
The Frequency of Dynamic Pointer References in ‘‘C’’ Programs

Barton P. Miller

Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street

Madison, Wisconsin 53706

1. Introduction

A collection of ‘‘C’ ’ programs was measured for the number of dynamic references to pointers.The
number of dynamic references to pointers is presenteded with respect to the total number of instructions a
program executes, giving the percentage of pointer references executed in a ‘‘C’ ’ program. Themeasure-
ments were done on a VAX 11/780 running the Berkeley UNIX operating system. The measured programs
were selected by examining the most commonly run programs on the Computer Sciences Department
UNIX machines. The measurement process was performed in two steps: (1) the dynamic counting of
pointer references, and (2) the counting of the total number of instructions executed by the program.

There are several uses for the results presented in this report. One use was for a study of how well
‘‘ C’’ programs would run on a CPU that did not easily support 32 bit pointers.Each time a pointer was
used, a couple of instructions were needed to form the 32 bit value. If this occurred too frequently, the pro-
grams would not run well on this hardware. Asecond use of these results was for estimating the cost of
monitoring pointer references in a debugging system. If pointer references occur too frequently, the cost of
monitoring would be prohibitive.

The remainder of this report includes three sections. These arethe process used to obtain the mea-
surements, the actual numerical results, and a short discussion of the results.

2. Measurement Process

Each program,in each situation, required two measurements. Thesewere the dynamic count of
pointer references in a ‘‘C’ ’ program, and the count of the total number of instructions executed by the pro-
gram.

The pointer references were measured by modifying the ‘‘C’ ’ compiler to add instructions to the
object code to meter each reference to a pointer. Each reference to a pointer is accompanied by an incre-
ment of a variable totaling these references. When the program completes execution, that value is printed.
The code added to the program to meter pointer references has no effect on the correct execution of the pro-
gram. Explicitpointer references, as well as implied references that causes the ‘‘C’ ’ compiler to treat them
as pointer references (e.g., array references) were counted.‘‘ C’’ programmers often take advantage of the
fact that arrays are actually implemented as pointers.This means that it not possible to change the way the
‘‘ C’’ compiler implements its arrays (currently working programs may stop doing so), and that the implied
pointer references must be counted.

The runtime library must also be considered when measuring the programs. The programs were
measure both using a metered version of the runtime library (i.e., one that had been compiled with the mod-
ified compiler), as well as using the standard (unmetered) version of the library. This is to determine what
percentage of pointer references are generated by the actual program, and that are caused by the runtime
library. It is possible to rewrite the runtime library in a way to reduce the number of pointer references.
While there can be no control on how user programs use pointers, it is still possible to have control over the
(standard) libraries that these programs use. If minimizing the number of pointer references is desirable,

- 1 -



then rewriting the standard library provides an additional tool.

The measurement of the total number of instructions executed by a program was done by adapting an
instruction measurement program.The program being measured runs as a debugged task, with every
instruction being trapped and examined (in this case, only counted). The program being measured is an
unchanged version (no pointer counting instructions included).

The following programs have been measured, in the situations described:

ex/vi
A UNIX screen or line editor. This was run in three situations: (1) start-up the editor with no file,
and immediately quit; (2) use the editor to start a new file, adding approximate 20 lines; and (3) edit-
ing a 450 line file, adding lines, deleting lines, doing global changes.

csh
The Berkeley UNIX shell. This was run in two situations: (1) start-up with input; and (2) a 20 line
script of typical UNIX commands, including programs to be run and internal shell commands.

sh
The Bourne shell (from AT&T). This was run on input similar to that for csh.

‘‘C’’ compiler
The UNIX ‘‘C’ ’ compiler. The main compiler phase was used. The preprocessor (macro expansion),
and the postprocessor (optimizer) were not measured.Tw o situations were measured: (1) a short pro-
gram (size.c, 49 lines); (2) and a medium length program (ls.c, 663 lines).

f77
The UNIX Fortran-77 compiler. The main compiler phase was used. The postprocessor (optimizer)
was not measured.Tw o situations were measured: (1) a short program (27 lines); (2) and a medium
length program (270 lines).

nroff
The UNIX word processor for non-typeset devices. Thiswas run in two situations: (1) a small file
(17 lines, about 2/3 a page output); and (2) a medium file (178 lines, 5 1/2 pages output).

ls
The UNIX list file utility. This was run in four situations: (1) short format list on an empty directory;
(2) long format with sorting by reverse time order on an empty directory; (3) short format list on an
large directory; and (4) long format with sorting by reverse time order on an large directory;

Note that the traced programs were not run on large inputs. This is because the dynamic instruction
counting has a 100:1 execution cost factor. It is possible to do a few of these, but it is not anticipated that is
will produce results that differ significantly from the situations measured.

3. Measurement Results

The data collected is presenteded in Tables 1 and 2 below. Table 1 includes, for each measurement
situation, the number of dynamic pointer references, the number of total instructions executed, and the per-
centage:

pointer references

instructions executed
× 100

Table 2 compares the dynamic pointer references for the programs run with and without the metered ver-
sion of the runtime library. For each measurement situation there is the pointer count with the library being
metered, pointer count without the library being metered, and the percentage:

pointer references w/metered library

pointer references w/o metered library
× 100

Following are notes on some of the programs that were tested.

- 2 -



The ex program makes heavy use of the library routines on startup, doing initialization and reading
the file. Adding and deleting text are relatively simple operations and do not involve much pointer manipu-
lation. Morecomplex editing (i.e, global substitutions or use of regular expressions) uses pointers to a
much larger extent. Thethird measurement situation uses the more complex editing facilities, causing a
great usage of pointers.

The nroff program is a nightmare. It is a direct transliteration of an assembly program into the ‘‘C’’
programming language. The structure is awkward, and there is little use of higher data types. Most data is
kept in static, global variables. Thereis a new version of nroff coming from AT&T, but it will not change
in any significant structural fashion. Theresults included in this study will be applicable to the new version
of nroff.

The ls program has been recently rewritten to depend heavily on the standard library. All of its I/O,
and most of it handling of the directory structures makes use of the library routines. This accounts for the
large percentage of pointer references attributable to the runtime library.

The early version of the Bourne Shell (sh) that we used makes no use of the runtime library. It calls
the UNIX I/O routines directly (doing no buffering), and has all its own routines for string handling.

A bug in the UNIX kernel has prevented the obtaining of the total instruction count fromcsh and
Mail.

- 3 -



Table 1

Count of pointer references, total instructions executed, and percentage.
(includes library routines)

Sample Pointer References Instructions Executed Percent of
Pointer References

LS

ls (emptydirectory) 19 1573 1.2%
ls -tl (empty directory) 36 1914 1.9%
ls (bigdirectory) 12251 93894 13.0%
ls -tl (big directory) 25906 374692 6.9%

CC (CCOM)

size.c (49 lines) 11253 655569 1.7%
ls.c (663 lines) 132925 7040887 1.9%

SORT

10 line file 802 6305 12.7%
497 line file 655569 2085139 31.4%

MAIL

Simple (1 recip, short letter) 16374 ?? ?.?%
Longer (5 recip, long letter) 46392 ?? ?.?%

EX

start-up, no file 189 39632 0.5%
new file, add lines 4587 167620 2.7%
existing file (418 lines) edit 95189 658117 14.5%

NROFF

test.rno (small test) 55372 4473185 1.2%
prop.rno (6 pages) 153867 9489267 1.6%

F77 (PASS1)

27 line program 14886 3040133 4.9%
270 line program 119496 2163606 5.5%

SH

trivial script 655 18717 3.5%
complex script 15697 304495 5.1%

CSH

trivial script 16320 ?? ?.?%
complex script 34930 ?? ?.?%

- 4 -



Table 2

Count of pointer references, with and w/o library measured, and percentage.

Sample w/Metered Library w/o Metered Library Percent of References
Due to Library

LS

ls (emptydirectory) 19 8 42.1%
ls -tl (empty directory) 36 17 47.2%
ls (bigdirectory) 12251 1050 8.6%
ls -tl (big directory) 25906 3240 12.5%

CC (CCOM)

49 line program 11253 9394 93.0%
663 line program 132925 110970 84.0%

MAIL

Simple (1 recip, short letter) 16374 13453 92.0%
Longer (5 recip, long letter) 46392 31777 68.5%

EX

start-up, no file 189 101 53.4%
new file, add lines 4587 4447 96.9%
old file (418 lines) edit 95189 95308 99.8%

NROFF

test.rno (small test) 55372 55353 99.0%
prop.rno (6 pages) 153867 153848 99.0%

F77

27 line program 14886 13898 94.0%
270 line program 119496 112659 93.0%

SH

trivial script 655 655 100.0%
complex script 15697 15697 100.0%

CSH

trivial script 16320 11663 60.5%
complex script 34930 23116 66.2%

- 5 -


