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Dynamic Instrumentation of Threaded Applications1

Abstract

The use of threads is becoming commonplace in both sequential and parallel programs. This paper describes our
design and initial experience with non-trace based performance instrumentation techniques for threaded programs.
Our goal is to provide detailed performance data while maintaining control of instrumentation costs. We have
extended Paradyn’s dynamic instrumentation (which can instrument programs without recompiling or relinking) to
handle threaded programs.

Controlling instrumentation costs means efficient instrumentation code and avoiding locks in the instrumentation.
Our design is based on low contention data structures. To associate performance data with individual threads, we
have all threads share the same instrumentation code and assign each thread with its own private copy of
performance counters or timers. The asynchrony in a threaded program poses a major challenge to dynamic
instrumentation. To implement time-based metrics on a per-thread basis, we need to instrument thread context
switches, which can cause instrumentation code to interleave. Interleaved instrumentation can not only corrupt
performance data, but can also cause a scenario we call self-deadlock where an instrumentation code deadlocks a
thread. We introducethread-conscious locksto avoid self-deadlock, andper-thread virtual CPU timersto reduce
the chance of interleaved instrumentation accessing the same performance counter or timer, and to reduce the
number of expensive timer calls at thread context switches.

Our initial implementation is on SPARC Solaris2.x including multiprocessor Sun UltraSPARC Enterprise
machines. We tested our tool on large multithreaded applications, including the Java Virtual Machine (JVM). We
show how our new techniques helped us to speed up a Java native method by 22% and overall execution time of the
JVM interpreting the AppletViewer driven by a game applet by 7%.

1 INTRODUCTION

Multithreading is a powerful technique to exploit parallelism on multiprocessors and to improve performance on uni-

processors by overlapping computation with I/O [3]. It provides a general-purpose solution for managing concur-

rency, and has been adopted by many of today’s core applications, including database and web servers, Internet

search engines, Java interpreters, web applications, irregular numerical applications, and graphical user interfaces. A

multithreaded program, unfortunately, faces more obstacles to good performance than a sequential program. These

obstacles include: competition for resources, synchronization, context-switching and non-overlapped I/Os. In

response to these problems, we have extended the Paradyn performance measurement tools to monitor and analyze

the performance of threaded applications. This paper describes the techniques that we used and initial results we

obtained from applying these techniques to real programs.

We have the following goals in this research:
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• Provide detailed information to locate performance bottlenecks in a threaded program, and to associate them

with individual threads and groups of threads.

• Handle the dynamic nature of the environment, including frequent thread creation and deletion, and frequent

insertion and removal of instrumentation (Paradyn allows users to insert and remove instrumentation during pro-

gram execution).

• The instrumentation overhead for threaded programs should be comparable to that for non-threaded programs.

• Handle different thread packages, including user-level and kernel scheduled threads, and preemptive and non-

preemptive scheduling.

As a result of this research, we can provide detailed performance information for a threaded program without using

tracing or special compiling and linking of the application.

A major challenge in building a performance tool for threaded programs is to associate performance data with

individual threads and doing so with acceptable overhead. We adopt a design, calledSame Instrumentation Code

Multiple Data(SICMD), in which all threads share the same instrumentation code, but each has its own private copy

of performance counters or timers. This design greatly simplifies the instrumentation code and reduces locking to

only a few global bookkeeping data structures. Avoiding locks in the instrumentation code makes it less intrusive.

A second challenge is to handle the asynchrony that can occur in multithreaded programs, such as thread pre-

emption. Instrumenting context switches is necessary for several reasons, such as implementing time-based metrics.

However, this can cause instrumentation code to interleave with the execution of a thread. When instrumentation code

calls functions that use locks (such as used in a thread-safe C library), it might deadlock the thread. We call this sce-

narioself-deadlock. We have devised a lock structure, calledthread-conscious locks,to avoid self-deadlock. A similar

problem can occur with Paradyn’s mechanism for asynchronously triggering instrumentation code in the application

(called aninferior RPC). We devised a safe inferior RPC to ensure that it will not interleave with other instrumenta-

tion code.

A third challenge is to minimize instrumentation cost when measuring time-based metrics on a per-thread basis.

To measure the time spent by individual threads (i.e., to virtualize timers per thread), we need to turn timers on and

off at thread-context switches. When context switching is frequent, this additional instrumentation can substantially

slow down an application. We introduce per thread virtual timers, and implement other timers using the virtual timers.

This approach also reduces the chance that interleaved instrumentation access the same timer structure.

In addition to the above technical contributions, there are important features of Paradyn that our tool gets for free.

For example, Paradyn’sdynamic instrumentationtechnology enables our tool to instrument an unmodified binary and

running program. This allows us to monitor a multithreaded server that is already running.

Our initial implementation runs on SPARC Solaris2.x, including multiprocessor Sun UltraSPARC Enterprise

machines. We have tested our tool on large multithreaded applications including the Java Virtual Machine (JVM), and

we show how our new techniques helped us to speed up a Java native method by 22% and reduce overall execution

time of the JVM interpreting the AppletViewer driven by a game applet by 7%.

In this paper, we will refer tothreaded Paradynfor the new version of Paradyn that can instrument threaded pro-

grams, andnon-threaded Paradynfor the previous version of Paradyn. We use the termprocessto refer to a kernel

scheduled entity that has its own address space, light-weight processes (LWP) to refer to kernel-scheduled threads
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that execute in a process, andthreadsto refer to user-level scheduled threads of execution. There are many other uses

of similar terms (e.g., Microsoft uses the terms process, thread, and fiber).

2 PARADYN BASICS

We briefly describe the basic characteristics of the Paradyn performance tool (more complete descriptions appear

elsewhere [1, 2]). Paradyn is a parallel performance measurement tool that currently runs on SPARC (Solaris), Alpha

(DEC UNIX), Power2 (AIX), and x86 (Solaris, NT, Linux) platforms. Paradyn uses dynamic instrumentation, a tech-

nology that allows instrumentation code to be inserted, changed, and removed from a running application. Beside

standard performance metrics such as CPU and waiting times, Paradyn can instrument any system, hardware, or net-

work activity that is visible in an application program’s address space.

Paradyn provides two basic abstractions for performance data:metricandfocus. A metric is a time-varying func-

tion that measures some aspect of an application’s performance, such as CPU utilization or procedure call frequency.

A focus is a component of a running application. Paradyn views a program as a collection of resource hierarchies that

represent various elements of a program, such as code (modules, procedures), machines (processes, and now threads),

or synchronization (messages, semaphores, locks). A selection of nodes in the resource hierarchy forms a focus. Tool

users request Paradyn to collect metrics for the foci in which they are interested, and Paradyn dynamically instru-

ments the program according to these criteria.

In non-threaded Paradyn, instrumentation code and data (counters or timers) are allocated on a per process basis.

The instrumentation code uses a trampoline structure (see Figure 1). For each runtime instrumentation request, Para-

dyn patches a jump to abase-trampoline, and relocates the instructions that were overwritten. Each base-trampoline

has pre- and post-instrumentation sections. The pre-instrumentation section links all instrumentation code to be exe-

cuted before the program point, and the post-instrumentation section links all instrumentation to be executed after the

program point. Each linked item is called amini-trampoline.

Figure 1: Trampoline Structure (Non-threaded Version of Paradyn)
The entry point of function “foo” has been instrumented.
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Relocated
Instruction(s)

Trampoline
Base

Save Regs

Restore Regs

Trampolines
Mini

Save Regs

Restore Regs

Pre instrument.

Post instrument.

Instrumentation

Program
Application

(e.g. StartTimer)

Update cost

Update cost
Primitive

Instrumentation

(e.g. Inc. Counter)
Primitive



Page 4

October 29, 1998

3 INSTRUMENTING THREADED PROGRAMS

Our goal is to provide fine-grained information to locate performance bottlenecks in a threaded program and quantify

them with respect to individual threads and groups of threads. We achieve this goal by adopting a design called Same

Instrumentation Code Multiple Data (SICMD) that uses a single copy of instrumentation code and per-thread copies

of performance counters and timers. We extended the resource hierarchy of Paradyn to include new resources for

threads and thread-specific synchronization objects.

3.1 Same Instrumentation Code Multiple Data

In a multithreaded application, all threads share the same code, and modifying the application code affects all threads.

We used same instrumentation code multiple data, where all threads share the same instrumentation, but each has its

private copy of performance data. Performance metrics for group of threads are computed by aggregating measure-

ments for individual threads.

The main data structure (in the application’s address space) is a matrix called theThread Table. Each active

thread has a column in the table. Table cells in each row point to a vector of counters or timers. Whenever a thread is

created, a free column in the Thread Table is assigned to the newly created thread. For each metric-focus pair enabled,

a row of counters or timers is allocated corresponding to a vector of counters or timers in the non-threaded Paradyn. A

counter or timer is identified by [t, (v, i)]: threadt, entryi in vectorv. For example, to measure CPU time spent by the

threadThr3  in Figure 2, a timer will be allocated. It is identified by columnt, rowv, vector element i.

The trampoline structure for instrumenting threaded programs is shown in Figure 3. There is a new section,

called theMT Preamble,that maps the thread ID to the address of the column in the Thread Table. The column

address is stored in a register to be used by all mini-trampolines. In a mini-trampoline, an extra piece of code com-

putes the counter or timer address based on the value of the register that holds the column address and (v, i) for the

corresponding metric-focus pair.

Figure 2: Thread Table

Thr1 Thr3 Thr4

Vector of counters i

v

t

Vector of Timers
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The advantages of this design are: (1) the trampoline structure is similar to the non-threaded version, (2) no locks

are needed for the counter or timer structures, and (3) the address calculation for counters or timers is simple and effi-

cient. The disadvantage is that some counter and timer slots may never been used.

To maintain the thread table, we instrument the thread creation and deletion routines. In addition to the Thread

Table, we use three global data structures: a free list of columns in the Thread Table, a dictionary that maps a thread

ID to the column index assigned to the thread, and a table of thread IDs of threads that have already exited. The dic-

tionary is updated at each thread creation and deletion, and is used in each base trampoline to compute the column

address. The table of deleted threads is used to tell if a newly created thread has already terminated (this can occur if

a thread is extremely short-lived).

Since multiple threads can simultaneously access the global bookkeeping data structures, locks are needed to

protect them. To reduce contention for locks, we implement the dictionary and the table for terminated threads as

hash-tables shown in Figure 4. Each hash table bucket has its own lock, and only threads whose thread IDs hash to the

same bucket could contend with each other. In our current implementation for SPARC Solaris2.x, we cache the col-

umn index assigned to a thread in a global register that is preserved across procedure calls (reducing table access).

Figure 3: Trampoline Structure (with Threading)
New features are highlighted.

Figure 4: Low-Contention Data Structures
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Several technical difficulties arise from monitoring multithreaded programs that have already started to run. The

most important one is to obtain information about threads that have already been created. Important information

includes the stack base of a thread and the ID of the LWP on which the thread is currently mapped. The stack base is

needed to walk the stack to ensure that no thread is executing the instrumentation code when we try to remove it. The

LWP ID is needed to ensure that the timer metric is correct (see Section 3.3). We can add code to our instrumentation

to detect the first time a thread executes an instrumentation code, or check the data structures maintained by the

thread package for these information.

3.2 Dealing with Asynchrony

Because multiple threads can access global instrumentation data simultaneously, we use locks to protect the global

bookkeeping data structures. Moreover, thread preemption can cause interleaving of instrumentation code. Consider

the case when a thread is preempted while executing instrumentation code. The instrumentation installed in the thread

context switch routines will interleave with the instrumentation that was preempted. If they both write to the same

performance counter or timer, the performance data could be corrupted. Making the situation worse is that any use of

locks in the instrumentation code has the potential to deadlock the application. There is an interesting scenario, which

we callself-deadlock.This scenario occurs when instrumenting thread context switches, when instrumentation code

in the context switch routine requests a lock, and could then deadlock if the thread has been granted the same lock.

To solve the self-deadlock problem, we introduced a lock structure called thethread-conscious lock (tc-lock).

This lock has a field holding the ID of the thread that currently holds the lock and returns a special value if the lock

acquisition routine detects that the thread already has been granted the lock. The instrumentation code tests the return

value of the tc-lock to avoid self-deadlock, and allowing code to handle this case. Table 1 illustrates the logic of tc-

lock.

In our current implementation, if a tc-lock returnsSELF, we simply skip the instrumentation. As described in

Section 3.1, we cache the column index assigned to a thread in a global register. This greatly reduces dictionary look-

ups and the contention on locks. We have also introduced per-thread virtual timers to reduce the chance of the same

timer data being accessed by interleaved instrumentation (see Section 3.3). A more thorough solution is to add extra

information to the lock, counter and timer structures to effect communication between interleaved instrumentations to

carry out appropriate actions.

Previous New
Return Value

State TID State TID

HELD t1 HELD t1 SELF

HELD t2 HELD t2 NO

FREE - HELD t1 YES

Table 1: Thread-Conscious Lock
Thread t1 requests tc-lock(l), where l may already be held.
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3.3 Timer Issues

Another challenge is to minimize instrumentation cost when measuring time-based metrics on a per-thread basis.

Threads are executed by LWPs. To measure the CPU (virtual) time of an individual thread, we must use the per-LWP

timer kernel calls and instrument thread context switches to account for thread context switching and migration. To

reduce the number of calls to expensive timer routines, we introduced per-thread virtual timers, one for each thread,

and implement our performance timers using the virtual timers.

The initial LWP ID of a newly created thread is recorded in a virtual timer and updated at every thread context

switch to account for any possible thread migration. We turn a virtual timer off when a thread is de-scheduled (this

stops all performance timers for this thread) and turn it back on when a thread resumes execution. Implementing per-

thread virtual timers reduces the number of calls to expensive timer routines, and reduces the chance that a timer

structure gets accessed by interleaved instrumentation.

3.4 Inferior RPC

Paradyn uses a mechanism called inferior RPC to asynchronously trigger instrumentation code. Inferior RPC is used

to start instrumentation, when execution has already past the point in which it was inserted. For example, to measure

CPU for functionfoo, we insert start-timer code at the function entry and stop-timer code at the exit. If we are already

executing infoowhen the instrumentation request is made, we use inferior RPC to trigger the entry instrumentation to

start the timer.

Paradyn implements inferior RPC by pausing the application, installing the inferior RPC code into the applica-

tion’s address space, and changing the program PC to the inferior RPC code to execute it. A trap instruction is

installed at the end of the inferior RPC code to notify Paradyn that it can then resume the application. Inferior RPC is

similar to the “call” feature of a debugger [4], and is a complement to Paradyn’s dynamic instrumentation.

For a threaded program, we need to execute inferior RPC code for a particular thread (e.g., when a thread

requires starting a timer). But Paradyn has no control over which thread will be executing in the application when per-

forming the inferior RPC. Our solution is to allow any thread to execute the codeon behalf ofthe particular thread

that needs to run the inferior RPC. We achieve this by passing the ID of the thread to the inferior RPC and have the

inferior RPC code look up the correct entry in the Thread Table.

When we perform an inferior RPC, the thread that is executing may be the one for which we want to perform the

asynchronous operation. This asynchrony could cause problems similar to instrumenting thread context switches. To

avoid this problem, we created safe inferior RPC, in which Paradyn posts inferior RPCs in a shared memory segment

accessible by both Paradyn and the application; the base-trampolines check this segment for pending RPC’s and exe-

cute them at a safe time. This ensures that inferior RPC will not interleave with other instrumentation.

3.5 Refining Paradyn’s Resource Hierarchy

Paradyn decouples performance metrics from program components. A user can request performance data such as

CPU time spent by a particular procedure by selecting the appropriate procedure from the resource hierarchy and the

performance metricCPU Time. We extend the resource hierarchies of Paradyn to include threads and a number of

thread-specific synchronization objects (condition variables, mutex locks, and read/write locks). The left side of

Figure 5 shows the code hierarchy that lists the procedures in the shared objectlibjava_g.so . The middle part
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shows the process hierarchy where the processjava_g{12192_chocolate} has several threads. The right side

shows the resource hierarchy for the synchronization objects.

Figure 6 shows an example of profiling synchronization waiting time on conditional variables for two individual

threads. The top curve shows the conditional waiting time in the threadthr_1 and the bottom curve shows the con-

ditional waiting time in the threadthr_7 .

Figure 5: Resource Hierarchy
Showing resource hierarchies for code, process and synchronization objects.

Figure 6: Fine-Grained Performance Data
Dividing synchronization waiting time to conditional variable and individual threads.
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4 INSTRUMENTATION OVERHEAD

This section describes the cost of instrumenting threaded code through a few simple benchmarks and compares them

with non-threaded Paradyn. Table 2 presents the cost of basic instrumentation primitives, including the cost to exe-

cute the base-trampoline, increment a counter, and start and stop a CPU timer. These costs are presented for the

threaded and non-threaded Paradyn instrumentations on two different systems: an UltraSPARC II with one 250 MHz

processor, and an Enterprise 5000s with twelve 167-MHz processors.

As shown in Table 2, the cost of base-trampoline for threaded Paradyn is about 5 times of that of the non-

threaded version. The extra costs are from code added to check for inferior RPCs and to calculate the column address

in the Thread Table. Counter primitives for the new version are 40% more expensive than the non-threaded Paradyn,

and timer code is about 60% more expensive, mainly because the new version has to go through a level of indirection.

To get a feeling for the overall cost of the new instrumentation, we instrumented a simple multithreaded applica-

tion (matrix multiply with 150 lines of C code) and compared it with the cost of instrumenting a sequential version of

Machine

Base Trampoline Counter Start Timer Stop Timer

Non-
threaded

Threaded
Non-

threaded
Threaded

Non-
threaded

Threaded
Non-

threaded
Threaded

UltraSPARC II
Uniprocessor

124ns
573ns

(+362%)
27ns

39ns
(+44%)

1.9µs
3.1µs

(+63%)
2.0µs

2.9µs
(+45%)

Enterprise 5000s 185ns
773ns

(+318%)
40ns

55ns
(+38%)

2.8µs
4.6µs

(+64%)
3.0µs

4.4µs
(+47%)

Table 2: Micro Benchmarks

Instrumentation

Non-threaded Paradyn
(Sequential Version)

Threaded Paradyn
(Threaded Version)

UltraSPARC II
1 processor

Enterprise
5000s

UltraSPARC II
1 processor

Enterprise
5000s

4 processors

No Instrumentation 64.6s 96.3s 65.0s 24.4s

CPU Time (Inclusive)
Whole Program

66.1s (+2%) 97.5s (+1%) 67.3s (+4%) 25.2s (+3%)

Procedure Call Frequency
Functioninnerp

67.5s (+4%) 97.8s (+2%) 68.3s (+5%) 25.8s (+6%)

CPU Time (inclusive)
Functioninnerp

67.9s (+5%) 100s (+4%) 71.9 s (11%) 27.3s (+12%)

Table 3: Matrix Multiply
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the same algorithm by the non-threaded Paradyn. Table 3 shows elapsed times of the two versions repeatedly multi-

plying two 500x500 matrices of floating point numbers. In Table 3, we measure CPU time (inclusive) for the whole

program, procedure call frequency and CPU time (inclusive) for the functioninnerp . The procedure call frequency

of innerp is about 3,500 calls/second on the uniprocessor, and about 10,000 calls/second for the multithreaded ver-

sion on the multiprocessor. Note that the overhead for the threaded instrumentation is about 2 to 3 times of that for the

non-threaded instrumentation. Instrumentation cost is proportional to event frequency. In this example, we instru-

mented the most frequently called procedure as a stress test.

5 DISCUSSION

In the previous sections, we have described our techniques to dynamically instrument threaded programs. There are

several things we can do to make our tool more usable.

First, we can improve the naming of threads and synchronization objects in the resource hierarchy to better relate

them to source level constructs. Since we operate directly on binary programs, this information must be extracted

with our runtime instrumentation. For threads, we can label them with the start function, thread ID, or an application-

provided string name that is provided by some thread packages. Associating source-level information with synchroni-

zation objects is more challenging, since most synchronization object can be created without explicitly calling a cre-

ation function. However, if a synchronization object is created by calling a creation routine, we can associate it with

the line number and source file name of the calling function.

Second, we have focused our attention on the correctness of instrumentation so far. Instrumentation overhead for

threaded code is still more expensive than that for non-threaded one. There are several places we can make our instru-

mentation code more efficient. For example, we can collapse the logic of our performance timers with that of the per-

thread virtual timer to make the timer code more efficient. We can also use hardware timers for wall time-based met-

rics.

Last, most processors provide hardware counters and timers for performance metrics such as cache misses and

branch mispredictions. Incorporating these measurements into our tool will allow us to provide the users with more

useful information.

6 PRELIMINARY EXPERIENCE

Using the new threaded instrumentation, we studied the performance of the Sun Java Virtual Machine version 1.1.6

interpreting the AppletViewer driven by a game applet called Tetris (from Java Boutique) on a UltraSPARC unipro-

cessor machine running Solaris2.6. The Tetris applet2 has approximately 1000 lines of Java code. The Tetris applet

and AppletViewer adding together include about 280 Java classes.

Figure 7 shows CPU time for the individual threads. Of the 14 threads, 3 threads accounted for most of the time;

Threadthr_7 was the largest, followed by threadsthr_13 andthr_14 . The “invoke” functions (e.g.,invoke-

JavaMethod and invokeNativeMethod ) are common bottlenecks in Java. Profiling these functions showed

that the functioninvokeNativeMethod took about 40% of the total CPU time (see Figure 8). A more detailed

look reveals thatinvokeNativeMethod is mostly called by the threadthr_7 , accounting for about 50% of the

time spent inthr_7 (see Figure 9). A close examination ofinvokeNativeMethod in thr_7 showed that most

2. The applet has delays inserted to artificially slow its visual behavior. To obtain a more demanding load on the virtual
machine, we removed these delays.
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of its time is due to a call tosun_awt_motif_X11Graphics_drawLine (see Figure 10). We were able to

eliminate some redundant code shared by the monitor enter and exit code and cut the number of calls to the function

sysThreadSelf (which returns information about the currently running Java thread) by about 75% in thread

thr_7 . Figures 11 and 12 show the number of calls tosysThreadSelf before and after redundant code elimina-

tion. As a result, we improved the performance of the functionsun_awt_motif_X11Graphics_drawLine

by about 22% and elapsed time of the JVM by about 7% (see Table 4). In this performance study, we used the ability

to select performance data for an individual function or individual thread, and for an individual functiononly for an

individual thread (this feature appears unique to our tool).

sun_awt_motif_X11Graphics_drawLine Elapsed Time

Original 29.8µs 20.3s

Optimized 23.2µs (-22%) 18.85s (-7%)

Table 4: Performance Improvements

Figure 7: CPU Time Measured on a Per-Thread Basis
Of the total 14 threads, thr_7, thr_13 and thr_14 accounted for most of the CPU time. The top curve shows the CPU
time spent by the whole program, followed by curves showing time spent by threads thr_7, thr_13 and thr_14.
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Figure 8: invokeNativeMethod takes about 40% of total CPU time
The top curve shows CPU time spent by the whole program, followed by the curve showing CPU time spent on calling
invokeNativeMethod.

Figure 9: invokeNativeMethod was mostly called by thr_7
The top curve shows the total CPU time spent by the thread thr_7, the middle curve shows the CPU time spent on
calling invokeNativeMethod by the whole program, and the bottom curve shows the CPU time spent by thr_7 calling
invokeNativeMethod.
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Figure 10: Subdivide invokeNativeMethod
Most of the CPU time spent by invokeNativeMethod in thr_7 is on calling sun_awt_motif_X11Graphics_drawLine,
and only a small percentage of which is spent on the “real work” XDrawLine.

Figure 11: Calls to invokeNativeMethod and sysThreadSelf
For each call to invokeNativeMethod, there is approximately 4 calls to sysThreadSelf. The number of calls to moni-

torEnter, monitorExit and XDrawLine are the same as the number of calls to invokeNativeMethod.
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7 RELATED WORK

While many tools have been developed to monitor and analyze the performance of parallel programs, few tools have

been built for multithreaded programs. The Sun WorkShopTM Thread Event Analyzer [8], Socrates [7], and Tmon [3]

are all trace-based tools that are able to divide performance data to threads. Both the Event Analyzer and Socrates

save trace data for post-mortem analysis and visualization. Socrates stores the trace data in a database to be used by

other analysis and visualization tools. The Sun Event Analyzer measures file and socket I/O, memory allocations,

string usage and synchronization, and visualizes them in graph, table or timeline displays. Both Socrates and the

Event Analyzer allow a user to select events of interest through graphical user-interfaces to control instrumentation

overhead. In the Event Analyzer, instrumentation is accomplished by shared library interposition, and instrumenta-

tion in Socrates is through changing a program’s source code.

Tmon is a performance tool for multithreaded programs developed at Princeton University. Tmon implements

performance metrics that are at a higher-level than those implemented by the Event Analyzer. The metrics Tmon

implements include thread waiting time (building thread waiting graph), and semi-busy-waiting time. Tmon supports

on-line analysis and visualization, and it uses a client-server architecture where the server side of Tmon processes

traces sent from the client side via a socket. Tracing and sending traces via a socket can incur intrusion as large as 3.3

times slow down [3]. The same as Socrates, Tmon captures thread synchronization events by changing the source

code of a lightweight user-level thread package.

Gthread [9] is a trace-based Pthread Visualization Package developed for the KSR parallel machines to debug

multithreaded programs. Gthread involves a set of animation views that depict the individual threads and their move-

Figure 12: Calls sysThreadSelf After Redundant Code Elimination
After eliminating redundant code, calls to sysThreadSelf is cut significantly, and number of calls to invoke-

NativeMethod increased slightly.
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ment through the functions of the program, and shows other program features such as barriers and mutexes. Gthread

adds instrumentation to a program by using macros to replace the Pthread calls to add tracing capability. It writes the

tracing data to a file that is subsequently used by the visualizer to drive the animation.

Our tool differs from other tools in that we use runtime dynamic instrumentation, without tracing. Dynamic

instrumentation allow our tool to instrument unmodified binary and running programs, and allow us to control instru-

mentation overhead dynamically.

8 CONCLUSION

This paper describes our design and initial experience with non-trace based performance instrumentation techniques

for threaded programs. Our goal is to provide detailed performance data while maintaining control of instrumentation

cost. Our main contributions are the SICMD design to divide performance data to individual threads, and techniques

to handle asynchrony and contention in instrumenting multithreaded programs.

With SICMD, all threads share the same instrumentation but each has its own private copy of performance data.

This approach simplifies instrumentation code and reduces the use of locks. Instrumenting multithreaded programs

faces new challenges such as dealing with contention and asynchrony. We introduced thread-conscious lock to avoid

a scenario where an instrumentation can deadlock a thread, and per-thread virtual timers to reduce the number of calls

to expensive timer routines at thread context switches. Per-thread virtual timer also reduces the chance of interleaved

instrumentation accessing the same performance data. Along with other techniques such as low-contention data struc-

tures and caching, instrumentation cost for a threaded program is comparable to that for a non-threaded program.

Our initial implementation is on SPARC Solaris2.x including multiprocessor SUN UltraSPARC Enterprise

machines. We show how our new technique help us to speed up a Java native method by 22% and overall execution

time of the JVM interpreting the AppletViewer driven by a game applet by 7%.
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