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Nonlinear Knowledge in Kernel Approximation
O. L. Mangasarian & E. W. Wild

Abstract— Prior knowledge over arbitrary general sets is
incorporated into nonlinear kernel approximation problems in
the form of linear constraints in a linear program. The key
tool in this incorporation is a theorem of the alternative for
convex functions that converts nonlinear prior knowledge im-
plications into linear inequalities without the need to kernelize
these implications. Effectiveness of the proposed formulation is
demonstrated on two synthetic examples and an important lymph
node metastasis prediction problem. All these problems exhibit
marked improvements upon the introduction of prior knowledge
over nonlinear kernel approximation approaches that do not
utilize such knowledge.

I. INTRODUCTION

Prior knowledge has been used effectively in improving
classification both for linear [1] and nonlinear [2] kernel
classifiers as well as for nonlinear kernel approximation [3],
[4]. In all these applications prior knowledge was converted
to linear inequalities that were imposed on a linear program.
The linear program generated a linear or nonlinear classifier,
or a linear or nonlinear function approximation, all of which
were more accurate than the corresponding results that did
not utilize prior knowledge. However, whenever a nonlinear
kernel was utilized in these applications, kernelization of
the prior knowledge was not a transparent procedure that
could be easily related to the original sets over which prior
knowledge was given. In contrast, in the present work no
kernelization of the prior knowledge sets is used in order
to incorporate that knowledge into a nonlinear classifier ora
function approximation. Furthermore, the region in the input
space on which the prior knowledge is given is completely
arbitrary in the present work, whereas in all previous work
it had to be given on convex polyhedral sets. The present
approach is possible through the use of a fundamental theorem
of the alternative for convex functions that we describe in
Section II of the paper, whereas previous work utilized such
a theorem for linear inequalitiesonly.

In Section III we describe our linear programming for-
mulation that incorporates nonlinear prior knowledge intoa
nonlinear kernel, while Section IV gives numerical examples
that show prior knowledge can improve a nonlinear kernel
approximation significantly. Section V concludes the paper.

We describe our notation now. All vectors will be column
vectors unless transposed to a row vector by the prime notation
′. The scalar (inner) product of two vectorsx and y in the
n-dimensional real spaceRn will be denoted byx′y. For
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x ∈ Rn, ‖x‖1 denotes the1-norm:
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∑
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|xi|, while ‖x‖ denotes

the2-norm:(
n

∑

i=1

(xi)
2)

1

2 . The notationA ∈ Rm×n will signify

a realm × n matrix. For such a matrix,A′ will denote the
transpose ofA, Ai will denote thei-th row of A andA·j the
j-th column ofA. A vector of ones in a real space of arbitrary
dimension will be denoted bye. Thus fore ∈ Rm andy ∈ Rm

the notatione′y will denote the sum of the components ofy.
A vector of zeros in a real space of arbitrary dimension will
be denoted by0. For A ∈ Rm×n and B ∈ Rn×k, a kernel
K(A,B) mapsRm×n × Rn×k into Rm×k. In particular, if
x and y are column vectors inRn then, K(x′, y) is a real
number,K(x′, A′) is a row vector inRm and K(A,A′) is
an m × m matrix. We shall make no assumptions on our
kernels other than symmetry, that isK(A,B)′ = K(B′, A′),
and in particular we shall not assume or make use of Mercer’s
positive definiteness condition [5], [6], [7], [8]. The baseof
the natural logarithm will be denoted byε. A frequently used
kernel in nonlinear classification is the Gaussian kernel [5],
[9], [8] whose ij-th element,i = 1, . . . ,m, j = 1, . . . , k, is
given by: (K(A,B))ij = ε−µ‖Ai

′−B·j‖
2

, whereA ∈ Rm×n,
B ∈ Rn×k andµ is a positive constant. Approximate equality
is denoted by≈, while the abbreviation “s.t.” stands for
“subject to”.

II. CONVERSION OF NONLINEAR PRIOR
KNOWLEDGE INTO LINEAR CONSTRAINTS

The problem that we wish to impart prior knowledge to
consists of approximating a functionf from Rn to R for which
approximate or exact function values are given on a dataset of
m points in Rn denoted by rows of the matrixA ∈ Rm×n.
Thus, corresponding to each pointAi we are given an exact or
inexact value off , denoted by a real numberyi, i = 1, . . . ,m.
We wish to approximatef by a nonlinear kernel function as
follows:

K(x′, A′)α + b, (1)

where,K(x′, A′) : R1×n × Rn×m −→ R1×m is an arbitrary
kernel andα ∈ Rm andb ∈ R are parameters to be determined
such that:

K(A,A′)α + be − y ≈ 0, (2)

and such that some prior knowledge is also utilized in the
construction of our approximationK(x′, A′)α+b through the
following implication:

g(x) ≤ 0 =⇒ K(x′, A′)α + b ≥ h(x). (3)

Here, g(x) : Γ ⊂ Rn −→ Rk is a k-dimensional function
defined on a subsetΓ of Rn that determines the region
in the input space where prior knowledge requires that the
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approximating functionK(x′, A′)α + b be larger than some
known functionh(x) : Γ ⊂ Rn −→ R. In previous work
[2], [3] prior knowledge implications such as (3) could not
be handled as we shall do here by using Theorem 2.1 below.
Instead, in [2], [3], the inequalityg(x) ≤ 0 was kernelized.
This led to an inequality not easily related to the original
constraintg(x) ≤ 0. In addition, all previous work [2], [3]
could handle only linearg(x) and h(x). The implication (3)
can be written in the following equivalent logical form:

g(x) ≤ 0, K(x′, A′)α + b − h(x) < 0,

has no solutionx ∈ Γ.
(4)

It is precisely implication (3) that we shall try to convert to
a system of inequalities which is linear in the approximating
function parameters(α, b) by means of the following theorem
of the alternative for convex functions. The alternatives here
are that either the negation of (4) holds, or (5) below holds,
but not both.

Theorem 2.1:Prior Knowledge as System of Linear
Inequalities For a fixedα ∈ Rn, b ∈ R, the following are
equivalent:

(i) The implication (3) or equivalently (4) holds.
(ii) There existsv ∈ Rk, v ≥ 0 such that:

K(x′, A′)α + b − h(x) + v′g(x) ≥ 0, ∀x ∈ Γ, (5)

where it is assumed for the implication (i)=⇒(ii) only,
that g(x) and K(x′, A′) are convex onΓ, h(x) is
concave onΓ, Γ is a convex subset ofRn, α ≥ 0 and
that g(x) < 0 for somex ∈ Γ.

Proof (i)=⇒(ii): This follows from [10, Corollary 4.2.2], the
fact that the functionsg(x) andK(x′, A′)α + b− h(x) of (4)
are convex onΓ and thatg(x) < 0 for somex ∈ Γ.

(i)⇐=(ii): If (i) did not hold then there there exists anx ∈ Γ
such thatg(x) ≤ 0, K(x′, A′)α+ b−h(x) < 0, which would
result in the contradiction:

0 > K(x′, A′)α + b − h(x) + v′g(x) ≥ 0.� (6)

We note immediately that in the proposed application in Sec-
tion III of converting prior knowledge to linear inequalities in
the parameters(α, b) all we need is the implication (i)⇐=(ii),
which requires no assumptions whatsoeveron the functions
g(x), K(x′, A′), h(x) or on the parameterα. However, we
also note that even though we do not make explicit use of
the necessity part of Theorem 2.1, it is quite important to
have such a result in order to show that(5) is not a vacuous
sufficient condition since it does indeed hold under certain
assumptions.

We further note that the implication (3) can represent fairly
complex knowledge such asK(x′, A′)α + b being equal to
any desired function wheneverg(x) ≤ 0.

We turn now to our linear programming formulation of the
knowledge-based nonlinear kernel approximation.

III. NONLINEAR PRIOR KNOWLEDGE
APPROXIMATION VIA LINEAR PROGRAMMING

We first formulate the approximation (2) without knowledge
as follows. We measure the error in (2) by a vectors ∈ Rm

defined by:

−s ≤ K(A,A′)α + be − y ≤ s. (7)

We now drive this error down by minimizing the 1-norm
of the errors together with the 1-norm ofα for complex-
ity reduction or stabilization. This leads to the following
constrained optimization problem with positive parameterC

that determines the relative weight of exact data fitting to
complexity reduction:

min
(α,b,s)

‖α‖1 + C‖s‖1

s.t. −s ≤ K(A,A′)α + be − y ≤ s,
(8)

which can be represented as the following linear program:

min
(α,b,s,a)

e′a + Ce′s

s.t. −s ≤ K(A,A′)α + be − y ≤ s,

−a ≤ α ≤ a.

(9)

We now introduce prior knowledge contained in the implica-
tion (3) by making use of Theorem 2.1 and converting it to the
linear constraints (5) and incorporating into the linear program
(9) as follows:

min
(α,b,s,a,v,z1,...,zℓ)

e′a + Ce′s + ν

ℓ
∑

i=1

zi

s.t. −s ≤ K(A,A′)α + be − y ≤ s,

−a ≤ α ≤ a,

K(xi′, A′)α + b − h(xi) + v′g(xi) + zi ≥ 0,

v ≥ 0, zi ≥ 0, i = 1, . . . , ℓ.
(10)

We note that we have discretized the variablex ∈ Γ in the next
to the last constraint above to a mesh of pointsx1, x2, . . . , xℓ

in order to convert a semi-infinite linear program [11], thatis
a linear program with an infinite number of constraints, to a
linear program with a finite number of constraints. We have
also added nonnegative slack error variableszi, i = 1, . . . , ℓ,
to allow small deviations in satisfying the prior knowledge.
The sum of these nonnegative slack variablesz1, z2, . . . , zℓ for
the prior knowledge inequalities are minimized with weight
ν > 0 in the objective function in order to drive them
to zero to the extent possible. Thus, the magnitude of the
parameterν enforces prior knowledge while the magnitude of
C enforces data fitting. Note thatν andC can be thought of
as hyperparameters in a Bayesian setting.

We turn now to computational results and test examples of
the proposed approach for incorporating nonlinear knowledge
into kernel approximation problems.

IV. COMPUTATIONAL RESULTS

To illustrate the effectiveness of our proposed formulation,
we report results on two synthetic datasets and the Wisconsin
Prognostic Breast Cancer (WPBC) database, available from
[12]. It is important to point out that the present formulation
is very different in nature from that presented by Mangasarian
et al. in [3]. Our concern here is to demonstrate uses of more
complex prior knowledge that could not be handled exactly
in [3]. In particular, we are able to incorporate general impli-
cations involving nonlinear functions as linear inequalities in
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Fig. 1. The exact hyperboloid function f(x1, x2) = x1x2.
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Fig. 2. Approximation of the hyperboloid function f(x1, x2) = x1x2 based on
eleven exact function values along the linex2 = x1, x1 ∈ {−5,−4, . . . , 4, 5},
but without prior knowledge.

a linear program by utilizing Theorem 2.1. Our two synthetic
examples will show how our approach uses nonlinear prior
knowledge to obtain approximations that are much better than
those obtained without prior knowledge. The prior knowledge
may be strong, but the examples demonstrate that it can
be easily and correctly incorporated into our formulation
to improve the obtained approximation. We will also use
the WPBC dataset to demonstrate a situation where prior
knowledge and conventional data are combined to obtain a
better approximation than that by using only prior knowledge
or data alone.

A. TWO-DIMENSIONAL HYPERBOLOID FUNCTION

Our first example is the two-dimensional hyperboloid func-
tion:

f(x1, x2) = x1x2. (11)

This function was studied in [3]. The given data consists of
eleven points along the linex1 = x2, x1 ∈ {−5,−4, . . . , 4, 5}.
The given values at these points are the actual function values.

Figure 1 depicts the two-dimensional hyperboloid function
of (11). Figure 2 depicts the approximation of the hyperboloid
function by a surface based on the eleven points described
above without prior knowledge. Figures 1 and 2 are taken
from [3].

Figure 3 depicts a much better approximation of the hy-
perboloid function by a nonlinear surface based on the same
eleven points aboveplus prior knowledge. The prior knowl-
edge consisted of the implication:

x1x2 ≤ 1 =⇒ f(x1, x2) ≤ x1x2, (12)

which, because of the nonlinearity ofx1x2, cannot be handled
by [3] nor by any other approximation procedure that we are
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Fig. 3. Approximation of the hyperboloid function f(x1, x2) = x1x2 based on
the same eleven function values as Figure 2plus prior knowledge consisting of the
implication (12).

aware of. Note that even though the prior knowledge impli-
cation (12) provides only partial information regarding the
hyperboloid (11) being approximated, applying it is sufficient
to improve our kernel approximation substantially as depicted
in Figure 3. We applied this prior knowledge implication (12),
in its equivalent inequality (5) form, at discrete points asstated
in the last three inequality constraints of (10). In this example,
the knowledge was applied at eleven points along the line
x1 = −x2, x1 ∈ {−5,−4, . . . , 4, 5}.

It is instructive to compare (12) with the prior knowledge
used in [3] to obtain a visually similar improvement. In that
work, the following prior knowledge was used:

(x1, x2) ∈ {(x1, x2)|−
1
3x1 ≤ x2 ≤ − 2

3x1} ⇒
f(x1, x2) ≤ 10x1

(13)

and

(x1, x2) ∈ {(x1, x2)|−
2
3x1 ≤ x2 ≤ − 1

3x1} ⇒
f(x1, x2) ≤ 10x2.

(14)

These implications were implemented by replacingf(x1, x2)
with its nonlinear kernel approximation (1) and by kernelizing
the resulting prior knowledge [3, Equation 18]. The result
can then be incorporated into a linear program with no
discretization required [3, Proposition 3.1]. However, asis
noted in [3], the implications (13) and (14) are not correct
everywhere, but are merely intended to coarsely model the
global shape off(x1, x2). This inexactness arises because of
the limitation that knowledge be linear in the input space, and
because the use of the nonlinear kernel to map knowledge in
the input space to higher dimensions is difficult to interpret.
Here, in contrast, the prior knowledge of implication (12) is
always correct and exactly captures the shape of the function.
Thus, this example illustrates that there is a significant gain in
usability due to the fact that the knowledge may be nonlinear
in input space features.

B. TWO-DIMENSIONAL TOWER FUNCTION

For our second example, we consider the following function:

g(x1, x2) =























4, when ‖(x1, x2)‖ < 1
3, when 1 ≤ ‖(x1, x2)‖ < 2
2, when 2 ≤ ‖(x1, x2)‖ < 3
1, when 3 ≤ ‖(x1, x2)‖ < 4
0, otherwise

(15)
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Fig. 4. The exact tower function given by(15).
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Fig. 5. An approximation of the tower function in (15) using 400 equally spaced
points on [−4, 4] × [−4, 4] given by (16) without prior knowledge.

which is shown in Figure 4. Due to the visual appearance of
this function, we refer to it as thetower function.

The data used to approximate the tower function of
(15) consists of 400 equally spaced points on the grid
[−4, 4] × [−4, 4], with given values defined using the
following equation:

f(x1, x2) = min{g(x1, x2), 2}, (16)

where g(x1, x2) is given by (15). This misleading data
explains the chopped-off appearance that is shown by the
approximation of Figure 5 which is a poor approximation of
the tower function based on this datawithoutprior knowledge.

Figure 6 shows an approximation of the tower function
using the data described aboveplus the following prior knowl-
edge:

(x1, x2) ∈ [−4, 4]× [−4, 4] =⇒ f(x1, x2) = g(x1, x2), (17)

where g(x1, x2) is the exact value of the tower function of
(15). This implication was enforced at 2500 equally spaced
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Fig. 6. An approximation of the tower function in (15) using 400 equally spaced
points on [−4, 4] × [−4, 4] given by (16) with the prior knowledge described in
(17).

points on the grid [−4, 4] × [−4, 4]. The approximation
depicted in Figure 6 was made by setting the parameters
C and ν of (10) to 101 and 1020 respectively. Thus, this
example illustrates that despite poor initial data, a substantially
improved approximation using prior knowledge can be made
by incorporating prior knowledge in the form of an implication
such as (17). Such incorporation of prior knowledge, involving
nonlinear functions, as linear constraints in an optimization
problem has not been made previously.

C. PREDICTING LYMPH NODE METASTASIS

To conclude our numerical results, we consider a poten-
tially useful application of knowledge-based approximation
to breast cancer prognosis [13], [14], [15]. An important
prognostic indicator for breast cancer recurrence is the number
of metastasized lymph nodes under a patient’s armpit which
could be as many as 30. To obtain this number, a patient
must optionally undergo a potentially debilitating surgery in
addition to the removal of the breast tumor. Thus, it is useful
to approximate the number of metastasized lymph nodes using
available information. The Wisconsin Prognostic Breast Can-
cer (WPBC) data, in which the primary task is to determine
time to recurrence [12], contains information on the numberof
metastasized lymph nodes for 194 breast cancer patients, as
well as thirty cytological features obtained by a fine needle
aspirate and one histological feature, tumor size, obtained
during surgery. Mangasarian et al. demonstrated in [3] thata
function that approximated the number of metastasized lymph
nodes using four of these features could be improved using
prior knowledge. We shall use the formulation developed here
to approximate the number of metastasized lymph nodes using
only the tumor size.

In order to simulate the situation where an expert provides
prior knowledge regarding the number of metastasized lymph
nodes based on tumor size, we used the following procedure.
First, we randomly selected 20% of the data as “past data.”
This past data was used to develop prior knowledge, while
the remaining 80% of the data, the “present data,” was used
for evaluation. The goal is to simulate the situation in which
an expert can provide prior knowledge, but no more data is
available. To generate such prior knowledge, we used kernel
approximation to find a functionf1(x) = K(x′, A1′)α1 + b1,
where A1 is the matrix containing the past data andK is
the Gaussian kernel defined in Section I. We then used this
function as the basis for our prior knowledge. Since we did
not believe that this function was accurate for areas where
there was little data in the past data set, we imposed this
knowledge only on the regionp(x) ≥ 0.1, wherep(x) was
the density function for the tumor sizes inA1 estimated with
theksdensity routine, available in the MATLAB statistics
toolbox [16]. We considered the following prior knowledge
implication:

p(x) ≥ 0.1 =⇒ f(x) ≥ f1(x) − 0.01. (18)

That is, the number of metastasized lymph nodes was greater
than the predicted value on the past data, with a tolerance
of 0.01. This implication incorporates a typical oncological
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Approximation RMSE
Without knowledge 5.92

With knowledge 5.04
Improvement due to knowledge 14.8%

Table I: Leave-one-out root-mean-squared-error (RMSE) of approxima-
tions with and without knowledge on the present WPBC data. Best result
is in bold.

surgeon’s advice that the number of metastasized lymph nodes
increases with tumor size. In order to accurately simulate the
desired conditions, we formed this knowledge by observing
only the past data. We did not change any aspect of the prior
knowledge after we began testing on the present data.

Table I illustrates the improvement resulting from the use
of prior knowledge. The first two entries compare the leave-
one-out error of function approximations without and with
prior knowledge. When training functions on each training
set, ten points of the training set were selected as a tuning
set. This set was used to choose the value ofC from the set
{2i|i = −7, . . . , 7}. The kernel parameter was set to2−7,
which we observed gave a smooth curve on the past data
set. This value was fixed before testing on the present data.
For the approximationwith knowledge, the parameterν was
set to106, which ensured that the prior knowledge would be
taken into account by the approximation. Implication (18) was
imposed as prior knowledge, and the discretization for the
prior knowledge was 400 equally spaced points on the interval
[1, 5]. This interval approximately covered the region on which
p(x) ≥ 0.1. We note that the use of prior knowledge led to a
14.8% improvement. In our experience, such an improvement
is difficult to obtain in medical tasks, and indicates that the
approximation with prior knowledge is more potentially useful
than the approximation without prior knowledge.

In order to further illustrate the effectiveness of using
prior knowledge, we also performed two other experiments.
First, we calculated the root-mean-squared-error (RMSE) of
the functionf1 on the present data, which was not used to
createf1. The resulting RMSE was 6.12, which indicates that
this function does not, by itself, do a good job predicting
the present data. We also calculated the leave-one-out error
on the present data of an approximation that included the
present dataand the past data, butwithout prior knowledge.
This approach led to less than one percent improvement
over the approximation without knowledge shown in Table
I, which indicates that the prior knowledgein the form of the
implication (18)contains more useful information than theraw
past data alone. These results indicate that the inclusion of the
prior knowledge with the present data is responsible for the
14.8% improvement.

V. CONCLUSION AND OUTLOOK

We have proposed a computationally effective framework
for handling general nonlinear prior knowledge in kernel ap-
proximation problems. We have reduced such prior knowledge
to easily implemented linear constraints in a linear program-
ming formulation. We have demonstrated the effectiveness of
our approach on two synthetic problems and an important real
world problem arising in breast cancer prognosis. Possible
future extensions are to even more general prior knowledge,

such as that where the right hand side of the implication (3)
is replaced by a very general nonlinear inequality. Another
fruitful avenue of research would be to apply the general
nonlinear kernel knowledge to classification problems, for
which prior approaches involved unnecessary kernelization of
the prior knowledge.
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