(1), u(1) == l(2),
..., u(n-1), where l(i) and u(i) are lower and upper
boundaries for the ith bin, respectively.

v0

OpenCV Reference Manual Image Analysis Reference 10

10-42

Discussion

The function CreateHist creates a histogram of the specified size and returns the
pointer to the created histogram. If the array ranges is 0, the histogram bin ranges
must be specified later via the function SetHistBinRanges.

ReleaseHist
Releases histogram header and underlying data.

void cvReleaseHist (CvHistogram** hist);

hist Pointer to the released histogram.

Discussion

The function ReleaseHist releases the histogram header and underlying data. The
pointer to histogram is cleared by the function. If *hist pointer is already NULL, the
function has no effect.

MakeHistHeaderForArray
Initializes histogram header.

void cvMakeHistHeaderForArray (int cDims, int* dims, CvHistogram* hist,
float* data, float** ranges=0, int uniform=1);

cDims Histogram dimension number.

dims Dimension size array.

hist Pointer to the histogram to be created.

data Pointer to the source data histogram.

ranges 2D array of bin ranges.

uniform If not 0, the histogram has evenly spaced bins.

OpenCV Reference Manual Image Analysis Reference 10

10-43

Discussion

The function MakeHistHeaderForArray initializes the histogram header and sets the
data pointer to the given value data. The histogram must have the type
CV_HIST_ARRAY. If the array ranges is 0, the histogram bin ranges must be specified
later via the function SetHistBinRanges.

QueryHistValue_1D
Queries value of histogram bin.

float cvQueryHistValue_1D (CvHistogram* hist, int idx0);

hist Pointer to the source histogram.

idx0 Index of the bin.

Discussion

The function QueryHistValue_1D returns the value of the specified bin of 1D
histogram. If the histogram representation is a sparse structure and the specified bin is
not present, the function return 0.

QueryHistValue_2D
Queries value of histogram bin.

float cvQueryHistValue_2D (CvHistogram* hist, int idx0, int idx1);

hist Pointer to the source histogram.

idx0 Index of the bin in the first dimension.

idx1 Index of the bin in the second dimension.

OpenCV Reference Manual Image Analysis Reference 10

10-44

Discussion

The function QueryHistValue_2D returns the value of the specified bin of 2D
histogram. If the histogram representation is a sparse structure and the specified bin is
not present, the function return 0.

QueryHistValue_3D
Queries value of histogram bin.

float cvQueryHistValue_3D (CvHistogram* hist, int idx0, int idx1, int idx2);

hist Pointer to the source histogram.

idx0 Index of the bin in the first dimension.

idx1 Index of the bin in the second dimension.

idx2 Index of the bin in the third dimension.

Discussion

The function QueryHistValue_3D returns the value of the specified bin of 3D
histogram. If the histogram representation is a sparse structure and the specified bin is
not present, the function return 0.

QueryHistValue_nD
Queries value of histogram bin.

float cvQueryHistValue_nD (CvHistogram* hist, int* idx);

hist Pointer to the source histogram.

idx Array of bin indices, that is, a multi-dimensional index.

OpenCV Reference Manual Image Analysis Reference 10

10-45

Discussion

The function QueryHistValue_nD returns the value of the specified bin of nD
histogram. If the histogram representation is a sparse structure and the specified bin is
not present, the function return 0. The function is the most general in the family of
QueryHistValue functions.

GetHistValue_1D
Returns pointer to histogram bin.

float* cvGetHistValue_1D (CvHistogram* hist, int idx0);

hist Pointer to the source histogram.

idx0 Index of the bin.

Discussion

The function GetHistValue_1D returns the pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

GetHistValue_2D
Returns pointer to histogram bin.

float* cvGetHistValue_2D (CvHistogram* hist, int idx0, int idx1);

hist Pointer to the source histogram.

idx0 Index of the bin in the first dimension.

idx1 Index of the bin in the second dimension.

OpenCV Reference Manual Image Analysis Reference 10

10-46

Discussion

The function GetHistValue_2D returns the pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

GetHistValue_3D
Returns pointer to histogram bin.

float* cvGetHistValue_3D (CvHistogram* hist,int idx0, int idx1, int idx2);

hist Pointer to the source histogram.

idx0 Index of the bin in the first dimension.

idx1 Index of the bin in the second dimension.

idx2 Index of the bin in the third dimension.

Discussion

The function GetHistValue_3D returns the pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

GetHistValue_nD
Returns pointer to histogram bin.

float* cvGetHistValue_nD (CvHistogram* hist, int* idx);

hist Pointer to the source histogram.

idx Array of bin indices, that is, a multi-dimensional index.

OpenCV Reference Manual Image Analysis Reference 10

10-47

Discussion

The function GetHistValue_nD returns the pointer to the histogram bin, given its
coordinates. If the bin is not present, it is created and initialized with 0. The function
returns NULL pointer if the input coordinates are invalid.

GetMinMaxHistValue
Finds minimum and maximum histogram bins.

void cvGetMinMaxHistValue (CvHistogram* hist, float* minVal, float* maxVal,
int* minIdx=0, int* maxIdx=0);

hist Pointer to the histogram.

minVal Pointer to the minimum value of the histogram; can be NULL.

maxVal Pointer to the maximum value of the histogram; can be NULL.

minIdx Pointer to the array of coordinates for minimum. If not NULL, must
have hist->c_dims elements.

maxIdx Pointer to the array of coordinates for maximum. If not NULL, must
have hist->c_dims elements.

Discussion

The function GetMinMaxHistValue finds the minimum and maximum histogram bins
and their positions. In case of several maximums or minimums the leftmost ones are
returned.

NormalizeHist
Normalizes histogram.

void cvNormalizeHist (CvHistogram* hist, float factor);

hist Pointer to the histogram.

OpenCV Reference Manual Image Analysis Reference 10

10-48

factor Normalization factor.

Discussion

The function NormalizeHist normalizes the histogram, such that the sum of
histogram bins becomes equal to factor.

ThreshHist
Thresholds histogram.

void cvThreshHist (CvHistogram* hist, float thresh);

hist Pointer to the histogram.

thresh Threshold level.

Discussion

The function ThreshHist clears histogram bins that are below the specified level.

CompareHist
Compares two histograms.

double cvCompareHist (CvHistogram* hist1, CvHistogram* hist2, CvCompareMethod
method);

hist1 First histogram.

hist2 Second histogram.

method Comparison method; may be any of those listed below:

• CV_COMP_CORREL;

• CV_COMP_CHISQR;

• CV_COMP_INTERSECT.

OpenCV Reference Manual Image Analysis Reference 10

10-49

Discussion

The function CompareHist compares two histograms using specified method.

CV_COMP_CORREL ,

CV_COMP_CHISQR ,

CV_COMP_INTERSECT .

The function returns the comparison result.

CopyHist
Copies histogram.

void cvCopyHist (CvHistogram* src, CvHistogram** dst);

src Source histogram.

dst Pointer to destination histogram.

Discussion

The function CopyHist makes a copy of the histogram. If the second histogram pointer
*dst is null, it is allocated and the pointer is stored at *dst. Otherwise, both
histograms must have equal types and sizes, and the function simply copies the source
histogram bins values to destination histogram.

result

q̂iv̂i
i

∑

q̂i
2 ∗

v̂i
2

i

∑
i

∑
-----------------------------------=

result
qi vi–()2

qi vi+

i

∑=

result min qi vi,()
i

∑=

OpenCV Reference Manual Image Analysis Reference 10

10-50

SetHistBinRanges
Sets bounds of histogram bins.

void cvSetHistBinRanges (CvHistogram* hist, float** ranges, int uniform=1);

hist Destination histogram.

ranges 2D array of bin ranges.

uniform If not 0, the histogram has evenly spaced bins.

Discussion

The function SetHistBinRanges is a stand-alone function for setting bin ranges in the
histogram. For more detailed description of the parameters ranges and uniform see
CreateHist function, that can initialize the ranges as well. Ranges for histogram bins
must be set before the histogram is calculated or backproject of the histogram is
calculated.

CalcHist
Calculates histogram of image(s).

void cvCalcHist (IplImage** img, CvHistogram* hist, int doNotClear=0,
IplImage* mask=0);

img Source images.

hist Pointer to the histogram.

doNotClear Clear flag.

mask Mask; determines what pixels of the source images are considered in
process of histogram calculation.

OpenCV Reference Manual Image Analysis Reference 10

10-51

Discussion

The function CalcHist calculates the histogram of the array of single-channel images.
If the parameter doNotClear is 0, then the histogram is cleared before calculation;
otherwise the histogram is simply updated.

CalcBackProject
Calculates back project.

void cvCalcBackProject (IplImage** img, IplImage* dstImg, CvHistogram* hist);

img Source images array.

dstImg Destination image.

hist Source histogram.

Discussion

The function CalcBackProject calculates the back project of the histogram. For each
group of pixels taken from the same position from all input single-channel images the
function puts the histogram bin value to the destination image, where the coordinates
of the bin are determined by the values of pixels in this input group. In terms of
statistics, the value of each output image pixel characterizes probability that the
corresponding input pixel group belongs to the object whose histogram is used.

For example, to find a red object in the picture, the procedure is as follows:

1. Calculate a hue histogram for the red object assuming the image contains only
this object. The histogram is likely to have a strong maximum, corresponding
to red color.

2. Calculate back project using the histogram and get the picture, where bright
pixels correspond to typical colors (e.g., red) in the searched object.

3. Find connected components in the resulting picture and choose the right
component using some additional criteria, for example, the largest connected
component.

OpenCV Reference Manual Image Analysis Reference 10

10-52

CalcBackProjectPatch
Calculates back project patch of histogram.

void cvCalcBackProjectPatch (IplImage** img, IplImage* dst, CvSize patchSize,
CvHistogram* hist, CvCompareMethod method, float normFactor);

img Source images array.

dst Destination image.

patchSize Size of patch slid though the source image.

hist Probabilistic model.

method Method of comparison.

normFactor Normalization factor.

Discussion

The function CalcBackProjectPatch calculates back projection by comparing
histograms of the source image patches with the given histogram. Taking measurement
results from some image at each location over ROI creates an array img. These results
might be one or more of hue, x derivative, y derivative, Laplacian filter, oriented
Gabor filter, etc. Each measurement output is collected into its own separate image.
The img image array is a collection of these measurement images. A
multi-dimensional histogram hist is constructed by sampling from the img image
array. The final histogram is normalized. The hist histogram has as many dimensions
as the number of elements in img array.

Each new image is measured and then converted into an img image array over a chosen
ROI. Histograms are taken from this img image in an area covered by a “patch” with
anchor at center as shown in Figure 10-5. The histogram is normalized using the
parameter norm_factor so that it may be compared with hist. The calculated
histogram is compared to the model histogram; hist uses the function cvCompareHist

(the parameter method). The resulting output is placed at the location corresponding to
the patch anchor in the probability image dst. This process is repeated as the patch is
slid over the ROI. Subtracting trailing pixels covered by the patch and adding newly
covered pixels to the histogram can save a lot of operations.

OpenCV Reference Manual Image Analysis Reference 10

10-53

Each image of the image array img shown in the figure stores the corresponding
element of a multi-dimensional measurement vector. Histogram measurements are
drawn from measurement vectors over a patch with anchor at the center. A
multi-dimensional histogram hist is used via the function CompareHist to calculate
the output at the patch anchor. The patch is slid around until the values are calculated
over the whole ROI.

Figure 10-5 Back Project Calculation by Patches

Patch

ROI

img
images

OpenCV Reference Manual Image Analysis Reference 10

10-54

CalcEMD
Computes earth mover distance.

void cvCalcEMD (float* signature1, int size1, float* signature2, int size2, int
dims, CvDisType distType, float *distFunc (float* f1, float* f2, void*
userParam), float* emd, float* lowerBound, void* userParam);

signature1 First signature, array of size1 * (dims + 1) elements.

size1 Number of elements in the first compared signature.

signature2 Second signature, array of size2 * (dims + 1) elements.

size2 Number of elements in the second compared signature.

dims Number of dimensions in feature space.

distType Metrics used; CV_DIST_L1, CV_DIST_L2, and CV_DIST_C stand for
one of the standard metrics. CV_DIST_USER means that a user-defined
function is used as the metric. The function takes two coordinate
vectors and user parameter and returns the distance between two
vectors.

distFunc Pointer to the user-defined ground distance function if distType is
CV_DIST_USER.

emd Pointer to the calculated emd distance.

lowerBound Pointer to the calculated lower boundary.

userParam Pointer to optional data that is passed into the distance function.

Discussion

The function CalcEMD computes earth mover distance and/or a lower boundary of the
distance. The lower boundary can be calculated only if dims > 0, and it has sense only
if the metric used satisfies all metric axioms. The lower boundary is calculated very
fast and can be used to determine roughly whether the two signatures are far enough so
that they cannot relate to the same object. If the parameter dims is equal to 0, then
signature1 and signature2 are considered simple 1D histograms. Otherwise, both
signatures must look as follows:

OpenCV Reference Manual Image Analysis Reference 10

10-55

(weight_i0, x0_i0, x1_i0, ..., x(dims-1)_i0,

weight_i1, x0_i1, x1_i1, ..., x(dims-1)_i1,

…

weight_(size1-1), x0_(size1-1), x1_(size1-1, ..., x(dims-1)_(size1-1)),

where weight_ik is the weight of ik cluster, while x0_ik,..., x(dims-1)_ik are
coordinates of the cluster ik.

If the parameter lower_bound is equal to 0, only emd is calculated. If the calculated
lower boundary is greater than or equal to the value stored at this pointer, then the true
emd is not calculated, but is set to that lower_bound.

CalcContrastHist
Calculates histogram of contrast.

void cvCalcContrastHist (IplImage **src, CvHistogram* hist, int dontClear,
IplImage* mask);

src Pointer to the source images, (now only src[0] is used).

hist Destination histogram.

dontClear Clear flag.

mask Mask image.

Discussion

The function CalcContrastHist calculates a histogram of contrast for the
one-channel image. If dont_clear parameter is 0 then the histogram is cleared before
calculation, otherwise it is simply updated. The algorithm works as follows. Let S be a
set of pairs (x1, x2) of neighbor pixels in the image f(x)and

.

Let’s denote

as the destination histogram,

S t)(x1 x2(,) S f x1)(t f x2)(<≤ f x2)(t f x1)(<≤∨,∈{ }=

Gt{ }

OpenCV Reference Manual Image Analysis Reference 10

10-56

Et as the summary contrast corresponding to the threshold t,

Nt as the counter of the edges detected by the threshold t.

Then

,

where and the resulting histogram is calculated
as

If pointer to the mask is NULL, the histogram is calculated for the all image pixels.
Otherwise only those pixels are considered that have non-zero value in the mask in the
corresponding position.

Pyramid Data Types
The pyramid functions use the data structure IplImage for image representation and
the data structure CvSeq for the sequence of the connected components representation.
Every element of this sequence is the data structure CvConnectedComp for the single
connected component representation in memory.

The C language definition for the CvConnectedComp structure is given below.

Example 10-1 CvConnectedComp

typedef struct CvConnectedComp
{

double area; /* area of the segmented
component */

float value; /* gray scale value of the
segmented component */

CvRect rect; /* ROI of the segmented component
*/

} CvConnectedComp;

Nt S t() Et, C x1 x2 t),,(
x1 x2(,) S t()∈
∑= =

C x1 x2 t),,(min f x1() t– f x2() t–,{ }=

Gt
Et Nt⁄ Nt 0,≠,

0 Nt, 0.=

=

OpenCV Reference Manual Image Analysis Reference 10

10-57

Histogram Data Types

Example 10-2 CvHistogram

typedef struct CvHistogram
{

int header_size; /* header's size */
CvHistType type; /* type of histogram */
int flags; /* histogram’s flags */
int c_dims; /* histogram’s dimension */
int dims[CV_HIST_MAX_DIM];

/* every dimension size */
int mdims[CV_HIST_MAX_DIM];

/* coefficients for fast
access to element */

/* &m[a,b,c] = m + a*mdims[0] +
b*mdims[1] + c*mdims[2] */

float* thresh[CV_HIST_MAX_DIM];
/* bin boundaries arrays for every

dimension */
float* array; /* all the histogram data, expanded into

the single row */
struct CvNode* root; /* tree – histogram data */
CvSet* set; /* pointer to memory storage

(for tree data) */
int* chdims[CV_HIST_MAX_DIM];

/* cache data for fast calculating */
} CvHistogram;

11-1

11
Structural Analysis
Reference

Table 11-1 Structural Analysis Functions

Group Name Description

Functions

Contour Processing
Functions

ApproxChains Approximates Freeman
chain(s) with a
polygonal curve.

StartReadChainPoints Initializes the chain
reader.

ReadChainPoint Returns the current
chain point and moves
to the next point.

ApproxPoly Approximates one or
more contours with
desired precision.

DrawContours Draws contour outlines
in the image.

ContourBoundingRect Calculates the bounding
box of the contour.

ContoursMoments Calculates
unnormalized spatial
and central moments of
the contour up to order
3.

ContourArea Calculates the region
area within the contour
or contour section.

OpenCV Reference Manual Structural Analysis Reference 11

11-2

MatchContours Calculates one of the
three similarity
measures between two
contours.

CreateContourTree Creates binary tree
representation for the
input contour and
returns the pointer to its
root.

ContourFromContourTree Restores the contour
from its binary tree
representation.

MatchContourTrees Calculates the value of
the matching measure
for two contour trees.

Geometry Functions FitEllipse Fits an ellipse to a set of
2D points.

FitLine2D Fits a 2D line to a set of
points on the plane.

FitLine3D Fits a 3D line to a set of
points on the plane.

Project3D Provides a general way
of projecting a set of 3D
points to a 2D plane.

ConvexHull Finds the convex hull of
a set of points.

ContourConvexHull Finds the convex hull of
a set of points returning
cvSeq.

ConvexHullApprox Finds approximate
convex hull of a set of
points.

ContourConvexHullApprox Finds approximate
convex hull of a set of
points returning
cvSeq.

Table 11-1 Structural Analysis Functions (continued)

Group Name Description

OpenCV Reference Manual Structural Analysis Reference 11

11-3

Contour Processing Functions

ApproxChains
Approximates Freeman chain(s) with polygonal
curve.

CvSeq* cvApproxChains(CvSeq* srcSeq, CvMemStorage* storage,
CvChainApproxMethod method=CV_CHAIN_APPROX_SIMPLE,
float parameter=0,int minimalPerimeter=0,
int recursive=0);

CheckContourConvexity Tests whether the input
is a contour convex or
not.

ConvexityDefects Finds all convexity
defects of the input
contour.

MinAreaRect Finds a circumscribed
rectangle of the minimal
area for a given convex
contour.

CalcPGH Calculates a pair-wise
geometrical histogram
for the contour.

MinEnclosingCircle Finds the minimal
enclosing circle for the
planar point set.

Data Types

Contour Processing Data
Types

CvContourTree Represents the contour
binary tree in memory.

Geometry Data Types CvConvexityDefect Represents the
convexity defect.

Table 11-1 Structural Analysis Functions (continued)

Group Name Description

OpenCV Reference Manual Structural Analysis Reference 11

11-4

srcSeq Pointer to the chain that can refer to other chains.

storage Storage location for the resulting polylines.

method Approximation method (see the description of the function
FindContours).

parameter Method parameter (not used now).

minimalPerimeter Approximates only those contours whose perimeters are not
less than minimalPerimeter. Other chains are removed
from the resulting structure.

recursive If not 0, the function approximates all chains
that access can be obtained to from srcSeq by h_next or
v_next links. If 0, the single chain is approximated.

Discussion

This is a stand-alone approximation routine. The function ApproxChains works
exactly in the same way as the functions FindContours / FindNextContour with the
corresponding approximation flag. The function returns pointer to the first
resultant contour. Other contours, if any, can be accessed via v_next or h_next fields
of the returned structure.

StartReadChainPoints
Initializes chain reader.

void cvStartReadChainPoints(CvChain* chain, CvChainPtReader* reader);

chain Pointer to chain.

reader Chain reader state.

Discussion

The function StartReadChainPoints initializes a special reader (see Dynamic Data
Structures for more information on sets and sequences).

OpenCV Reference Manual Structural Analysis Reference 11

11-5

ReadChainPoint
Gets next chain point.

CvPoint cvReadChainPoint(CvChainPtReader* reader);

reader Chain reader state.

Discussion

The function ReadChainPoint returns the current chain point and moves to the next
point.

ApproxPoly
Approximates polygonal contour(s) with desired
precision.

CvSeq*cvApproxPoly(CvSeq*srcSeq,int headerSize,CvMemStorage*storage,
CvPolyApproxMethod method, float parameter,int recursive=0);

srcSeq Pointer to the contour that can refer to other chains.

headerSize Size of the header for resulting sequences.

storage Resulting contour storage location.

method Approximation method; only CV_POLY_APPROX_DP is supported, that
corresponds to Douglas-Peucker method.

parameter Method-specific parameter; a desired precision for
CV_POLY_APPROX_DP.

recursive If not 0, the function approximates all contours that can be accessed
from srcSeq by h_next or v_next links. If 0, the single contour is
approximated.

OpenCV Reference Manual Structural Analysis Reference 11

11-6

Discussion

The function ApproxPoly approximates one or more contours and returns
pointer to the first resultant contour. Other contours, if any, can be accessed via v_next
or h_next fields of the returned structure.

DrawContours
Draws contours in image.

void cvDrawContours(IplImage *img, CvSeq* contour, int externalColor, int
holeColor, int maxLevel, int thickness=1);

img Image where the contours are to be drawn. Like in any other
drawing function, every output is clipped with the ROI.

contour Pointer to the first contour.

externalColor Color to draw external contours with.

holeColor Color to draw holes with.

maxLevel Maximal level for drawn contours. If 0, only the contour is
drawn. If 1, the contour and all contours after it on the same
level are drawn. If 2, all contours after and all contours one
level below the contours are drawn, etc.

thickness Thickness of lines the contours are drawn with.

Discussion

The function DrawContours draws contour outlines in the image if the thickness
is positive or zero or fills area bounded by the contours if thickness is negative, for
example, if thickness==CV_FILLED.

OpenCV Reference Manual Structural Analysis Reference 11

11-7

ContourBoundingRect
Calculates bounding box of contour.

CvRect* rect cvContourBoundingRect (CvSeq* contour, int update);

contour Pointer to the source contour.

update Attribute of the bounding rectangle updating.

Discussion

The function ContourBoundingRect returns the bounding box parameters, that is,
co-ordinates of the top-left corner, width, and height, of the source contour as
Figure 11-1 shows. If the parameter update is not equal to 0, the parameters of the
bounding box are updated.

Figure 11-1 Bounding Box Parameters

Width

Height

(x,y)

OpenCV Reference Manual Structural Analysis Reference 11

11-8

ContoursMoments
Calculates contour moments up to order 3.

void cvContoursMoments(CvSeq* contour, CvMoments* moments);

contour Pointer to the input contour header.

moments Pointer to the output structure of contour moments; must be allocated
by the caller.

Discussion

The function ContoursMoments calculates unnormalized spatial and central moments
of the contour up to order 3.

ContourArea
Calculates region area inside contour or contour
section.

double cvContourSecArea(CvSeq* contour, CvSlice slice=CV_WHOLE_SEQ(seq));

contour Pointer to the input contour header.

slice Starting and ending points of the contour section of interest.

Discussion

The function ContourSecArea calculates the region area within the contour consisting
of n points , , , as a spatial moment:

.

pi xi, yi()= 0 i n≤ ≤ p0 pn=

α00 1 2 xi 1–

i 1=

n

∑⁄ yi xiyi 1––=

OpenCV Reference Manual Structural Analysis Reference 11

11-9

If a part of the contour is selected and the chord, connecting ending points,
intersects the contour in several places, then the sum of all subsection areas is
calculated. If the input contour has points of self-intersection, the region area within
the contour may be calculated incorrectly.

MatchContours
Matches two contours.

double cvMatchContours (CvSeq *contour1, CvSeq* contour2,int method, long
parameter=0);

contour1 Pointer to the first input contour header.

contour2 Pointer to the second input contour header.

parameter Method-specific parameter, currently ignored.

method Method for the similarity measure calculation; must be any of

• CV_CONTOURS_MATCH_I1;

• CV_CONTOURS_MATCH_I2;

• CV_CONTOURS_MATCH_I3.

Discussion
The function MatchContours calculates one of the three similarity measures between
two contours.

Let two closed contours A and B have n and m points respectively:

. Normalized central moments of a
contour may be denoted as . M. Hu has shown that a set of the next
seven features derived from the second and third moments of contours is an invariant
to translation, rotation, and scale change [Hu62].

,

,

A xi, yi(), 1 i n }≤ ≤{= B ui, vi(), 1 i m }≤ ≤{=

ηpq, 0 p q 3≤+≤

h1 η20 η02+=

h2 η(20 η02)2
– 4η11

2
+=

OpenCV Reference Manual Structural Analysis Reference 11

11-10

,

,

,

From these seven invariant features the three similarity measures I1, I2, and I3 may be
calculated:

,

,

,

where .

CreateContourTree
Creates binary tree representation for input
contour.

CvContourTree* cvCreateContourTree(CvSeq *contour, CvMemStorage* storage,
double threshold);

contour Pointer to the input contour header.

storage Pointer to the storage block.

threshold Value of the threshold.

h3 η(30 3η12)2
– 3η21 η03–()2

+=

h4 η(30 η12)2 η21 η03+()2
+ +=

h5 η(30 3η12) η30 η12+() η30 η12+()2[– 3 η21 η03+()2]–

3η21 η03–() η21 η03+() 3 η30 η12+()2 η21 η03+()2] ,–[+

=

h6 η(20 η02) η30 η12+()2 η21 η03+()2]– 4η11 η30 η12+() η21 η03+()+[–=

h7 3η21 η03–() η(
30

η12) η30 η12+()2[3 η21 η03+()2]–

η30 3η12–() η21 η03+()– 3 η30 η12+()2 η21 η03+()2]
·

.–

+

+

=

I1 A, B() 1 mi
A

1 mi
B⁄+⁄–

i 1=

7

∑=

I2 A, B() m– i
A

mi
B

+

i 1=

7

∑=

I3 A, B() max mi
A

mi
B

–() mi
A⁄

i
=

mi
A

hi
A() hi

A

10
,logsgn= mi

B
hi
B() hi

B

10
logsgn=

OpenCV Reference Manual Structural Analysis Reference 11

11-11

Discussion

The function CreateContourTree creates binary tree representation for the input
contour contour and returns the pointer to its root. If the parameter threshold is less
than or equal to 0, the function creates full binary tree representation. If the threshold is
more than 0, the function creates representation with the precision threshold: if the
vertices with the interceptive area of its base line are less than threshold, the tree
should not be built any further. The function returns created tree.

ContourFromContourTree
Restores contour from binary tree representation.

CvSeq* cvContourFromContourTree (CvContourTree *tree, CvMemStorage* storage,
CvTermCriteria criteria);

tree Pointer to the input tree.

storage Pointer to the storage block.

criteria Criteria for the definition of the threshold value
for contour reconstruction (level of precision).

Discussion

The function ContourFromContourTree restores the contour from its binary tree
representation. The parameter criterion defines the threshold, that is, level of
precision for the contour restoring. If criterion.type = CV_TERMCRIT_ITER, the
function restores criterion. maxIter tree levels. If criterion.type =

CV_TERMCRIT_EPS, the function restores the contour as long as tri_area >
criterion. epsilon *contour_area, where contour_area is the magnitude of the
contour area and tri_area is the magnitude of the current triangle area. If
criterion.type = CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, the function restores
the contour as long as one of these conditions is true. The function returns
reconstructed contour.

OpenCV Reference Manual Structural Analysis Reference 11

11-12

MatchContourTrees
Compares two binary tree representations.

double cvMatchContourTrees (CvContourTree *tree1, CvContourTree *tree2,
CvTreeMatchMethod method, double threshold);

tree1 Pointer to the first input tree.

tree2 Pointer to the second input tree.

method Method for calculation of the similarity measure; now must be only
CV_CONTOUR_TREES_MATCH_I1.

threshold Value of the compared threshold.

Discussion

The function MatchContourTrees calculates the value of the matching measure for
two contour trees. The similarity measure is calculated level by level from the binary
tree roots. If the total calculating value of the similarity for levels from 0 to the
specified one is more than the parameter threshold, the function stops calculations
and value of the total similarity measure is returned as result. If the total calculating
value of the similarity for levels from 0 to the specified one is less than or equal to
threshold, the function continues calculation on the next tree level and returns the
value of the total similarity measure for the binary trees.

Geometry Functions

FitEllipse
Fits ellipse to set of 2D points.

void cvFitEllipse (CvPoint32f* points, int n, CvBox2D* box);

points Pointer to the set of 2D points.

OpenCV Reference Manual Structural Analysis Reference 11

11-13

n Number of points; must be more than or equal to 6.

box Pointer to the structure for representation of the output ellipse.

Discussion

The function FitEllipse fills the output structure in the following way:

box→center Point of the center of the ellipse;

box→size Sizes of two ellipse axes;

box→angle Angle between the horizontal axis and the ellipse axis with the length
of box->size.width.

The output ellipse has the property of box→size.width > box→size.height.

FitLine2D
Fits 2D line to set of points on the plane.

void cvFitLine2D (CvPoint2D32f* points, int count, CvDisType disType, void*
param, float reps, float aeps, float* line);

points Array of 2D points.

count Number of points.

disType Type of the distance used to fit the data to a line.

param Pointer to a user-defined function that calculates the weights for the
type CV_DIST_USER, or the pointer to a float user-defined metric
parameter c for the Fair and Welsch distance types.

reps, aeps Used for iteration stop criteria. If zero, the default value of 0.01 is
used.

line Pointer to the array of four floats. When the function exits, the first
two elements contain the direction vector of the line normalized to 1,
the other two contain coordinates of a point that belongs to the line.

OpenCV Reference Manual Structural Analysis Reference 11

11-14

Discussion

The function FitLine2D fits a 2D line to a set of points on the plane. Possible distance
type values are listed below.

CV_DIST_L2 Standard least squares .

CV_DIST_L1

CV_DIST_L12

CV_DIST_FAIR c =1.3998.

CV_DIST_WELSCH ,c = 2.9846.

CV_DIST_USER Uses a user-defined function to calculate the weight. The
parameter param should point to the function.

The line equation is , where ,
and .

In this algorithm is the mean of the input vectors with weights, that is,

.

The parameters reps and aeps are iteration thresholds. If the distance of the type
CV_DIST_C between two values of calculated from two iterations is less than the
value of the parameter reps and the angle in radians between two vectors is less
than the parameter aeps, then the iteration is stopped.

The specification for the user-defined weight function is

void userWeight (float* dist, int count, float* w);

dist Pointer to the array of distance values.

count Number of elements.

w Pointer to the output array of weights.

The function should fill the weights array with values of weights calculated from the
distance values . The function has to be monotone
decreasing.

ρ x() x
2

=

ρ x() c
2

2
------ 1

x
c

 2

–
 exp–=

V r r0–()×[] 0= V l(ine 0[] , line 1[] , line 2[])= V 1=

r0 l(ine 3[] , line 4[] , line 5[])=

r0

r0

W d ri()()ri
i

∑

W d ri()()
i

∑
--------------------------------------=

r0

V

w i[] f d i[]()= f x() 1
x

dρ
dx
-------=

OpenCV Reference Manual Structural Analysis Reference 11

11-15

FitLine3D
Fits 3D line to set of points in 3D space.

void cvFitLine3D (CvPoint3D32f* points, int count, CvDisType disType, void*
param, float reps, float aeps, float* line);

points Array of 3D points.

count Number of points.

disType Type of the distance used to fit the data to a line.

param Pointer to a user-defined function that calculates the weights for the
type CV_DIST_USER or the pointer to a float user-defined metric
parameter c for the Fair and Welsch distance types.

reps, aeps Used for iteration stop criteria. If zero, the default value of 0.01 is
used.

line Pointer to the array of 6 floats. When the function exits, the first
three elements contain the direction vector of the line normalized to
1, the other three contain coordinates of a point that belongs to the
line.

Discussion

The function FitLine3D fits a 3D line to a set of points on the plane. Possible distance
type values are listed below.

CV_DIST_L2 Standard least squares .

CV_DIST_L1

CV_DIST_L12

CV_DIST_FAIR c =1.3998.

CV_DIST_WELSCH ,c = 2.9846.

CV_DIST_USER Uses a user-defined function to calculate the weight. The
parameter param should point to the function.

ρ x() x
2

=

ρ x() c
2

2
------ 1

x
c

 2

–
 exp–=

OpenCV Reference Manual Structural Analysis Reference 11

11-16

The line equation is , where ,
and .

In this algorithm is the mean of the input vectors with weights, that is,

.

The parameters reps and aeps are iteration thresholds. If the distance between two
values of calculated from two iterations is less than the value of the parameter reps,
(the distance type CV_DIST_C is used in this case) and the angle in radians between
two vectors is less than the parameter aeps, then the iteration is stopped.

The specification for the user-defined weight function is

void userWeight (float* dist, int count, float* w);

dist Pointer to the array of distance values.

count Number of elements.

w Pointer to the output array of weights.

The function should fill the weights array with values of weights calculated from
distance values . The function has to be monotone
decreasing.

Project3D
Projects array of 3D points to coordinate axis.

void cvProject3D (CvPoint3D32f* points3D, int count, CvPoint2D32f* points2D,
int xindx, int yindx);

points3D Source array of 3D points.

count Number of points.

points2D Target array of 2D points.

V r r0–()×[] 0= V l(ine 0[] , line 1[] , line 2[])= V 1=

0 l(ine 3[] , line 4[] , line 5[=

r0

r0

W d ri()()ri
i

∑

W d ri()()
i

∑
--------------------------------------=

r0

V

w i[] f d i[]()= f x() 1
x

dρ
dx
-------=

OpenCV Reference Manual Structural Analysis Reference 11

11-17

xindx Index of the 3D coordinate from 0 to 2 that is to be used as
x-coordinate.

yindx Index of the 3D coordinate from 0 to 2 that is to be used as
y-coordinate.

Discussion

The function Project3D used with the function PerspectiveTransform is intended
to provide a general way of projecting a set of 3D points to a 2D plane. The function
copies two of the three coordinates specified by the parameters xindx and yindx of
each 3D point to a 2D points array.

ConvexHull
Finds convex hull of points set.

void cvConvexHull(CvPoint* points, int numPoints, CvRect* boundRect, int
orientation, int* hull, int* hullsize);

points Pointer to the set of 2D points.

numPoints Number of points.

boundRect Pointer to the bounding rectangle of points set; not used.

orientation Output order of the convex hull vertices CV_CLOCKWISE or
CV_COUNTER_CLOCKWISE.

hull Indices of convex hull vertices in the input array.

hullsize Number of vertices in convex hull; output parameter.

Discussion

The function ConvexHull takes an array of points and puts out indices of points that
are convex hull vertices. The function uses Quicksort algorithm for points sorting.

The standard, that is, bottom-left XY coordinate system, is used to define the order in
which the vertices appear in the output array.

OpenCV Reference Manual Structural Analysis Reference 11

11-18

ContourConvexHull
Finds convex hull of points set.

CvSeq* cvContourConvexHull(CvSeq* contour, int orientation,
CvMemStorage* storage);

contour Sequence of 2D points.

orientation Output order of the convex hull vertices CV_CLOCKWISE or
CV_COUNTER_CLOCKWISE.

storage Memory storage where the convex hull must be allocated.

Discussion

The function ContourConvexHull takes an array of points and puts out indices of
points that are convex hull vertices. The function uses Quicksort algorithm for points
sorting.

The standard, that is, bottom-left XY coordinate system, defines the order in which the
vertices appear in the output array.

The function returns CvSeq that is filled with pointers to those points of the source
contour that belong to the convex hull.

ConvexHullApprox
Finds approximate convex hull of points set.

void cvConvexHullApprox(CvPoint* points, int numPoints, CvRect* boundRect,
int bandWidth,int orientation, int* hull, int* hullsize);

points Pointer to the set of 2D points.

numPoints Number of points.

boundRect Pointer to the bounding rectangle of points set; not used.

bandWidth Width of band used by the algorithm.

OpenCV Reference Manual Structural Analysis Reference 11

11-19

orientation Output order of the convex hull vertices CV_CLOCKWISE or
CV_COUNTER_CLOCKWISE.

hull Indices of convex hull vertices in the input array.

hullsize Number of vertices in the convex hull; output parameter.

Discussion

The function ConvexHullApprox finds approximate convex hull of points set. The
following algorithm is used:

1. Divide the plane into vertical bands of specified width, starting from the
extreme left point of the input set.

2. Find points with maximal and minimal vertical coordinates within each band.

3. Exclude all the other points.

4. Find the exact convex hull of all the remaining points (see Figure 11-2).

The algorithm can be used to find the exact convex hull; the value of the parameter
bandwidth must then be equal to 1.

Figure 11-2 Finding Approximate Convex Hull

OpenCV Reference Manual Structural Analysis Reference 11

11-20

ContourConvexHullApprox
Finds approximate convex hull of points set.

CvSeq* cvContourConvexHullApprox(CvSeq* contour, int bandwidth, int
orientation, CvMemStorage* storage);

contour Sequence of 2D points.

bandwidth Bandwidth used by the algorithm.

orientation Output order of the convex hull vertices CV_CLOCKWISE or
CV_COUNTER_CLOCKWISE.

storage Memory storage where the convex hull must be allocated.

Discussion

The function ContourConvexHullApprox finds approximate convex hull of points set.
The following algorithm is used:

1. Divide the plane into vertical bands of specified width, starting from the
extreme left point of the input set.

2. Find points with maximal and minimal vertical coordinates within each band.

3. Exclude all the other points.

4. Find the exact convex hull of all the remaining points (see Figure 11-2)

In case of points with integer coordinates, the algorithm can be used to find the exact
convex hull; the value of the parameter bandwidth must then be equal to 1.

The function ContourConvexHullApprox returns CvSeq that is filled with pointers to
those points of the source contour that belong to the approximate convex hull.

OpenCV Reference Manual Structural Analysis Reference 11

11-21

CheckContourConvexity
Tests contour convex.

int cvCheckContourConvexity(CvSeq* contour);

contour Tested contour.

Discussion

The function CheckContourConvexity tests whether the input is a contour convex or
not. The function returns 1 if the contour is convex, 0 otherwise.

ConvexityDefects
Finds defects of convexity of contour.

CvSeq* cvConvexityDefects(CvSeq* contour, CvSeq* convexhull, CvMemStorage*
storage);

contour Input contour, represented by a sequence of CvPoint structures.

convexhull Exact convex hull of the input contour; must be computed by the
function cvContourConvexHull.

storage Memory storage where the sequence of convexity defects must be
allocated.

Discussion

The function ConvexityDefects finds all convexity defects of the input contour and
returns a sequence of the CvConvexityDefect structures.

OpenCV Reference Manual Structural Analysis Reference 11

11-22

MinAreaRect
Finds circumscribed rectangle of minimal area
for given convex contour.

void cvMinAreaRect (CvPoint* points, int n, int left, int bottom, int right,
int top, CvPoint2D32f* anchor, CvPoint2D32f* vect1, CvPoint2D32f* vect2);

points Sequence of convex polygon points.

n Number of input points.

left Index of the extreme left point.

bottom Index of the extreme bottom point.

right Index of the extreme right point.

top Index of the extreme top point.

anchor Pointer to one of the output rectangle corners.

vect1 Pointer to the vector that represents one side of the output rectangle.

vect2 Pointer to the vector that represents another side of the output
rectangle.

OpenCV Reference Manual Structural Analysis Reference 11

11-23

Discussion

The function MinAreaRect returns a circumscribed rectangle of the minimal area. The
output parameters of this function are the corner of the rectangle and two incident
edges of the rectangle (see Figure 11-3).

CalcPGH
Calculates pair-wise geometrical histogram for
contour.

void cvCalcPGH(CvSeq* contour, CvHistogram* hist);

contour Input contour.

hist Calculated histogram; must be two-dimensional.

Discussion

The function CalcPGH calculates a pair-wise geometrical histogram for the contour.
The algorithm considers every pair of the contour edges. The angle between the edges
and the minimum/maximum distances are determined for every pair. To do this each of
the edges in turn is taken as the base, while the function loops through all the other
edges. When the base edge and any other edge are considered, the minimum and

Figure 11-3 Minimal Area Bounding Rectangle

OpenCV Reference Manual Structural Analysis Reference 11

11-24

maximum distances from the points on the non-base edge and line of the base edge are
selected. The angle between the edges defines the row of the histogram in which all the
bins that correspond to the distance between the calculated minimum and maximum
distances are incremented. The histogram can be used for contour matching.

MinEnclosingCircle
Finds minimal enclosing circle for 2D-point set.

void cvFindMinEnclosingCircle (CvSeq* seq, CvPoint2D32f* center, float*
radius);

seq Sequence that contains the input point set. Only points with integer
coordinates (CvPoint) are supported.

center Output parameter. The center of the enclosing circle.

radius Output parameter. The radius of the enclosing circle.

Discussion

The function FindMinEnclosingCircle finds the minimal enclosing circle for the
planar point set. Enclosing means that all the points from the set are either inside or on
the boundary of the circle. Minimal means that there is no enclosing circle of a smaller
radius.

Contour Processing Data Types
The OpenCV Library functions use special data structures to represent the contours
and contour binary tree in memory, namely the structures CvSeq and CvContourTree.
Below follows the definition of the structure CvContourTree in the C language.

Example 11-1 CvContourTree

typedef struct CvContourTree
{ CV_SEQUENCE_FIELDS()

CvPoint p1; /*the start point of the binary tree
root*/

CvPoint p2; /*the end point of the binary tree

OpenCV Reference Manual Structural Analysis Reference 11

11-25

Geometry Data Types

root*/
} CvContourTree;

Example 11-2 CvConvexityDefect

typedef struct
{

CvPoint* start; //start point of defect
CvPoint* end; //end point of defect
CvPoint* depth_point; //fathermost point
float depth; //depth of defect

} CvConvexityDefect;

Example 11-1 CvContourTree (continued)

12-1

12
Object Recognition
Reference

Table 12-1 Image Recognition Functions and Data Types

Group Function Name Description

Functions

Eigen Objects Functions CalcCovarMatrixEx Calculates a covariance
matrix of the input
objects group using
previously calculated
averaged object.

CalcEigenObjects Calculates orthonormal
eigen basis and the
averaged object for a
group of the input
objects.

CalcDecompCoeff Calculates one
decomposition
coefficient of the input
object using the
previously calculated
eigen object and the
averaged object.

EigenDecomposite Calculates all
decomposition
coefficients for the input
object.

EigenProjection Calculates an object
projection to the eigen
sub-space.

OpenCV Reference Manual Object Recognition Reference 12

12-2

Embedded Hidden Markov
Models Functions

Create2DHMM Creates a 2D embedded
HMM.

Release2DHMM Frees all the memory
used by HMM.

CreateObsInfo Creates new structures
to store image
observation vectors.

ReleaseObsInfo Frees all memory used
by observations and
clears pointer to the
structure
CvImgObsInfo.

ImgToObs_DCT Extracts observation
vectors from the image.

UniformImgSegm Performs uniform
segmentation of image
observations by HMM
states.

InitMixSegm Segments all
observations within
every internal state
of HMM by state mixture
components.

EstimateHMMStateParams Estimates all
parameters of every
HMM state.

EstimateTransProb Computes transition
probability matrices for
embedded HMM.

EstimateObsProb Computes probability of
every observation of
several images.

EViterbi Executes Viterbi
algorithm for embedded
HMM.

Table 12-1 Image Recognition Functions and Data Types (continued)

Group Function Name Description

OpenCV Reference Manual Object Recognition Reference 12

12-3

Eigen Objects Functions

CalcCovarMatrixEx
Calculates covariance matrix for group of input
objects.

void cvCalcCovarMatrixEx(int nObjects, void* input, int ioFlags, int
ioBufSize, uchar* buffer, void* userData, IplImage* avg, float*
covarMatrix);

MixSegmL2 Segments observations
from all training images
by mixture components
of newly Viterbi
algorithm-assigned
states.

Data Types

Use of Eigen Object
Functions

Use of Function
cvCalcEigenObjects in Direct
Access Mode

Shows the use of the
function when the size
of free RAM is sufficient
for all input and eigen
objects allocation.

User Data Structure, I/O Callback
Functions, and Use of Function
cvCalcEigenObjects in
Callback Mode

Shows the use of the
function when all objects
and/or eigen objects
cannot be allocated in
free RAM.

HMM Structures Embedded HMM Structure Represents 1D HMM
and 2D embedded HMM
models.

Image Observation Structure Represents image
observations.

Table 12-1 Image Recognition Functions and Data Types (continued)

Group Function Name Description

OpenCV Reference Manual Object Recognition Reference 12

12-4

nObjects Number of source objects.

input Pointer either to the array of IplImage input objects or to the read
callback function according to the value of the parameter ioFlags.

ioFlags Input/output flags.

ioBufSize Input/output buffer size.

buffer Pointer to the input/output buffer.

userData Pointer to the structure that contains all necessary data for the
callback functions.

avg Averaged object.

covarMatrix Covariance matrix. An output parameter; must be allocated before
the call.

Discussion

The function CalcCovarMatrixEx calculates a covariance matrix of the input objects
group using previously calculated averaged object. Depending on ioFlags parameter
it may be used either in direct access or callback mode. If ioFlags is not
CV_EIGOBJ_NO_CALLBACK, buffer must be allocated before calling the function.

CalcEigenObjects
Calculates orthonormal eigen basis and
averaged object for group of input objects.

void cvCalcEigenObjects (int nObjects, void* input, void* output, int ioFlags,
int ioBufSize, void* userData, CvTermCriteria* calcLimit, IplImage* avg,
float* eigVals);

nObjects Number of source objects.

input Pointer either to the array of IplImage input objects or to the read
callback function according to the value of the parameter ioFlags.

output Pointer either to the array of eigen objects or to the write callback
function according to the value of the parameter ioFlags.

OpenCV Reference Manual Object Recognition Reference 12

12-5

ioFlags Input/output flags.

ioBufSize Input/output buffer size in bytes. The size is zero, if unknown.

userData Pointer to the structure that contains all necessary data for the
callback functions.

calcLimit Criteria that determine when to stop calculation of eigen objects.

avg Averaged object.

eigVals Pointer to the eigenvalues array in the descending order; may be
NULL.

Discussion

The function CalcEigenObjects calculates orthonormal eigen basis and the averaged
object for a group of the input objects. Depending on ioFlags parameter it may be
used either in direct access or callback mode. Depending on the parameter calcLimit,
calculations are finished either after first calcLimit.maxIters dominating eigen
objects are retrieved or if the ratio of the current eigenvalue to the largest eigenvalue
comes down to calcLimit.epsilon threshold. The value calcLimit->type must be
CV_TERMCRIT_NUMB, CV_TERMCRIT_EPS, or CV_TERMCRIT_NUMB | CV_TERMCRIT_EPS.
The function returns the real values calcLimit->maxIter and calcLimit->epsilon.

The function also calculates the averaged object, which must be created previously.
Calculated eigen objects are arranged according to the corresponding eigenvalues in
the descending order.

The parameter eigVals may be equal to NULL, if eigenvalues are not needed.

The function CalcEigenObjects uses the functionCalcCovarMatrixEx.

CalcDecompCoeff
Calculates decomposition coefficient of input
object.

double cvCalcDecompCoeff(IplImage* obj, IplImage* eigObj, IplImage* avg);

OpenCV Reference Manual Object Recognition Reference 12

12-6

obj Input object.

eigObj Eigen object.

avg Averaged object.

Discussion

The function CalcDecompCoeff calculates one decomposition coefficient of the input
object using the previously calculated eigen object and the averaged object.

EigenDecomposite
Calculates all decomposition coefficients for
input object.

void cvEigenDecomposite(IplImage* obj, int nEigObjs, void* eigInput, int
ioFlags, void* userData, IplImage* avg, float* coeffs);

obj Input object.

nEigObjs Number of eigen objects.

eigInput Pointer either to the array of IplImage input objects or to the read
callback function according to the value of the parameter ioFlags.

ioFlags Input/output flags.

userData Pointer to the structure that contains all necessary data for the
callback functions.

avg Averaged object.

coeffs Calculated coefficients; an output parameter.

Discussion

The function EigenDecomposite calculates all decomposition coefficients for the
input object using the previously calculated eigen objects basis and the averaged
object. Depending on ioFlags parameter it may be used either in direct access or
callback mode.

OpenCV Reference Manual Object Recognition Reference 12

12-7

EigenProjection
Calculates object projection to the eigen
sub-space.

void cvEigenProjection (int nEigObjs, void* eigInput, int ioFlags, void*
userData, float* coeffs, IplImage* avg, IplImage* proj);

nEigObjs Number of eigen objects.

eigInput Pointer either to the array of IplImage input objects or to the read
callback function according to the value of the parameter ioFlags.

ioFlags Input/output flags.

userData Pointer to the structure that contains all necessary data for the
callback functions.

coeffs Previously calculated decomposition coefficients.

avg Averaged object.

proj Decomposed object projection to the eigen sub-space.

Discussion

The function EigenProjection calculates an object projection to the eigen sub-space
or, in other words, restores an object using previously calculated eigen objects basis,
averaged object, and decomposition coefficients of the restored object. Depending on
ioFlags parameter it may be used either in direct access or callback mode.

Use of Eigen Object Functions
The functions of the eigen objects group have been developed to be used for any
number of objects, even if their total size exceeds free RAM size. So the functions may
be used in two main modes.

Direct access mode is the best choice if the size of free RAM is sufficient for all input
and eigen objects allocation. This mode is set if the parameter ioFlags is equal to
CV_EIGOBJ_NO_CALLBACK. In this case input and output parameters are pointers to

OpenCV Reference Manual Object Recognition Reference 12

12-8

arrays of input/output objects of IplImage* type. The parameters ioBufSize and
userData are not used. An example of the function CalcEigenObjects used in direct
access mode is given below.

The callback mode is the right choice in case when the number and the size of objects
are large, which happens when all objects and/or eigen objects cannot be allocated in
free RAM. In this case input/output information may be read/written and developed by
portions. Such regime is called callback mode and is set by the parameter ioFlags.
Three kinds of the callback mode may be set:

IoFlag = CV_EIGOBJ_INPUT_CALLBACK, only input objects are read by portions;

IoFlag = CV_EIGOBJ_OUTPUT_CALLBACK, only eigen objects are calculated and
written by portions;

Example 12-1 Use of Function cvCalcEigenObjects in Direct Access Mode

IplImage** objects;
IplImage** eigenObjects;
IplImage* avg;
float* eigVals;
CvSize size = cvSize(nx, ny);
. .
if(!(eigVals = (float*) cvAlloc(nObjects*sizeof(float))))

__ERROR_EXIT__;
if(!(avg = cvCreateImage(size, IPL_DEPTH_32F, 1)))

__ERROR_EXIT__;
for(i=0; i< nObjects; i++)
{

objects[i] = cvCreateImage(size, IPL_DEPTH_8U, 1);
eigenObjects[i] = cvCreateImage(size, IPL_DEPTH_32F, 1);
if(!(objects[i] & eigenObjects[i]))

__ERROR_EXIT__;
}
. .
cvCalcEigenObjects (nObjects,

(void*)objects,
(void*)eigenObjects,

CV_EIGOBJ_NO_CALLBACK,
0,
NULL,
calcLimit,
avg,
eigVals);

OpenCV Reference Manual Object Recognition Reference 12

12-9

IoFlag = CV_EIGOBJ_BOTH_CALLBACK, or IoFlag = CV_EIGOBJ_INPUT_CALLBACK |

CV_EIGOBJ_OUTPUT_CALLBACK, both processes take place. If one of the above modes is
realized, the parameters input and output, both or either of them, are pointers to
read/write callback functions. These functions must be written by the user; their
prototypes are the same:

CvStatus callback_read (int ind, void* buffer, void* userData);

CvStatus callback_write(int ind, void* buffer, void* userData);

ind Index of the read or written object.

buffer Pointer to the start memory address where the object will be
allocated.

userData Pointer to the structure that contains all necessary data for the
callback functions.

The user must define the user data structure which may carry all information necessary
to read/write procedure, such as the start address or file name of the first object on the
HDD or any other device, row length and full object length, etc.

If ioFlag is not equal to CV_EIGOBJ_NO_CALLBACK, the function CalcEigenObjects

allocates a buffer in RAM for objects/eigen objects portion storage. The size of the
buffer may be defined either by the user or automatically. If the parameter ioBufSize
is equal to 0, or too large, the function will define the buffer size. The read data must
be located in the buffer compactly, that is, row after row, without alignment and gaps.

An example of the user data structure, i/o callback functions, and the use of the
function CalcEigenObjects in the callback mode is shown below.

Example 12-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCalcEigenObjects in Callback Mode

// User data structure
typedef struct _UserData
{

int objLength; /* Obj. length (in elements, not in bytes !) */
int step; /* Obj. step (in elements, not in bytes !) */
CvSize size; /* ROI or full size */
CvPoint roiIndent;
char* read_name;
char* write_name;

} UserData;
//--
--

OpenCV Reference Manual Object Recognition Reference 12

12-10

// Read callback function
CvStatus callback_read_8u (int ind, void* buffer, void* userData)
{

int i, j, k = 0, m;
UserData* data = (UserData*)userData;
uchar* buff = (uchar*)buf;
char name[32];
FILE *f;

if(ind<0) return CV_StsBadArg;
if(buf==NULL || userData==NULL) CV_StsNullPtr;

for(i=0; i<28; i++)
{

name[i] = data->read_name[i];
if(name[i]=='.' || name[i]==' '))break;

}
name[i] = 48 + ind/100;
name[i+1] = 48 + (ind%100)/10;
name[i+2] = 48 + ind%10;
if((f=fopen(name, "r"))==NULL) return CV_BadCallBack;
m = data->roiIndent.y*step + data->roiIndent.x;

for(i=0; i<data->size.height; i++, m+=data->step)
{

fseek(f, m , SEEK_SET);
for(j=0; j<data->size.width; j++, k++)

fread(buff+k, 1, 1, f);
}

fclose(f);
return CV_StsOk;

}
//---
// Write callback function
cvStatus callback_write_32f (int ind, void* buffer, void* userData)
{

int i, j, k = 0, m;
UserData* data = (UserData*)userData;
float* buff = (float*)buf;
char name[32];
FILE *f;

if(ind<0) return CV_StsBadArg;
if(buf==NULL || userData==NULL) CV_StsNullPtr;

for(i=0; i<28; i++)
{

Example 12-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCalcEigenObjects in Callback Mode (continued)

OpenCV Reference Manual Object Recognition Reference 12

12-11

name[i] = data->read_name[i];
if(name[i]=='.' || name[i]==' '))break;

}
if((f=fopen(name, "w"))==NULL) return CV_BadCallBack;
m = 4 * (ind*data->objLength + data->roiIndent.y*step

+ data->roiIndent.x);

for(i=0; i<data->size.height; i++, m+=4*data->step)
{

fseek(f, m , SEEK_SET);
for(j=0; j<data->size.width; j++, k++)

fwrite(buff+k, 4, 1, f);
}

fclose(f);
return CV_StsOk;

}
//--
--
// fragments of the main function
{
. .

int bufSize = 32*1024*1024; //32 MB RAM for i/o buffer
float* avg;

cv UserData data;
cvStatus r;
cvStatus (*read_callback)(int ind, void* buf, void* userData)=

read_callback_8u;
cvStatus (*write_callback)(int ind, void* buf, void* userData)=

write_callback_32f;
cvInput* u_r = (cvInput*)&read_callback;
cvInput* u_w = (cvInput*)&write_callback;
void* read_ = (u_r)->data;
void* write_ = (u_w)->data;

. .
data->read_name = ”input”;
data->write_name = ”eigens”;
avg = (float*)cvAlloc(sizeof(float) * obj_width * obj_height);

cvCalcEigenObjects(obj_number,
read_,
write_,
CV_EIGOBJ_BOTH_CALLBACK,
bufSize,
(void*)&data,
&limit,
avg,

Example 12-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCalcEigenObjects in Callback Mode (continued)

OpenCV Reference Manual Object Recognition Reference 12

12-12

Embedded Hidden Markov Models Functions

Create2DHMM
Creates 2D embedded HMM.

CvEHMM* cvCreate2DHMM(int* stateNumber, int* numMix, int obsSize);

stateNumber Array, the first element of the which specifies the number of
superstates in the HMM. All subsequent elements specify the
number of states in every embedded HMM, corresponding to each
superstate. So, the length of the array is stateNumber[0]+1.

numMix Array with numbers of Gaussian mixture components per each
internal state. The number of elements in the array is equal to
number of internal states in the HMM, that is, superstates are not
counted here.

obsSize Size of observation vectors to be used with created HMM.

Discussion

The function Create2DHMM returns the created structure of the type CvEHMM with
specified parameters.

eigVal);
. .
}

Example 12-2 User Data Structure, I/O Callback Functions, and Use of Function
cvCalcEigenObjects in Callback Mode (continued)

OpenCV Reference Manual Object Recognition Reference 12

12-13

Release2DHMM
Releases 2D embedded HMM.

void cvRelease2DHMM(CvEHMM** hmm);

hmm Address of pointer to HMM to be released.

Discussion

The function Release2DHMM frees all the memory used by HMM and clears the
pointer to HMM.

CreateObsInfo
Creates structure to store image observation
vectors.

CvImgObsInfo* cvCreateObsInfo(CvSize numObs, int obsSize);

numObs Numbers of observations in the horizontal and vertical directions.
For the given image and scheme of extracting observations the
parameter can be computed via the macro CV_COUNT_OBS(roi,

dctSize, delta, numObs), where roi, dctSize, delta, numObs
are the pointers to structures of the type CvSize. The pointer roi
means size of roi of image observed, numObs is the output
parameter of the macro.

obsSize Size of observation vectors to be stored in the structure.

Discussion

The function CreateObsInfo creates new structures to store image observation
vectors. For definitions of the parameters roi, dctSize, and delta see the
specification of the function ImgToObs_DCT.

OpenCV Reference Manual Object Recognition Reference 12

12-14

ReleaseObsInfo
Releases observation vectors structure.

void cvReleaseObsInfo(CvImgObsInfo** obsInfo);

obsInfo Address of the pointer to the structure CvImgObsInfo.

Discussion

The function ReleaseObsInfo frees all memory used by observations and clears
pointer to the structure CvImgObsInfo.

ImgToObs_DCT
Extracts observation vectors from image.

void cvImgToObs_DCT(IplImage* image, float* obs, CvSize dctSize, CvSize
obsSize, CvSize delta);

image Input image.

obs Pointer to consequently stored observation vectors.

dctSize Size of image blocks for which DCT (Discrete Cosine Transform)
coefficients are to be computed.

obsSize Number of the lowest DCT coefficients in the horizontal and vertical
directions to be put into the observation vector.

delta Shift in pixels between two consecutive image blocks in the
horizontal and vertical directions.

OpenCV Reference Manual Object Recognition Reference 12

12-15

Discussion

The function ImgToObs_DCT extracts observation vectors, that is, DCT coefficients,
from the image. The user must pass obsInfo.obs as the parameter obs to use this
function with other HMM functions and use the structure obsInfo of the
CvImgObsInfo type.

UniformImgSegm
Performs uniform segmentation of image
observations by HMM states.

void cvUniformImgSegm(CvImgObsInfo* obsInfo, CvEHMM* hmm);

obsInfo Observations structure.

hmm HMM structure.

Example 12-3 Calculating Observations for HMM

CvImgObsInfo* obs_info;
...
cvImgToObs_DCT(image,obs_info->obs, //!!!
dctSize, obsSize, delta);

OpenCV Reference Manual Object Recognition Reference 12

12-16

Discussion

The function UniformImgSegm segments image observations by HMM states
uniformly (see Figure 12-1 for 2D embedded HMM with 5 superstates and 3, 6, 6, 6, 3
internal states of every corresponding superstate).

InitMixSegm
Segments all observations within every internal
state of HMM by state mixture components.

void cvInitMixSegm(CvImgObsInfo** obsInfoArray, int numImg, CvEHMM* hmm);

obsInfoArray Array of pointers to the observation structures.

numImg Length of above array.

hmm HMM.

Discussion

The function InitMixSegm takes a group of observations from several training images
already segmented by states and splits a set of observation vectors within every
internal HMM state into as many clusters as the number of mixture components in the
state.

Figure 12-1 Initial Segmentation for 2D Embedded HMM

OpenCV Reference Manual Object Recognition Reference 12

12-17

EstimateHMMStateParams
Estimates all parameters of every HMM state.

void cvEstimateHMMStateParams(CvImgObsInfo** obsInfoArray, int numImg,
CvEHMM* hmm);

obsInfoArray Array of pointers to the observation structures.

numImg Length of the array.

hmm HMM.

Discussion

The function EstimateHMMStateParams computes all inner parameters of every
HMM state, including Gaussian means, variances, etc.

EstimateTransProb
Computes transition probability matrices for
embedded HMM.

void cvEstimateTransProb(CvImgObsInfo** obsInfoArray, int numImg, CvEHMM*
hmm);

obsInfoArray Array of pointers to the observation structures.

numImg Length of the above array.

hmm HMM.

Discussion

The function EstimateTransProb uses current segmentation of image observations to
compute transition probability matrices for all embedded and external HMMs.

OpenCV Reference Manual Object Recognition Reference 12

12-18

EstimateObsProb
Computes probability of every observation of
several images.

void cvEstimateObsProb(CvImgObsInfo* obsInfo, CvEHMM* hmm);

obsInfo Observation structure.

hmm HMM structure.

Discussion

The function EstimateObsProb computes Gaussian probabilities of each observation
to occur in each of the internal HMM states.

EViterbi
Executes Viterbi algorithm for embedded HMM.

Float cvEViterbi(CvImgObsInfo* obsInfo, CvEHMM* hmm);

obsInfo Observation structure.

hmm HMM structure.

Discussion

The function EViterbi executes Viterbi algorithm for embedded HMM. Viterbi
algorithm evaluates the likelihood of the best match between the given image
observations and the given HMM and performs segmentation of image observations
by HMM states. The segmentation is done on the basis of the match found.

OpenCV Reference Manual Object Recognition Reference 12

12-19

MixSegmL2
Segments observations from all training images
by mixture components of newly assigned states.

void cvMixSegmL2(CvImgObsInfo** obsInfoArray, int numImg, CvEHMM* hmm);

obsInfoArray Array of pointers to the observation structures.

numImg Length of the array.

hmm HMM.

Discussion

The function MixSegmL2 segments observations from all training images by mixture
components of newly Viterbi algorithm-assigned states. The function uses Euclidean
distance to group vectors around the existing mixtures centers.

HMM Structures
In order to support embedded models the user must define structures to represent 1D
HMM and 2D embedded HMM model.

Below is the description of the CvEHMM fields:

Example 12-4 Embedded HMM Structure

typedef struct _CvEHMM
{

int level;
int num_states;

float* transP;
float** obsProb;
union
{

CvEHMMState* state;
struct _CvEHMM* ehmm;

} u;
}CvEHMM;

OpenCV Reference Manual Object Recognition Reference 12

12-20

level Level of embedded HMM. If level==0, HMM is most external. In
2D HMM there are two types of HMM: 1 external and several
embedded. External HMM has level==1, embedded HMMs have
level==0.

num_states Number of states in 1D HMM.

transP State-to-state transition probability, square matrix
().

obsProb Observation probability matrix.

state Array of HMM states. For the last-level HMM, that is, an HMM
without embedded HMMs, HMM states are real.

ehmm Array of embedded HMMs. If HMM is not last-level, then HMM
states are not real and they are HMMs.

For representation of observations the following structure is defined:

This structure is used for storing observation vectors extracted from 2D image.

obs_x Number of observations in the horizontal direction.

obs_y Number of observations in the vertical direction.

obs_size Length of every observation vector.

obs Pointer to observation vectors stored consequently. Number of
vectors is obs_x*obs_y.

state Array of indices of states, assigned to every observation vector.

mix Index of mixture component, corresponding to the observation
vector within an assigned state.

Example 12-5 Image Observation Structure

typedef struct CvImgObsInfo
{

int obs_x;
int obs_y;
int obs_size;
float** obs;
int* state;
int* mix;

}CvImgObsInfo;

num_state num_state×

13-1

13
3D Reconstruction
Reference

Table 13-1 3D Reconstruction Functions

Group Function Name Description

Camera Calibration
Functions

CalibrateCamera Calibrates the camera
with single precision.

CalibrateCamera_64d Calibrates camera with
double precision.

FindExtrinsicCameraParams Finds the extrinsic
camera parameters for
the pattern.

FindExtrinsicCameraParams_64d Finds extrinsic camera
parameters for the
pattern with double
precision.

Rodrigues Converts the rotation
matrix to the rotation
vector and vice versa
with single precision.

Rodrigues_64d Converts the rotation
matrix to the rotation
vector or vice versa with
double precision.

UnDistortOnce Corrects camera lens
distortion in the case of a
single image.

UnDistortInit Calculates arrays of
distorted points indices
and interpolation
coefficients.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-2

UnDistort Corrects camera lens
distortion using
previously calculated
arrays of distorted points
indices and undistortion
coefficients.

FindChessBoardCornerGuesses Finds approximate
positions of internal
corners of the
chessboard.

View Morphing
Functions

FindFundamentalMatrix Calculates the
fundamental matrix from
several pairs of
correspondent points in
images from two
cameras.

MakeScanlines Calculates scanlines
coordinates for two
cameras by fundamental
matrix.

PreWarpImage Rectifies the image so
that the scanlines in the
rectified image are
horizontal.

FindRuns Retrieves scanlines from
the rectified image and
breaks each scanline
down into several runs.

DynamicCorrespondMulti Finds correspondence
between two sets of runs
of two warped images.

MakeAlphaScanlines Finds coordinates of
scanlines for the virtual
camera with the given
camera position.

Table 13-1 3D Reconstruction Functions (continued)

Group Function Name Description

OpenCV Reference Manual 3D Reconstruction Reference 13

13-3

MorphEpilinesMulti Morphs two pre-warped
images using
information about stereo
correspondence.

PostWarpImage Warps the rectified
morphed image back.

DeleteMoire Deletes moire from the
given image.

POSIT Functions CreatePOSITObject Allocates memory for the
object structure and
computes the object
inverse matrix.

POSIT Implements POSIT
algorithm.

ReleasePOSITObject Deallocates the 3D
object structure.

Gesture Recognition
Functions

FindHandRegion Finds an arm region in
the 3D range image
data.

FindHandRegionA Finds an arm region in
the 3D range image data
and defines the arm
orientation.

CreateHandMask Creates an arm mask on
the image plane.

CalcImageHomography Calculates the
homograph matrix for
the initial image
transformation.

CalcProbDensity Calculates the arm mask
probability density from
the two 2D histograms.

MaxRect Calculates the maximum
rectangle for two input
rectangles.

Table 13-1 3D Reconstruction Functions (continued)

Group Function Name Description

OpenCV Reference Manual 3D Reconstruction Reference 13

13-4

Camera Calibration Functions

CalibrateCamera
Calibrates camera with single precision.

void cvCalibrateCamera(int numImages, int* numPoints, CvSize imageSize,
CvPoint2D32f* imagePoints32f, CvPoint3D32f* objectPoints32f, CvVect32f
distortion32f, CvMatr32f cameraMatrix32f, CvVect32f transVects32f,
CvMatr32f rotMatrs32f, int useIntrinsicGuess);

numImages Number of the images.

numPoints Array of the number of points in each image.

imageSize Size of the image.

imagePoints32f Pointer to the images.

objectPoints32f Pointer to the pattern.

distortion32f Array of four distortion coefficients found.

cameraMatrix32f Camera matrix found.

transVects32f Array of translate vectors for each pattern position in the
image.

rotMatrs32f Array of the rotation matrix for each pattern position in the
image.

useIntrinsicGuess Intrinsic guess. If equal to 1, intrinsic guess is needed.

Discussion

The function CalibrateCamera calculates the camera parameters using information
points on the pattern object and pattern object images.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-5

CalibrateCamera_64d
Calibrates camera with double precision.

void cvCalibrateCamera_64d(int numImages, int* numPoints, CvSize imageSize,
CvPoint2D64d* imagePoints, CvPoint3D64d* objectPoints, CvVect64d
distortion, CvMatr64d cameraMatrix, CvVect64d transVects, CvMatr64d
rotMatrs, int useIntrinsicGuess);

numImages Number of the images.

numPoints Array of the number of points in each image.

imageSize Size of the image.

imagePoints Pointer to the images.

objectPoints Pointer to the pattern.

distortion Distortion coefficients found.

cameraMatrix Camera matrix found.

transVects Array of the translate vectors for each pattern position on
the image.

rotMatrs Array of the rotation matrix for each pattern position on the
image.

useIntrinsicGuess Intrinsic guess. If equal to 1, intrinsic guess is needed.

Discussion

The function CalibrateCamera_64d is basically the same as the function
CalibrateCamera, but uses double precision.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-6

FindExtrinsicCameraParams
Finds extrinsic camera parameters for pattern.

void cvFindExtrinsicCameraParams(int numPoints, CvSize imageSize,
CvPoint2D32f* imagePoints32f, CvPoint3D32f* objectPoints32f, CvVect32f
focalLength32f, CvPoint2D32f principalPoint32f, CvVect32f distortion32f,
CvVect32f rotVect32f, CvVect32f transVect32f);

numPoints Number of the points.

ImageSize Size of the image.

imagePoints32f Pointer to the image.

objectPoints32f Pointer to the pattern.

focalLength32f Focal length.

principalPoint32f Principal point.

distortion32f Distortion.

rotVect32f Rotation vector.

transVect32f Translate vector.

Discussion

The function FindExtrinsicCameraParams finds the extrinsic parameters for the
pattern.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-7

FindExtrinsicCameraParams_64d
Finds extrinsic camera parameters for pattern
with double precision.

void cvFindExtrinsicCameraParams_64d(int numPoints, CvSize imageSize,
CvPoint2D64d* imagePoints, CvPoint3D64d* objectPoints, CvVect64d
focalLength, CvPoint2D64d principalPoint, CvVect64d distortion, CvVect64d
rotVect, CvVect64d transVect);

numPoints Number of the points.

ImageSize Size of the image.

imagePoints Pointer to the image.

objectPoints Pointer to the pattern.

focalLength Focal length.

principalPoint Principal point.

distortion Distortion.

rotVect Rotation vector.

transVect Translate vector.

Discussion

The function FindExtrinsicCameraParams_64d finds the extrinsic parameters for
the pattern with double precision.

Rodrigues
Converts rotation matrix to rotation vector and
vice versa with single precision.

void cvRodrigues(CvMatr32f rotMatr32f, CvVect32f rotVect32f, CvMatr32f
Jacobian32f, CvRodriguesType convType);

OpenCV Reference Manual 3D Reconstruction Reference 13

13-8

rotMatr32f Rotation matrix.

rotVect32f Rotation vector.

Jacobian32f Jacobian matrix 3 X 9.

convType Type of conversion; must be CV_RODRIGUES_M2V for converting the
matrix to the vector or CV_RODRIGUES_V2M for converting the vector
to the matrix.

Discussion

The function Rodrigues converts the rotation matrix to the rotation vector or vice
versa.

Rodrigues_64d
Converts rotation matrix to rotation vector and
vice versa with double precision.

void cvRodrigues_64d(CvMatr64d rotMatr, CvVect64d rotVect, CvMatr64d
Jacobian, CvRodriguesType convType);

rotMatr Rotation matrix.

rotVect Rotation vector.

Jacobian Jacobian matrix 3 X 9.

convType Type of conversion; must be CV_RODRIGUES_M2V for converting the
matrix to the vector or CV_RODRIGUES_V2M for converting the vector
to the matrix.

Discussion

The function Rodrigues_64d converts the rotation matrix to the rotation vector or
vice versa with double precision.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-9

UnDistortOnce
Corrects camera lens distortion.

void cvUnDistortOnce (IplImage* srcImage, IplImage* dstImage, float*
intrMatrix, float* distCoeffs, int interpolate=1);

srcImage Source (distorted) image.

dstImage Destination (corrected) image.

intrMatrix Matrix of the camera intrinsic parameters.

distCoeffs Vector of the four distortion coefficients k1, k2, p1 and p2 .

interpolate Interpolation toggle (optional).

Discussion

The function UnDistortOnce corrects camera lens distortion in case of a single image.
Matrix of the camera intrinsic parameters and distortion coefficients k1, k2, p1, and
p2 must be preliminarily calculated by the function CalibrateCamera.

If interpolate = 0, inter-pixel interpolation is disabled; otherwise, default bilinear
interpolation is used.

UnDistortInit
Calculates arrays of distorted points indices and
interpolation coefficients.

void cvUnDistortInit (IplImage* srcImage, float* IntrMatrix, float*
distCoeffs, int* data, int interpolate=1);

srcImage Source (distorted) image.

intrMatrix Matrix of the camera intrinsic parameters.

distCoeffs Vector of the 4 distortion coefficients k1, k2, p1 and p2 .

OpenCV Reference Manual 3D Reconstruction Reference 13

13-10

data Distortion data array.

interpolate Interpolation toggle (optional).

Discussion

The function UnDistortInit calculates arrays of distorted points indices and
interpolation coefficients using known matrix of the camera intrinsic parameters and
distortion coefficients. It must be used before calling the function UnDistort.

Matrix of the camera intrinsic parameters and distortion coefficients k1, k2, p1, and
p2 must be preliminarily calculated by the function CalibrateCamera.

The data array must be allocated in the main function before use of the function
UnDistortInit. If interpolate = 0, its length must be size.width*size.height

elements; otherwise 3*size.width*size.height elements.

If interpolate = 0, inter-pixel interpolation is disabled; otherwise default bilinear
interpolation is used.

UnDistort
Corrects camera lens distortion.

void cvUnDistort (IplImage* srcImage, IplImage* dstImage, int* data, int
interpolate=1);

srcImage Source (distorted) image.

dstImage Destination (corrected) image.

data Distortion data array.

interpolate Interpolation toggle (optional).

Discussion

The function UnDistort corrects camera lens distortion using previously calculated
arrays of distorted points indices and undistortion coefficients. It is used if a sequence
of frames must be corrected.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-11

Preliminarily, the function UnDistortInit calculates the array data.

If interpolate = 0, then inter-pixel interpolation is disabled; otherwise bilinear
interpolation is used. In the latter case the function acts slower, but quality of the
corrected image increases.

FindChessBoardCornerGuesses
Finds approximate positions of internal corners
of the chessboard.

int cvFindChessBoardCornerGuesses (IplImage* img, IplImage* thresh, CvSize
etalonSize, CvPoint2D32f* corners, int* cornerCount);

img Source chessboard view; must have the depth of IPL_DEPTH_8U.

thresh Temporary image of the same size and format as the source image.

etalonSize Number of inner corners per chessboard row and column. The width
(the number of columns) must be less or equal to the height (the
number of rows). For chessboard see Figure 6-1.

corners Pointer to the corner array found.

cornerCount Signed value whose absolute value is the number of corners found. A
positive number means that a whole chessboard has been found and a
negative number means that not all the corners have been found.

Discussion

The function FindChessBoardCornerGuesses attempts to determine whether the
input image is a view of the chessboard pattern and locate internal chessboard corners.
The function returns non-zero value if all the corners have been found and they have
been placed in a certain order (row by row, left to right in every row), otherwise, if the
function fails to find all the corners or reorder them, the function returns 0. For
example, a simple chessboard has 8x8 squares and 7x7 internal corners, that is, points,
where the squares are tangent. The word “approximate” in the above description

OpenCV Reference Manual 3D Reconstruction Reference 13

13-12

means that the corner coordinates found may differ from the actual coordinates by a
couple of pixels. To get more precise coordinates, the user may use the function
FindCornerSubPix.

View Morphing Functions

FindFundamentalMatrix
Calculates fundamental matrix from several pairs
of correspondent points in images from two
cameras.

void cvFindFundamentalMatrix (int* points1, int* points2, int numpoints, int
method, CvMatrix3* matrix);

points1 Pointer to the array of correspondence points in the first image.

points2 Pointer to the array of correspondence points in the second image.

numpoints Number of the point pairs.

method Method for finding the fundamental matrix; currently not used, must
be zero.

matrix Resulting fundamental matrix.

Discussion

The function FindFundamentalMatrix finds the fundamental matrix for two cameras
from several pairs of correspondent points in images from the cameras. If the number
of pairs is less than 8 or the points lie very close to each other or on the same planar
surface, the matrix is calculated incorrectly.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-13

MakeScanlines
Calculates scanlines coordinates for two cameras
by fundamental matrix.

void cvMakeScanlines (CvMatrix3* matrix, CvSize imgSize, int* scanlines1, int*
scanlines2, int* lens1, int* lens2, int* numlines);

matrix Fundamental matrix.

imgSize Size of the image.

scanlines1 Pointer to the array of calculated scanlines of the first image.

scanlines2 Pointer to the array of calculated scanlines of the second image.

lens1 Pointer to the array of calculated lengths (in pixels) of the first image
scanlines.

lens2 Pointer to the array of calculated lengths (in pixels) of the second
image scanlines.

numlines Pointer to the variable that stores the number of scanlines.

Discussion

The function MakeScanlines finds coordinates of scanlines for two images.

This function returns the number of scanlines. The function does nothing except
calculating the number of scanlines if the pointers scanlines1 or scanlines2 are
equal to zero.

PreWarpImage
Rectifies image.

void cvPreWarpImage (int numLines, IplImage* img, uchar* dst, int* dstNums,
int* scanlines);

numLines Number of scanlines for the image.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-14

img Image to prewarp.

dst Data to store for the prewarp image.

dstNums Pointer to the array of lengths of scanlines.

scanlines Pointer to the array of coordinates of scanlines.

Discussion

The function PreWarpImage rectifies the image so that the scanlines in the rectified
image are horizontal. The output buffer of size max(width,height)*numscanlines*3
must be allocated before calling the function.

FindRuns
Retrieves scanlines from rectified image and
breaks them down into runs.

void cvFindRuns (int numLines, uchar* prewarp_1, uchar* prewarp_2, int*
lineLens_1, int* lineLens_2, int* runs_1, int* runs_2, int* numRuns_1,
int* numRuns_2);

numLines Number of the scanlines.

prewarp_1 Prewarp data of the first image.

prewarp_2 Prewarp data of the second image.

lineLens_1 Array of lengths of scanlines in the first image.

lineLens_2 Array of lengths of scanlines in the second image.

runs_1 Array of runs in each scanline in the first image.

runs_2 Array of runs in each scanline in the second image.

numRuns_1 Array of numbers of runs in each scanline in the first image.

numRuns_2 Array of numbers of runs in each scanline in the second image.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-15

Discussion

The function FindRuns retrieves scanlines from the rectified image and breaks each
scanline down into several runs, that is, series of pixels of almost the same brightness.

DynamicCorrespondMulti
Finds correspondence between two sets of runs of
two warped images.

void cvDynamicCorrespondMulti (int lines, int* first, int* firstRuns, int*
second, int* secondRuns, int* firstCorr, int* secondCorr);

lines Number of scanlines.

first Array of runs of the first image.

firstRuns Array of numbers of runs in each scanline of the first image.

second Array of runs of the second image.

secondRuns Array of numbers of runs in each scanline of the second image.

firstCorr Pointer to the array of correspondence information found for the first
runs.

secondCorr Pointer to the array of correspondence information found for the
second runs.

Discussion

The function DynamicCorrespondMulti finds correspondence between two sets of
runs of two images. Memory must be allocated before calling this function. Memory
size for one array of correspondence information is
max(width,height)*numscanlines*3*sizeof(int).

OpenCV Reference Manual 3D Reconstruction Reference 13

13-16

MakeAlphaScanlines
Calculates coordinates of scanlines of image from
virtual camera.

void cvMakeAlphaScanlines (int* scanlines_1, int* scanlines_2, int*
scanlinesA, int* lens, int numlines, float alpha);

scanlines_1 Pointer to the array of the first scanlines.

scanlines_2 Pointer to the array of the second scanlines.

scanlinesA Pointer to the array of the scanlines found in the virtual image.

lens Pointer to the array of lengths of the scanlines found in the virtual
image.

numlines Number of scanlines.

alpha Position of virtual camera (0.0 - 1.0).

Discussion

The function MakeAlphaScanlines finds coordinates of scanlines for the virtual
camera with the given camera position.

Memory must be allocated before calling this function. Memory size for the array of
correspondence runs is numscanlines*2*4*sizeof(int)). Memory size for the array
of the scanline lengths is numscanlines*2*4*sizeof(int).

MorphEpilinesMulti
Morphs two pre-warped images using
information about stereo correspondence.

void cvMorphEpilinesMulti (int lines, uchar* firstPix, int* firstNum, uchar*
secondPix, int* secondNum, uchar* dstPix, int* dstNum, float alpha, int*
first, int* firstRuns, int* second, int* secondRuns, int* firstCorr, int*
secondCorr);

OpenCV Reference Manual 3D Reconstruction Reference 13

13-17

lines Number of scanlines in the prewarp image.

firstPix Pointer to the first prewarp image.

firstNum Pointer to the array of numbers of points in each scanline in the first
image.

secondPix Pointer to the second prewarp image.

secondNum Pointer to the array of numbers of points in each scanline in the
second image.

dstPix Pointer to the resulting morphed warped image.

dstNum Pointer to the array of numbers of points in each line.

alpha Virtual camera position (0.0 - 1.0).

first First sequence of runs.

firstRuns Pointer to the number of runs in each scanline in the first image.

second Second sequence of runs.

secondRuns Pointer to the number of runs in each scanline in the second image.

firstCorr Pointer to the array of correspondence information found for the first
runs.

secondCorr Pointer to the array of correspondence information found for the
second runs.

Discussion

The function MorphEpilinesMulti morphs two pre-warped images using information
about correspondence between the scanlines of two images.

PostWarpImage
Warps rectified morphed image back.

void cvPostWarpImage (int numLines, uchar* src, int* srcNums, IplImage* img,
int* scanlines);

numLines Number of the scanlines.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-18

src Pointer to the prewarp image virtual image.

srcNums Number of the scanlines in the image.

img Resulting unwarp image.

scanlines Pointer to the array of scanlines data.

Discussion

The function PostWarpImage warps the resultant image from the virtual camera by
storing its rows across the scanlines whose coordinates are calculated by
MakeAlphaScanlines function.

DeleteMoire
Deletes moire in given image.

void cvDeleteMoire (IplImage* img);

img Image.

Discussion

The function DeleteMoire deletes moire from the given image. The post-warped
image may have black (un-covered) points because of possible holes between
neighboring scanlines. The function deletes moire (black pixels) from the image by
substituting neighboring pixels for black pixels. If all the scanlines are horizontal, the
function may be omitted.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-19

POSIT Functions

CreatePOSITObject
Initializes structure containing object
information.

CvPOSITObject* cvCreatePOSITObject (CvPoint3D32f* points, int numPoints);

points Pointer to the points of the 3D object model.

numPoints Number of object points.

Discussion

The function CreatePOSITObject allocates memory for the object structure and
computes the object inverse matrix.

The preprocessed object data is stored in the structure CvPOSITObject, internal for
OpenCV, which means that the user cannot directly access the structure data. The user
may only create this structure and pass its pointer to the function.

Object is defined as a set of points given in a coordinate system. The function POSIT

computes a vector that begins at a camera-related coordinate system center and ends at
the points[0] of the object.

Once the work with a given object is finished, the function ReleasePOSITObject must
be called to free memory.

POSIT
Implements POSIT algorithm.

void cvPOSIT (CvPoint2D32f* imagePoints, CvPOSITObject* pObject, double
focalLength, CvTermCriteria criteria, CvMatrix3* rotation, CvPoint3D32f*
translation);

OpenCV Reference Manual 3D Reconstruction Reference 13

13-20

imagePoints Pointer to the object points projections on the 2D image plane.

pObject Pointer to the object structure.

focalLength Focal length of the camera used.

criteria Termination criteria of the iterative POSIT algorithm.

rotation Matrix of rotations.

translation Translation vector.

Discussion

The function POSIT implements POSIT algorithm. Image coordinates are given in a
camera-related coordinate system. The focal length may be retrieved using camera
calibration functions. At every iteration of the algorithm new perspective projection of
estimated pose is computed.

Difference norm between two projections is the maximal distance between
corresponding points. The parameter criteria.epsilon serves to stop the algorithm
if the difference is small.

ReleasePOSITObject
Deallocates 3D object structure.

void cvReleasePOSITObject (CvPOSITObject** ppObject);

ppObject Address of the pointer to the object structure.

Discussion

The function ReleasePOSITObject releases memory previously allocated by the
function CreatePOSITObject.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-21

Gesture Recognition Functions

FindHandRegion
Finds arm region in 3D range image data.

void cvFindHandRegion (CvPoint3D32f* points, int count, CvSeq* indexs, float*
line, CvSize2D32f size, int flag, CvPoint3D32f* center, CvMemStorage*
storage, CvSeq** numbers);

points Pointer to the input 3D point data.

count Numbers of the input points.

indexs Sequence of the input points indices in the initial image.

line Pointer to the input points approximation line.

size Size of the initial image.

flag Flag of the arm orientation.

center Pointer to the output arm center.

storage Pointer to the memory storage.

numbers Pointer to the output sequence of the points indices.

Discussion

The function FindHandRegion finds the arm region in 3D range image data. The
coordinates of the points must be defined in the world coordinates system. Each input
point has user-defined transform indices indexs in the initial image. The function
finds the arm region along the approximation line from the left, if flag = 0, or from
the right, if flag = 1, in the points maximum accumulation by the points projection
histogram calculation. Also the function calculates the center of the arm region and the
indices of the points that lie near the arm center. The function FindHandRegion

assumes that the arm length is equal to about 0.25m in the world coordinate system.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-22

FindHandRegionA
Finds arm region in 3D range image data and
defines arm orientation.

void cvFindHandRegionA (CvPoint3D32f* points, int count, CvSeq* indexs, float*
line, CvSize2D32f size, int jCenter, CvPoint3D32f* center, CvMemStorage*
storage, CvSeq** numbers);

points Pointer to the input 3D point data.

count Number of the input points.

indexs Sequence of the input points indices in the initial image.

line Pointer to the input points approximation line.

size Size of the initial image.

jCenter Input j-index of the initial image center.

center Pointer to the output arm center.

storage Pointer to the memory storage.

numbers Pointer to the output sequence of the points indices.

Discussion

The function FindHandRegionA finds the arm region in the 3D range image data and
defines the arm orientation (left or right). The coordinates of the points must be
defined in the world coordinates system. The input parameter jCenter is the index j

of the initial image center in pixels (width/2). Each input point has user-defined
transform indices on the initial image (indexs). The function finds the arm region
along approximation line from the left or from the right in the points maximum
accumulation by the points projection histogram calculation. Also the function
calculates the center of the arm region and the indices of points that lie near the arm
center. The function FindHandRegionA assumes that the arm length is equal to about
0.25m in the world coordinate system.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-23

CreateHandMask
Creates arm mask on image plane.

void cvCreateHandMask(CvSeq* numbers, IplImage *imgMask, CvRect *roi);

numbers Sequence of the input points indices in the initial image.

imgMask Pointer to the output image mask.

roi Pointer to the output arm ROI.

Discussion

The function CreateHandMask creates an arm mask on the image plane. The pixels of
the resulting mask associated with the set of the initial image indices indexs
associated with hand region have the maximum unsigned char value (255). All
remaining pixels have the minimum unsigned char value (0). The output image mask
imgMask has to have the IPL_DEPTH_8U type and the number of channels is 1.

CalcImageHomography
Calculates homography matrix.

void cvCalcImageHomography(float* line, CvPoint3D32f* center, float
intrinsic[3][3], float homography[3][3]);

line Pointer to the input 3D line.

center Pointer to the input arm center.

intrinsic Matrix of the intrinsic camera parameters.

homography Output homography matrix.

OpenCV Reference Manual 3D Reconstruction Reference 13

13-24

Discussion

The function CalcImageHomography calculates the homograph matrix for the initial
image transformation from image plane to the plane, defined by 3D arm line (See
Figure 6-10 in Programmer Guide 3D Reconstruction Chapter). If n1=(nx,ny)and
n2=(nx,nz) are coordinates of the normals of the 3D line projection of planes XY and
XZ, then the resulting image homography matrix is calculated as

, where Rh is the 3x3 matrix , and

,

where is the arm center coordinates in the world coordinate system, and A is
the intrinsic camera parameters matrix

.

The diagonal entries fx and fy are the camera focal length in units of horizontal and
vertical pixels and the two remaining entries are the principal point image
coordinates.

CalcProbDensity
Calculates arm mask probability density on
image plane.

void cvCalcProbDensity (CvHistogram* hist, CvHistogram* histMask, CvHistogram*
histDens);

hist Input image histogram.

histMask Input image mask histogram.

histDens Resulting probability density histogram.

H A Rh I3 3× Rh–() xh 0 0 1, ,[]⋅ ⋅+() A
1–⋅ ⋅= Rh R1 R2⋅=

R1 n1 uz n1 uz, ,×[] R2, uy n2 uy n2, ,×[] uz, 0 0 1, ,[]T uy, 0 1 0, ,[]T xh,
Th
Tz

Tx
Tz

Ty
Tz
------ 1, ,

T
= = = = = =

Tx Ty Tz, ,()

A

fx 0 cx

0 fy cy

0 0 1

=

cx cy,

OpenCV Reference Manual 3D Reconstruction Reference 13

13-25

Discussion

The function CalcProbDensity calculates the arm mask probability density from the
two 2D histograms. The input histograms have to be calculated in two channels on the
initial image. If and are input histogram and mask
histogram respectively, then the resulting probability density histogram is
calculated as

So the values of the are between 0 and 255.

MaxRect
Calculates the maximum rectangle.

void cvMaxRect (CvRect* rect1, CvRect* rect2, CvRect* maxRect);

rect1 First input rectangle.

rect2 Second input rectangle.

maxRect Resulting maximum rectangle.

hij{ } hmij{ } 1 i Bi 1 j Bj≤ ≤,≤ ≤,
pij

pij

mij
hij
--------- 255 if hij 0,≠,⋅

0 if hij, 0,=

255 if mij hij>,

=

pij

OpenCV Reference Manual 3D Reconstruction Reference 13

13-26

Discussion

The function MaxRect calculates the maximum rectangle for two input rectangles
(Figure 13-1).

Figure 13-1 Maximum Rectangle for Two Input Rectangles

Rect1

Rect2

Maximum
Rectangle

14-1

14
Basic Structures and
Operations Reference

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types

Name Description

Functions

Image Functions

CreateImageHeader Allocates, initializes, and returns structure IplImage.

CreateImage Creates the header and allocates data.

ReleaseImageHeader Releases the header.

ReleaseImage Releases the header and the image data.

CreateImageData Allocates the image data.

ReleaseImageData Releases the image data.

SetImageData Sets the pointer to data and step parameters to given
values.

SetImageCOI Sets the channel of interest to a given value.

SetImageROI Sets the image ROI to a given rectangle.

GetImageRawData Fills output variables with the image parameters.

InitImageHeader Initializes the image header structure without memory
allocation.

CopyImage Copies the entire image to another without considering
ROI.

Dynamic Data Structures
Functions

CreateMemStorage Creates a memory storage and returns the pointer to it.

CreateChildMemStorage Creates a child memory storage.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-2

ReleaseMemStorage De-allocates all storage memory blocks or returns them to
the parent, if any.

ClearMemStorage Clears the memory storage.

SaveMemStoragePos Saves the current position of the storage top.

RestoreMemStoragePos Restores the position of the storage top.

CreateSeq Creates a sequence and returns the pointer to it.

SetSeqBlockSize Sets up the sequence block size.

SeqPush Adds an element to the end of the sequence.

SeqPop Removes an element from the sequence.

SeqPushFront Adds an element to the beginning of the sequence.

SeqPopFront Removes an element from the beginning of the sequence.

SeqPushMulti Adds several elements to the end of the sequence.

SeqPopMulti Removes several elements from the end of the sequence.

SeqInsert Inserts an element in the middle of the sequence.

SeqRemove Removes elements with the given index from the sequence.

ClearSeq Empties the sequence.

GetSeqElem Finds the element with the given index in the sequence and
returns the pointer to it.

SeqElemIdx Returns index of concrete sequence element.

CvtSeqToArray Copies the sequence to a continuous block of memory.

MakeSeqHeaderForArray Builds a sequence from an array.

StartAppendToSeq Initializes the writer to write to the sequence.

StartWriteSeq Is the exact sum of the functions CreateSeq and
StartAppendToSeq.

EndWriteSeq Finishes the process of writing.

FlushSeqWriter Updates sequence headers using the writer state.

GetSeqReaderPos Returns the index of the element in which the reader is
currently located.

SetSeqReaderPos Moves the read position to the absolute or relative position.

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-3

CreateSet Creates an empty set with a specified header size.

SetAdd Adds an element to the set.

SetRemove Removes an element from the set.

GetSetElem Finds a set element by index.

ClearSet Empties the set.

CreateGraph Creates an empty graph.

GraphAddVtx Adds a vertex to the graph.

GraphRemoveVtx Removes a vertex from the graph.

GraphRemoveVtxByPtr Removes a vertex from the graph together with all the
edges incident to it.

GraphAddEdge Adds an edge to the graph.

GraphAddEdgeByPtr Adds an edge to the graph given the starting and the ending
vertices.

GraphRemoveEdge Removes an edge from the graph.

GraphRemoveEdgeByPtr Removes an edge from the graph that connects given
vertices.

FindGraphEdge Finds the graph edge that connects given vertices.

FindGraphEdgeByPtr Finds the graph edge that connects given vertices.

GraphVtxDegree Finds an edge in the graph.

GraphVtxDegreeByPtr Counts the edges incident to the graph vertex, both
incoming and outcoming, and returns the result.

ClearGraph Removes all the vertices and edges from the graph.

GetGraphVtx Finds the graph vertex by index.

GraphVtxIdx Returns the index of the graph vertex.

GraphEdgeIdx Returns the index of the graph edge.

Matrix Operations Functions

CreateMat Creates a new matrix.

CreateMatHeader Creates a new matrix header.

ReleaseMat Deallocates the matrix.

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-4

ReleaseMatHeader Deallocates the matrix header.

InitMatHeader Initializes a matrix header.

CloneMat Creates a copy of the matrix.

SetData Attaches data to the matrix header.

GetMat Initializes a matrix header for an arbitrary array.

GetAt Returns value of the specified array element.

SetAt Changes value of the specified array element.

GetAtPtr Returns pointer of the specified array element.

GetSubArr Returns a rectangular sub-array of the given array.

GetRow Returns an array row.

GetCol Returns an array column.

GetDiag Returns an array diagonal.

GetRawData Returns low level information on the array.

GetSize Returns width and height of the array.

CreateData Allocates memory for the array data.

AllocArray Allocates memory for the array data.

ReleaseData Frees memory allocated for the array data.

FreeArray Frees memory allocated for the array data.

Copy Copies one array to another.

Set Sets every element of array to given value.

Add Computes sum of two arrays.

AddS Computes sum of array and scalar.

Sub Computes difference of two arrays.

SubS Computes difference of array and scalar.

SubRS Computes difference of scalar and array.

Mul Calculates per-element product of two arrays.

And Calculates logical conjunction of two arrays.

AndS Calculates logical conjunction of an array and a scalar.

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-5

Or Calculates logical disjunction of two arrays.

OrS Calculates logical disjunction of an array and a scalar.

Xor Calculates logical “exclusive or” operation on two arrays.

XorS Calculates logical “exclusive or” operation on an array and
a scalar.

DotProduct Calculates dot product of two arrays in Euclidian metrics.

CrossProduct Calculates the cross product of two 3D vectors.

ScaleAdd Calculates sum of a scaled array and another array.

MatMulAdd Calculates a shifted matrix product.

MatMulAddS Performs matrix transform on every element of an array.

MulTransposed Calculates product of an array and the transposed array.

Invert Inverts an array.

Trace Returns the trace of an array.

Det Returns the determinant of an array.

Invert Inverts an array.

Mahalonobis Calculates the weighted distance between two vectors.

Transpose Transposes an array

Flip Reflects an array around horizontal or vertical axis, or both.

Reshape Changes dimensions and/or number of channels in a
matrix.

SetZero Sets the array to zero.

SetIdentity Sets the array to identity.

SVD Performs singular value decomposition of a matrix.

PseudoInv Finds pseudo inverse of a matrix.

EigenVV Computes eigenvalues and eigenvectors of a symmetric
array.

PerspectiveTransform Implements general transform of a 3D vector array.

Drawing Primitives Functions

Line Draws a simple or thick line segment.

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-6

LineAA Draws an antialiased line segment.

Rectangle Draws a simple, thick or filled rectangle.

Circle Draws a simple, thick or filled circle.

Ellipse Draws a simple or thick elliptic arc or fills an ellipse sector.

EllipseAA Draws an antialiased elliptic arc.

FillPoly Fills an area bounded by several polygonal contours.

FillConvexPoly Fills convex polygon interior.

PolyLine Draws a set of simple or thick polylines.

PolyLineAA Draws a set of antialiased polylines.

InitFont Initializes the font structure.

PutText Draws a text string.

GetTextSize Retrieves width and height of the text string.

Utility Functions

AbsDiff Calculates absolute difference between two images.

AbsDiffS Calculates absolute difference between an image and a
scalar.

MatchTemplate Fills a specific image for a given image and template.

CvtPixToPlane Divides a color image into separate planes.

CvtPlaneToPix Composes a color image from separate planes.

ConvertScale Converts one image to another with linear transformation.

LUT Performs look-up table transformation on an image.

InitLineIterator Initializes the line iterator and returns the number of pixels
between two end points.

SampleLine Reads a raster line to buffer.

GetRectSubPix Retrieves a raster rectangle from the image with sub-pixel
accuracy.

bFastArctan Calculates fast arctangent approximation for arrays of
abscissas and ordinates.

Sqrt Calculates square root of a single argument.

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-7

bSqrt Calculates the square root of an array of floats.

InvSqrt Calculates the inverse square root of a single float.

bInvSqrt Calculates the inverse square root of an array of floats.

bReciprocal Calculates the inverse of an array of floats.

bCartToPolar Calculates the magnitude and the angle for an array of
abscissas and ordinates.

bFastExp Calculates fast exponent approximation for each element of
the input array of floats.

bFastLog Calculates fast logarithm approximation for each element of
the input array.

RandInit Initializes state of the random number generator.

bRand Fills the array with random numbers and updates generator
state.

Rand Fills the array with uniformly distributed random numbers.

FillImage Fills the image with a constant value.

RandSetRange Changes the range of generated random numbers without
reinitializing RNG state.

KMeans Splits a set of vectors into a given number of clusters.

Data Types

Memory Storage

CvMemStorage Structure
Definition

CvMemBlock Structure Definition

CvMemStoragePos Structure
Definition

Sequence Data

CvSequence Structure Definition Simplifies the extension of the structure CvSeq with
additional parameters.

Standard Types of Sequence
Elements

Provides definitions of standard sequence elements.

Standard Kinds of Sequences Specifies the kind of the sequence.

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-8

CvSeqBlock Structure Definition Defines the building block of sequences.

Set Data Structures

CvSet Structure Definition

CvSetElem Structure Definition

Graphs Data Structures

CvGraph Structure Definition

Definitions of CvGraphEdge and
CvGraphVtx Structures

Matrix Operations

CvMat Structure Definition Stores real single-precision or double-precision arrays.

CvMatArray Structure Definition Stores arrays of matrices to reduce time call overhead.

Pixel Access

CvPixelPosition Structures
Definition

Pixel Access Macros

CV_INIT_PIXEL_POS Initializes one of CvPixelPosition structures.
CV_MOVE_TO Moves to a specified absolute position.

CV_MOVE Moves by one pixel relative to the current position.

CV_MOVE_WRAP Moves by one pixel relative to the current position and
wraps when the position reaches the image boundary.

CV_MOVE_PARAM Moves by one pixel in a specified direction.

CV_MOVE_PARAM_WRAP Moves by one pixel in a specified direction with wrapping.

Table 14-1 Basic Structures and Operations Functions, Macros, and Data Types (continued)

Name Description

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-9

Image Functions Reference

CreateImageHeader
Allocates, initializes, and returns structure
IplImage.

IplImage* cvCreateImageHeader (CvSize size, int depth, int channels);

size Image width and height.

depth Image depth.

channels Number of channels.

Discussion

The function CreateImageHeader allocates, initializes, and returns the structure
IplImage. This call is a shortened form of

iplCreateImageHeader(channels, 0, depth,

channels == 1 ? "GRAY" : "RGB",

channels == 1 ? "GRAY" : channels == 3 ? "BGR" : "BGRA",

IPL_DATA_ORDER_PIXEL, IPL_ORIGIN_TL, 4,

size.width, size.height,

0,0,0,0);

CreateImage
Creates header and allocates data.

IplImage* cvCreateImage (CvSize size, int depth, int channels);

size Image width and height.

depth Image depth.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-10

channels Number of channels.

Discussion

The function CreateImage creates the header and allocates data. This call is a
shortened form of

header = cvCreateImageHeader(size,depth,channels);

cvCreateImageData(header);

ReleaseImageHeader
Releases header.

void cvReleaseImageHeader (IplImage** image);

image Double pointer to the deallocated header.

Discussion

The function ReleaseImageHeader releases the header. This call is a shortened form
of

if(image)

{

iplDeallocate(*image,

IPL_IMAGE_HEADER | IPL_IMAGE_ROI);

*image = 0;

}

ReleaseImage
Releases header and image data.

void cvReleaseImage (IplImage** image)

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-11

image Double pointer to the header of the deallocated image.

Discussion

The function ReleaseImage releases the header and the image data. This call is a
shortened form of

if(image)

{

iplDeallocate(*image, IPL_IMAGE_ALL);

*image = 0;

}

CreateImageData
Allocates image data.

void cvCreateImageData (IplImage* image);

image Image header.

Discussion

The function CreateImageData allocates the image data. This call is a shortened form
of

if(image->depth == IPL_DEPTH_32F)

{

iplAllocateImageFP(image, 0, 0);

}

else

{

iplAllocateImage(image, 0, 0);

}

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-12

ReleaseImageData
Releases image data.

void cvReleaseImageData (IplImage* image);

image Image header.

Discussion

The function ReleaseImageData releases the image data. This call is a shortened
form of

iplDeallocate(image, IPL_IMAGE_DATA);

SetImageData
Sets pointer to data and step parameters to given
values.

void cvSetImageData (IplImage* image, void* data, int step);

image Image header.

data User data.

step Distance between the raster lines in bytes.

Discussion

The function SetImageData sets the pointer to data and step parameters to given
values.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-13

SetImageCOI
Sets channel of interest to given value.

void cvSetImageCOI (IplImage* image, int coi);

image Image header.

coi Channel of interest.

Discussion

The function SetImageCOI sets the channel of interest to a given value. If ROI is NULL
and coi != 0, ROI is allocated.

SetImageROI
Sets image ROI to given rectangle.

void cvSetImageROI (IplImage* image, CvRect rect);

image Image header.

rect ROI rectangle.

Discussion

The function SetImageROI sets the image ROI to a given rectangle. If ROI is NULL
and the value of the parameter rect is not equal to the whole image, ROI is allocated.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-14

GetImageRawData
Fills output variables with image parameters.

void cvGetImageRawData (const IplImage* image, uchar** data, int* step,
CvSize* roiSize);

image Image header.

data Pointer to the top-left corner of ROI.

step Full width of the raster line, equals to image->widthStep.

roiSize ROI width and height.

Discussion

The function GetImageRawData fills output variables with the image parameters. All
output parameters are optional and could be set to NULL.

InitImageHeader
Initializes image header structure without
memory allocation.

void cvInitImageHeader (IplImage* image, CvSize size, int depth, int channels,
int origin, int align, int clear);

image Image header.

size Image width and height.

depth Image depth.

channels Number of channels.

origin IPL_ORIGIN_TL or IPL_ORIGIN_BL.

align Alignment for the raster lines.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-15

clear If the parameter value equals 1, the header is cleared before
initialization.

Discussion

The function InitImageHeader initializes the image header structure without
memory allocation.

CopyImage
Copies entire image to another without
considering ROI.

void cvCopyImage (IplImage* src, IplImage* dst);

src Source image.

dst Destination image.

Discussion

The function CopyImage copies the entire image to another without considering ROI.
If the destination image is smaller, the destination image data is reallocated.

Pixel Access Macros
This section describes macros that are useful for fast and flexible access to image
pixels. The basic ideas behind these macros are as follows:

1. Some structures of CvPixelAccess type are introduced. These structures
contain all information about ROI and its current position. The only difference
across all these structures is the data type, not the number of channels.

2. There exist fast versions for moving in a specific direction, e.g.,
CV_MOVE_LEFT, wrap and non-wrap versions. More complicated and slower
macros are used for moving in an arbitrary direction that is passed as a
parameter.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-16

3. Most of the macros require the parameter cs that specifies the number of the
image channels to enable the compiler to remove superfluous multiplications
in case the image has a single channel, and substitute faster machine
instructions for them in case of three and four channels.

Example 14-1 CvPixelPosition Structures Definition

typedef struct _CvPixelPosition8u
{

unsigned char* currline;
/* pointer to the start of the current

pixel line */
unsigned char* topline;

/* pointer to the start of the top pixel
line */

unsigned char* bottomline;
/* pointer to the start of the first

line which is below the image */
int x; /* current x coordinate (in pixels) */
int width; /* width of the image (in pixels)*/
int height; /* height of the image (in pixels)*/
int step; /* distance between lines (in

elements of single plane) */
int step_arr[3]; /* array: (0, -step, step).

It is used for vertical
moving */

} CvPixelPosition8u;

/*this structure differs from the above only in data type*/
typedef struct _CvPixelPosition8s
{

char* currline;
char* topline;
char* bottomline;
int x;
int width;
int height;
int step;
int step_arr[3];

} CvPixelPosition8s;

/* this structure differs from the CvPixelPosition8u only in data type
*/
typedef struct _CvPixelPosition32f
{

float* currline;
float* topline;
float* bottomline;
int x;

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-17

CV_INIT_PIXEL_POS
Initializes one of CvPixelPosition structures.

#define CV_INIT_PIXEL_POS(pos, origin, step, roi, x, y, orientation)

pos Initialization of structure.

origin Pointer to the left-top corner of ROI.

step Width of the whole image in bytes.

roi Width and height of ROI.

x, y Initial position.

orientation Image orientation; could be either

CV_ORIGIN_TL - top/left orientation, or

CV_ORIGIN_BL - bottom/left orientation.

CV_MOVE_TO
Moves to specified absolute position.

#define CV_MOVE_TO(pos, x, y, cs)

pos Position structure.

x, y Coordinates of the new position.

cs Number of the image channels.

int width;
int height;
int step;
int step_arr[3];

} CvPixelPosition32f;

Example 14-1 CvPixelPosition Structures Definition (continued)

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-18

CV_MOVE
Moves by one pixel relative to current position.

#define CV_MOVE_LEFT(pos, cs)

#define CV_MOVE_RIGHT(pos, cs)

#define CV_MOVE_UP(pos, cs)

#define CV_MOVE_DOWN(pos, cs)

#define CV_MOVE_LU(pos, cs)

#define CV_MOVE_RU(pos, cs)

#define CV_MOVE_LD(pos, cs)

#define CV_MOVE_RD(pos, cs)

pos Position structure.

cs Number of the image channels.

CV_MOVE_WRAP
Moves by one pixel relative to current position
and wraps when position reaches image
boundary.

#define CV_MOVE_LEFT_WRAP(pos, cs)

#define CV_MOVE_RIGHT_WRAP(pos, cs)

#define CV_MOVE_UP_WRAP(pos, cs)

#define CV_MOVE_DOWN_WRAP(pos, cs)

#define CV_MOVE_LU_WRAP(pos, cs)

#define CV_MOVE_RU_WRAP(pos, cs)

#define CV_MOVE_LD_WRAP(pos, cs)

#define CV_MOVE_RD_WRAP(pos, cs)

pos Position structure.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-19

cs Number of the image channels.

CV_MOVE_PARAM
Moves by one pixel in specified direction.

#define CV_MOVE_PARAM(pos, shift, cs)

pos Position structure.

cs Number of the image channels.

shift Direction; could be any of the following:

CV_SHIFT_NONE,

CV_SHIFT_LEFT,

CV_SHIFT_RIGHT,

CV_SHIFT_UP,

CV_SHIFT_DOWN,

CV_SHIFT_UL,

CV_SHIFT_UR,

CV_SHIFT_DL.

CV_MOVE_PARAM_WRAP
Moves by one pixel in specified direction with
wrapping.

#define CV_MOVE_PARAM_WRAP(pos, shift, cs)

pos Position structure.

cs Number of the image channels.

shift Direction; could be any of the following:

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-20

CV_SHIFT_NONE,

CV_SHIFT_LEFT,

CV_SHIFT_RIGHT,

CV_SHIFT_UP,

CV_SHIFT_DOWN,

CV_SHIFT_UL,

CV_SHIFT_UR,

CV_SHIFT_DL.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-21

Dynamic Data Structures Reference

Memory Storage Reference

Actual data of the memory blocks follows the header, that is, the ith byte of the
memory block can be retrieved with the expression .
However, the occasions on which the need for direct access to the memory blocks
arises are quite rare. The structure described below stores the position of the stack top
that can be saved/restored:

Example 14-2 CvMemStorage Structure Definition

typedef struct CvMemStorage
{

CvMemBlock* bottom;/* first allocated block */
CvMemBlock* top; /*current memory block - top of the stack */
struct CvMemStorage* parent; /* borrows new blocks from */
int block_size; /* block size */
int free_space; /* free space in the current block */

} CvMemStorage;

Example 14-3 CvMemBlock Structure Definition

typedef struct CvMemBlock
{

struct CvMemBlock* prev;
struct CvMemBlock* next;

} CvMemBlock;

Example 14-4 CvMemStoragePos Structure Definition

typedef struct CvMemStoragePos
{

CvMemBlock* top;
int free_space;

}
CvMemStoragePos;

char∗(() mem_block_ptr 1)) i[]+(

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-22

CreateMemStorage
Creates memory storage.

CvMemStorage* cvCreateMemStorage (int blockSize=0);

blockSize Size of the memory blocks in the storage; bytes.

Discussion

The function CreateMemStorage creates a memory storage and returns the pointer to
it. Initially the storage is empty. All fields of the header are set to 0. The parameter
blockSize must be positive or zero; if the parameter equals 0, the block size is set to
the default value, currently 64K.

CreateChildMemStorage
Creates child memory storage.

CvMemStorage* cvCreateChildMemStorage (CvMemStorage* parent);

parent Parent memory storage.

Discussion

The function CreateChildMemStorage creates a child memory storage similar to the
simple memory storage except for the differences in the memory
allocation/de-allocation mechanism. When a child storage needs a new block to add to
the block list, it tries to get this block from the parent. The first unoccupied parent
block available is taken and excluded from the parent block list. If no blocks are
available, the parent either allocates a block or borrows one from its own parent, if any.
In other words, the chain, or a more complex structure, of memory storages where
every storage is a child/parent of another is possible. When a child storage is released
or even cleared, it returns all blocks to the parent. Note again, that in other aspects, the
child storage is the same as the simple storage.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-23

ReleaseMemStorage
Releases memory storage.

void cvReleaseMemStorage (CvMemStorage** storage);

storage Pointer to the released storage.

Discussion

The function ReleaseMemStorage de-allocates all storage memory blocks or returns
them to the parent, if any. Then it de-allocates the storage header and clears the pointer
to the storage. All children of the storage must be released before the parent is
released.

ClearMemStorage
Clears memory storage.

void cvClearMemStorage (CvMemStorage* storage);

storage Memory storage.

Discussion

The function ClearMemStorage resets the top (free space boundary) of the storage to
the very beginning. This function does not de-allocate any memory. If the storage has a
parent, the function returns all blocks to the parent.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-24

SaveMemStoragePos
Saves memory storage position.

void cvSaveMemStoragePos (CvMemStorage* storage, CvMemStoragePos* pos);

storage Memory storage.

pos Currently retrieved position of the in-memory storage top.

Discussion

The function SaveMemStoragePos saves the current position of the storage top to the
parameter pos. The function RestoreMemStoragePos can further retrieve this
position.

RestoreMemStoragePos
Restores memory storage position.

void cvRestoreMemStoragePos (CvMemStorage* storage, CvMemStoragePos* pos);

storage Memory storage.

pos New storage top position.

Discussion

The function RestoreMemStoragePos restores the position of the storage top from the
parameter pos. This function and the function ClearMemStorage are the only methods
to release memory occupied in memory blocks.

In other words, the occupied space and free space in the storage are continuous. If the
user needs to process data and put the result to the storage, there arises a need for the
storage space to be allocated for temporary results. In this case the user may simply
write all the temporary data to that single storage. However, as a result garbage appears
in the middle of the occupied part. See Figure 14-1.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-25

Figure 14-1 Storage Allocation for Temporary Results

Saving/Restoring does not work in this case. Creating a child memory storage,
however, can resolve this problem. The algorithm writes to both storages
simultaneously, and, once done, releases the temporary storage. See Figure 14-2.

Temporary Data (Garbage)

Input/Output Storage

Input/Output Storage

Input (Occupied) Data

Output Data

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-26

Figure 14-2 Release of Temporary Storage

Sequence Reference

Example 14-5 CvSequence Structure Definition

#define CV_SEQUENCE_FIELDS() \
int header_size; /* size of sequence header */ \
struct CvSeq* h_prev; /* previous sequence */ \
struct CvSeq* h_next; /* next sequence */ \
struct CvSeq* v_prev; /* 2nd previous sequence */ \
struct CvSeq* v_next; /* 2nd next sequence */ \
int flags; /* micsellaneous flags */ \
int total; /* total number of elements */ \
int elem_size;/* size of sequence element in bytes */ \
char* block_max;/* maximal bound of the last block */ \
char* ptr; /* current write pointer */ \
int delta_elems; /* how many elements allocated when the seq

grows */ \
CvMemStorage* storage; /* where the seq is stored */ \
CvSeqBlock* free_blocks; /* free blocks list */ \
CvSeqBlock* first; /* pointer to the first sequence block */

typedef struct CvSeq
{

CV_SEQUENCE_FIELDS()
} CvSeq;

tIIInput/Output Storage

ld Temporary Child Storage

Will be returned to the parent

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-27

Such an unusual definition simplifies the extension of the structure CvSeq with
additional parameters. To extend CvSeq the user may define a new structure and put
user-defined fields after all CvSeq fields that are included via the macro
CV_SEQUENCE_FIELDS(). The field header_size contains the actual size of the
sequence header and must be more than or equal to sizeof(CvSeq). The fields
h_prev, h_next, v_prev, v_next can be used to create hierarchical structures from
separate sequences. The fields h_prev and h_next point to the previous and the next
sequences on the same hierarchical level while the fields v_prev and v_next point to
the previous and the next sequence in the vertical direction, that is, parent and its first
child. But these are just names and the pointers can be used in a different way. The
field first points to the first sequence block, whose structure is described below. The
field flags contain miscellaneous information on the type of the sequence and should
be discussed in greater detail. By convention, the lowest CV_SEQ_ELTYPE_BITS bits
contain the ID of the element type. The current version has CV_SEQ_ELTYPE_BITS
equal to 5, that is, it supports up to 32 non-overlapping element types now. The file
CVTypes.h declares the predefined types.

The next CV_SEQ_KIND_BITS bits, also 5 in number, specify the kind of the sequence.
Again, predefined kinds of sequences are declared in the file CVTypes.h.

Example 14-6 Standard Types of Sequence Elements

#define CV_SEQ_ELTYPE_POINT 1 /* (x,y) */
#define CV_SEQ_ELTYPE_CODE 2 /* freeman code: 0..7 */
#define CV_SEQ_ELTYPE_PPOINT 3 /* &(x,y) */
#define CV_SEQ_ELTYPE_INDEX 4 /* #(x,y) */
#define CV_SEQ_ELTYPE_GRAPH_EDGE 5 /* &next_o,&next_d,&vtx_o,
&vtx_d */
#define CV_SEQ_ELTYPE_GRAPH_VERTEX 6 /* first_edge, &(x,y) */
#define CV_SEQ_ELTYPE_TRIAN_ATR 7 /* vertex of the binary tree
*/
#define CV_SEQ_ELTYPE_CONNECTED_COMP 8 /* connected component */
#define CV_SEQ_ELTYPE_POINT3D 9 /* (x,y,z) */

Example 14-7 Standard Kinds of Sequences

#define CV_SEQ_KIND_SET (0 << CV_SEQ_ELTYPE_BITS)
#define CV_SEQ_KIND_CURVE (1 << CV_SEQ_ELTYPE_BITS)
#define CV_SEQ_KIND_BIN_TREE (2 << CV_SEQ_ELTYPE_BITS)
#define CV_SEQ_KIND_GRAPH (3 << CV_SEQ_ELTYPE_BITS)

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-28

The remaining bits are used to identify different features specific to certain sequence
kinds and element types. For example, curves made of points
(CV_SEQ_KIND_CURVE|CV_SEQ_ELTYPE_POINT), together with the flag
CV_SEQ_FLAG_CLOSED belong to the type CV_SEQ_POLYGON or, if other flags are used,
its subtype. Many contour processing functions check the type of the input sequence
and report an error if they do not support this type. The file CVTypes.h stores the
complete list of all supported predefined sequence types and helper macros designed to
get the sequence type of other properties.

Below follows the definition of the building block of sequences.

Sequence blocks make up a circular double-linked list, so the pointers prev and next

are never NULL and point to the previous and the next sequence blocks within the
sequence. It means that next of the last block is the first block and prev of the first
block is the last block. The fields start_index and count help to track the block
location within the sequence. For example, if the sequence consists of 10 elements and
splits into three blocks of 3, 5, and 2 elements, and the first block has the parameter
start_index = 2, then pairs <start_index, count> for the sequence blocks are
<2,3>, <5,5>, and <10,2> correspondingly. The parameter start_index of the first
block is usually 0 unless some elements have been inserted at the beginning of the
sequence.

Example 14-8 CvSeqBlock Structure Definition

typedef struct CvSeqBlock
{

struct CvSeqBlock* prev; /* previous sequence block */
struct CvSeqBlock* next; /* next sequence block */
int start_index; /* index of the first element in the block +

sequence->first->start_index */
int count; /* number of elements in the block */
char* data; /* pointer to the first element of the block */

} CvSeqBlock;

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-29

CreateSeq
Creates sequence.

CvSeq* cvCreateSeq (int seqFlags, int headerSize, int elemSize, CvMemStorage*
storage);

seqFlags Flags of the created sequence. If the sequence is not passed to any
function working with a specific type of sequences, the sequence
value may be equal to 0, otherwise the appropriate type must be
selected from the list of predefined sequence types.

headerSize Size of the sequence header; must be more than or equal to
sizeof(CvSeq). If a specific type or its extension is indicated, this
type must fit the base type header.

elemSize Size of the sequence elements in bytes. The size must be consistent
with the sequence type. For example, for a sequence of points to be
created, the element type CV_SEQ_ELTYPE_POINT should be specified
and the parameter elemSize must be equal to sizeof(CvPoint).

storage Sequence location.

Discussion

The function CreateSeq creates a sequence and returns the pointer to it. The function
allocates the sequence header in the storage block as one continuous chunk and fills
the parameter elemSize, flags headerSize, and storage with passed values, sets the
parameter deltaElems (see the function SetSeqBlockSize) to the default value, and
clears other fields, including the space behind sizeof(CvSeq).

NOTE. All headers in the memory storage, including sequence
headers and sequence block headers, are aligned with the 4-byte
boundary.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-30

SetSeqBlockSize
Sets up sequence block size.

void cvSetSeqBlockSize (CvSeq* seq, int blockSize);

seq Sequence.

blockSize Desirable block size.

Discussion

The function SetSeqBlockSize affects the memory allocation granularity. When the
free space in the internal sequence buffers has run out, the function allocates
blockSize bytes in the storage. If this block immediately follows the one previously
allocated, the two blocks are concatenated, otherwise, a new sequence block is created.
Therefore, the bigger the parameter, the lower the sequence fragmentation probability,
but the more space in the storage is wasted. When the sequence is created, the
parameter blockSize is set to the default value ~1K. The function can be called any
time after the sequence is created and affects future allocations. The final block size
can be different from the one desired, e.g., if it is larger than the storage block size, or
smaller than the sequence header size plus the sequence element size.

The next four functions SeqPush,SeqPop,SeqPushFront,SeqPopFront add or
remove elements to/from one of the sequence ends. Their time complexity is O(1), that
is, all these operations do not shift existing sequence elements.

SeqPush
Adds element to sequence end.

void cvSeqPush (CvSeq* seq, void* element);

seq Sequence.

element Added element.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-31

Discussion

The function SeqPush adds an element to the end of the sequence. Although this
function can be used to create a sequence element by element, there is a faster method
(refer to Writing and Reading Sequences).

SeqPop
Removes element from sequence end.

void cvSeqPop (CvSeq* seq, void* element);

seq Sequence.

element Optional parameter. If the pointer is not zero, the function copies the
removed element to this location.

Discussion

The function SeqPop removes an element from the sequence. The function reports an
error if the sequence is already empty.

SeqPushFront
Adds element to sequence beginning.

void cvSeqPushFront (CvSeq* seq, void* element);

seq Sequence.

element Added element.

Discussion

The function SeqPushFront adds an element to the beginning of the sequence.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-32

SeqPopFront
Removes element from sequence beginning.

void cvSeqPopFront (CvSeq* seq, void* element);

seq Sequence.

element Optional parameter. If the pointer is not zero, the function copies the
removed element to this location.

Discussion

The function SeqPopFront removes an element from the beginning of the sequence.
The function reports an error if the sequence is already empty.

Next two functions SeqPushMulti,SeqPopMulti are batch versions of the
PUSH/POP operations.

SeqPushMulti
Pushes several elements to sequence end.

void cvSeqPushMulti (CvSeq* seq, void* elements, int count);

seq Sequence.

elements Added elements.

count Number of elements to push.

Discussion

The function SeqPushMulti adds several elements to the end of the sequence. The
elements are added to the sequence in the same order as they are arranged in the input
array but they can fall into different sequence blocks.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-33

SeqPopMulti
Removes several elements from sequence end.

void cvSeqPopMulti (CvSeq* seq, void* elements, int count);

seq Sequence.

elements Removed elements.

count Number of elements to pop.

Discussion

The function SeqPopMulti removes several elements from the end of the sequence. If
the number of the elements to be removed exceeds the total number of elements in the
sequence, the function removes as many elements as possible.

SeqInsert
Inserts element in sequence middle.

void cvSeqInsert (CvSeq* seq, int beforeIndex, void* element);

seq Sequence.

beforeIndex Index before which the element is inserted. Inserting before 0 is
equal to cvSeqPushFront and inserting before seq->total is equal
to cvSeqPush. The index values in these two examples are
boundaries for allowed parameter values.

element Inserted element.

Discussion

The function SeqInsert shifts the sequence elements from the inserted position to the
nearest end of the sequence before it copies an element there, therefore, the algorithm
time complexity is O(n/2).

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-34

SeqRemove
Removes element from sequence middle.

void cvSeqRemove (CvSeq* seq, int index);

seq Sequence.

index Index of removed element.

Discussion

The function SeqRemove removes elements with the given index. If the index is
negative or greater than the total number of elements less 1, the function reports an
error. An attempt to remove an element from an empty sequence is a specific case of
this situation. The function removes an element by shifting the sequence elements
from the nearest end of the sequence index.

ClearSeq
Clears sequence.

void cvClearSeq (CvSeq* seq);

seq Sequence.

Discussion

The function ClearSeq empties the sequence. The function does not return the
memory to the storage, but this memory is used again when new elements are added to
the sequence. This function time complexity is O(1).

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-35

GetSeqElem
Returns n-th element of sequence.

char* cvGetSeqElem (CvSeq* seq, int index, CvSeqBlock** block=0);

seq Sequence.

index Index of element.

block Optional argument. If the pointer is not NULL, the address of the
sequence block that contains the element is stored in this location.

Discussion

The function GetSeqElem finds the element with the given index in the sequence and
returns the pointer to it. In addition, the function can return the pointer to the sequence
block that contains the element. If the element is not found, the function returns 0. The
function supports negative indices, where -1 stands for the last sequence element, -2
stands for the one before last, etc. If the sequence is most likely to consist of a single
sequence block or the desired element is likely to be located in the first block, then the
macro CV_GET_SEQ_ELEM (elemType, seq, index) should be used, where the
parameter elemType is the type of sequence elements (CvPoint for example), the
parameter seq is a sequence, and the parameter index is the index of the desired
element. The macro checks first whether the desired element belongs to the first block
of the sequence and, if so, returns the element, otherwise the macro calls the main
function GetSeqElem. Negative indices always cause the cvGetSeqElem call.

SeqElemIdx
Returns index of concrete sequence element.

int cvSeqElemIdx (CvSeq* seq, void* element, CvSeqBlock** block=0);

seq Sequence.

element Pointer to the element within the sequence.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-36

block Optional argument. If the pointer is not NULL, the address of the
sequence block that contains the element is stored in this location.

Discussion

The function SeqElemIdx returns the index of a sequence element or a negative
number if the element is not found.

CvtSeqToArray
Copies sequence to one continuous block of
memory.

void* cvCvtSeqToArray (CvSeq* seq, void* array, CvSlice
slice=CV_WHOLE_SEQ(seq));

seq Sequence.

array Pointer to the destination array that must fit all the sequence
elements.

slice Start and end indices within the sequence so that the
corresponding subsequence is copied.

Discussion

The function CvtSeqToArray copies the entire sequence or subsequence to the
specified buffer and returns the pointer to the buffer.

MakeSeqHeaderForArray
Constructs sequence from array.

void cvMakeSeqHeaderForArray (int seqType, int headerSize, int elemSize, void*
array, int total, CvSeq* sequence, CvSeqBlock* block);

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-37

seqType Type of the created sequence.

headerSize Size of the header of the sequence. Parameter sequence must point to
the structure of that size or greater size.

elemSize Size of the sequence element.

array Pointer to the array that makes up the sequence.

total Total number of elements in the sequence. The number of array
elements must be equal to the value of this parameter.

sequence Pointer to the local variable that is used as the sequence header.

block Pointer to the local variable that is the header of the single sequence
block.

Discussion

The function MakeSeqHeaderForArray, the exact opposite of the function
CvtSeqToArray, builds a sequence from an array. The sequence always consists of a
single sequence block, and the total number of elements may not be greater than the
value of the parameter total, though the user may remove elements from the
sequence, then add other elements to it with the above restriction.

Writing and Reading Sequences Reference

StartAppendToSeq
Initializes process of writing to sequence.

void cvStartAppendToSeq (CvSeq* seq, CvSeqWriter* writer);

seq Pointer to the sequence.

writer Pointer to the working structure that contains the current status of the
writing process.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-38

Discussion

The function StartAppendToSeq initializes the writer to write to the sequence.
Written elements are added to the end of the sequence. Note that during the writing
process other operations on the sequence may yield incorrect result or even corrupt the
sequence (see Discussion of the function FlushSeqWriter).

StartWriteSeq
Creates new sequence and initializes writer for it.

void cvStartWriteSeq (int seqFlags, int headerSize, int elemSize,
CvMemStorage* storage, CvSeqWriter* writer);

seqFlags Flags of the created sequence. If the sequence is not passed to any
function working with a specific type of sequences, the sequence
value may be equal to 0, otherwise the appropriate type must be
selected from the list of predefined sequence types.

headerSize Size of the sequence header. The parameter value may not be less
than sizeof(CvSeq). If a certain type or extension is specified, it
must fit the base type header.

elemSize Size of the sequence elements in bytes; must be consistent with the
sequence type. For example, if the sequence of points is created
(element type CV_SEQ_ELTYPE_POINT), then the parameter elemSize
must be equal to sizeof(CvPoint).

storage Sequence location.

writer Pointer to the writer status.

Discussion

The function StartWriteSeq is the exact sum of the functions CreateSeq and
StartAppendToSeq.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-39

EndWriteSeq
Finishes process of writing.

CvSeq* cvEndWriteSeq (CvSeqWriter* writer);

writer Pointer to the writer status.

Discussion

The function EndWriteSeq finishes the writing process and returns the pointer to the
resulting sequence. The function also truncates the last sequence block to return the
whole of unfilled space to the memory storage. After that the user may read freely
from the sequence and modify it.

FlushSeqWriter
Updates sequence headers using writer state.

void cvFlushSeqWriter (CvSeqWriter* writer);

writer Pointer to the writer status.

Discussion

The function FlushSeqWriter is intended to enable the user to read sequence
elements, whenever required, during the writing process, e.g., in order to check
specific conditions. The function updates the sequence headers to make reading from
the sequence possible. The writer is not closed, however, so that the writing process
can be continued any time. Frequent flushes are not recommended, the function
SeqPush is preferred.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-40

StartReadSeq
Initializes process of sequential reading from
sequence.

void cvStartReadSeq(CvSeq* seq, CvSeqReader* reader, int reverse=0);

seq Sequence.

reader Pointer to the reader status.

reverse Whenever the parameter value equals 0, the reading process is going
in the forward direction, that is, from the beginning to the end,
otherwise the reading process direction is reverse, from the end to
the beginning.

Discussion

The function StartReadSeq initializes the reader structure. After that all the sequence
elements from the first down to the last one can be read by subsequent calls of the
macro CV_READ_SEQ_ELEM (elem, reader) that is similar to CV_WRITE_SEQ_ELEM. The
function puts the reading pointer to the last sequence element if the parameter reverse
does not equal zero. After that the macro CV_REV_READ_SEQ_ELEM (elem, reader) can
be used to get sequence elements from the last to the first. Both macros put the
sequence element to elem and move the reading pointer forward (CV_READ_SEQ_ELEM)
or backward (CV_REV_READ_SEQ_ELEM). A circular structure of sequence blocks is
used for the reading process, that is, after the last element has been read by the macro
CV_READ_SEQ_ELEM, the first element is read when the macro is called again. The same
applies to CV_REV_READ_SEQ_ELEM. Neither function ends reading since the reading
process does not modify the sequence, nor requires any temporary buffers. The reader
field ptr points to the current element of the sequence that is to be read first.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-41

GetSeqReaderPos
Returns index of element to read position.

int cvGetSeqReaderPos (CvSeqReader* reader);

reader Pointer to the reader status.

Discussion

The function GetSeqReaderPos returns the index of the element in which the reader is
currently located.

SetSeqReaderPos
Moves read position to specified index.

void cvSetSeqReaderPos (CvSeqReader* reader, int index, int is_relative=0);

reader Pointer to the reader status.

index Position where the reader must be moved.

is_relative If the parameter value is not equal to zero, the index means an offset
relative to the current position.

Discussion

The function SetSeqReaderPos moves the read position to the absolute or relative
position. This function allows for cycle character of the sequence.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-42

Sets Reference

CreateSet
Creates empty set.

CvSet* cvCreateSet (int setFlags, int headerSize, int elemSize, CvMemStorage*
storage);

setFlags Type of the created set.

headerSize Set header size; may not be less than sizeof(CvSeq).

elemSize Set element size; may not be less than 8 bytes, must be divisible by 4.

storage Future set location.

Discussion

The function CreateSet creates an empty set with a specified header size and returns
the pointer to the set. The function simply redirects the call to the function CreateSeq.

SetAdd
Adds element to set.

int cvSetAdd (CvSet* set, CvSet* elem, CvSet** insertedElem=0);

set Set.

elem Optional input argument, inserted element. If not NULL, the function
copies the data to the allocated cell omitting the first 4-byte field.

insertedElem Optional output argument; points to the allocated cell.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-43

Discussion

The function SetAdd allocates a new cell, optionally copies input element data to it,
and returns the pointer and the index to the cell. The index value is taken from the
second 4-byte field of the cell. In case the cell was previously deleted and a wrong
index was specified, the function returns this wrong index. However, if the user works
in the pointer mode, no problem occurs and the pointer stored at the parameter
insertedElem may be used to get access to the added set element.

SetRemove
Removes element from set.

void cvSetRemove (CvSet* set, int index);

set Set.

index Index of the removed element.

Discussion

The function SetRemove removes an element with a specified index from the set. The
function is typically used when set elements are accessed by their indices. If pointers
are used, the macro CV_REMOVE_SET_ELEM(set, index, elem), where elem is a
pointer to the removed element and index is any non-negative value, may be used to
remove the element. Alternative way to remove an element by its pointer is to calculate
index of the element via the function SeqElemIdx after which the function SetRemove

may be called, but this method is much slower than the macro.

GetSetElem
Finds set element by index.

CvSetElem* cvGetSetElem (CvSet* set, int index);

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-44

set Set.

index Index of the set element within a sequence.

Discussion

The function GetSetElem finds a set element by index. The function returns the
pointer to it or 0 if the index is invalid or the corresponding cell is free. The function
supports negative indices through calling the function GetSeqElem.

ClearSet
Clears set.

void cvClearSet (CvSet* set);

set Cleared set.

Discussion

The function ClearSet empties the set by calling the function ClearSeq and setting
the pointer to the list of free cells. The function takes O(1) time.

NOTE. The user can check whether the element belongs to the set
with the help of the macro CV_IS_SET_ELEM_EXISTS(elem) once the
pointer is set to a set element.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-45

Sets Data Structures

The first field is a dummy field and is not used in the occupied cells, except the least
significant bit, which is 0. With this structure the integer element could be defined as
follows:

typedef struct _IntSetElem

{

CV_SET_ELEM_FIELDS()

int value;

}

IntSetElem;

Example 14-9 CvSet Structure Definition

#define CV_SET_FIELDS() \
CV_SEQUENCE_FIELDS() \
CvMemBlock* free_elems;

typedef struct CvSet
{

CV_SET_FIELDS()
}
CvSet;

Example 14-10 CvSetElem Structure Definition

#define CV_SET_ELEM_FIELDS() \
int* aligned_ptr;

typedef struct _CvSetElem
{

CV_SET_ELEM_FIELDS()
}
CvSetElem;

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-46

Graphs Reference

CreateGraph
Creates empty graph.

CvGraph* cvCreateGraph (int graphFlags, int headerSize, int vertexSize, int
edgeSize, CvStorage* storage);

graphFlags Type of the created graph. The kind of the sequence must be graph
(CV_SEQ_KIND_GRAPH) and flag CV_GRAPH_FLAG_ORIENTED allows
the oriented graph to be created. User may choose other flags, as well
as types of graph vertices and edges.

headerSize Graph header size; may not be less than sizeof(CvGraph).

vertexSize Graph vertex size; must be greater than
sizeof(CvGraphVertex)and meet all restrictions on the set
element.

edgeSize Graph edge size; may not be less than sizeof(CvGraphEdge) and
must be divisible by 4.

storage Future location of the graph.

Discussion

The function CreateGraph creates an empty graph, that is, two empty sets, a set of
vertices and a set of edges, and returns it.

GraphAddVtx
Adds vertex to graph.

int cvGraphAddVtx (CvGraph* graph, CvGraphVtx* vtx, CvGraphVtx**
insertedVtx=0);

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-47

graph Graph.

vtx Optional input argument. Similar to the parameter elem of the
function SetAdd, the parameter vtx could be used to initialize new
vertices with concrete values. If vtx is not NULL, the function copies
it to a new vertex, except the first 4-byte field.

insertedVtx Optional output argument. If not NULL, the address of the new vertex
is written there.

Discussion

The function GraphAddVtx adds a vertex to the graph and returns the vertex index.

GraphRemoveVtx
Removes vertex from graph.

void cvGraphRemoveAddVtx (CvGraph* graph, int vtxIdx);

graph Graph.

vtxIdx Index of the removed vertex.

Discussion

The function GraphRemoveAddVtx removes a vertex from the graph together with all
the edges incident to it. The function reports an error, if input vertices do not belong to
the graph, that makes it safer than GraphRemoveVtxByPtr, but less efficient.

GraphRemoveVtxByPtr
Removes vertex from graph.

void cvGraphRemoveVtxByPtr (CvGraph* graph, CvGraphVtx* vtx);

graph Graph.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-48

vtx Pointer to the removed vertex.

Discussion

The function GraphRemoveVtxByPtr removes a vertex from the graph together with
all the edges incident to it. The function is more efficient than GraphRemoveVtx but
less safe, because it does not check whether the input vertices belong to the graph.

GraphAddEdge
Adds edge to graph.

int cvGraphAddEdge (CvGraph* graph, int startIdx, int endIdx, CvGraphEdge*
edge, CvGraphEdge** insertedEdge=0);

graph Graph.

startIdx Index of the starting vertex of the edge.

endIdx Index of the ending vertex of the edge.

edge Optional input parameter, initialization data for the edge. If not NULL,
the parameter is copied starting from the 5th 4-byte field.

insertedEdge Optional output parameter to contain the address of the inserted edge
within the edge set.

Discussion

The function GraphAddEdge adds an edge to the graph given the starting and the
ending vertices. The function returns the index of the inserted edge, which is the value
of the second 4-byte field of the free cell.

The function reports an error if

• the edge that connects the vertices already exists; in this case graph orientation is
taken into account;

• a pointer is NULL or indices are invalid;

• some of vertices do not exist, that is, not checked when the pointers are passed to
vertices; or

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-49

• the starting vertex is equal to the ending vertex, that is, it is impossible to create
loops from a single vertex.

The function reports an error, if input vertices do not belong to the graph, that makes it
safer than GraphAddEdgeByPtr, but less efficient.

GraphAddEdgeByPtr
Adds edge to graph.

int cvGraphAddEdgeByPtr (CvGraph* graph, CvGraphVtx* startVtx, CvGraphVtx*
endVtx, CvGraphEdge* edge, CvGraphEdge** insertedEdge=0);

graph Graph.

startVtx Pointer to the starting vertex of the edge.

endVtx Pointer to the ending vertex of the edge.

edge Optional input parameter, initialization data for the edge. If not NULL,
the parameter is copied starting from the 5th 4-byte field.

insertedEdge Optional output parameter to contain the address of the inserted edge
within the edge set.

Discussion

The function GraphAddEdgeByPtr adds an edge to the graph given the starting and the
ending vertices. The function returns the index of the inserted edge, which is the value
of the second 4-byte field of the free cell.

The function reports an error if

• the edge that connects the vertices already exists; in this case graph orientation is
taken into account;

• a pointer is NULL or indices are invalid;

• some of vertices do not exist, that is, not checked when the pointers are passed to
vertices; or

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-50

• the starting vertex is equal to the ending vertex, that is, it is impossible to create
loops from a single vertex.

The function is more efficient than GraphAddEdge but less safe, because it does not
check whether the input vertices belong to the graph.

GraphRemoveEdge
Removes edge from graph.

void cvGraphRemoveEdge (CvGraph* graph, int startIdx, int endIdx);

graph Graph.

startIdx Index of the starting vertex of the edge.

endIdx Index of the ending vertex of the edge.

Discussion

The function GraphRemoveEdge removes an edge from the graph that connects given
vertices. If the graph is oriented, the vertices must be passed in the appropriate order.
The function reports an error if any of the vertices or edges between them do not exist.

The function reports an error, if input vertices do not belong to the graph, that makes it
safer than GraphRemoveEdgeByPtr, but less efficient.

GraphRemoveEdgeByPtr
Removes edge from graph.

void cvGraphRemoveEdgeByPtr (CvGraph* graph, CvGraphVtx* startVtx, CvGraphVtx*
endVtx);

graph Graph.

startVtx Pointer to the starting vertex of the edge.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-51

endVtx Pointer to the ending vertex of the edge.

Discussion

The function GraphRemoveEdgeByPtr removes an edge from the graph that connects
given vertices. If the graph is oriented, the vertices must be passed in the appropriate
order. The function reports an error if any of the vertices or edges between them do not
exist.

The function is more efficient than GraphRemoveEdge but less safe, because it does
not check whether the input vertices belong to the graph.

FindGraphEdge
Finds edge in graph.

CvGraphEdge* cvFindGraphEdge (CvGraph* graph, int startIdx, int endIdx);

graph Graph.

startIdx Index of the starting vertex of the edge.

endIdx Index of the ending vertex of the edge.

Discussion

The function FindGraphEdge finds the graph edge that connects given vertices. If the
graph is oriented, the vertices must be passed in the appropriate order. Function returns
NULL if any of the vertices or edges between them do not exist.

The function reports an error, if input vertices do not belong to the graph, that makes it
safer than FindGraphEdgeByPtr, but less efficient.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-52

FindGraphEdgeByPtr
Finds edge in graph.

CvGraphEdge* cvFindGraphEdgeByPtr (CvGraph* graph, CvGraphVtx* startVtx,
CvGraphVtx* endVtx);

graph Graph.

startVtx Pointer to the starting vertex of the edge.

endVtx Pointer to the ending vertex of the edge.

Discussion

The function FindGraphEdgeByPtr finds the graph edge that connects given vertices.
If the graph is oriented, the vertices must be passed in the appropriate order. Function
returns NULL if any of the vertices or edges between them do not exist.

The function is more efficient than FindGraphEdge but less safe, because it does not
check whether the input vertices belong to the graph.

GraphVtxDegree
Finds edge in graph.

int cvGraphVtxDegree (CvGraph* graph, int vtxIdx);

graph Graph.

vtx Pointer to the graph vertex.

Discussion

The function GraphVtxDegree counts the edges incident to the graph vertex, both
incoming and outcoming, and returns the result. To count the edges, the following code
is used:

CvGraphEdge* edge = vertex->first; int count = 0;

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-53

while(edge) {

edge = CV_NEXT_GRAPH_EDGE(edge, vertex);

count++;

}.

The macro CV_NEXT_GRAPH_EDGE(edge, vertex) returns the next edge after the
edge incident to the vertex.

The function reports an error, if input vertices do not belong to the graph, that makes it
safer than GraphVtxDegreeByPtr, but less efficient.

GraphVtxDegreeByPtr
Finds edge in graph.

int cvGraphVtxDegreeByPtr (CvGraph* graph, CvGraphVtx* vtx);

graph Graph.

vtx Pointer to the graph vertex.

Discussion

The function GraphVtxDegreeByPtr counts the edges incident to the graph vertex,
both incoming and outcoming, and returns the result. To count the edges, the following
code is used:

CvGraphEdge* edge = vertex->first; int count = 0;

while(edge) {

edge = CV_NEXT_GRAPH_EDGE(edge, vertex);

count++;

}.

The macro CV_NEXT_GRAPH_EDGE(edge, vertex) returns the next edge after the
edge incident to the vertex.

The function is more efficient than GraphVtxDegree but less safe, because it does not
check whether the input vertices belong to the graph.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-54

ClearGraph
Clears graph.

void cvClearGraph (CvGraph* graph);

graph Graph.

Discussion

The function ClearGraph removes all the vertices and edges from the graph. Similar
to the function ClearSet, this function takes O(1) time.

GetGraphVtx
Finds graph vertex by index.

CvGraphVtx* cvGetGraphVtx (CvGraph* graph, int vtxIdx);

graph Graph.

vtxIdx Index of the vertex.

Discussion

The function GetGraphVtx finds the graph vertex by index and returns the pointer to it
or, if not found, to a free cell at this index. Negative indices are supported.

GraphVtxIdx
Returns index of graph vertex.

int cvGraphVtxIdx (CvGraph* graph, CvGraphVtx* vtx);

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-55

graph Graph.

vtx Pointer to the graph vertex.

Discussion

The function GraphVtxIdx returns the index of the graph vertex by setting pointers to
it.

GraphEdgeIdx
Returns index of graph edge.

int cvGraphEdgeIdx (CvGraph* graph, CvGraphEdge* edge);

graph Graph.

edge Pointer to the graph edge.

Discussion

The function GraphEdgeIdx returns the index of the graph edge by setting pointers to
it.

Graphs Data Structures

.

Example 14-11 CvGraph Structure Definition

#define CV_GRAPH_FIELDS() \
CV_SET_FIELDS() \
CvSet* edges;

typedef struct _CvGraph
{

CV_GRAPH_FIELDS()
}
CvGraph;

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-56

In OOP terms, the graph structure is derived from the set of vertices and includes a set
of edges. Besides, special data types exist for graph vertices and graph edges.

Example 14-12 Definitions of CvGraphEdge and CvGraphVtx Structures

#define CV_GRAPH_EDGE_FIELDS() \
struct _CvGraphEdge* next[2]; \
struct _CvGraphVertex* vtx[2];

#define CV_GRAPH_VERTEX_FIELDS() \
struct _CvGraphEdge* first;

typedef struct _CvGraphEdge
{

CV_GRAPH_EDGE_FIELDS()
}
CvGraphEdge;

typedef struct _CvGraphVertex
{

CV_GRAPH_VERTEX_FIELDS()
}
CvGraphVtx;

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-57

Matrix Operations Reference

Example 14-13 CvMat Structure Definition

typedef struct CvMat {

int type; /* the type of matrix elements */

union
{

int rows; /* number of rows in the matrix */
int height; /* synonym for <rows> */

};

union
{

int cols; /* number of columns */
int width; /* synonym for <cols> */

};

int step; /* matrix stride */
union
{

float* fl;
double* db;
uchar* ptr;

} data; /* pointer to matrix data */
};

Example 14-14 CvMatArray Structure Definition

typedef struct CvMatArray
{

int rows; //number of rows
int cols; //number pf cols
int type; // type of matrices
int step; // not used
int count; // number of matrices in aary
union
{

float* fl;
float* db;

}data; // pointer to matrix array data
}CvMatArray

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-58

CreateMat
Creates new matrix.

CvMat* cvCreateMat (int rows, int cols, int type);

rows Number of rows in the matrix.

cols Number of columns in the matrix.

type Type of the new matrix – depth and number of channels; may be
specified in form CV_<bit depth>(S|U)C<number of channels>,
e.g., CV_8UC1 means an 8-bit unsigned single-channel matrix,
CV_32SC2 means a 32-bit signed matrix with two channels.
See CvMat Structure Definition and description in the Guide.

Discussion

The function CreateMat allocates header for the new matrix and underlying data, and
returns a pointer to the created matrix. It is a short form for:

CvMat* mat = cvCreateMatrixHeader(rows, cols, type);

cvCreateData(mat);

Matrices are stored row by row. All the rows are aligned by 4 bytes.

To get different alignment, use InitMatHeader to reinitialize header, created by
CreateMatHeader, and then call CreateData separately.

CreateMatHeader
Creates new matrix header.

CvMat* cvCreateMatHeader (int rows, int cols, int type);

rows Number of rows in the matrix.

cols Number of columns in the matrix.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-59

type Type of the new matrix – depth and number of channels; may be
specified in form CV_<bit depth>(S|U)C<number of channels>,
e.g., CV_8UC1 means an 8-bit unsigned single-channel matrix,
CV_32SC2 means a 32-bit signed matrix with two channels.
See CvMat Structure Definition and description in the Guide.

Discussion

The function CreateMatHeader allocates new matrix header and returns pointer to it.
The matrix data can further be allocated using CreateData or set explicitly to
user-allocated data via SetData. See also description of CreateMat.

ReleaseMat
Deallocates matrix.

void cvReleaseMat (CvMat** mat);

mat Double pointer to the matrix.

Discussion

The function ReleaseMat releases memory occupied by the matrix header and
underlying data. If *mat is null pointer, the function has no effect. The pointer *mat is
cleared upon the function exit.

It is the short form for:

if(*mat)

cvReleaseData(*mat);

cvReleaseMatHeader(mat);

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-60

ReleaseMatHeader
Deallocates matrix header.

void cvReleaseMatHeader (CvMat** mat);

mat Double pointer to the matrix header.

Discussion

The function ReleaseMatHeader releases memory occupied by the matrix header. If
*mat is null pointer, the function has no effect. The pointer *mat is cleared upon the
function exit.

Unlike ReleaseMat, the function ReleaseMatHeader does not deallocate the matrix
data, so the user should do it on his/her own.

InitMatHeader
Initializes matrix header.

void cvInitMatHeader (CvMat* mat, int rows, int cols, int type, void* data = 0,
int step = CV_AUTOSTEP);

mat Pointer to the matrix header to be initialized.

rows Number of rows in the matrix.

cols Number of columns in the matrix.

type Type of the new matrix – depth and number of channels; may be
specified in form CV_<bit depth>(S|U)C<number of channels>,
e.g., CV_8UC1 means an 8-bit unsigned single-channel matrix,
CV_32SC2 means a 32-bit signed matrix with two channels.
See CvMat Structure Definition and description in the Guide.

data Optional data pointer assigned to the matrix header.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-61

step Full row width in bytes of the data assigned. By default, the minimal
possible step is used, i.e., no gaps assumed between subsequent rows
of the matrix.

Discussion

The function InitMatHeader initializes already allocated CvMat structure. It can be
used to process raw data with OpenCV matrix functions.

For example, the following code computes matrix product of two matrices, stored as
ordinary arrays.

CloneMat
Creates matrix copy.

CvMat* cvCloneMat (CvMat* mat);

mat Input matrix.

Discussion

The function CloneMat creates a copy of input matrix and returns the pointer to it. If
the input matrix pointer is null, the resultant matrix also has a null data pointer.

Example 14-15 Calculating Product of Two Matrices

double a[] = { 1, 2, 3, 4
5, 6, 7, 8,
9, 10, 11, 12 };

double b[] = { 1, 5, 9,
2, 6, 10,
3, 7, 11,
4, 8, 12 };

double c[9];

CvMat Ma, Mb, Mc;
cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a);

cvInitMatHeader(&Mb, 4, 3, CV_64FC1, b);
cvInitMatHeader(&Mc, 3, 3, CV_64FC1, c);
cvMatMulAdd(&Ma, &Mb, 0, &Mc); // c array now contains product of a(3x4) and
b(4x3) matrices

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-62

SetData
Attaches data to matrix header.

void cvSetData (CvArr* mat, void* data, int step);

mat Pointer to the matrix header.

data Data pointer assigned to the matrix header.

step Full row width in bytes of the data assigned.

Discussion

The function SetData attaches user-allocated data to the matrix header. It is a faster
and shorter equivalent for InitMatHeader (mat, mat → rows, mat → cols, mat →
type, data, step) that is useful in situation when multiple matrices of the same size
and type are processed, e.g., video frames and their blocks, feature points, etc.

The data pointer can be null and such a function call is useful in preventing outside
data from being deallocated occasionally by ReleaseMat.

GetMat
Initializes matrix header for arbitrary array.

CvMat* cvGetMat (const CvArr* arr, CvMat* mat, int* coi = 0);

arr Input array.

mat Pointer to CvMat structure used a temporary buffer.

coi Optional output parameter for storing COI.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-63

Discussion

The function GetMat creates a matrix header for an input array that can be matrix –
CvMat, or image – IplImage. In the case of matrix the function simply returns the
input pointer. In the case of IplImage it initializes mat structure with parameters of
the current image ROI and returns pointer to this temporary structure. Because COI is
not supported by CvMat, it is returned separately.

The function provides an easy way to handle both types of array - IplImage and
CvMat -, using the same code. Reverse transform from CvMat to IplImage can be
done using cvGetImage function.

Input array must have underlying data allocated or attached, otherwise the function
fails.

If the input array is IplImage with planar data layout and COI set, the function returns
pointer to the selected plane and COI = 0. It enables per-plane processing of
multi-channel images with planar data layout using OpenCV functions.

GetAt
Returns array element.

CvScalar cvGetAt (const CvArr* arr, int row, int col = 0);

arr Array.

row Zero-based index of the row containing the requested element.

col Zero-based index of the column containing the requested element;
equal to 0 by default to simplify access to 1D arrays.

Discussion

The function GetAt returns value of the specified array element. In the case of
IplImage, the whole element is returned regardless of COI settings.

The function is not the fastest way to retrieve array elements. The function cvmGet is
the fastest variant for single-channel floating-point arrays.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-64

If the array has a different format, it is still more efficient to avoid GetAt and use
GetAtPtr instead.

Finally, if the fast sequential access to array elements is needed, GetRawData is still a
better option than any of the above methods.

SetAt
Sets array element to given value.

void cvSetAt (CvArr* arr, CvScalar value, int row, int col = 0);

arr Array.

value New element value.

row Zero-based index of the row containing the requested element.

col Zero-based index of the column containing the requested element;
equal to 0 by default to simplify access to 1D arrays.

Discussion

The function SetAt changes value of the specified array element. In the case of
IplImage, the whole element is changed regardless of COI settings.

The function is not the fastest way to change array elements. The function cvmSet is
the fastest variant for single-channel floating-point arrays.

If the array has a different format, it is still more efficient to avoid SetAt and use
GetAtPtr instead.

Finally, if the fast sequential access to array elements is needed, GetRawData is still a
better option than any of the above methods.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-65

GetAtPtr
Returns pointer to array element.

uchar* cvGetAtPtr (const CvArr* arr, int row, int col = 0);

arr Array.

row Zero-based index of the row containing the requested element.

col Zero-based index of the column containing the requested element;
equal to 0 by default to simplify access to 1D arrays.

Discussion

The function GetAtPtr returns pointer of the specified array element. In the case of
IplImage, pointer to the first channel value of the element is returned regardless of
COI settings.

The function is more efficient than GetAt and SetAt, but for faster sequential access to
array elements GetRawData is still a better option.

GetSubArr
Returns rectangular sub-array of given array.

CvMat* cvGetSubArr (const CvArr* arr, CvMat* subarr, CvRect rect);

arr Input array.

subarr Pointer to the resulting sub-array header.

rect Zero-based coordinates of top-left corner of the sub-array and its
linear sizes.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-66

Discussion

The function GetSubArr returns header, corresponding to a specified rectangle of the
input array. In other words, it allows the user to treat a rectangular part of input array as
a stand-alone array. ROI is taken into account by the function so the sub-array of ROI
is really extracted.

GetRow
Returns array row.

CvMat* cvGetRow (const CvArr* arr, CvMat* subarr, int row);

arr Input array.

subarr Pointer to the resulting sub-array header.

row Zero-based index of the selected row.

Discussion

The function GetRow returns the header, corresponding to a specified row of the input
array. The function is a short form for:

cvGetSubArr (arr, subarr, cvRect (0, row, arr → cols, 1));

GetCol
Returns array column.

CvMat* cvGetCol (const CvArr* arr, CvMat* subarr, int col);

arr Input array.

subarr Pointer to the resulting sub-array header.

col Zero-based index of the selected column.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-67

Discussion

The function GetCol returns the header, corresponding to a specified column of the
input array. The function is a short form for:

cvGetSubArr (arr, subarr, cvRect (col, 0, 1, arr → rows));

GetDiag
Returns array diagonal.

CvMat* cvGetDiag (const CvArr* arr, CvMat* subarr, int diag);

arr Input array.

subarr Pointer to the resulting sub-array header.

diag Diagonal number; 0 corresponds to the main diagonal, 1 corresponds
to the diagonal above the main diagonal, -1 corresponds to the
diagonal below the main diagonal, etc.

Discussion

The function GetDiag returns the header, corresponding to a specified diagonal of the
input array.

GetRawData
Returns low level information on array.

void cvRawData (const CvArr* arr, uchar** data, int* step, CvSize* roiSize);

arr Input array.

data Pointer to the retrieved array data pointer.

step Pointer to the retrieved array step.

roiSize Pointer to the retrieved array size, or selected ROI size.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-68

Discussion

The function GetRawData returns array data pointer, step, or full row width in bytes.
and linear size. All the output parameters are optional, that is, the correspondent
pointers may be null. The function provides the fastest sequential access to array
elements if the format of elements is known.

For example, the following code finds absolute value of every element of a
single-channel floating-point array:

If array is IplImage with ROI set, parameters of ROI are returned.

GetSize
Returns width and height of array.

CvSize cvGetSize (const CvArr* arr);

arr Array.

Discussion

The function GetSize returns width, or the number of columns, and height, or the
number of rows, of the array.

If array is IplImage with ROI set, size ROI is returned.

Example 14-16 Using GetRawData for Image Pixels Access.

float* data;
int step;
CvSize size;
int x, y;

cvGetRawData(Array, (uchar**)&data, &step, &size);
step /= sizeof(data[0]);

for(y = 0; y < size.height; y++, data += step)
for(x = 0; x < size.width; x++)

data[x] = (float)fabs(data[x]);

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-69

CreateData
Allocates memory for array data.

void cvCreateData (CvArr* mat);

mat Pointer to the array for which memory must be allocated.

Discussion

The function CreateData allocates memory for the array data.

AllocArray
Allocates memory for matrix array data.

void cvmAllocArray (CvMatArray* matArr);

matArr Pointer to the matrix array for which memory must be allocated.

Discussion

The function AllocArray allocates memory for the matrix array data.

Structure CvMatArray is obsolete. Use multi-channel matrices CvMat and functions
MatMulAddS and PerspectiveTransform to operate on a group of small vectors.

ReleaseData
Frees memory allocated for array data.

void cvReleaseData (CvArr* mat);

mat Pointer to the array.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-70

Discussion

The function ReleaseData releases the memory allocated by the function
CreateData.

FreeArray
Frees memory allocated for matrix array data.

void cvmFreeArray (CvMatArr* matArr);

matArr Pointer to the matrix array.

Discussion

The function FreeArray releases the memory allocated by the function AllocArray.

Structure CvMatArray is obsolete. Use multi-channel matrices CvMat and functions
MatMulAddS and PerspectiveTransform to operate on a group of small vectors.

Copy
Copies one array to another.

void cvCopy (const CvArr* A, CvArr* B, const CvArr* mask=0);

A Pointer to the source array.

B Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of
destination array to be changed.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-71

Discussion

The function Copy copies selected pixels from input array to output array. If any of the
passed arrays is of IplImage type, then its ROI and COI fields are used. Both arrays
should be of the same type and their sizes, or their ROIs sizes, must be the same.

, if .

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

Set
Sets every element of array to given value.

void cvSet (CvArr* A, CvScalar S, const CvArr* mask=0);

A Pointer to the destination array.

S Fill value.

mask Operation mask, 8-bit single channel array; specifies elements of
destination array to be changed.

Discussion

The function Set copies scalar S to every selected element of the destination array. If
array A is of IplImage type, then is ROI used, but COI should not be set.

, if .

Add
Computes sum of two arrays.

void cvAdd (const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A Pointer to the first source array.

Bij Aij= maskij 0≠

Aij S= maskij 0≠

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-72

B Pointer to the second source array.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of
destination array to be changed.

Discussion

The function Add adds array B to array A and stores the result in C.

, if .

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

AddS
Computes sum of array and scalar.

void cvAddS (const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A Pointer to the source array.

S Added scalar.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of
destination array to be changed.

Discussion

The function AddS adds scalar S to every element in the source array A and stores the
result in C.

, if .

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

Cij Aij Bij+= maskij 0≠

Cij Aij S+= maskij 0≠

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-73

Sub
Computes difference of two arrays.

void cvSub (const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A Pointer to the first source array.

B Pointer to the second source array.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of
destination array to be changed.

Discussion

The function Sub subtracts array B from array A and stores the result in C.

, if .

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

SubS
Computes difference of array and scalar.

void cvSubS (const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A Pointer to the first source array.

S Subtracted scalar.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of
destination array to be changed.

Cij Aij Bij–= maskij 0≠

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-74

Discussion

The function SubS subtracts scalar S from every element in the source array A and
stores the result in C.

, if .

All array parameters should be of the same type and size or have the same ROI size.

SubRS
Computes difference of scalar and array.

void cvSubRS (const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask=0);

A Pointer to the first source array.

S Scalar to subtract from.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of
destination array to be changed.

Discussion

The function SubRS subtracts every element of source array A from scalar S and
stores the result in C.

, if .

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

Cij Aij S–= maskij 0≠

Cij S Aij–= maskij 0≠

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-75

Mul
Calculates per-element product of two arrays.

void cvMul (const CvArr* A, const CvArr* B, CvArr* C);

A Pointer to the first source array.

B Pointer to the second source array.

C Pointer to the destination array.

Discussion

The function Mul calculates per-element product of arrays A and B and stores the result
in C.

.

All array parameters should be of the same size or selected ROI sizes and of the same
type.

And
Calculates logical conjunction of two arrays.

void cvAnd (const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask=0);

A Pointer to the first source array.

B Pointer to the second source array.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of
destination array to be changed.

Cij Aij Bij⋅=

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-76

Discussion

The function And calculates per-element logical conjunction of arrays A and B and
stores the result in C.

, if .

Table 14-2 shows the way to compute the result from input bits.

In the case of floating-point images their bit representations are used for the operation.

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

AndS
Calculates logical conjunction of array and
scalar.

void cvAndS (const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask = 0);

A Pointer to the source array.

S Scalar to use in the operation.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of
destination array to be changed.

Table 14-2 Result Computation for cvAnd

k-th bit of Aij k-th bit of Bij k-th bit of Cij
0 0 0

0 1 0

1 0 0

1 1 1

Cij Aij and Bij= maskij 0≠

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-77

Discussion

The function AndS calculates per-element logical conjunction of array A and scalar S
and stores the result in C.

Before the operation is implemented the scalar is converted to the same type as arrays.

, if .

Table 14-3 shows the way to compute the result from input bits.

In the case of floating-point images their bit representations are used for the operation.

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

Or
Calculates logical disjunction of two arrays.

void cvOr (const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask = 0);

A Pointer to the first source array.

B Pointer to the second source array.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of
destination array to be changed.

Table 14-3 Result Computation for cvAndS

k-th bit of Aij k-th bit of S k-th bit of Cij
0 0 0

0 1 0

1 0 0

1 1 1

Cij Aij andS= maskij 0≠

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-78

Discussion

The function Or calculates per-element logical disjunction of arrays A and B and stores
the result in C.

, if .

Table 14-4 shows the way to compute the result from input bits.

In the case of floating-point images their bit representations are used for the operation.

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

OrS
Calculates logical disjunction of array and
scalar.

void cvAndS (const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask = 0);

A Pointer to the source array.

S Scalar to use in the operation.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of
destination array to be changed.

Table 14-4 Result Computation for Or

k-th bit of Aij k-th bit of Bij k-th bit of Cij
0 0 0

0 1 1

1 0 1

1 1 1

Cij Aij or Bij= maskij 0≠

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-79

Discussion

The function OrS calculates per-element logical disjunction of array A and scalar S and
stores the result in C.

, if .

Table 14-5 shows the way to compute the result from input bits.

In the case of floating-point images their bit representations are used for the operation.

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

Xor
Calculates logical “exclusive or” operation on
two arrays.

void cvXor (const CvArr* A, const CvArr* B, CvArr* C, const CvArr* mask = 0);

A Pointer to the first source array.

B Pointer to the second source array.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of
destination array to be changed.

Table 14-5 Result Computation for OrS

k-th bit of Aij k-th bit of S k-th bit of Cij
0 0 0

0 1 1

1 0 1

1 1 1

Cij Aij or S= maskij 0≠

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-80

Discussion

The function Xor calculates per-element logical “exclusive or” operation on arrays A
and B and stores the result in C.

, if .

Table 14-6 shows the way to compute the result from input bits.

In the case of floating-point images their bit representations are used for the operation.

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

XorS
Calculates logical “exclusive or” operation on
array and scalar.

void cvAndS (const CvArr* A, CvScalar S, CvArr* C, const CvArr* mask = 0);

A Pointer to the source array.

S Scalar to use in the operation.

C Pointer to the destination array.

mask Operation mask, 8-bit single channel array; specifies elements of
destination array to be changed.

Table 14-6 Result Computation for Xor

k-th bit of Aij k-th bit of Bij k-th bit of Cij
0 0 0

0 1 1

1 0 1

1 1 0

Cij Aij xor Bij= maskij 0≠

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-81

Discussion

The function XorS calculates per-element logical “exclusive or” operation array A and
scalar S and stores the result in C.

, if .

Table 14-7 shows the way to compute the result from input bits.

In the case of floating-point images their bit representations are used for the operation.

All array parameters should have the same size or selected ROI sizes and all of them,
except mask, must be of the same type.

DotProduct
Calculates dot product of two arrays in Euclidian
metrics.

double cvDotProduct (const CvArr* A, cjnst CvArr* B);

A Pointer to the first source array.

B Pointer to the second source array.

Discussion

The function DotProduct calculates and returns the Euclidean dot product of two
arrays.

Table 14-7 Result Computation for XorS

k-th bit of Aij k-th bit of S k-th bit of Cij
0 0 0

0 1 1

1 0 1

1 1 0

Cij Aij xor S= maskij 0≠

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-82

.

CrossProduct
Calculates cross product of two 3D vectors.

void cvCrossProduct (const CvArr* A, const CvArr* B, CvArr* C);

A Pointer to the first source vector.

B Pointer to the second source vector.

C Pointer to the destination vector.

Discussion

The function CrossProduct calculates the cross product of two 3D vectors:

.

ScaleAdd
Calculates sum of scaled array and another
array.

void cvScaleAdd (const CvArr* A, CvScalar S, const CvArr* B, CvArr* C);

A Pointer to the first source array.

S Scale factor for the first array.

B Pointer to the second source array.

C Pointer to the destination array

DP A B⋅ AijBij
i,j
∑= =

C A B× , C1(A2B3 A3B2 C2,– A3B1 A1B3 C3,– A1B2 A2B1)–= = ==

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-83

Discussion

The function ScaleAdd calculates sum of scaled array A and array B and stores the
result in C.

.

All array parameters should be of the same size or selected ROI sizes and of the same
type.

The function name MulAddS may be used as a synonym of ScaleAdd.

MatMulAdd
Calculates shifted matrix product.

void cvMatMulAdd (const CvArr* A, const CvArr* B, const CvArr* C, CvArr* D);

A Pointer to the first source array.

B Pointer to the second source array.

C Pointer to the third source array (shift).

D Pointer to the destination array.

Discussion

The function MatMulAdd calculates matrix product of arrays A and B, adds array C to
the product and stores the final result in D.

, .

All parameters should be of the same type – single-precision or double-precision
floating point real or complex numbers (32fC1, 64fC1, 32fC2 or 64fC2). Dimensions
of A, B, C and, D must co-agree: if matrix A has m rows and k columns and matrix B

has k rows and n columns, then matrix C, if present, must have m rows and n columns
and matrix D must have m rows and n columns too.

Cij Aij S Bij+⋅=

D A B C+⋅= Dij Aik Bkj⋅
k

∑ Cij+=

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-84

MatMulAddS
Performs matrix transform on every element of
array.

void cvMatMulAddS (const CvArr* A, CvArr* C, const CvArr* M, const CvArr* V =
0);

A Pointer to the first source array.

C Pointer to the destination array.

M Transformation matrix.

V Optional shift.

Discussion

The function MatMulAddS performs matrix transform on every element of array A and
stores the result in C.

The function considers every element of N-channel array A as a vector of N
components.

, , if M is (N x N)

or

, , if M is (N x N+1).

In the second variant the shift vector is stored in the right column of the matrix M.

Both source and destination arrays should be of the same size or selected ROI size and
of the same type. M and V should be real single-precision or double-precision matrices.

The function can be used for geometrical transforms of point sets and linear color
transformations.

Cij M Aij⋅ V+= Cij cn)(Mcn k, Aij k) Vcn+(⋅
k
∑=

Cij 1[] M 0 ... 0 1];[Aij 1][⋅= Cij cn)(Mcn k, Aij k) Mcn N 1–,+(⋅∑=

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-85

MulTransposed
Calculates product of array and transposed
array.

void cvMulTransposed (const CvArr* A, CvArr* C, int order);

A Pointer to the source array.

C Pointer to the destination array.

order Order of multipliers.

Discussion

The function MulTransposed calculates the product of A and its transposition.

The function evaluates if order is non-zero, otherwise.

Invert
Inverts array.

void cvInvert (const CvArr* A, CvArr* B);

A Pointer to the source array.

B Pointer to the destination array.

Discussion

The function Invert inverts A and stores the result in B.

.

The function name Inv can be used as a synonym for Invert.

B A
T
A= B AA

T
=

B A
1–
AB, BA I= = =

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-86

Trace
Returns trace of array.

CvScalar cvTrace (const CvArr* A);

A Pointer to the source array.

Discussion

The function Trace returns the sum of diagonal elements of the array A.

.

Det
Returns determinant of array.

CvScalar cvDet (const CvArr* A);

A Pointer to the source array.

Discussion

The function Det returns the determinant of the array A.

Mahalonobis
Calculates Mahalonobis distance between
vectors.

double cvMahalonobis (const CvArr* A, const CvArr* B, CvArr* T);

A Pointer to the first source vector.

trA Aii
i

∑=

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-87

B Pointer to the second source vector.

T Pointer to the inverse covariance array.

Discussion

The function Mahalonobis calculates the weighted distance between two vectors and
returns it:

.

Transpose
Transposes array.

void cvTranspose (const CvArr* A, CvArr* B);

A Pointer to the source array.

B Pointer to the destination array.

Discussion

The function Transpose transposes A and stores result in B.

, .

The function name T can be used as a synonym of Transpose.

Flip
Reflects array around horizontal or vertical axis
or both.

void cvFlip (const CvArr* A, CvArr* B, int flipMode);

dist Tij Ai Bi–() Aj Bj–()
i j,
∑=

B A
T

= Bij Aji=

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-88

A Pointer to the source array.

B Pointer to the destination array.

flipMode Flip mode; specifies an axis to reflect the array around.

Discussion

The function Flip flips array A horizontally, vertically or in both directions and stores
the result in C. Both arrays must be of the same size or selected ROI size and of the
same type.

Let array A have M rows and N columns, then array C is calculated as follows:

, if flipMode = 0,

, if flipMode > 0,

, if flipMode < 0.

Reshape
Changes dimensions and/or number of channels
in matrix.

CvMat* cvReshape (const CvArr* A, CvMat* header, int newNumChannels, int
newRows = 0);

A Source matrix.

header Destination matrix header; the data must not be allocated because
data pointer is taken from the source matrix and the previous
pointer is lost.

newNumChannels New number of channels.

newRows New number of rows; the default value is 0 and it means that the
number of rows is not changed.

CM i– 1 j,– Aij=

Ci N j– 1–, Aij=

CM i– 1 N j– 1–,– Aij=

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-89

Discussion

The function Reshape initializes destination header with the parameters of the source
matrix but with a different number of channels and/or a different number of rows. The
new number of columns is calculated from these new parameters. The following
examples illustrate use of the function:

1. Suppose, A is a 3x3 floating-point matrix and is treated as a 1D
vector of 9 elements. It is done via:

CvMat vec;

cvReshape(A, &vec, 1, 1); // leave a single-channel and change number
of rows to 1.

2. Suppose, A is a YUV video frame with interleaved channels and
decimated U and V planes: Y0 U0 Y1 V0 Y2 U1 Y3 V1 …, treated as
a 4-channel image where each element (quadruple) represents two
pixels in the original image. The respective code is as follows:

CvMat c1img;

cvReshape(A, &c1img, 4, 0); // make the image 4-channel and leave the
number of rows unchanged.

After that call the function CvtPixToPlane may be used to extract U, V and two halves
of Y planes.

The number of rows can be changed only if the matrix is continuous, i.e., no gaps
exist between subsequent rows. Also, if the number of channels changes, a new
number of columns should be a multiple of the new number of channels.

SetZero
Sets array to zero.

void cvSetZero (CvArr* A);

A Pointer to the array to be set to zero.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-90

Discussion

The function SetZero sets the array to zero.

.

The function name Zero can be used as a synonym for SetZero.

SetIdentity
Sets array to identity.

void cvSetIdentity (CvArr* A);

A Pointer to the array to be set to identity.

Discussion

The function SetIdentity sets the array to identity.

, .

SVD
Performs singular value decomposition of matrix.

void cvSVD (CvArr* A, CvArr* W, CvArr* U = 0, CvArr* V = 0, int flags = 0);

A Source matrix.

W Resulting singular value matrix or vector.

U Optional left orthogonal matrix.

V Optional right orthogonal matrix.

flags Operation flags; can be combination of the following:

• CV_SVD_MODIFY_A enables modification of matrix A

during the operation. It makes the processing faster.

A 0 Aij, 0= =

A I= Aij δij
1 i, j=

0 i j≠,

==

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-91

• CV_SVD_U_T means that the matrix U is transposed on
exit.

• CV_SVD_V_T means that the matrix V is transposed on
exit.

Discussion

The function SVD decomposes matrix A into a product of a diagonal matrix and two
orthogonal matrices:

, where

A is an arbitrary M x N matrix,

U is an orthogonal M x M matrix,

V is an orthogonal N x N matrix,

W is a diagonal M x N matrix with non-negative diagonal elements or
just a vector of min(M,N) elements storing diagonal elements.

The function SVD is numerically robust and its typical applications include:

• accurate eigenvalue problem solution when matrix A is
symmetric and positively defined, e.g., it is a covariation matrix

• accurate solution of poor-conditioned linear systems

• least-squares solution of overdetermined linear systems

• accurate calculation of different matrix characteristics such as
rank, condition number, determinant, L2-norm. This does not
require calculation of U and V matrices.

See also PseudoInv function.

PseudoInv
Finds pseudo inverse of matrix.

void cvPseudoInv (CvArr* A, CvArr* B, int flags = 0);

A U
T
WV=

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-92

A Source matrix.

W Resultant pseudo inverse matrix.

flags Operation flags - 0 or CV_SVD_MODIFY_A, which means that the
function can modify matrix A during processing.

Discussion

The function PseudoInv finds pseudo inverse of matrix A using the function SVD:

, where U, V and W from the formula below are components of singular value
decomposition of matrix A, and is calculated as follows:

EigenVV
Computes eigenvalues and eigenvectors of
symmetric array.

void cvEigenVV (CvArr* A, CvArr* evects, CvArr* evals, Double eps);

A Pointer to the source array.

evects Pointer to the array where eigenvectors must be stored.

evals Pointer to the array where eigenvalues must be stored.

eps Accuracy of diagonalization.

Discussion

The function EigenVV computes the eigenvalues and eigenvectors of the array A and
stores them in the parameters evals and evects correspondingly. Jacobi method is
used. Eigenvectors are stored in successive rows of array eigenvectors. The resultant
eigenvalues are in descending order.

B V
T
W̃U=

W̃

W̃ i j,

1
W i j,

--------------- , W i j, 0≠

0 , else

=

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-93

PerspectiveTransform
Implements general transform of 3D vector array.

void cvPerspectiveTransform (const CvArr* A, CvArr* B, const CvArr* M);

A Pointer to the source three-channel floating-point array, 32f or 64f.

B Pointer to the destination three-channel floating-point array, 32f or
64f.

M 4x4 transformation array.

Discussion

The function PerspectiveTransform maps every element of array A - 3D vector
to , where

and .

NOTE. The function EigenVV destroys the source array A. Therefore,
if the source array is needed after eigenvalues have been calculated,
clone it before running the function EigenVV.

x y z, ,()T x' w y' w z' w⁄,⁄,⁄()T

x' y' z' w', , ,()T M x y z l, , ,()T×= w
w' w' 0≠,
1 w' 0=,

=

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-94

Drawing Primitives Reference

Line
Draws simple or thick line segment.

void cvLine (IplImage* img, CvPoint pt1, CvPoint pt2, int color, int
thickness=1);

img Image.

pt1 First point of the line segment.

pt2 Second point of the line segment.

color Line color (RGB) or brightness (grayscale image).

thickness Line thickness.

Discussion

The function Line draws the line segment between pt1 and pt2 points in the image.
The line is clipped by the image or ROI rectangle. The Bresenham algorithm is used
for simple line segments. Thick lines are drawn with rounding endings. To specify the
line color, the user may use the macro CV_RGB (r, g, b) that makes a 32-bit color value
from the color components.

LineAA
Draws antialiased line segment.

void cvLineAA (IplImage* img, CvPoint pt1, CvPoint pt2, int color, int
scale=0);

img Image.

pt1 First point of the line segment.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-95

pt2 Second point of the line segment.

color Line color (RGB) or brightness (grayscale image).

scale Number of fractional bits in the end point coordinates.

Discussion

The function LineAA draws the line segment between pt1 and pt2 points in the image.
The line is clipped by the image or ROI rectangle. Drawing algorithm includes some
sort of Gaussian filtering to get a smooth picture. To specify the line color, the user
may use the macro CV_RGB (r, g, b) that makes a 32-bit color value from the color
components.

Rectangle
Draws simple, thick or filled rectangle.

void cvRectangle (IplImage* img, CvPoint pt1, CvPoint pt2, int color, int
thickness);

img Image.

pt1 One of the rectangle vertices.

pt2 Opposite rectangle vertex.

color Line color (RGB) or brightness (grayscale image).

thickness Thickness of lines that make up the rectangle.

Discussion

The function Rectangle draws a rectangle with two opposite corners pt1 and pt2. If
the parameter thickness is positive or zero, the outline of the rectangle is drawn with
that thickness, otherwise a filled rectangle is drawn.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-96

Circle
Draws simple, thick or filled circle.

void cvCircle (IplImage* img, CvPoint center, int radius, int color,
int thickness=1);

img Image where the line is drawn.

center Center of the circle.

radius Radius of the circle.

color Circle color (RGB) or brightness (grayscale image).

thickness Thickness of the circle outline if positive, otherwise indicates that a
filled circle is to be drawn.

Discussion

The function Circle draws a simple or filled circle with given center and radius. The
circle is clipped by ROI rectangle. The Bresenham algorithm is used both for simple
and filled circles. To specify the circle color, the user may use the macro CV_RGB (r, g,
b) that makes a 32-bit color value from the color components.

Ellipse
Draws simple or thick elliptic arc or fills ellipse
sector.

void cvEllipse (IplImage* img, CvPoint center, CvSize axes, double angle,
double startAngle, double endAngle, int color, int thickness=1);

img Image.

center Center of the ellipse.

axes Length of the ellipse axes.

angle Rotation angle.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-97

startAngle Starting angle of the elliptic arc.

endAngle Ending angle of the elliptic arc.

color Ellipse color (RGB) or brightness (grayscale image).

thickness Thickness of the ellipse arc.

Discussion

The function Ellipse draws a simple or thick elliptic arc or fills an ellipse sector. The
arc is clipped by ROI rectangle. The generalized Bresenham algorithm for conic
section is used for simple elliptic arcs here, and piecewise-linear approximation is used
for antialiased arcs and thick arcs. All the angles are given in degrees. Figure 14-3
shows the meaning of the parameters.

Figure 14-3 Parameters of Elliptic Arc

Drawn Arc

First Ellipse Axis

Second Ellipse Axis

Rotation Angle

Starting Angle of the Arc

Ending Angle of the Arc

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-98

EllipseAA
Draws antialiased elliptic arc.

void cvEllipseAA (IplImage* img, CvPoint center, CvSize axes, double angle,
double startAngle, double endAngle, int color, int scale=0);

img Image.

center Center of the ellipse.

axes Length of the ellipse axes.

angle Rotation angle.

startAngle Starting angle of the elliptic arc.

endAngle Ending angle of the elliptic arc.

color Ellipse color (RGB) or brightness (grayscale image).

scale Specifies the number of fractional bits in the center coordinates and
axes sizes.

Discussion

The function EllipseAA draws an antialiased elliptic arc. The arc is clipped by ROI
rectangle. The generalized Bresenham algorithm for conic section is used for simple
elliptic arcs here, and piecewise-linear approximation is used for antialiased arcs and
thick arcs. All the angles are in degrees. Figure 14-3 shows the meaning of the
parameters.

FillPoly
Fills polygons interior.

void cvFillPoly (IplImage* img, CvPoint** pts, int* npts, int contours,
int color);

img Image.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-99

pts Array of pointers to polygons.

npts Array of polygon vertex counters.

contours Number of contours that bind the filled region.

color Polygon color (RGB) or brightness (grayscale image).

Discussion

The function FillPoly fills an area bounded by several polygonal contours. The
function fills complex areas, for example, areas with holes, contour self-intersection,
etc.

FillConvexPoly
Fills convex polygon.

void cvFillConvexPoly (IplImage* img, CvPoint* pts, int npts, int color);

img Image.

pts Array of pointers to a single polygon.

npts Polygon vertex counter.

color Polygon color (RGB) or brightness (grayscale image).

Discussion

The function FillConvexPoly fills convex polygon interior. This function is much
faster than the function FillPoly and fills not only the convex polygon but any
monotonic polygon, that is, a polygon whose contour intersects every horizontal line
(scan line) twice at the most.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-100

PolyLine
Draws simple or thick polygons.

void cvPolyLine (IplImage* img, CvPoint** pts, int* npts, int contours, int
isClosed, int color, int thickness=1);

img Image.

pts Array of pointers to polylines.

npts Array of polyline vertex counters.

contours Number of polyline contours.

isClosed Indicates whether the polylines must be drawn closed. If closed, the
function draws the line from the last vertex of every contour to the
first vertex.

color Polygon color (RGB) or brightness (grayscale image).

thickness Thickness of the polyline edges.

Discussion

The function PolyLine draws a set of simple or thick polylines.

PolyLineAA
Draws antialiased polygons.

void cvPolyLineAA (IplImage* img, CvPoint** pts, int* npts, int contours, int
isClosed, int color, int scale=0);

img Image.

pts Array of pointers to polylines.

npts Array of polyline vertex counters.

contours Number of polyline contours.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-101

isClosed Indicates whether the polylines must be drawn closed. If closed, the
function draws the line from the last vertex of every contour to the
first vertex.

color Polygon color (RGB) or brightness (grayscale image).

scale Specifies number of fractional bits in the coordinates of polyline
vertices.

Discussion

The function PolyLineAA draws a set of antialiased polylines.

InitFont
Initializes font structure.

void cvInitFont (CvFont* font, CvFontFace fontFace, float hscale, float
vscale, float italicScale, int thickness);

font Pointer to the resultant font structure.

fontFace Font name identifier. Only the font CV_FONT_VECTOR0 is currently
supported.

hscale Horizontal scale. If equal to 1.0f, the characters have the original
width depending on the font type. If equal to 0.5f, the characters are
of half the original width.

vscale Vertical scale. If equal to 1.0f, the characters have the original
height depending on the font type. If equal to 0.5f, the characters are
of half the original height.

italicScale Approximate tangent of the character slope relative to the vertical
line. Zero value means a non-italic font, 1.0f means ~45× slope, etc.

thickness Thickness of lines composing letters outlines. The function cvLine

is used for drawing letters.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-102

Discussion

The function InitFont initializes the font structure that can be passed further into text
drawing functions. Although only one font is supported, it is possible to get different
font flavors by varying the scale parameters, slope, and thickness.

PutText
Draws text string.

void cvPutText (IplImage* img, const char* text, CvPoint org, CvFont* font, int
color);

img Input image.

text String to print.

org Coordinates of the bottom-left corner of the first letter.

font Pointer to the font structure.

color Text color (RGB) or brightness (grayscale image).

Discussion

The function PutText renders the text in the image with the specified font and color.
The printed text is clipped by ROI rectangle. Symbols that do not belong to the
specified font are replaced with the rectangle symbol.

GetTextSize
Retrieves width and height of text string.

void cvGetTextSize (CvFont* font, const char* textString, CvSize* textSize,
int* ymin);

font Pointer to the font structure.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-103

textString Input string.

textSize Resultant size of the text string. Height of the text does not include
the height of character parts that are below the baseline.

ymin Lowest y coordinate of the text relative to the baseline. Negative, if
the text includes such characters as g, j, p, q, y, etc., and zero
otherwise.

Discussion

The function GetTextSize calculates the binding rectangle for the given text string
when a specified font is used.

Utility Reference

AbsDiff
Calculates absolute difference between two
images.

void cvAbsDiff (IplImage* srcA, IplImage* srcB, IplImage* dst);

srcA First compared image.

srcB Second compared image.

dst Destination image.

Discussion

The function AbsDiff calculates absolute difference between two images.

.dst x y),(abs srcA x y),(srcB x y),(–()=

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-104

AbsDiffS
Calculates absolute difference between image
and scalar.

void cvAbsDiffS (IplImage* srcA, IplImage* dst, double value);

srcA Compared image.

dst Destination image.

value Value to compare.

Discussion

The function AbsDiffS calculates absolute difference between an image and a scalar.

.

MatchTemplate
Fills characteristic image for given image and
template.

void cvMatchTemplate (IplImage* img, IplImage* templ, IplImage* result,
CvTemplMatchMethod method);

img Image where the search is running.

templ Searched template; must be not greater than the source image. The
parameters img and templ must be single-channel images and have
the same depth (IPL_DEPTH_8U, IPL_DEPTH_8S, or
IPL_DEPTH_32F).

result Output characteristic image. It has to be a single-channel image with
depth equal to IPL_DEPTH_32F. If the parameter img has the size of

and the template has the size , the resulting image must
have the size or selected ROI .

dst x y(,) abs srcA x y(,) value–()=

W H× w h×
W w– 1 H h– 1+×+

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-105

method Specifies the way the template must be compared with image
regions.

Discussion

The function MatchTemplate implements a set of methods for finding the image
regions that are similar to the given template.

Given a source image with pixels and a template with pixels, the resulting
image has pixels, and the pixel value in each location (x,y)
characterizes the similarity between the template and the image rectangle with the
top-left corner at (x,y) and the right-bottom corner at (x + w - 1, y + h - 1).
Similarity can be calculated in several ways:

Squared difference (method == CV_TM_SQDIFF)

,

where I(x,y) is the value of the image pixel in the location (x,y), while T(x,y) is the
value of the template pixel in the location (x,y).

Normalized squared difference (method == CV_TM_SQDIFF_NORMED)

.

Cross correlation (method == CV_TM_CCORR):

.

Cross correlation, normalized (method == CV_TM_CCORR_NORMED):

W H× w h×
W w– 1 H h– 1+×+

S x y,() T x' y',() I x x' y y'+,+()–[] 2

x' 0=

w 1–

∑
y' 0=

h 1–

∑=

S x y,()

T x' y',() I x x' y y'+,+()–[] 2

x' 0=

w 1–

∑
y' 0=

h 1–

∑

T x' y',()2
I x x' y y'+,+()2

x' 0=

w 1–

∑
y' 0=

h 1–

∑
x' 0=

w 1–

∑
y' 0=

h 1–

∑

---=

C x y,() T x' y',()I x x' y y'+,+()
x' 0=

w 1–

∑
y' 0=

h 1–

∑=

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-106

.

Correlation coefficient (method == CV_TM_CCOEFF):

,

where , , and where
stands for the average value of pixels in the template raster and stands for the
average value of the pixels in the current window of the image.

Correlation coefficient, normalized (method == CV_TM_CCOEFF_NORMED):

.

After the function MatchTemplate returns the resultant image, probable positions of
the template in the image could be located as the local or global maximums of the
resultant image brightness.

C̃ x y,()

T x' y',()I x x' y y'+,+()
x' 0=

w 1–

∑
y' 0=

h 1–

∑

T x' y',()2
I x x' y y'+,+()2

x' 0=

w 1–

∑
y' 0=

h 1–

∑
x' 0=

w 1–

∑
y' 0=

h 1–

∑

---=

R x y,() T̃ x' y',()Ĩ x x' y y'+,+()
x' 0=

w 1–

∑
y' 0=

h 1–

∑=

T̃ x' y',() T x' y',() T–= I' x x' y y'+,+() I x x' y y'+,+() I x y,()–= T

I x y,()

R̃ x y,()

T̃ x' y',()Ĩ x x' y y'+,+()
x' 0=

w 1–

∑
y' 0=

h 1–

∑

T̃ x' y',()2
Ĩ x x' y y'+,+()2

x' 0=

w 1–

∑
y' 0=

h 1–

∑
x' 0=

w 1–

∑
y' 0=

h 1–

∑

---=

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-107

CvtPixToPlane
Divides pixel image into separate planes.

void cvCvtPixToPlane (IplImage* src, IplImage* dst0, IplImage* dst1, IplImage*
dst2, IplImage* dst3);

src Source image.

dst0…dst3 Destination planes.

Discussion

The function CvtPixToPlane divides a color image into separate planes. Two modes
are available for the operation. Under the first mode the parameters dst0, dst1, and
dst2 are non-zero, while dst3 must be zero for the three-channel source image. For
the four-channel source image all the destination image pointers are non-zero. In this
case the function splits the three/four channel image into separate planes and writes
them to destination images. Under the second mode only one of the destination images
is not NULL; in this case, the corresponding plane is extracted from the image and
placed into destination image.

CvtPlaneToPix
Composes color image from separate planes.

void cvCvtPlaneToPix (IplImage* src0, IplImage* src1, IplImage* src2,
IplImage* src3, IplImage* dst);

src0…src3 Source planes.

dst Destination image.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-108

Discussion

The function CvtPlaneToPix composes a color image from separate planes. If the dst
has three channels, then src0, src1, and src2 must be non-zero, otherwise dst must
have four channels and all the source images must be non-zero.

ConvertScale
Converts one image to another with linear
transformation.

void cvConvertScale (IplImage* src, IplImage* dst, double scale, double
shift);

src Source image.

dst Destination image.

scale Scale factor.

shift Value added to the scaled source image pixels.

Discussion

The function ConvertScale applies linear transform to all pixels in the source image
and puts the result into the destination image with appropriate type conversion. The
following conversions are supported:

IPL_DEPTH_8U ↔ IPL_DEPTH_32F,

IPL_DEPTH_8U ↔ IPL_DEPTH_16S,

IPL_DEPTH_8S ↔ IPL_DEPTH_32F,

IPL_DEPTH_8S ↔ IPL_DEPTH_16S,

IPL_DEPTH_16S ↔ IPL_DEPTH_32F,

IPL_DEPTH_32S ↔ IPL_DEPTH_32F.

Applying the following formula converts integer types to float:

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-109

dst(x,y) = (float)(src(x,y)*scale + shift),

while the following formula does the other conversions:

dst(x,y) = saturate(round(src(x,y)*scale + shift)),

where round function converts the floating-point number to the nearest integer number
and saturate function performs as follows:

• Destination depth is IPL_DEPTH_8U: saturate(x) = x < 0 ? 0 : x > 255 ?

255 : x

• Destination depth is IPL_DEPTH_8S: saturate(x) = x < -128 ? –128 : x >

127 ? 127 : x

• Destination depth is IPL_DEPTH_16S: saturate(x) = x < -32768 ? –32768 :

x > 32767 ? 32767 : x

• Destination depth is IPL_DEPTH_32S: saturate(x) = x.

LUT
Performs look-up table transformation on image.

CvMat* cvLUT (const CvArr* A, CvArr* B, const CvArr* lut);

A Source image of 8-bit elements.

B Destination array of arbitrary depth and of the same number of
channels as the source array has.

lut Look-up table of 256 elements; should be of the same depth as the
destination array.

Discussion

The function LUT fills the destination array with values of look-up table entries.
Indices of the entries are taken from the source array. That is, the function
processes each pixel as follows:

, where is equal to 0 for 8u source image and to 128 for 8s
source image.
Bij lut Aij ∆+[]= ∆

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-110

InitLineIterator
Initializes line iterator.

int cvInitLineIterator (IplImage* img, CvPoint pt1, CvPoint pt2,
CvLineIterator* lineIterator);

img Image.

pt1 Starting the line point.

pt2 Ending the line point.

lineIterator Pointer to the line iterator state structure.

Discussion

The function InitLineIterator initializes the line iterator and returns the number of
pixels between two end points. Both points must be inside the image. After the iterator
has been initialized, all the points on the raster line that connects the two ending points
may be retrieved by successive calls of CV_NEXT_LINE_POINT point. The points on the
line are calculated one by one using the 8-point connected Bresenham algorithm. See
Example 14-17 for the method of drawing the line in the RGB image with the image
pixels that belong to the line mixed with the given color using the XOR operation.

Example 14-17 Drawing Line Using XOR Operation

void put_xor_line(IplImage* img, CvPoint pt1, CvPoint pt2, int r, int
g, int b) {
CvLineIterator iterator;
int count = cvInitLineIterator(img, pt1, pt2, &iterator);
for(int i = 0; i < count; i++){
iterator.ptr[0] ^= (uchar)b;
iterator.ptr[1] ^= (uchar)g;
iterator.ptr[2] ^= (uchar)r;
CV_NEXT_LINE_POINT(iterator);
}
}

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-111

SampleLine
Reads raster line to buffer.

int cvSampleLine (IplImage* img, CvPoint pt1, CvPoint pt2, void* buffer);

img Image.

pt1 Starting the line point.

pt2 Ending the line point.

buffer Buffer to store the line points; must have enough size to store
MAX(|pt2.x - pt1.x| + 1,|pt2.y - pt1.y|+1) points.

Discussion

The function SampleLine implements a particular case of application of line iterators.
The function reads all the image points lying on the line between pt1 and pt2,
including the ending points, and stores them into the buffer.

GetRectSubPix
Retrieves raster rectangle from image with
sub-pixel accuracy.

void cvGetRectSubPix (IplImage* src, IplImage* rect, CvPoint2D32f center);

src Source image.

rect Extracted rectangle; must have odd width and height.

center Floating point coordinates of the rectangle center. The center must be
inside the image.

Discussion

The function GetRectSubPix extracts pixels from src, if the pixel coordinates meet
the following conditions:

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-112

center.x –(widthrect-1)/2 <= x <= center.x + (widthrect-1)/2;

center.y -(heightrect-1)/2 <= y <= center.y +(heightrect-1)/2.

Since the center coordinates are not integer, bilinear interpolation is applied to get the
values of pixels in non-integer locations. Although the rectangle center must be inside
the image, the whole rectangle may be partially occluded. In this case, the pixel values
are spread from the boundaries outside the image to approximate values of occluded
pixels.

bFastArctan
Calculates fast arctangent approximation for
arrays of abscissas and ordinates.

void cvbFastAcrtan (const float* y, const float* x, float* angle, int len);

y Array of ordinates.

x Array of abscissas.

angle Calculated angles of points (x[i],y[i]).

len Number of elements in the arrays.

Discussion

The function bFastAcrtan calculates an approximate arctangent value, the angle of
the point (x,y). The angle is in the range from 0° to 360°. Accuracy is about 0.1°. For
point (0,0) the resultant angle is 0.

Sqrt
Calculates square root of single float.

float cvSqrt (float x);

x Scalar argument.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-113

Discussion

The function Sqrt calculates square root of a single argument. The argument should
be non-negative, otherwise the result is unpredictable. The relative error is less than
9e-6.

bSqrt
Calculates square root of array of floats.

void cvbSqrt (const float* x, float* y, int len);

x Array of arguments.

y Resultant array.

len Number of elements in the arrays.

Discussion

The function cvbSqrt calculates the square root of an array of floats. The arguments
should be non-negative, otherwise the results are unpredictable. The relative error is
less than 3e-7.

InvSqrt
Calculates inverse square root of single float.

float cvInvSqrt (float x);

x Scalar argument.

Discussion

The function InvSqrt calculates the inverse square root of a single float. The
argument should be positive, otherwise the result is unpredictable. The relative error is
less than 9e-6.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-114

bInvSqrt
Calculates inverse square root of array of floats.

void cvbInvSqrt (const float* x, float* y, int len);

x Array of arguments.

y Resultant array.

len Number of elements in the arrays.

Discussion

The function bInvSqrt calculates the inverse square root of an array of floats. The
arguments should be positive, otherwise the results are unpredictable. The relative
error is less than 3e-7.

bReciprocal
Calculates inverse of array of floats.

void cvbReciprocal (const float* x, float* y, int len);

x Array of arguments.

y Resultant array.

len Number of elements in the arrays.

Discussion

The function bReciprocal calculates the inverse (1/x) of arguments. The arguments
should be non-zero. The function gives a very precise result with the relative error less
than 1e-7.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-115

bCartToPolar
Calculates magnitude and angle for array of
abscissas and ordinates.

void cvbCartToPolar (const float* y, const float* x, float* mag, float* angle,
int len);

y Array of ordinates.

x Array of abscissas.

mag Calculated magnitudes of points (x[i],y[i]).

angle Calculated angles of points (x[i],y[i]).

len Number of elements in the arrays.

Discussion

The function bCartToPolar calculates the magnitude and the angle
of each point (x[i],y[i]). The angle is measured in degrees and

varies from 0° to 360°. The function is a combination of the functions bFastArctan
and bSqrt, so the accuracy is the same as in these functions. If pointers to the angle
array or the magnitude array are NULL, the corresponding part is not calculated.

bFastExp
Calculates fast exponent approximation for array
of floats.

void cvbFastExp (const float* x, double* exp_x, int len);

x Array of arguments.

exp_x Array of results.

len Number of elements in the arrays.

x i[] 2
y i[] 2

+

arctan y i[] x i[]⁄()

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-116

Discussion

The function bFastExp calculates fast exponent approximation for each element of
the input array. The maximal relative error is about 7e-6.

bFastLog
Calculates fast approximation of natural
logarithm for array of doubles.

void cvbFastLog (const double* x, float* log_x, int len);

x Array of arguments.

log_x Array of results.

len Number of elements in the arrays.

Discussion

The function bFastLog calculates fast logarithm approximation for each element of
the input array. Maximal relative error is about 7e-6.

RandInit
Initializes state of random number generator.

void cvRandInit (CvRandState* state, float lower, float upper, int seed);

state Pointer to the initialized random number generator state.

lower Lower boundary of uniform distribution.

upper Upper boundary of uniform distribution.

seed Initial 32-bit value to start a random sequence.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-117

Discussion

The function RandInit initializes the state structure that is used for generating
uniformly distributed numbers in the range [lower, upper). A multiply-with-carry
generator is used.

bRand
Fills array with random numbers.

void cvbRand (CvRandState* state, float* x, int len);

state Random number generator state.

x Destination array.

len Number of elements in the array.

Discussion

The function bRand fills the array with random numbers and updates generator state.

Rand
Fills array with uniformly distributed random
numbers.

void cvRand (CvRandState* state, CvArr* arr);

state RNG state initialized by the function RandInit and, optionally, by
RandSetRange.

arr Destination array.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-118

Discussion

The function Rand fills the destination array with uniformly distributed random
numbers and updates RNG state.

FillImage
Fills image with constant value.

void cvFillImage (IplImage* img, double val);

img Filled image.

val Value to fill the image.

Discussion

The function FillImage is equivalent to either iplSetFP or iplSet, depending on the
pixel type, that is, floating-point or integer.

RandSetRange
Sets range of generated random numbers without
reinitializing RNG state.

void cvRandSetRange (CvRandState* state, double lower, double upper);

state State of random number generator (RNG).

lower New lower bound of generated numbers.

upper New upper bound of generated numbers.

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-119

Discussion

The function RandSetRange changes the range of generated random numbers without
reinitializing RNG state. For the current implementation of RNG the function is
equivalent to the following code:

unsigned seed = state.seed;

unsigned carry = state.carry;

cvRandInit(&state, lower, upper, 0);

state.seed = seed;

state.carry = carry;

However, the function is preferable because of compatibility with the next versions of
the library.

KMeans
Splits set of vectors into given number of clusters.

void cvKMeans (int numClusters, CvVect32f* samples, int numSamples, int
vecSize, CvTermCriteria termcrit, int* cluster);

numClusters Number of required clusters.

samples Pointer to the array of input vectors.

numSamples Number of input vectors.

vecSize Size of every input vector.

termcrit Criteria of iterative algorithm termination.

cluster Characteristic array of cluster numbers, corresponding to each input
vector.

Discussion

The function KMeans iteratively adjusts mean vectors of every cluster. Termination
criteria must be used to stop the execution of the algorithm. At every iteration the
convergence value is computed as follows:

OpenCV Reference Manual Basic Structures and Operations Reference 14

14-120

.

The function terminates if .

old_meani new_meani–
2

i 1=

K

∑

E Termcrit.epsilon<

15-1

15System Functions

This chapter describes system library functions.

LoadPrimitives
Loads optimized versions of functions for specific
platform.

int cvLoadPrimitives (char* dllName, char* processorType);

dllName Name of dynamically linked library without postfix that
contains the optimized versions of functions

processorType Postfix that specifies the platform type:

“W7” for Pentium® 4 processor, “A6” for Intel® Pentium® II
processor, “M6” for Intel® Pentium® II processor, NULL for
auto detection of the platform type.

Table 15-1 System Library Functions

Name Description

LoadPrimitives Loads versions of functions that
are optimized for a specific
platform.

GetLibraryInfo Retrieves information about the
library.

OpenCV Reference Manual System Functions 15

15-2

Discussion

The function LoadPrimitives loads the versions of functions that are optimized for a
specific platform. The function is automatically called before the first call to the library
function, if not called earlier.

GetLibraryInfo
Gets the library information string.

void cvGetLibraryInfo (char** version, int* loaded, char** dllName);

version Pointer to the string that will receive the build date information; can
be NULL.

loaded Postfix that specifies the platform type:

“W7” for Pentium® 4 processor, “A6” for Intel® Pentium® III
processor, “M6” for Intel® Pentium® II processor, NULL for auto
detection of the platform type.

dllName Pointer to the full name of dynamically linked library without path,
could be NULL.

Discussion

The function GetLibraryInfo retrieves information about the library: the build date,
the flag that indicates whether optimized DLLs have been loaded or not, and their
names, if loaded.

16-1

16Bibliography

This bibliography provides a list of publications that might be useful to the Intel®

Computer Vision Library users. This list is not complete; it serves only as a starting
point.

[Borgefors86] Gunilla Borgefors. Distance Transformations in Digital Images.
Computer Vision, Graphics and Image Processing 34, 344-371
(1986).

[Bradski00] G. Bradski and J. Davis. Motion Segmentation and Pose Recognition
with Motion History Gradients. IEEE WACV'00, 2000.

[Burt81] P. J. Burt, T. H. Hong, A. Rosenfeld. Segmentation and Estimation of
Image Region Properties Through Cooperative Hierarchical
Computation. IEEE Tran. On SMC, Vol. 11, N.12, 1981, pp.
802-809.

[Canny86] J. Canny. A Computational Approach to Edge Detection, IEEE
Trans. on Pattern Analysis and Machine Intelligence, 8(6), pp.
679-698 (1986).

[Davis97] J. Davis and Bobick. The Representation and Recognition of Action
Using Temporal Templates. MIT Media Lab Technical Report 402,
1997.

[DeMenthon92] Daniel F. DeMenthon and Larry S. Davis. Model-Based Object Pose
in 25 Lines of Code. In Proceedings of ECCV '92, pp. 335-343, 1992.

[Fitzgibbon95] Andrew W. Fitzgibbon, R.B.Fisher. A Buyer’s Guide to Conic
Fitting. Proc.5th British Machine Vision Conference, Birmingham,
pp. 513-522, 1995.

[Horn81] Berthold K.P. Horn and Brian G. Schunck. Determining Optical
Flow. Artificial Intelligence, 17, pp. 185-203, 1981.

OpenCV Reference Manual Bibliography 16

16-2

[Hu62] M. Hu. Visual Pattern Recognition by Moment Invariants, IRE
Transactions on Information Theory, 8:2, pp. 179-187, 1962.

[Jahne97] B. Jahne. Digital Image Processing. Springer, New York, 1997.

[Kass88] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour
Models, International Journal of Computer Vision, pp. 321-331,
1988.

[Matas98] J.Matas, C.Galambos, J.Kittler. Progressive Probabilistic Hough
Transform. British Machine Vision Conference, 1998.

[Rosenfeld73] A. Rosenfeld and E. Johnston. Angle Detection on Digital Curves.
IEEE Trans. Computers, 22:875-878, 1973.

[RubnerJan98] Y. Rubner. C. Tomasi, L.J. Guibas. Metrics for Distributions with
Applications to Image Databases. Proceedings of the 1998 IEEE
International Conference on Computer Vision, Bombay, India,
January 1998, pp. 59-66.

[RubnerSept98] Y. Rubner. C. Tomasi, L.J. Guibas. The Earth Mover’s Distance as a
Metric for Image Retrieval. Technical Report STAN-CS-TN-98-86,
Department of Computer Science, Stanford University, September
1998.

[RubnerOct98] Y. Rubner. C. Tomasi. Texture Metrics. Proceeding of the IEEE
International Conference on Systems, Man, and Cybernetics,
San-Diego, CA, October 1998, pp. 4601-4607.

http://robotics.stanford.edu/~rubner/publications.html

[Serra82] J. Serra. Image Analysis and Mathematical Morphology. Academic
Press, 1982.

[Schiele00] Bernt Schiele and James L. Crowley. Recognition without
Correspondence Using Multidimensional Receptive Field
Histograms. In International Journal of Computer Vision 36 (1),
pp. 31-50, January 2000.

[Suzuki85] S. Suzuki, K. Abe. Topological Structural Analysis of Digital Binary
Images by Border Following. CVGIP, v.30, n.1. 1985, pp. 32-46.

[Teh89] C.H. Teh, R.T. Chin. On the Detection of Dominant Points on
Digital Curves. - IEEE Tr. PAMI, 1989, v.11, No.8, p. 859-872.

1

OpenCV Reference Manual Bibliography 16

16-3

[Trucco98] Emanuele Trucco, Alessandro Verri. Introductory Techniques for
3-D Computer Vision. Prentice Hall, Inc., 1998.

[Welsh95] Greg Welsh, Gary Bishop. An Introduction To the Kalman Filter.
Technical Report TR95-041, University of North Carolina at Chapel
Hill, 1995.

[Williams92] D. J. Williams and M. Shah. A Fast Algorithm for Active Contours
and Curvature Estimation. CVGIP: Image Understanding, Vol. 55,
No. 1, pp. 14-26, Jan., 1992.
http://www.cs.ucf.edu/~vision/papers/shah/92/WIS92A.pdf.

[Yuille89] A.Y.Yuille, D.S.Cohen, and P.W.Hallinan. Feature Extraction from
Faces Using Deformable Templates in CVPR, pp. 104-109, 1989.

[Zhang96] Z. Zhang. Parameter Estimation Techniques: A Tutorial with
Application to Conic Fitting, Image and Vision Computing Journal,
1996.

[Zhang99] Z. Zhang. Flexible Camera Calibration By Viewing a Plane From
Unknown Orientations. International Conference on Computer
Vision (ICCV'99), Corfu, Greece, pages 666-673, September 1999.

[Zhang00] Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
22(11):1330-1334, 2000.

Williams92
Williams92
http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html

A-1

A
Supported Image Attributes
and Operation Modes

The table below specifies what combinations of input/output parameters are accepted
by different OpenCV functions. Currently, the table describes only array-processing
functions, that is, functions, taking on input, output or both the structures IplImage
and CvMat. Functions, working with complex data structures, e.g., contour processing,
computational geometry, etc. are not included yet.

Format is coded in form depth , where depth is coded as number of bits{u|s|f}, u
stands for "integer Unsigned", s stands for "integer Signed" and f stands for "Floating
point".

For example, 8u means 8-bit unsigned image or array, 32f means floating-point image
or array. 8u-64f is a short form of 8u, 8s, 16s, 32s, 32f, 64f.

If a function has several input/output arrays, they all must have the same type unless
opposite is explicitly stated.

Word same in Output Format column means that the output array must have the same
format with input array[s]. Word inplace in Output Format column means that the
function changes content of one of the input arrays and thus produces the output. Word
n/a means that the function output is not an image and format information is not
applicable.

Mask parameter, if present, must have format 8u or 8s.

The following table includes only the functions that have raster images or matrices on
input and/or on output.

OpenCV Reference Manual Supported Image Attributes and Operation Modes A

A-2

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions

Function Input Format

Number
of
Channels Output Format

AbsDiff 8u - 64f 1 - 4 same

AbsDiffS 8u - 64f 1 - 4 same

Acc src = 8u, 8s,
32f

acc = 32f (same
channels number as
src)

1, 3

1 - 3

inplace

AdaptiveThreshold 8u, 8s, 32f 1 same

Add 8u, 16s, 32s,
32f, 64f

1 - 4 same

AddS 8u, 16s, 32s,
32f, 64f

1 - 4 same

And 8u - 64f 1 - 4 same

AndS 8u - 64f 1 - 4 same

bCartToPolar 32f 1 32f

bFastArctan 32f 1 32f

bFastExp 32f 1 64f

bFastLog 64f 1 64f

bInvSqrt 32f 1 32f

bRand none 1 32f

bReciprocal 32f 1 32f

bSqrt 32f 1 32f

CalcAffineFlowPyrLK img = 8u 1 32f

CalcBackProject histogram, img
= 8u, 8s, 32f

1 same as img

CalcEigenObjects img = 8u 1 eig = 32f

CalcGlobalOrientation mhi =32f,orient
= 32f, mask = 8u

1 32f

OpenCV Reference Manual Supported Image Attributes and Operation Modes A

A-3

CalcHist img = 8u, 8s,
32f

1 histogram

CalcMotionGradient mhi = 32f 1 orient = 32f,
mask

CalcOpticalFlowBM 8u 1 32f

CalcOpticalFlowHS 8u 1 32f

CalcOpticalFlowLK 8u 1 32f

CalcOpticalFlowPyrLK img = 8u 1 32f

CamShift 8u, 8s, 32f 1 n/a

Canny 8u 1 8u

Circle 8u - 64f 1 - 4 inplace

CircleAA 8u 1, 3 inplace

Cmp 8u - 64f 1 - 4 8u

CmpS 8u - 64f 1 - 4 8u

ConvertScale 8u - 64f 1 - 4 8u - 64f, the
same channels
number

Copy 8u - 64f 1 - 4 same

CornerEigenValsAndVecs 8u, 8s, 32f 1 32f

CornerMinEigenVal 8u, 8s, 32f 1 32f

CountNonZero 8u - 64f 1 - 4 64f

CrossProduct 32f, 64f 1, 3 same (array size=3)

CvtPixToPlane 8u - 64f input - 2, 3
or 4,
output - 1

8u - 64f

CvtPlaneToPix 8u - 64f input - 1,
output -
2,3 or 4

8u - 64f

Det 32f, 64f 1 CvScalar

Dilate 8u, 32f 1, 3, 4 same

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)

Function Input Format

Number
of
Channels Output Format

OpenCV Reference Manual Supported Image Attributes and Operation Modes A

A-4

DistTransform 8u, 8s 1 32f

8u - 64f 1 - 4 double

DrawContours contour, img =
8u - 64f

1 - 4 inplace

EigenVV 32f, 64f 1 same

Ellipse 8u - 64f 1 - 4 inplace

EllipseAA 8u 1, 3 inplace

Erode 8u, 32f 1, 3, 4 same

FillConvexPoly 8u - 64f 1 - 4 inplace

FillPoly 8u - 64f 1 - 4 inplace

FindChessBoardCornerGuesses 8u 1 n/a

FindContours img = 8u, 8s 1 contour

FindCornerSubPix img = 8u, 8s,
32f

1 n/a

Flip 8u - 64f 1 - 4 same

FloodFill 8u, 32f 1 inplace

GetRectSubPix 8u, 8s, 32f,
64f

1 same or 32f or 64f
for 8u & 8s

GoodFeaturesToTrack img = 8u, 8s,
32f, eig = 32f,
temp = 32f

1 n/a

HoughLines img = 8u 1 n/a

HoughLinesP img = 8u 1 n/a

HoughLinesSDiv img = 8u 1 n/a

ImgToObs_DCT img = 8u 1 n/a

Invert 32f, 64f 1 same

Laplace 8u, 8s, 32f 1 16s, 32f

Line 8u - 64f 1 - 4 inplace

LineAA 8u 1, 3 inplace

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)

Function Input Format

Number
of
Channels Output Format

OpenCV Reference Manual Supported Image Attributes and Operation Modes A

A-5

LUT 8u - 8s 1 - 4 8u - 64f

MatchTemplate 8u, 8s, 32f 1 32f

MatMulAdd 32f, 64f 1, 2 same

MatMulAddS 8u, 32s, 32f,
64f

2, 3, 4 same

MatMulAddEx 32f, 64f 1 same

Mean 8u - 64f 1 - 4 64f

Mean_StdDev 8u - 64f 1 - 4 64f

MeanShift 8u, 8s, 32f 1 n/a

MinMaxLoc 8u - 64f
(coi!=0)

1 - 4 CvPoint, 64f

Moments 8u - 64f
(coi!=0)

1 - 4 CvMoments

MorphologyEx 8u, 32f 1, 3, 4 same

Mul 8u, 16s, 32s,
32f, 64f

1 - 4 same

MulAddS (See Mul) 32f, 64f 1, 2 same

MultiplyAcc src = 8u, 8s,
32f

acc = 32f (same
channels number as
src)

1, 3

1 - 3

inplace

MulTransposed 32f, 64f 1 same

Norm 8u - 64f
(coi!=0, if
mask!=0)

1 - 4 64f

Or 8u - 64f 1 - 4 same

OrS 8u - 64f 1 - 4 same

PerspectiveTransform 32f, 64f 3 same

PolyLine 8u - 64f 1 - 4 inplace

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)

Function Input Format

Number
of
Channels Output Format

OpenCV Reference Manual Supported Image Attributes and Operation Modes A

A-6

PolyLineAA 8u 1, 3 inplace

PreCornerDetect 8u, 8s, 32f 1 32f

PseudoInv 32f, 64f 1 same

PutText 8u - 64f 1 - 4 inplace

PyrDown 8u, 8s, 32f 1, 3 same

PyrSegmentation 8u 1, 3 same

PyrUp 8u, 8s, 32f 1, 3 same

Rand - 1 - 4 8u - 64f

RandNext none 1 32u

Rectangle 8u - 64f 1 - 4 inplace

Reshape 8u - 32f 1 - 4 same depth

RunningAvg src = 8u, 8s,
32f

acc = 32f (same
channels number as
src)

1, 3

1 - 3

inplace

SampleLine 8u - 64f 1 - 4 inplace

ScaleAdd 32f, 64f 1, 2 same

SegmentMotion 32f 1 32f

Set 8u - 64f 1 - 4 inplace

SetIdentity 8u - 64f 1 - 4 inplace

SetZero 8u - 64f 1 - 4 inplace

SnakeImage img = 8u, 8s,
32f

1 n/a

Sobel 8u, 8s, 32f 1 16s, 32f

SquareAcc src = 8u, 8s,
32f

acc = 32f (same
channels number as
src)

1, 3

1 - 3

inplace

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)

Function Input Format

Number
of
Channels Output Format

OpenCV Reference Manual Supported Image Attributes and Operation Modes A

A-7

StartFindContours img = 8u, 8s 1 contour

Sub 8u, 16s, 32s,
32f, 64f

1 - 4 same

SubRS 8u, 16s, 32s,
32f, 64f

1 - 4 same

SubS 8u, 16s, 32s,
32f, 64f

1 - 4 same

SubRS 8u, 16s, 32s,
32f, 64f

1 - 4 same

Sum 8u - 64f 1 - 4 64f

SVD 32f, 64f 1 same

Threshold 8u, 8s, 32f 1 same

Trace 8u - 64f 1 - 4 CvScalar

Invert 8u - 64f 1 - 4 same

UnDistort 8u 1, 3 same

UnDistortOnce 8u 1, 3 same

UpdateMotionHistory mhi = 32f, silh =
8u, 8s

1 mhi = 32f

Xor 8u - 64f 1 - 4 same

XorS 8u - 64f 1 - 4 same

Table A-1 Image Atributes and Operation Modes for Array-Processing Functions (continued)

Function Input Format

Number
of
Channels Output Format

Glossary-1

Glossary

arithmetic operation An operation that adds, subtracts, multiplies, or squares the
image pixel values.

background A set of motionless image pixels, that is, pixels that do not
belong to any object moving in front of the camera. This
definition can vary if considered in other techniques of
object extraction. For example, if a depth map of the scene
is obtained, background can be defined as parts of scene that
are located far enough from the camera.

blob A region, either a positive or negative, that results from
applying the Laplacian to an image. See Laplacian pyramid.

Burt’s algorithm An iterative pyramid-linking algorithm implementing a
combined segmentation and feature computation. The
algorithm finds connected components without a
preliminary threshold, that is, it works on a grayscale image.

CamShift Continuously Adaptive Mean-SHIFT algorithm. It is a
modification of MeanShift algorithm that can track an
object varying in size, e.g., because distance between the
object and the camera varies.

channel of interest channel in the image to process.

COI See channel of interest.

connected component A number of pixels sharing a side (or, in some cases, a
corner as well).

corner An area where level curves multiplied by the gradient
magnitude assume a local maximum.

OpenCV Reference Manual Glossary

Glossary-2

down-sampling Down-sampling conceptually decreases image size by
integer through replacing a pixel block with a single pixel.
For instance, down-sampling by factor of 2 replaces a 2 X 2
block with a single pixel. In image processing convolution
of the original image with blurring or Gaussian kernel
precedes down-sampling.

earth mover distance minimal work needed to translate one point mass
configuration to another, normalized by the total
configuration mass. The EMD is a optimal solution of
transportation problem.

edge A point at which the gradient assumes a local maximum
along the gradient direction.

EMD See earth mover distance.

flood filling Flood filling means that a group of connected pixels with
close values is filled with, or is set to, a certain value. The
flood filling process starts with some point, called “seed”,
that is specified by function caller and then it propagates
until it reaches the image ROI boundary or cannot find any
new pixels to fill due to a large difference in pixel values.

Gaussian pyramid A set of images derived from each other with combination
of convolution with Gaussian kernel and down-sampling.
See down-sampling and up-sampling.

histogram A discrete approximation of stochastic variable probability
distribution. The variable can be both a scalar value and a
vector. Histograms represent a simple statistical description
of an object, e.g., an image. The object characteristics are
measured during iterations through that object

image features See edge, ridge, and blob.

Laplacian pyramid A set of images, which can be obtained by subtracting
upsampled images from the original Gaussian Pyramid, that
is, Li = Gi − up-sample (Gi+1) or Li = Gi − up-sample

OpenCV Reference Manual Glossary

Glossary-3

(down-sample (Gi)), where Li are images from Laplacian
Pyramid and Gi are images from Gaussian Pyramid. See also
down-sampling and up-sampling.

LMIAT See locally minimum interceptive area triangle.

mathematical morphologyA set-theoretic method of image analysis first developed by
Matheron and Serra. The two basic morphological
operations are erosion (thinning) and dilation (thickening).
All operations involve an image A (object of interest) and a
kernel element B (structuring element).

memory storage Storage that provides the space for storing dynamic data
structures. A storage consists of a header and a
double-linked list of memory blocks treated as a stack, that
is, the storage header contains a pointer to the block not
occupied entirely and an integer value, the number of free
bytes in this block.

minimal enclosing circle A circle in a planar point set whose points are entirely
located either inside or on the boundary of the circle.
Minimal means that there is no enclosing circle of a smaller
radius.

MHI See motion history image.

motion history image Motion history image (MHI) represents how the motion
took place. Each MHI pixel has a value of timestamp
corresponding to the latest motion in that pixel. Very early
motions, which occured in the past beyond a certain time
threshold set from the current moment, are cleared out. As
the person or object moves, copying the most recent
foreground silhouette as the highest values in the motion
history image creates a layered history of the resulting
motion.

optical flow An apparent motion of image brightness.

locally minimum
interceptive area triangle

A triangle made of two boundary runs in hierarchical
representation of contours, if the interceptive area of its base
line is smaller than both its neighboring triangles areas.

OpenCV Reference Manual Glossary

Glossary-4

pixel value An integer or float point value that defines brightness of the
image point corresponding to this pixel. For instance, in the
case of 8u format images, the pixel value is an integer
number from 0 to 255.

region of interest A part of the image or a certain color plane in the image, or
both.

ridge Sort of a skeletonized high contrast object within an image.
Ridges are found at points where the gradient is non-zero (or
the gradient is above a small threshold).

ROI See region of interest.

sequence A resizable array of arbitrary type elements located in the
memory storage. The sequence is discontinuous. Sequence
data may be divided into several continuous blocks, called
sequence blocks, that can be located in different memory
blocks.

signature Generalization of histograms under which characteristic
values with rather fine quantization are gathered and only
non-zero bins are dynamically stored.

snake An energy-minimizing parametric closed curve guided by
external forces.

template matching Marking the image regions coinciding with the given
template according to a certain rule (minimum squared
difference or maximum correlation between the region and
template).

tolerance interval Lower and upper levels of pixel values corresponding to
certain conditions. See pixel value.

up-sampling Up-sampling conceptually increases image size through
replacing a single pixel with a pixel block. For instance,
up-sampling by factor of 2 replaces a single pixel with
a 2 X 2 block. In image processing convolution of the
original image with Gaussian kernel, multiplied by the
squared up-sampling factor, follows up-sampling.

Index-1

Index

A
about this manual, 1-4

about this software, 1-1

Active Contours
energy function, 2-15

contour continuity, 2-16
contour continuity energy, 2-16
contour curvature energy, 2-16
external energy, 2-15
internal energy, 2-15
snake corners, 2-17

full snake energy, 2-16

Active Contours Function, 9-11
SnakeImage, 9-11

audience for this manual, 1-8

B
Backgroud Subtraction Functions, 9-3

Background subtraction
background, 2-1
background model, 2-1

Background Subtraction Functions
Acc, 9-3
MultiplyAcc, 9-4
RunningAvg, 9-5
SquareAcc, 9-4

bi-level image, 3-11, 3-15, 3-24

binary tree representation, 4-10

black-and-white image, 3-24

blob, 3-24

Block Matching, 2-20

Burt’s algorithm, 3-17

C
Camera Calibration, 6-1

homography, 6-2
lens distortion, 6-4
pattern, 6-3

Camera Calibration Functions
CalibrateCamera, 13-4
CalibrateCamera_64d, 13-5
FindChessBoardCornerGuesses, 13-11
FindExtrinsicCameraParams, 13-6
FindExtrinsicCameraParams_64d, 13-7
Rodrigues, 13-7
Rodrigues_64d, 13-8
UnDistort, 13-10
UnDistortInit, 13-9
UnDistortOnce, 13-9

camera parameters, 6-1
extrinsic, 6-1

rotation matrix, 6-1, 6-2
translation vector, 6-1, 6-2

intrinsic, 6-1
effective pixel size, 6-1
focal length, 6-1
location of the image center, 6-1
radial distortion coefficient, 6-1

camera undistortion functions, 6-5

CamShift algorithm, 2-9, 2-10, 2-12
calculation of 2D orientation, 2-14
discrete distributions, 2-11

OpenCV Reference Manual Index

Index-2

dynamically changing distributions, 2-11
mass center calculation, 2-11
probability distribution image, 2-10
search window, 2-11
zeroth moment, 2-11

CamShift Functions, 9-9
CamShift, 9-9
MeanShift, 9-10

centroid, 2-11

channel of interest, 7-3

child node, 4-10

CNP, See corresponding node pair

codes
chain codes, 4-1
higher order codes, 4-1

COI, See channel of interest

conic fitting, 4-14

Contour Processing, 4-1
contours moments, 4-5
Douglas-Peucker approximation, 4-4
hierarchical representation of contours, 4-8
locally minimum interceptive area triangle, 4-9
polygonal approximation, 4-1

Contour Processing Functions
ApproxChains, 11-3
ApproxPoly, 11-5
ContourArea, 11-8
ContourBoundingRect, 11-7
ContourFromContourTree, 11-11
ContoursMoments, 11-8
CreateContourTree, 11-10
DrawContours, 11-6
EndFindContours, 10-9
FindContours, 10-6
FindNextContour, 10-8
MatchContours, 11-9
MatchContourTrees, 11-12
ReadChainPoint, 11-5
StartFindContours, 10-7
StartReadChainPoints, 11-4
SubstituteContour, 10-9

Contour Retrieving

1-component
border, 3-3
border point, 3-3
hole, 3-3
hole border, 3-3
outer border, 3-3

4-connected pixels, 3-1
8-connected pixels, 3-1
algorithm, 3-4
border following procedure, 3-5
chain code See Freeman method
contour See 1-component border
Freeman method, 3-3 See also chain code
hierarchical connected components, 3-2
polygonal representation, 3-4

contours moments, 4-5

conventions
font, 1-9
naming, 1-9

convergence, 6-15

convexity defects, 4-16

corresponding node pair, 4-13

covariance matrix, 5-1

D
Data Types supported, 1-3

decomposition coefficients, 5-2

deque, 7-5

Distance Transform Function
DistTransform, 10-34

Douglas-Peucker approximation, 4-4

Drawing Primitives Functions
Circle, 14-96
Ellipse, 14-96
EllipseAA, 14-98
FillConvexPoly, 14-99
FillPoly, 14-98
GetTextSize, 14-102
InitFont, 14-101
Line, 14-94
LineAA, 14-94

OpenCV Reference Manual Index

Index-3

PolyLine, 14-100
PolyLineAA, 14-100
PutText, 14-102
Rectangle, 14-95

Dynamic Data Structures
Graphs

ClearGraph, 14-54
CreateGraph, 14-46
FindGraphEdge, 14-51
FindGraphEdgeByPtr, 14-52
GetGraphVtx, 14-54
GraphAddEdge, 14-48
GraphAddEdgeByPtr, 14-49
GraphAddVtx, 14-46
GraphEdgeIdx, 14-55
GraphRemoveEdge, 14-50
GraphRemoveEdgeByPtr, 14-50
GraphRemoveVtx, 14-47
GraphRemoveVtxByPtr, 14-47
GraphVtxDegree, 14-52
GraphVtxDegreeByPtr, 14-53
GraphVtxIdx, 14-54

Memory Functions
ClearMemStorage, 14-23
CreateChildMemStorage, 14-22
CreateMemStorage, 14-22
ReleaseMemStorage, 14-23
RestoreMemStoragePos, 14-24

Sequence Reference
cvSeqBlock Structure Definition, 14-28
cvSequence Structure Definition, 14-26
Standard Kinds of Sequences, 14-27
Standard Types of Sequence Elements, 14-27

Sequences
ClearSeq, 14-34
CreateSeq, 14-29
CvtSeqToArray, 14-36
GetSeqElem, 14-35
MakeSeqHeaderForArray, 14-36
SeqElemIdx, 14-35
SeqInsert, 14-33
SeqPop, 14-31
SeqPopFront, 14-32
SeqPopMulti, 14-33

SeqPush, 14-30
SeqPushFront, 14-31
SeqPushMulti, 14-32
SeqRemove, 14-34
SetSeqBlockSize, 14-30

Sets
ClearSet, 14-44
CreateSet, 14-42
GetSetElem, 14-43
SetAdd, 14-42
SetRemove, 14-43

Writing and Reading Sequences
EndWriteSeq, 14-39
FlushSeqWriter, 14-39
GetSeqReaderPos, 14-41
SetSeqReaderPos, 14-41
StartAppendToSeq, 14-37
StartReadSeq, 14-40
StartWriteSeq, 14-38

Dynamic Data Structures Reference
Memory Storage

cvMemBlock Structure Definition, 14-21
cvMemStorage Structure Definition, 14-21
cvMemStoragePos Structure Definition,

14-21

E
Earth mover distance, 3-27

Eigen Objects, 5-1

Eigen Objects Functions
CalcCovarMatrixEx, 12-3
CalcDecompCoeff, 12-5
CalcEigenObjects, 12-4
EigenDecomposite, 12-6
EigenProjection, 12-7

eigenvectors, 5-1

ellipse fitting, 4-14

Embedded Hidden Markov Models, 5-2

Embedded Hidden Markov Models Functions
Create2DHMM, 12-12
CreateObsInfo, 12-13
EstimateHMMStateParams, 12-17

OpenCV Reference Manual Index

Index-4

EstimateObsProb, 12-18
EstimateTransProb, 12-17
EViterbi, 12-18
ImgToObs_DCT, 12-14
InitMixSegm, 12-16
MixSegmL2, 12-19
Release2DHMM, 12-13
ReleaseObsInfo, 12-14
UniformImgSegm, 12-15

EMD, See Earth mover distance

error handling, 1-3

Estimators
ConDensation algorithm, 2-23
discrete Kalman estimator, 2-22
Kalman filter, 2-22
measurement update, 2-21

equations, 2-23
state estimation programs, 2-20
system model, 2-21
system parameters, 2-21
system state, 2-20
time update, 2-21

equations, 2-23

Estimators Functions, 9-16
ConDensInitSampleSet, 9-18
ConDensUpdatebyTime, 9-19
CreateConDensation, 9-17
CreateKalman, 9-16
KalmanUpdateByMeasurement, 9-17
KalmanUpdateByTime, 9-17
ReleaseConDensation, 9-18
ReleaseKalman, 9-16

F
Features, 3-5

Canny edge detection, 3-11
differentiation, 3-12
edge thresholding, 3-13
hysteresis thresholding, 3-13
image smoothing, 3-12
non-maximum suppression, 3-12
streaking, 3-13

corner detection, 3-11
feature detection, 3-10
Fixed Filters, 3-5

convolution primitives, 3-6
first Sobel derivative operators, 3-6
second Sobel derivative operators, 3-7
third Sobel derivative operators, 3-9

Hough transform, 3-14
multidimentsional Hough Transform, 3-14 See also

standard Hough transform, 3-14
Optimal Filter Kernels with Floating Point

Coefficients
first derivative filters, 3-9

optimal filter kernels with floating point
coefficients, 3-9

Laplacian approximation, 3-10
second derivative filters, 3-10

progressive probabilistic Hough Transform, 3-14
See also Hough transform, 3-14

standard Hough Transform, 3-14 See also Hough
transform, 3-14

Features Functions
Feature Detection Functions

Canny, 10-11
CornerEigenValsandVecs, 10-12
CornerMinEigenVal, 10-13
FindCornerSubPix, 10-14
GoodFeaturesToTrack, 10-16
PreCornerDetect, 10-12

Fixed Filters Functions
Laplace, 10-10
Sobel, 10-10

Hough Transform Functions
HoughLines, 10-17
HoughLinesP, 10-19
HoughLinesSDiv, 10-18

Flood Filling
4-connectivity, 3-25
8-connectivity, 3-25
definition, 3-25
seed, 3-25

Flood Filling Function
FloodFill, 10-40

OpenCV Reference Manual Index

Index-5

flush, 7-7

focal length, 6-2

font conventions, 1-9

function descriptions, 1-8

G
Gabor transform, 3-29

Gaussian window, 2-19

GDI draw functions, 7-18

geometric image formation, 6-10

Geometry
convexity defects, 4-16
ellipse fitting, 4-14
fitting of conic, 4-14
line fitting, 4-15
weighted least squares, 4-16

Geometry Data Types, 11-25
cvConvexityDefect Structure Definition, 11-25

Geometry Functions
CalcPGH, 11-23
CheckContourConvexity, 11-21
ContourConvexHull, 11-18
ContourConvexHullApprox, 11-20
ConvexHull, 11-17
ConvexHullApprox, 11-18
ConvexityDefects, 11-21
FitEllipse, 11-12
FitLine2D, 11-13
FitLine3D, 11-15
MinAreaRect, 11-22
MinEnclosingCircle, 11-24
Project3D, 11-16

Gesture Recognition
algorithm, 6-16
homography matrix, 6-18
image mask, 6-17
probability density, 6-17

Gesture Recognition Functions
CalcImageHomography, 13-23
CalcProbDensity, 13-24
CreateHandMask, 13-23

FindHandRegion, 13-21
FindHandRegionA, 13-22
MaxRect, 13-25

graph
non-oriented, 7-13
oriented, 7-13

graphs, 7-11

grayscale image, 3-11, 3-15, 3-20, 3-24, 7-2, 7-18

Green’s formula, 4-5

H
hardware and software requirements, 1-3

header, 7-4, 7-10

hierarchical representation of contours, 4-8

Histogram
analyzing shapes, 3-26
bayesian-based object recognition, 3-26
content based retrieval, 3-26
definition, 3-25
histogram back-projection, 2-10
signature, 3-27

Histogram Data Types, 10-57

Histogram Functions
CalcBackProject, 10-51
CalcBackProjectPatch, 10-52
CalcContrastHist, 10-55
CalcEMD, 10-54
CalcHist, 10-50
CompareHist, 10-48
CopyHist, 10-49
CreateHist, 10-41
GetHistValue_1D, 10-45
GetHistValue_2D, 10-45
GetHistValue_3D, 10-46
GetHistValue_nD, 10-46
GetMinMaxHistValue, 10-47
MakeHistHeaderForArray, 10-42
NormalizeHist, 10-47
QueryHistValue_1D, 10-43
QueryHistValue_2D, 10-43
QueryHistValue_3D, 10-44

OpenCV Reference Manual Index

Index-6

QueryHistValue_nD, 10-44
ReleaseHist, 10-42
SetHistThresh, 10-50
ThreshHist, 10-48

HMM, See Embedded Hidden Markov Models

homography, 6-2

homography matrix, 6-2, 6-18

Horn & Schunck Technique, 2-19
Lagrangian multiplier, 2-19

HT, See Hough Transform in Features

Hu invariants, 3-15

Hu moments, 6-18

I
Image Functions, 7-1

Image Functions Reference
CopyImage, 14-15
CreateImage, 14-9
CreateImageData, 14-11
CreateImageHeader, 14-9
GetImageRawData, 14-14
InitImageHeader, 14-14
ReleaseImage, 14-10
ReleaseImageData, 14-12
ReleaseImageHeader, 14-10
SetImageCOI, 14-13
SetImageData, 14-12
SetImageROI, 14-13

Image Statistics Functions
CountNonZero, 10-20
GetCentralMoment, 10-25
GetHuMoments, 10-27
GetNormalizedCentralMoment, 10-26
GetSpatialMoment, 10-25
Mean, 10-21
Mean_StdDev, 10-21
MinMaxLoc, 10-22
Moments, 10-24
Norm, 10-22
SumPixels, 10-20

Intel® Image Processing Library, 1-1, 7-1

IPL, See Intel® Image Processing Library

L
Lagrange multiplier, 4-15

least squares method, 4-15

lens distortion, 6-2
distortion coefficients

radial, 6-4
tangenial, 6-4

line fitting, 4-15

LMIAT, See locally minimum interceptive area triangle

Lucas & Kanade Technique, 2-19

M
Mahalanobis distance, 6-18

manual organization, 1-4

mathematical morphology, 3-19

Matrix Operations, 7-15

Matrix Operations Data Types
cvMatArray Structure Definition, 14-57

Matrix Operations Functions
Add, 14-71
AddS, 14-72
AllocArray, 14-69
And, 14-75
AndS, 14-76
CloneMat, 14-61
Copy, 14-70, 14-89
CreateData, 14-69
CreateMat, 14-58
CreateMatHeader, 14-58
CrossProduct, 14-82
Det, 14-86
DotProduct, 14-75
Flip, 14-87
FreeArray, 14-70
GetAt, 14-63
GetAtPtr, 14-65
GetCol, 14-66
GetDiag, 14-67

OpenCV Reference Manual Index

Index-7

GetMat, 14-62
GetRawData, 14-67
GetRow, 14-66
GetSize, 14-68
GetSubArr, 14-65
InitMatHeader, 14-60
Invert, 14-85
Mahalonobis, 14-86
MatMulAdd, 14-75
MatMulAddS, 14-84
Mul, 14-75
MulAddS, 14-83
MulTransposed, 14-75
Or, 14-77
OrS, 14-78
PerspectiveTransform, 14-93
PseudoInv, 14-91
ReleaseData, 14-69
ReleaseMat, 14-59
ReleaseMatHeader, 14-60
Reshape, 14-88
ScaleAdd, 14-75, 14-82
SetAt, 14-64
SetData, 14-62
SetIdentity, 14-90
SetZero, 14-89
Sub, 14-73
SubRS, 14-74
SubS, 14-73
SVD, 14-88, 14-90, 14-91
Trace, 14-86
Transpose, 14-85, 14-87
Xor, 14-79
XorS, 14-80

mean location, 2-11

Mean Shift algorithm, 2-9

memory block, 7-4

memory storage, 7-4

M-estimators, 4-15

MHT See multidimesional Hough transform in Features

model plane, 6-3

moire, 6-8

Morphology
angle resolution, 3-29
black hat, 3-23
CIE Lab model, 3-29
closing equation, 3-21
dilation, 3-19
dilation formula, 3-20
dilation formula in 3D, 3-22
dilation in 3D, 3-21
Earth mover distance, 3-27
erision in 3D, 3-21
erosion, 3-19
erosion formula, 3-20
erosion formula in 3D, 3-23
flow matrix, 3-28
ground distance, 3-29
lower boundary of EMD, 3-30
morphological gradient function, 3-23
object of interest, 3-19
opening equation, 3-21
optimal flow, 3-28
scale resolution, 3-29
structuring element, 3-19
thickening, See dilation
thinning, See erosion
top hat, 3-23

Morphology Functions
CreateStructuringElementEx, 10-30
Dilate, 10-32
Erode, 10-31
MorphologyEx, 10-33
ReleaseStructuringElement, 10-31

Motion History Image, 2-3

motion representation, 2-2
motion gradient image, 2-3
regional orientation, 2-6

motion segmentation, 2-7
downward stepping floodfill, 2-7

Motion Templates
motion template images, 2-2
normal optical flow method, 2-2

Motion Templates Functions, 9-6
CalcGlobalOrientation, 9-7

OpenCV Reference Manual Index

Index-8

CalcMotionGradient, 9-6
SegmentMotion, 9-8
UpdateMotionHistory, 9-6

N
node

child, 4-10
parent, 4-10
root, 4-10
trivial, 4-13

node distance, 4-13

node weight, 4-13

non-coplanar points, See also non-degenerate points,
6-14

non-degenerate points, See also non-coplanar points,
6-14

non-maxima suppression, 4-3

notational conventions, 1-8

O
object model pseudoinverse, 6-14

online version, 1-8

optical flow, 2-18

Optical Flow Functions, 9-12
CalcOpticalFlowBM, 9-13
CalcOpticalFlowHS, 9-12
CalcOpticalFlowLK, 9-13
CalcOpticalFlowPyrLK, 9-14

P
parent node, 4-10

perspective distortion, 6-14

perspective model, 6-10

pinhole model, See perspective model

Pixel Access Macros, 14-15

Pixel Access Macros Reference
CV_INIT_PIXEL_POS, 14-17
CV_MOVE, 14-18

CV_MOVE_PARAM, 14-19
CV_MOVE_PARAM_WRAP, 14-19
CV_MOVE_TO, 14-17
CV_MOVE_WRAP, 14-18

Pixel Access Macros Structures
cvPixelPosition Structures, 14-16

platforms supported, 1-4

polygonal approximation, 4-1
k-cosine curvature, 4-2
L1 curvature, 4-2
Rosenfeld-Johnston algorithm, 4-2
Teh and Chin algorithm, 4-3

POS, See pose from orthography ans scaling

pose, 6-10

pose approximation method, 6-12

pose from orthography and scaling, 6-12

POSIT
algorithm, 6-14
focal length, 6-14
geometric image formation, 6-10
object image, 6-14
object model, 6-14
pose approximation method, 6-12
pose from orthography and scaling, 6-12

POSIT algorithm, 6-10

POSIT Functions
CreatePOSITObject, 13-19
POSIT, 13-19
ReleasePOSITObject, 13-20

PPHT See progressive probabilistic Hough transform in
Features

prefix, in function names, 1-9

PUSH version, 7-6

Pyramid, 10-56

Pyramid Data Types
cvConnectedComp Structure Definition, 10-56

Pyramid Functions
PyrDown, 10-28
PyrSegmentation, 10-29
PyrUp, 10-28

Pyramids

OpenCV Reference Manual Index

Index-9

down-sampling, 3-15
Gaussian, 3-15
image segmentation, 3-17

hierarchical computing structure, 3-17
hierarchical smoothing, 3-17
segmentation, 3-17

Laplacian, 3-15
son-father relationship, 3-17
up-sampling, 3-16

R
radial distortion, 6-2

radial distortion coefficients, 6-4

region of interest, 7-3

related publications, 1-8

RLE coding, 4-1

ROI, See region of interest

root node, 4-10

Rosenfeld-Johnston algorithm, 4-2

rotation matrix, 6-6

rotation vector, 6-6

S
scalar factor, 6-3

scaled orthographic projection, See also
weak-perspective projection model, 6-11

scanlines, 6-6

Sequence Reference, 14-26

sequences, 7-5

sets, 7-8

shape partitioning, 4-12

SHT, See standard Hough transform in Features

stochastic variable, 3-15

synthesized image, 6-6

System Functions
GetLibraryInfo, 15-2
LoadPrimitives, 15-1

T
tangential distortion coefficients, 6-4

Teh and Chin algorithm, 4-3

three sigmas rule, 2-1

Threshold Functions
AdaptiveThreshold, 10-36
Threshold, 10-38

trivial node, 4-13

U
Use of Eigen Object Functions, 12-7

Use of Eigen Objects Functions
cvCalcEigenObjects in Callback Mode, 12-9
cvCalcEigenObjects in Direct Access Mode, 12-8

Utility Functions
AbsDiff, 14-103
AbsDiffS, 14-104
bCartToPolar, 14-115
bFastArctan, 14-112
bFastExp, 14-115
bFastLog, 14-116
bInvSqrt, 14-114
bRand, 14-117
bReciprocal, 14-114
bSqrt, 14-113
ConvertScale, 14-108
CvtPixToPlane, 14-107
CvtPlaneToPix, 14-107
FillImage, 14-118
GetRectSubPix, 14-111
InitLineIterator, 14-110
InvSqrt, 14-113
KMeans, 14-119
LUT, 14-109
MatchTemplate, 14-104
Rand, 14-117
RandInit, 14-116
RandSetRange, 14-118
SampleLine, 14-111
Sqrt, 14-112

OpenCV Reference Manual Index

Index-10

V
vectoring algorithms, 3-1

View Morphing, 6-6
moire, 6-8
scanlines, 6-6
warped image, 6-6

view morphing algorithm, 6-6

View Morphing Functions
DeleteMoire, 13-18
DynamicCorrespondMulti, 13-15
FindFundamentalMatrix, 13-12
FindRuns, 13-14
MakeAlphaScanlines, 13-16
MakeScanlines, 13-13
MorphEpilinesMulti, 13-16
PostWarpImage, 13-17
PreWarpImage, 13-13

W
warped image, 6-6

weak-perspective projection, 6-12

weak-perspective projection model, 6-11

weighted least squares, 4-16

world coordinate system, 6-2

	Open Source
	Computer Vision Library
	Contents
	Overview
	About This Software
	Why We Need OpenCV Library
	Relation Between OpenCV and Other Libraries
	Data Types Supported
	Error Handling
	Hardware and Software Requirements
	Platforms Supported

	About This Manual
	Manual Organization
	Function Descriptions
	Audience for This Manual
	On-line Version
	Related Publications

	Notational Conventions
	Font Conventions
	Naming Conventions
	Function Name Conventions

	Motion Analysis and Object Tracking
	Background Subtraction
	Motion Templates
	Motion Representation and Normal Optical Flow Method
	Motion Representation
	A) Updating MHI Images
	B) Making Motion Gradient Image
	C) Finding Regional Orientation or Normal Optical Flow
	Motion Segmentation

	CamShift
	Mass Center Calculation for 2D Probability Distribution
	CamShift Algorithm
	Calculation of 2D Orientation

	Active Contours
	Optical Flow
	Lucas & Kanade Technique
	Horn & Schunck Technique
	Block Matching

	Estimators
	Models
	Estimators
	Kalman Filtering
	ConDensation Algorithm

	Image Analysis
	Contour Retrieving
	Basic Definitions
	Contour Representation
	Contour Retrieving Algorithm

	Features
	Fixed Filters
	Sobel Derivatives

	Optimal Filter Kernels with Floating Point Coefficients
	First Derivatives
	Second Derivatives
	Laplacian Approximation

	Feature Detection
	Corner Detection
	Canny Edge Detector
	Hough Transform

	Image Statistics
	Pyramids
	Morphology
	Flat Structuring Elements for Gray Scale

	Distance Transform
	Thresholding
	Flood Filling
	Histogram
	Histograms and Signatures
	Example Ground Distances
	Lower Boundary for EMD

	Structural Analysis
	Contour Processing
	Polygonal Approximation
	Douglas-Peucker Approximation
	Contours Moments
	Hierarchical Representation of Contours

	Geometry
	Ellipse Fitting
	Line Fitting
	Convexity Defects

	Object Recognition
	Eigen Objects
	Embedded Hidden Markov Models

	3D Reconstruction
	Camera Calibration
	Camera Parameters
	Pattern

	View Morphing
	Algorithm
	Using Functions for View Morphing Algorithm

	POSIT
	Geometric Image Formation
	Pose Approximation Method
	Algorithm

	Gesture Recognition

	Basic Structures and Operations
	Image Functions
	Dynamic Data Structures
	Memory Storage
	Sequences
	Writing and Reading Sequences
	Sets
	Graphs

	Matrix Operations
	Interchangability between IplImage and CvMat.

	Drawing Primitives
	Utility

	Library Technical Organization and System Functions
	Error Handling
	Memory Management
	Interaction With Low-Level Optimized Functions
	User DLL Creation

	Motion Analysis and Object Tracking Reference
	Background Subtraction Functions
	Acc
	SquareAcc
	MultiplyAcc
	RunningAvg

	Motion Templates Functions
	UpdateMotionHistory
	CalcMotionGradient
	CalcGlobalOrientation
	SegmentMotion

	CamShift Functions
	CamShift
	MeanShift

	Active Contours Function
	SnakeImage

	Optical Flow Functions
	CalcOpticalFlowHS
	CalcOpticalFlowLK
	CalcOpticalFlowBM
	CalcOpticalFlowPyrLK

	Estimators Functions
	CreateKalman
	ReleaseKalman
	KalmanUpdateByTime
	KalmanUpdateByMeasurement
	CreateConDensation
	ReleaseConDensation
	ConDensInitSampleSet
	ConDensUpdateByTime

	Estimators Data Types

	Image Analysis Reference
	Contour Retrieving Functions
	FindContours
	StartFindContours
	FindNextContour
	SubstituteContour
	EndFindContours

	Features Functions
	Fixed Filters Functions
	Laplace
	Sobel

	Feature Detection Functions
	Canny
	PreCornerDetect
	CornerEigenValsAndVecs
	CornerMinEigenVal
	FindCornerSubPix
	GoodFeaturesToTrack

	Hough Transform Functions
	HoughLines
	HoughLinesSDiv
	HoughLinesP

	Image Statistics Functions
	CountNonZero
	SumPixels
	Mean
	Mean_StdDev
	MinMaxLoc
	Norm
	Moments
	GetSpatialMoment
	GetCentralMoment
	GetNormalizedCentralMoment
	GetHuMoments

	Pyramid Functions
	PyrDown
	PyrUp
	PyrSegmentation

	Morphology Functions
	CreateStructuringElementEx
	ReleaseStructuringElement
	Erode
	Dilate
	MorphologyEx

	Distance Transform Function
	DistTransform

	Threshold Functions
	AdaptiveThreshold
	Threshold

	Flood Filling Function
	FloodFill

	Histogram Functions
	CreateHist
	ReleaseHist
	MakeHistHeaderForArray
	QueryHistValue_1D
	QueryHistValue_2D
	QueryHistValue_3D
	QueryHistValue_nD
	GetHistValue_1D
	GetHistValue_2D
	GetHistValue_3D
	GetHistValue_nD
	GetMinMaxHistValue
	NormalizeHist
	ThreshHist
	CompareHist
	CopyHist
	SetHistBinRanges
	CalcHist
	CalcBackProject
	CalcBackProjectPatch
	CalcEMD
	CalcContrastHist

	Pyramid Data Types
	Histogram Data Types

	Structural Analysis Reference
	Contour Processing Functions
	ApproxChains
	StartReadChainPoints
	ReadChainPoint
	ApproxPoly
	DrawContours
	ContourBoundingRect
	ContoursMoments
	ContourArea
	MatchContours
	CreateContourTree
	ContourFromContourTree
	MatchContourTrees

	Geometry Functions
	FitEllipse
	FitLine2D
	FitLine3D
	Project3D
	ConvexHull
	ContourConvexHull
	ConvexHullApprox
	ContourConvexHullApprox
	CheckContourConvexity
	ConvexityDefects
	MinAreaRect
	CalcPGH
	MinEnclosingCircle

	Contour Processing Data Types
	Geometry Data Types

	Object Recognition Reference
	Eigen Objects Functions
	CalcCovarMatrixEx
	CalcEigenObjects
	CalcDecompCoeff
	EigenDecomposite
	EigenProjection

	Use of Eigen Object Functions
	Embedded Hidden Markov Models Functions
	Create2DHMM
	Release2DHMM
	CreateObsInfo
	ReleaseObsInfo
	ImgToObs_DCT
	UniformImgSegm
	InitMixSegm
	EstimateHMMStateParams
	EstimateTransProb
	EstimateObsProb
	EViterbi
	MixSegmL2

	HMM Structures

	3D Reconstruction Reference
	Camera Calibration Functions
	CalibrateCamera
	CalibrateCamera_64d
	FindExtrinsicCameraParams
	FindExtrinsicCameraParams_64d
	Rodrigues
	Rodrigues_64d
	UnDistortOnce
	UnDistortInit
	UnDistort
	FindChessBoardCornerGuesses

	View Morphing Functions
	FindFundamentalMatrix
	MakeScanlines
	PreWarpImage
	FindRuns
	DynamicCorrespondMulti
	MakeAlphaScanlines
	MorphEpilinesMulti
	PostWarpImage
	DeleteMoire

	POSIT Functions
	CreatePOSITObject
	POSIT
	ReleasePOSITObject

	Gesture Recognition Functions
	FindHandRegion
	FindHandRegionA
	CreateHandMask
	CalcImageHomography
	CalcProbDensity
	MaxRect

	Basic Structures and Operations Reference
	Image Functions Reference
	CreateImageHeader
	CreateImage
	ReleaseImageHeader
	ReleaseImage
	CreateImageData
	ReleaseImageData
	SetImageData
	SetImageCOI
	SetImageROI
	GetImageRawData
	InitImageHeader
	CopyImage

	Pixel Access Macros
	CV_INIT_PIXEL_POS
	CV_MOVE_TO
	CV_MOVE
	CV_MOVE_WRAP
	CV_MOVE_PARAM
	CV_MOVE_PARAM_WRAP

	Dynamic Data Structures Reference
	Memory Storage Reference
	CreateMemStorage
	CreateChildMemStorage
	ReleaseMemStorage
	ClearMemStorage
	SaveMemStoragePos
	RestoreMemStoragePos

	Sequence Reference
	CreateSeq
	SetSeqBlockSize
	SeqPush
	SeqPop
	SeqPushFront
	SeqPopFront
	SeqPushMulti
	SeqPopMulti
	SeqInsert
	SeqRemove
	ClearSeq
	GetSeqElem
	SeqElemIdx
	CvtSeqToArray
	MakeSeqHeaderForArray

	Writing and Reading Sequences Reference
	StartAppendToSeq
	StartWriteSeq
	EndWriteSeq
	FlushSeqWriter
	StartReadSeq
	GetSeqReaderPos
	SetSeqReaderPos

	Sets Reference
	CreateSet
	SetAdd
	SetRemove
	GetSetElem
	ClearSet
	Sets Data Structures

	Graphs Reference
	CreateGraph
	GraphAddVtx
	GraphRemoveVtx
	GraphRemoveVtxByPtr
	GraphAddEdge
	GraphAddEdgeByPtr
	GraphRemoveEdge
	GraphRemoveEdgeByPtr
	FindGraphEdge
	FindGraphEdgeByPtr
	GraphVtxDegree
	GraphVtxDegreeByPtr
	ClearGraph
	GetGraphVtx
	GraphVtxIdx
	GraphEdgeIdx
	Graphs Data Structures

	Matrix Operations Reference
	CreateMat
	CreateMatHeader
	ReleaseMat
	ReleaseMatHeader
	InitMatHeader
	CloneMat
	SetData
	GetMat
	GetAt
	SetAt
	GetAtPtr
	GetSubArr
	GetRow
	GetCol
	GetDiag
	GetRawData
	GetSize
	CreateData
	AllocArray
	ReleaseData
	FreeArray
	Copy
	Set
	Add
	AddS
	Sub
	SubS
	SubRS
	Mul
	And
	AndS
	Or
	OrS
	Xor
	XorS
	DotProduct
	CrossProduct
	ScaleAdd
	MatMulAdd
	MatMulAddS
	MulTransposed
	Invert
	Trace
	Det
	Mahalonobis
	Transpose
	Flip
	Reshape
	SetZero
	SetIdentity
	SVD
	PseudoInv
	EigenVV
	PerspectiveTransform

	Drawing Primitives Reference
	Line
	LineAA
	Rectangle
	Circle
	Ellipse
	EllipseAA
	FillPoly
	FillConvexPoly
	PolyLine
	PolyLineAA
	InitFont
	PutText
	GetTextSize

	Utility Reference
	AbsDiff
	AbsDiffS
	MatchTemplate
	CvtPixToPlane
	CvtPlaneToPix
	ConvertScale
	LUT
	InitLineIterator
	SampleLine
	GetRectSubPix
	bFastArctan
	Sqrt
	bSqrt
	InvSqrt
	bInvSqrt
	bReciprocal
	bCartToPolar
	bFastExp
	bFastLog
	RandInit
	bRand
	Rand
	FillImage
	RandSetRange
	KMeans

	System Functions
	LoadPrimitives
	GetLibraryInfo

	Bibliography
	Supported Image Attributes and Operation Modes
	Glossary
	Index

