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Abstract. Motivated by the fact that important real-life problems, such as the protein docking
problem, can be accurately modeled by minimizing a nonconvex piecewise-quadratic function, a
nonconvex underestimator is constructed as the minimum of a finite number of strictly convex
quadratic functions. The nonconvex underestimator is generated by minimizing a linear function
on a reverse convex region and utilizes sample points from a given complex function to be mini-
mized. The global solution of the piecewise-quadratic underestimator is known exactly and gives
an approximation to the global minimum of the original function. Successive shrinking of the
initial search region to which this procedure is applied leads to fairly accurate estimates, within
0.0060%, of the global minima of synthetic nonconvex functions for which the global minima are
known. Furthermore, this process can approximate a nonconvex protein docking function global
minimum within four-figure relative accuracy in six refinement steps. This is less than half the
number of refinement steps required by previous models such as the convex kernel underestimator
[4] and produces higher accuracy here.

1. Introduction

Our principal concern in this work is the global unconstrained minimization of a
nonconvex function with multiple local minima. Such NP-hard problems occur in
real-life problems such as protein docking [5]. Although there is no guaranteed
finite method that can solve this problem in reasonable time, interesting effective
approaches for attacking this problem have been recently proposed that obtain
a global solution for a number of synthetic problems with multiple minima. In
[2, 6, 9] the nonconvex function is successively bounded below by a strictly convex
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quadratic function whose minimum gives improved estimates of the global minimum
of the nonconvex function. In [3] the nonconvex function is underestimated by a
piecewise linear function and in [4] by a convex kernel function [11, 1, 10] and a
global solution of the underestimator is found. All these methods, though effective
in their own way, do not take advantage of the important fact that the original
nonconvex function is very closely modeled by a nonconvex function which itself
is the minimum of a finite number of convex functions. The global minimum of
this latter nonconvex function is easily computed as the least of the minima of the
convex functions constituting it. It is precisely this approach that we shall utilize
in this paper which will lead to an approximate global solution in a finite number
of steps.

We outline the contents of the paper now. In Section 2 we formulate our problem
as that of obtaining a close underestimator that is the minimum of a finite number
of strictly convex piecewise-quadratic functions. In Section 3 we state our algorithm
which consists of minimizing a linear function on a polyhedral reverse convex region
and establish its termination in a finite number of steps at a stationary point. In
Section 4 we give results for numerical testing of our algorithm on various sized
nonconvex synthetic test problems including a model for a protein docking problem.
In all instances tested, the global minimum value was attained within 0.0060%.
Section 5 concludes the paper.

A word about our notation and background material follows. All vectors will be
column vectors unless transposed to a row vector by a prime superscript . The
scalar (inner) product of two vectors x and y in the n-dimensional real space R™ will
be denoted by x’y. Superscripts will typically denote instances of matrices, vectors
or scalars such as H?, ¢’ or a’. A column vector of ones of arbitrary dimension will
be denoted by e, while the identity matrix of arbitrary dimension will be denoted
by I. For a concave function f : R™ — R the supergradient 0f(x) of f at x is a
vector in R" satisfying

f(y) = f(z) < of(2)(y — ) (1)
for any y € R™. The set D(f(z)) of supergradients of f at the point x is nonemepty,
convex, compact and reduces to the ordinary gradient V f(x), when f is differen-
tiable at « [7, 8]. The notation := will denote a definition of a term on the left of
the symbol and =: will denote a definition of a term on the right of the symbol,
while arg mSin c’s will denote the set of minimizers of ¢’s in the set S.

2. Piecewise-Quadratic Underestimation

The problem we are interested in is to find the global minimum of a function
f: R™ — R, given m function evaluations of f(z), that is:

v =f(2?), j=1,...,m. (2)

In [9] a strictly convex quadratic underestimate:

1
qla,e, Hyz) = a+ o + ix’H:r, H symmetric positive definite, (3)
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is first obtained by solving the mathematical program:

m
min (y) —q(a, ¢, H;27))
a,c,H
=1 _ _ (4)
s't' q(a’c7H;Ij) S yj’ jzl""7m7

H symmetric positive definite,

where @« € R, ¢ € R" and H € R™", and then minimizing ¢(«,c, H;z) over
x e R™

Our proposed approach is to replace the strictly convex quadratic, possibly inac-
curate, underestimator (3) by the much more accurate nonconvex function which
is the minimum of /¢ strictly convex quadratic functions:

o 1 . ,
q(p;x) == 1<i£1€al +c'n 4 §x’Hzx, H' symmetric positive definite, (5)
_/L_

where, for simplicity, p represents the variables (o', c?, H?) as follows:

a' p
pt= clyi=1...,0 pi=1]:1. (6)
H p’

Our approximation for an underestimator of f(x) is obtained by solving the follow-
ing maximization problem.

NE

1,
( min o + Ml ng/HZ:rJ)

X 1<i<e
B ) (7)
, o g
s.t. y; > min (o' +c"2? + =2 H'2?), j=1,...,m,
Yj = 1§i§e( + + B ), J

which can be rewritten in the following equivalent form:

m
max E o7
j=1

(P:7)
s.t. 121}% (o + '3 + %:leHixj) —y; <0,j=1,...,m, (8)
Y; —al — izl — %xj/Hi:rj <0,i=1,....¢, j=1,...,m,

We note that in this reformulation of (7), the last constraint of the reformulation
(8) is completely redundant. However, it is added in order to generate a convex
polyhedral set containing our nonconvex feasible region when the first set of con-
straints of (8) are dropped. We also note note that the nonconvexity of the feasible
region is caused by the “reverse convex” first set of constraints of (8), each compo-
nent of which generates a feasible region whose complement is convex, as depicted
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in Figure 1 which utilizes the following notation. By defining:

p
== <9>
Tm

our optimization problem (8) can be written as follows.

max d's
seS (10)
st. h(s) <0

where d := [S}, h(s) and S, a convex polyhedral set, are defined as follows.

1,
h;(s) := min (az—i-cz/xj—i-ia:J/Hzxj)—yj,j:l,...,m,

1<i<t
o —al — il — L' Higd

S:i= <s y Jy 2 <0,i=1,....0,j=1,....m .
J T Ji

(11)

We note that the nonconvexity in the minimization problem (10) is caused by the
reverse convex constraint h(s) < 0 while the set S is a convex polyhedral set. See
Figure 1. We turn now into our algorithmic part of the paper.

3. The Successive Linearization Algorithm

The basic idea of the algorithm is to first find a solution § of the linear program

max d's and then to solve a succession of linear programs whose feasible regions
se

are generated by adding to the polyhedral constraint s € S appropriate supporting
planes to the complement of the reverse convex set {s | h;(s) < 0} for some j.
The concavity of h;(s) ensures that the resulting polyhedral set is contained in the
original feasible region of (10):

T:={s|h(s) <0,s€S}. (12)

Before stating our algorithm it is convenient to define the active linear parts hj;(s)
of the constraint h;(s) <0 for j = 1,...,m at the point s as follows.

hj(s) := 12132@(a1+c’/x]+§x]IH’IJ)—yj,

= (i 0l + Lo Hiwd) —y;, i€ I() € {1,...,4}
=: hji(s), 1€I(j)C{1,...,¢}.

We now state our algorithm.

(13)

Algorithm 1 Feasible Successive Linearization Algorithm (FSLA)
Let § be a solution of the linear program max d's and let s° € T. Having s*
se

determine s*T € T as follows.
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Figure 1. The crosshatched reverse convex feasible region 7' (12) of the optimization
problem (10) consisting of the intersection of the polyhedral set S with the reverse convex
sets generated by h(s) < 0.

(i) Let 88 = s* + \F(5 — s*) where:

ko . . o .
AP = é}?m(m”%?i%{“ha(s + A8 — s") =0, (14)

and let the active set of constraints at §* be defined as:

sy . : ok & kY
J(§%) = arglglgnm(argorgn)}rgll{)\ | hj(s™ +A(5—s")) =0}). (15)

Note: §8 e T.
(i)
h;(8%) + Oh;(8%)(s — &%)
k
S

< 5
1 e argmin{ d's hii(s) < 0, j ¢ J(8%) (16)

ses

i€l(j)
Note: s**1 € T because of the concavity of h(s) and the fact that the second set
of constraints of (16) are supergradients of the concave constraints hj(s) < 0,

j ¢ J(3%). Note also that h;(8%) =0 for j € J(3%) in (16).

(iii) Stop if s**1 = 3F. Else k+1 — k and go to (i).
Note: d's® < d'sF < d'sFt1 < @'gk+L,
Hence, the nondecreasing bounded above sequences {d's*} and {d's*} converge
provided the feasible region T is bounded.
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We state now our finite termination result for our FSLA Algorithm at a KKT point
of our original problem (10).

Proposition 2 Finite Termination of FSLA Algorithm Under the nonde-
generacy assumption that each 3% lies on a nonrepeating unique intersection of the
boundary planes of the feasible region T (12), the sequence {3F} terminates at a
KKT point of the original problem (10).

Proof At §* the solution s**! satisfies the following KKT conditions with mul-
tipliers u and v, where we have assumed that the polyhedral region S is defined
by:

S :={s| As < b}, (17)

for some A and b:

dt Yo o3+ D u VAT + Au=0
jeJ(sk) JEJI(8%),i€1(j)
0<w; - Ohy(8%)(s* —8%) <0, je J(5),
0<w; - Y hu(sH) <0, j ¢ I,
i€1(j)
0<u - (Asftl —p)<o.

(18)

The dot denotes a scalar product in the last condition above. Since there is a
finite number of unique intersections of boundary planes, the sequence {3*} must
terminate. But, the only way for {5*} to terminate is that §¥ = s**1. However in
that case the KKT conditions (18) degenerate to the KKT conditions of the original
problem (10). O

Figure 2 depicts the various iterates of the algorithm and its termination in this
very simple case at a global solution.

We note that the nondegeneracy assumption required for the proof of Proposition
2 is rather strong, but was satisfied most of the time in our numerical tests. In
the few occasions when it was violated, our algorithm did terminate at a local
minimum.

We turn now to our numerical results.

4. Numerical Testing

In our numerical implementation, we enforced the requirement of (5) that each
H'® be symmetric positive definite by requiring that each H® be strictly diagonally
dominant as follows. We let L be a lower triangular matrix, set H* = L + L’ and
imposed the constraint:

Lii > 0.1+ |Lijl + Y _|Ljil. (19)

J<i Jj>i

In our testing, we found that the success of Algorithm 1 in producing an accurate
approximation of the original function was significantly dependent on the initial
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Figure 2. Iterates of of Algorithm 1 for a simple example. The crosshatched area constitutes
the feasible region of problem (16) for the first iteration (ii), that is k = 0.

feasible approximation, s°. Hence, we divided the given data points (2) into £

randomly chosen, possibly overlapping, subsets each consisting of 2 +n +n? points.
We then fit a quadratic to each subset using Algorithm 1 with ¢ = 1 with a trivial
initial approximation. Each quadratic formed a piece of our initial approximation
for the original problem, and was shifted down if need be in order to maintain
feasibility. That is, the piecewise-quadratic function consisting of the minimum
of the ¢ quadratic functions lay on or below the given m function values 37, j =
1,...,m. Table 1 shows a sequence of objective values for a given s* starting with
5" generated in the above manner.

Table 1. Results from using Algorithm 1 on a synthetic test prob-

lem from (20) in R with k; = 1000, k2 = 0.1 using m = 7 initial

points and ¢ = 6 pieces. The actual solution is a minimum value

of —1000 at z = 0. Note that solving méag( d's gives an upper bound
S

of d'5 = —3443.25

Tteration k | 0 1 2 3 4

d’'sk -10354.02  -3444.66  -3444.28 -3443.28  -3443.28

d’gk -3601.05  -3444.66  -3444.28 -3443.28  -3443.28

min q(pk; x) -1986.406  -999.999  -999.963  -1000.000  -1000.00
x

arg min q(pk; x) 0.036 -0.007 0.003 0.001 0.001
x
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To produce our numerical results, we used a refinement process similar to the one
used in [3, 4] to reduce the size of the search region while searching for an approx-
imate minima. In it, we approximate the function based on m points uniformly
distributed across the search space. We then re-center our search space around the
approximated minimum and reduce the size of the search space in each dimension
by a specified refinement rate. For example, a refinement rate of 0.25 produces a
search space with edges that are 25% of the length of those of the search space of
the previous iteration.

Using this process, we tested Algorithm 1 on six nonconvex functions on R™ with
n=1,...,6 defined as follows.

1
y(x) = §||:1c||2 — kicos(kae'), ki,ke € R (20)

Note that this function attains a minimum value of —k; at z = 0. Figure 3 shows
an example of this function in R? and an approximation of it using the minimum
of ¢ = 9 strictly convex quadratic functions. Figure 4 shows some sample iterates
of the refinement process of Algorithm 1 on the function (20) on R.

3500 -
3000
2500 |
2000 -
1500 -+
1000 -+

500 -
)

g
%%Z’I{Iﬂ”

-500 -

-50 50

Actual function Approximation

Figure 3. The function (20) with k; = 1000 and k2 = 0.1 on R? and its approximation using
the minimum of ¢ = 9 strictly convex quadratic functions.

We also tested the algorithm using six nonconvex piecewise-quadratic functions
on R"™ withn =1,...,6 defined as follows.

r) = min i(), 21
W)= min (@) (21)
where g;(z), j = 1,...,r are arbitrary strictly convex quadratic functions, such as:

. . 1 L
g;j(z) =0+ 2+ 5:17’(0.5[—!— M MYz, =1, (22)
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Iteration 1 Iteration 2 Iteration 4

Figure 4. Selected iterations from the refinement process of Algorithm 1 using the minimum
of the minima of three strictly convex quadratic functions, that is ¢ = 3, to find the global
minimum of the one-dimensional function defined by (20) with constants k; = 500 and
k2 = 0.1. Our dashed-line approximation underestimates the given solid-line function (20)
values at m given points at each iteration.

Here, 37 € R, 27 € R and M7 € R™™ are randomly chosen. In our testing,
we used 7 = 5. An exact global minimum solution of (21) can be computed as
described in [3, Section 4, Proposition 1].

We also tested our algorithm on a synthetic protein docking (SPD) problem gen-
erated from real docking data [5, 6]. For the SPD problem, we used the model (21)
with 7 = 5 and (0.5 + Mlej) replaced by a random diagonal matrix D7 € RS
with element values between 0.6 and 140. We then computed 3/ and z’ such that
each g;(z) is a strictly convex quadratic function with a pre-determined minimum
solution corresponding to actual local minima of the docking problem energy func-
tion [5]. That is, given local minima at 7 with minimum value v/, set 2/ = — D77
and B9 =17 — %zj/:vj . Results of these tests are presented in Table 2 for the func-
tion of (20) and in Table 3 for the piecewise-quadratic function of (21) including
the SPD problem.

It should be noted that we do not use any information about the functions (20) and
(21) except their values at m points, selected to be underestimated by the piecewise-
quadratic underestimating functions (11). This corresponds to the situation in real
docking problems. Typically, in computer models of the docking energy surface
(for which we want to locate the global minimum) it is only possible to compute
the value f(27) (2) of the energy surface at specified 27, j = 1,...,m, where 27
represents a possible conformation of a protein-ligand docked pair [5]. Each such
value generally requires a significant amount of computation.

We make the following observations regarding our numerical results:

(i) The percent error in the minimum value for all examples including the real-world
simulation of the protein docking SPD problem was no more than 0.0060%.

(ii) The percent 1-norm error in the solution vector for all the synthetic problems
of Table 3 including the SPD problem was no more than 0.0790%.

(iii) The times for the 6-dimensional problems were no more than two and a half
hours. Since this is the largest dimensional fixed docking problem in previous
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Table 2. Results from Algorithm 1 on six synthetic test problems in R" from (20)
with k1 = 500, k2 = 0.1. The true minimum value is —500, attained at 0. %Error is
rounded to 4 decimal places.

n 1 2 3 4 5 6
m 4 16 64 81 243 729
Refinement rate 0.25 0.25 0.25 0.25 0.25 0.25
Iterate tolerance 0.001 0.01 0.01 0.1 0.1 0.1
l 9 9 5 4 3 3
Computed min -500.00 -500.00 -500.00 -500.02 -500.02 -500.03
%Error in min 0.0000%  0.0000%  0.0000%  -0.0036%  -0.0046%  -0.0059%
Error in soln (1-norm) 0.0001 0.0000 0.0062 0.0582 0.0442 0.0791
No. refinements 3 5 9 14 11 13
Time (s) 3.65 8.24 38.37 57.99 143.51 4842.12
Time per refinement 1.22 1.65 4.26 4.14 13.05 372.47

Table 3. Results from Algorithm 1 on six piecewise-quadratic synthetic test problems and the
synthetic protein docking (SPD) problem. %Error is rounded to 4 decimal places.

Synthetic Problems in R™ SPD in RS
n 1 2 3 4 5 6 6
m 4 9 27 81 243 729 729
Refinement rate 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Iterate tolerance 0.1 0.1 0.1 0.1 0.01 0.1 0.1
l 6 3 4 4 3 3 3
True min -384.6 -12451.8 -20148.6 -23199.1 -6019.2 -7252.0 -42.7
Computed min -384.6 -12451.8 -20148.6  -23199.1 -6019.3 -7252.5 -42.7
Error in min 0.0 0.0 0.0 0.0 -0.1 -0.4 0.0
%Error in min 0.0000%  0.0000%  0.0000%  0.0000% -0.0010%  -0.0060% 0.0000%
Error in soln (1-norm) 0.0000 0.0000 0.0000 0.0000 0.0103 0.0281 0.0000
%Error in soln 0.0000%  0.0000%  0.0000%  0.0000% 0.0276% 0.0790% 0.0000%
No. refinements 5 11 7 6 16 13 6
Time (s) 3.56 7.61 10.89 40.90 316.85 8786.54 3005.71
Time per refinement 0.71 0.69 1.56 6.82 19.80 675.89 500.95

work [2, 5, 6] that needs to be handled, our method can reasonably accommodate
these problems. In order to handle larger dimensional problems in R"™, one could

use m randomly generated points of the order n?, for example.

(iv) The time, error rates, and number of refinements on the synthetic problems of
Table 3 were better than those of [3] for problems in R? and greater, including
the SPD problem.

(v) The error rates and number of refinements on the problems of Table 3 were

better than those of the linear-quadratic kernel of [4].

Also, the number of

refinements were fewer than those of the Gaussian kernel of [4], with comparable
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error rates. The improvement in the number of refinements reflect the fact that
Algorithm 1 produces a closer approximation of the original function than the
the method of [4]. This is important when actual data is difficult to obtain, and
we would like to limit the total number of sample points used. For instance,
the SPD problem required 11664 points using the algorithm from [4] with a
Gaussian kernel, but only 4374 using Algorithm 1 of this paper. A comparison
of the error rates and number of refinements for these different methods can be
found in Table 4.

Table 4. Comparison of Piecewise-Quadratic, Convex Kernel [4],
and Piecewise-Linear Underestimation [3] on the SPD Problem in
RS. All algorithms used 729 sample points per refinement step.

Underestimator %Error in Soln  %Error in Min  No. Refinements
(1-Norm)

Piecewise-Quadratic 0.0000% 0.0000% 6

Gaussian Kernel 0.0085% 0.0000% 16

Quadratic Kernel 0.7767% 0.9290% 12

Piecewise-Linear 0.083% 0.014% 26

Similar to previous work [3, 4], our computations were performed on machines
utilizing an 800 Mhz Pentium IIT processor and 256 MB of memory running Tao
Linux 1.0, with MATLAB 7.0 installed.

5. Conclusion

We have proposed a method for finding an accurate estimate of the global minimum
of a nonconvex function by underestimating the function by a nonconvex piecewise-
quadratic function and then finding the easily computable global minimum of the
underestimator. The method gives accurate estimates of the global minima for
nonconvex functions with multiple minima including a class of synthetic nonconvex
functions that closely model protein docking problems. An interesting problem for
future consideration is that of approximating nonconvex protein docking energy
functions by the minimum of a finite number of convex kernel functions instead of
the single convex kernel function used in [4]. This might provide a highly accurate
underestimator with an easily computable global minimum.
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