
f
h
e
-
-
ent
e
an-
e
to
s.

s
-
n

n
-
-

ed
y

e
-
e

in

i-
d
rs
n
.

sed
e

se
k-

Checkpoints of GUI-based Applications

Victor C. Zandy and Barton P. Miller
Computer Sciences Department

University of Wisconsin – Madison, USA
{zandy,bart}@cs.wisc.edu
Abstract

We describe a new system, calledguievict, that enables the
graphical user interface (GUI) of any application to be
transparently migrated to or replicated on another display
without premeditative steps such as re-linking the application
program binary or re-directing the application process’s
window system communication through a proxy. Guievict is
based on a small X window server extension that enables an
application to retrieve itswindow session, a transportable
representation of its GUI, from the window server and a library
of GUI migration functionality that is injected in the
application process at run time. We discuss the underlying
technical issues: controlling and synchronizing the
communication between the application and the window
system, identifying and retrieving the GUI resources that form
the window session, regenerating the window session in a new
window system, and maintaining application transparency. We
have implemented guievict for the XFree86 implementation of
the X window system. The GUI migration performance of
guievict is measurably but not perceptibly worse than that of a
proxy-based system.

1 INTRODUCTION

Application mobility is the ability for an application in
execution to follow its user, whether the user moves
from one computer to another or moves with their com-
puter around the Internet. This mobility includes mov-
ing the executing code, network connections, access to
the graphical user interface (GUI) or the GUI itself, and
access to files. We are developing aroaming applica-
tions system, calledevict, that addresses these issues,
providing application mobility that is transparent to
users and applications while requiring no modification
to system code.

This paper describesguievict, the part of the evict
system that migrates an application’s GUI. An applica-

tion’s GUI might migrate as the application itsel
migrates, or independently of the application. Bot
types of migration require the ability to capture th
application’swindow session, a transportable represen
tation of its GUI. Window sessions are difficult to cap
ture because not all of the state they represent is resid
in the application. Portions of an application’s GUI stat
reside in the window server, a separate system that h
dles the display of all GUI-based applications on th
same host. Most window servers do not provide a way
extract the state of an individual application’s resource

Guievict has been implemented for the X window
system [19] and has the following characteristics:

❏ Migration occurs at application granularity; user
can select and move the GUI of individual applica
tions from their desktop, leaving other applicatio
GUIs behind or free to move elsewhere.

❏ Any application program, including those based o
legacy toolkits, can be migrated without modifica
tions such as re-programming, re-compiling, or re
linking.

❏ Migration can be unpremeditated; users do not ne
to run their applications in a special way, such as b
redirecting their GUI communication through a
proxy.

❏ No modifications to window system code ar
required; our functionality is contained in the win
dow server extension, which does not require th
server to be re-linked, and a library that is loaded
the application at run-time.

❏ The guievict functionality can also be used to repl
cate the GUI of individual applications on deman
on multiple desktop hosts, enabling multiple use
to interact with a single instance of an applicatio
for collaborative work or to support remote service

There are several essential elements to a GUI-ba
application (see Figure 1). The application runs in on
or more processes on theexecution hostand the user
interacts with it from a possibly differentdesktop host.
The desktop comprises a display, keyboard, and mou
managed by a window system that multiplexes the des

This work is supported in part by Department of Energy Grants
DE-FG02-93ER25176 and DE-FG02-01ER25510, Lawrence
Livermore National Lab grant B504964, NSF grants CDA-
9623632 and EIA-9870684, and VERITAS Software. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright no-
tation thereon.



s a
h
-

s
n-
rs
e
y.
n

se
v-
-
nd
f
t

ed
d
-
a-
st
-
ion
ss,
e

-
r-

t
he
w
e

top for all applications that interact with the user at that
host. The window system responds to requests for GUI
services (such as creating a window) sent by the applica-
tion and passes notification of desktop events (such as a
mouse click) to the application over a communication
channel such as a network connection or (when the exe-
cution and desktop hosts are the same) shared memory.
The state of the application GUI is distributed between
the window system and a library (often called a toolkit)
in the application process.

Our focus is on the migration of a single application
from one desktop host to another. Our abstraction
encapsulates precisely the GUI state of theapplication
— not individual windows of the application, nor the
windows of all applications that are being served for the
user on the desktop host. Many previous systems have
studied techniques forsession migration, in which a
user’s entire desktop is migrated to another
machine [7,14,16,17,23]. Our ability to migrate at appli-
cation granularity has several advantages over session
migration. First, it is flexible: it gives users the freedom
to migrate only the applications they need at their new
location, saving migration costs, and it enables users to
work with multiple desktops at the same time. Second,
session migration systems generally involve a virtualiza-
tion layer, such as a virtual machine [7,14] or nested
window server [16,17], a sort of GUI prison to which
the user must redirect their applications in advance. In
addition to the inherent overhead of virtualization, these
layers often emulate basic and generic display hardware,
preventing applications from taking advantage of
enhancements or acceleration features present in the real
underlying hardware. Third, a mechanism for applica-

tion migration enables other useful operations, such a
GUI attachthat allows other users to dynamically attac
to and interact with the GUI of another user’s applica
tion.

Guievict offers two major advantages over previou
systems that perform GUI migration at application gra
ularity, most notably xmove [22]. First, it enables use
to migrate their applications without the premeditativ
step of redirecting the application to the xmove prox
Although the details of the redirection can be hidde
from the user in a launch script, the user still must u
the script to start applications that they anticipate mo
ing. In contrast, guievict offers application mobility fea
tures without asking users to develop new habits a
foresight. Second, it simplifies process migration o
GUI-based applications. Although migration was no
one of its original design goals, xmove can be combin
with process checkpointing to migrate a GUI-base
application. However, in addition to the application pro
cess, the xmove proxy and the state of the communic
tion channel between the proxy and the application mu
be checkpointed and migrated. With guievict, the win
dow session and mechanisms that manage its migrat
reside in the address space of the application proce
where it can be migrated along with application cod
and data.

To migrate the GUIs of ordinary, unmodified appli
cations from one display host to another, we have ove
come four main challenges:

❏ Dynamically taking control of the window system
communication of a running program: We injec
code into the application process that discovers t
process’s communication channel to the windo
server and synchronizes its communication with th
server.

Figure 1: The elements of a GUI-based application.
The user interacts with the application through

hardware managed by the window server on the desktop
host. The application process executes on a possibly

different execution host, exchanging GUI-related
messages with the window server over a communication

channel.

User

Execution Host

Application

GUI Libraries

Desktop Host

Window
Server

Keyboard
Mouse

Display

Communication
Channel

Figure 2: Initializing the application process.
The evictor stops the application process, forces it to

load the evict client library, and exits.

Execution Host

Application

X Libraries

Evictor

Execution Host

Application

X Libraries

EvictLibrary

Before Initialization After Initialization



ted

l-

’s
n
e

s it

de

he
p-

e
s

se

the

nt.

ict

or
nt

ses
❏ Retrieving the GUI resources of an application: We
have developed an extension to the X window
server that enables an application, at any time, to
determine the identifiers of its GUI resources and
the dependencies among these resources, and to
extract these resources in a form from which they
can be regenerated on a new desktop.

❏ Regenerating an application’s resources in another
desktop host: We use standard X protocol opera-
tions to regenerate GUI resources in the new win-
dow server.

❏ Ensuring GUI migration is transparent to the appli-
cation: Applications whose GUIs have been
migrated can be confused by the resulting changes
to resource identifiers, message sequence numbers,
and display characteristics such as pixel depth. We
interpose a filter (called theguimux) on the commu-
nication between the application that provides the
mapping necessary to maintain transparency. The
guimux also serves as a multiplexor for GUI
replication.

The main limitations of guievict are that (1) it
requires the user to install our X window server exten-
sion on their desktop hosts, (2) it requires the availabil-
ity of symbols for the window protocol stubs used by
the application, and (3) it has a large (20 second) over-
head in checkpointing font state. We discuss implica-
tions and possible workarounds of the last two issues in
Section 3.

The remainder of this paper is organized as follows.
Section 2 presents the architecture of guievict. Section 3
describes its implementation. Section 4 presents our
evaluation of guievict. Section 5 identifies the security

issues raised by guievict. Section 6 presents rela
work.

2 SYSTEM OVERVIEW

The major steps in the operation of guievict are: initia
izing the system, migrating an application’s GUI from
one desktop host to another, replicating an application
GUI on multiple desktops, and migrating an applicatio
process along with its GUI. These operations involv
four system components. Theevictor is a program that
the user runs to control the evict system. The user run
on the same host as the application process. Theevict
client library is loaded by the evictor at run time into the
application process and implements application-si
GUI migration operations. Theevict server extensionis
the corresponding server-side component. Theguimux
is a daemon, started by the client library, that runs on t
execution host and ensures that GUI migration and re
lication is transparent to the application.

In the remainder of this section we describe th
guievict operations in detail. In Section 3, we discus
our solutions to the technical problems underlying the
operations.

2.1 Initialization

The user prepares a running application process for
evict system by invoking the evictor’sinitialize opera-
tion, passing the application process id as an argume
The evictorhijacks[25] the application process: it stops
the process and forces it to load and initialize the ev
client library (see Figure 2). During its initialization the
client library establishes a communication channel f
future interaction with the user. Hijacking is transpare

Figure 3: Detaching a GUI from Desktop A.
The evict client library requests the window session from the evict server extension at Desktop A, then clo

connection.

Execution Host

Application

X Libraries

EvictLibrary

Desktop Host A

Window

Evict
Extension

Server

Window
Session

➊Retrieve

➋ Window
Session

Desktop Host B

Window

Evict
Extension

Server

Execution Host

Application

X Libraries

EvictLibrary

Desktop Host A

Window

Evict
Extension

Server

Desktop Host B

Window

Evict
Extension

Server

Window
Session

Before Detach After Detach

Window system
socket connection

Guievict message



i-

ry
li-
to
n-
n
top
ic-
.

to
t
h
he
the
a-
r
n

n-

e
i-
-
top)
ss

indow
ession.
to the application; afterward the evictor resumes the
application process, allowing it to continue normally. At
any later time the user can run the evictor again to
request an evict operation. The evictor interrupts the
application process and sends commands to the client
library over the communication channel.

The evict server extension must be loaded and ini-
tialized in the window server before the user’s first
request for an evict operation. The XFree86 window
server does not support run-time extension loading, so
in our implementation the server must be configured to
load the evict extension before it is started, but this is not
necessary in general.

2.2 GUI Migration

GUI migration is broken down into two steps.

First, the user requests the application (with an
evictor command) todetachits GUI from the window
server. In response the evict client library (see Figure 3):

a. Synchronizes the application’s communication with
the window server and blocks the application from
further communication;

b. Retrieves the window session from the server;

c. Closes the connection to the window server.
Second, the user requests the application tore-

attach its GUI to a new window server (see Figure 4).
The evict client library starts a guimux process, replaces
the application’s socket to the window server with a full-
duplex pipe to the guimux process, and then transfers
control to the guimux process. Then the guimux
process:

a. Opens a connection to the new window server;

b. Regenerates the state of the window session;

c. Signals the evict client library to resume the appl
cation.
The re-attach operation may come an arbitra

period of time after the detach. In the meantime, the c
ent library suspends the execution of application code
prevent the temporary absence of a window server co
nection from affecting the application. For the commo
case of a user who wishes to detach from one desk
and attach to another in one logical operation, the ev
tor provides a combined detach and attach command

2.3 GUI Replication

GUI replication is a simple variation of GUI migration.
The user requests (with the evictor) the application
replicate its GUI on another window server. The evic
client library performs all but the final step of the detac
operation. That is, it acquires the current state of t
window session, but does not close the connection to
window server. It then performs a normal attach oper
tion to connect the GUI to the additional window serve
(see Figure 5). If this is the first time an attach operatio
has been performed, it also redirects the original wi
dow server connection through the guimux process.

2.4 GUI+Process Migration

Guievict supports the simultaneous migration of th
application process and its GUI. Figure 6 shows a typ
cal scenario for this type of mobility in which the execu
tion and desktop hosts are the same (such as a lap
and the user wants to migrate their application proce

Figure 4: Re-attaching a GUI to Desktop B.
The evict client library establishes a new connection to Desktop B through the guimux, which forwards all w
communication between the application and Desktop B, starting with the request to regenerate the window s

Before Re-attach
Execution Host

Application

X Libraries

EvictLibrary

Desktop Host A

Window

Evict
Extension

Server

Desktop Host B

Window

Evict
Extension

Server

Execution Host

Application

X Libraries

EvictLibrary

Desktop Host A

Window

Evict
Extension

Server

Desktop Host B

Window

Evict
Extension

Server

Window
Session

guimux

Window
Session

Window
Session

Window

Session

Window system
socket connection

Guievict message

After Re-attach



lve
,
r,
g
is

sic
se
-
to

n
ng
I
t

d
e
)
ot

uch
is
re
e
el-

a
ss
he

uimux
and its GUI to another host (such as the computer on
their desk). In this scenario, the user uses evictor to
request the application tomigrate, providing two argu-
ments: the name of the new X window server and the
name of the new execution host. Evict then:

a. Detaches the application’s GUI from its window
server;

b. Terminates the guimux daemon (if one is running);

c. Checkpoints the application process, producing a
checkpoint file[15] containing the state of the appli-
cation process, including its window session;

d. Exits the application process.
At this point the user must transport the checkpoint

file to the new execution host and invoke the evictor to
restart the application process. To complete the migra-
tion, evict:

e. Restores all the state of the application process
except for its GUI;

f. Attaches the application process to the new window
server.
Checkpointing and restarting the application pro-

cess is transparently performed by a user-level process
checkpoint library that is linked with the evict client
library. The details of this library have been described
previously [15,25] and are outside the scope of this
paper.

3 IMPLEMENTATION

We have implemented evict on x86 Linux using the
XFree86 implementation of the X window system. We

describe the major technical issues and how we so
them in our implementation: hijacking the application
find the application’s connection to the window serve
synchronizing its connection, retrieving and restorin
GUI resources, and ensuring that GUI migration
transparent to the application.

3.1 Hijacking the Application

Process hijacking can be safely implemented with ba
dynamic instrumentation mechanisms, such as tho
provided by the Dyninst API [6]. These include stop
ping the process, forcing the process to execute code
load and initialize the evict client library, and then
resuming the process. The evictor contains its ow
implementation of these mechanisms to avoid requiri
users to install additional software like the Dyninst AP
(which contains much more functionality than evic
requires).

The evictor forces the application process to loa
the evict client library by injecting code that calls th
run-time library loading feature (usually named dlopen
of the process’s dynamic loader. This technique does n
directly work with statically-linked programs, since
there is no dynamic loader in processes based on s
programs. Supporting statically-linked programs
important because many GUI-based applications a
distributed statically to avoid forcing users to have th
necessary GUI library dependencies. We have dev
oped hijacking functionality to cope with statically
linked programs. The idea is to map and initialize
copy of the dynamic loader into the process’s addre
space, essentially by reproducing the initial steps t

Figure 5: Replicating a GUI on Desktop B.
Replication is similar to migration, except that the connection to Desktop A is preserved and multiplexed by g

with the connections to other desktop hosts.

Execution Host

Application

X Libraries

EvictLibrary

Desktop Host A

Window

Evict
Extension

Server

Window
Session

➊Retrieve

➋ Window
Session

Desktop Host B

Window

Evict
Extension

Server

Execution Host

Application

X Libraries

EvictLibrary

Desktop Host A

Window

Evict
Extension

Server

Desktop Host B

Window

Evict
Extension

Server

Window
Session

guimux

Window
Session

Window

Session

Window
Session

Window system
socket connection

Guievict message

Before Replicate After Replicate



he

-
ed

w
ss

at-

n
le

s

cess,
r
es the
operating system takes when loading a dynamic-linked
program. This instance of the dynamic loader does not
control the original code in the process, but rather serves
only to provide an implementation of dlopen that we can
call as we do for dynamically-linked programs.

The evict client library creates a named Unix
domain socket for subsequent communication with the
evictor. The library deletes the socket when the applica-
tion exits normally. The socket name is based on the
application’s process and user ids to avoid conflicts with
other independently running instances of evict and to
allow stale sockets left behind by abnormal termination
to be cleaned up by the user who discovers them. The
evictor gets the attention of the evict client library by
writing a message the socket, which causes the applica-

tion process to receive a signal that is handled by t
library.

3.2 Finding the Window Server

X windows applications communicate with the window
server over a Unix domain or TCP socket. Unlike proxy
based systems such as xmove, guievict may be invok
after the creation of the connection to the windo
server. It must search the file descriptors of the proce
for sockets connected to a window server. Most oper
ing systems provide a way, such as a/proc entry on
Linux, to list the open file descriptors of a process; o
those that do not, guievict can test each possible fi
descriptor with thefstat system call. Guievict looks for a
file descriptor that (1) refers to a socket inode (a

Figure 6: Migrating an application process and its GUI from a laptop to a desktop computer.
(1) The evict client library detaches the GUI from the window server; (2) Evict checkpoints the application pro

producing a checkpoint file containing the entire application state including the window session; (3) Afte
transporting the checkpoint file to the desktop host, evict restarts the application process; (4) Evict re-attach

GUI to the desktop window server.

Application

X Libraries

EvictLibrary

Laptop

Window

Evict
Extension

Server

Application

X Libraries

EvictLibrary

Desktop

Window

Evict
Extension

Server

Window
Session

Application

X Libraries

EvictLibrary

Laptop

Window

Evict
Extension

Server

Window
Session

Application

X Libraries

EvictLibrary
Window
Session

Application

X Libraries

EvictLibrary

Desktop

Window

Evict
Extension

Server

Window
Session

guimux

Window
Session

Checkpoint
File

➊Retrieve

➋ Window
Session

WindowSession

Window system
socket connection

Guievict message

1. Detach

2. Checkpoint

3. Restart

4. Re-attach



ks

t,
s-

pli-
’s
for

l
ich
id-
es
n

the

n-
e
-

the
es
ed
es-
t to
is

e
the
s.
s
k-

lly
h
n
ro-
ck
a-

y
s-
in
e

nts
of
ey

e
so
-
ed
al
reported by thefstat system call), and (2) is connected to
a window server.

The second condition is difficult to check. In many
cases, thegetpeername system call, which returns the
address of the socket on the other side of a connection,
is sufficient: we check that the socket peer address is one
of the well-known X window server TCP ports or Unix
domain socket names. This test can fail if the applica-
tion is tunnelled to the window server through a proxy,
since the peer address of its socket will be the proxy’s
address. In many common proxy configuration, such as
ssh tunnels [24] and firewall port forwarding rules [26],
the difference between the proxy address and a normal
window server address is a small positive offset in the
port number, which is easy to recognize.

In the unlikely event thatgetpeername does not
reveal an obvious window server connection, guievict
checks whether the peer address of each socket leads to
a window server. It creates a new socket, attempts to
connect it to the peer address, and, if the connection suc-
ceeds, performs the first round of the standard X win-
dows handshake. If the server gives the expected
response to the handshake, guievict concludes that it has
found a socket connected to an X server. If the probe
fails on all sockets, guievict gives up control of the
application.

The use of this probe raises two concerns. First, the
probe may succeed on non X window servers that hap-
pen to respond to the handshake like a X windows
server. In practice, the response is distinguishable from
that seen in common protocols such as ssh, telnet, ftp,
and http, however unfortunately it is not so distinctive to
presume that conflicts will not occur in less common
protocols. In the event of a false positive, guievict
should eventually receive nonsensical messages from
the server, after which it will abort. Second, the probe
may have a negative effect on probed servers. Although
server implementations should be robust to spurious
connections, not all existing ones are, particularly those
that have not been hardened for Internet deployment.
For users who cannot risk using the probe, the evictor
accepts a command line argument to identify the file
descriptor or peer address of the window system
connection.

3.3 Synchronizing Communication

Guievict must ensure that the state of the window ses-
sion does not change while it is being retrieved.
Changes to window state are caused by messages
exchanged between the application and the window
server. Guievict synchronizes the communication by
finding a point in the message stream where there are no

partially sent or unanswered requests, and then bloc
further communication.

The synchronization occurs in two steps. Firs
guievict forces the application process to reach a me
sage boundary in the stream of messages from the ap
cation to the server. It examines the application
process stack before starting an operation, searching
X library functions that are stubs for X protoco
requests. If such a function appears on the stack, wh
indicates that the application process may be in the m
dle of sending a message, guievict sets a timer, resum
the application code for a short period of time, and the
re-examines the stack. This procedure repeats until
stack is free of potentially unsafe functions.

Second, guievict sends an X protocol request co
taining an illegal resource identifier to the server. Th
only effect of this request is that it elicits an error mes
sage from the server. Guievict reads and scans
stream of messages from the server until it recogniz
the error, at which point the client has no unanswer
requests and the connection is synchronized. The m
sages read before the error are buffered and re-sen
the application from the guimux when the application
allowed to resume.

Detecting the presence of X protocol stubs on th
application process stack depends on the presence of
symbols for these functions in the application proces
This is not an issue for dynamically linked application
because the symbols must be present to facilitate lin
age. However, symbols may be stripped from statica
linked executables. The evictor refuses to work wit
stripped static applications. To remedy this limitatio
we are investigating alternative approaches to synch
nizing the communication that do not depend on sta
traces, including inferring message boundaries by an
lyzing messages as they are sent over the socket.

3.4 Retrieving and Regenerating GUI Resources

X windows applications create, modify, and destro
GUI resources through the exchange of X protocol me
sages with the X window server. GUI resources reside
the window server and are indirectly manipulated by th
application by 32-bitresource identifiers, which are
drawn from a namespace that is global across all clie
of a window server. Clients choose the low-order bits
the identifier for each resource that they create, but th
must set the high-order bits to a fixedclient idchosen by
the server when the application connects to it.

It is generally impossible to locate the resourc
identifiers in the application process’s code and data,
we must get them from the X window server. The win
dow server manages a per-client table of allocat
resources but, unfortunately, it does not provide extern



e
er,
la-
w
ir-
ith
-
e-
to

nt

I
by
ers
the
ti-
f
a
e-
s
er
-
ica-
to
r

the
ey

the
m-
lica-
n.
age
ca-
ct
r.

the
d in

ng
s-

s-
to
rs

the
,
or,
r
y-

m

access to the information in this table. Since no previ-
ously reported server extension has addressed this limi-
tation, our server extension provides the missing
interface. Using ourGetResourcesrequest, an applica-
tion can request the server to return an enumeration of
all the resources that the application has created. For
most types of resources, the resource identifier is suffi-
cient for the application to retrieve the state of the corre-
sponding resource with standard X protocol requests,
but there are four exceptions: windows, graphics con-
texts, cursors, and fonts. TheGetResourcesreply for
windows includes the background pixel value and the
window’s cursor identifier. The replies for graphics con-
texts and cursors include their entire state: for a graphics
context, a small array of flags, and for a cursor, its bit-
map and geometry.

Fonts are more complicated. X windows fonts are
stored at the server. Clients acquire the use of a font by
sending a request to the server containing a font
resource identifier and the name of the font. The server
loads and binds the font to the identifier if it has the font,
and otherwise returns an error. Applications can request
detailed geometric information about the font associated
with a font identifier, but unfortunately there is no
request to map a font identifier to the name of the font.
Strangely, the server discards the font name after load-
ing a font, so the mapping is not possible even within
our server extension. During the detach operation, the
evict client library performs a search to map each font
identifier to a font name. It requests the server to list of
all of its stored fonts (a standard X protocol request),
and then searches this list for a font whose geometry
matches that of each font identifier. Usually, the font
name suffices to regenerate the font resource on a new
window server, but sometimes the new server does not
have a font with that name. In those cases, guievict
searches the font list on the new server and selects the
font with the closest matching geometry, using a least-
squares font matching algorithm similar to that used by
HP Shared X [9]. This complicated and expensive
approach to migrating font resources could be elimi-
nated by switching to client-managed fonts, a recently
proposed architectural change to the X window
system [10]. In the meantime, we eliminate the over-
head by caching in the application’s file system the font
names and geometry of each server we use regularly.

Sometimes it is not possible to regenerate pixel-
based resources identically to their previous instances.
Displays can vary by the number of bits per pixel
(depth) and the method by which pixels are mapped to
colors (visual type), both of which cause the meaning of
pixel values to change. Xmove provided an additional
translation operation that mapped pixel values from

their previous depth and visual to that available on th
current server. Recent developments for the X serv
however, promise to eliminate the need for such trans
tion. In particular, the R&R extension and shado
framebuffers [11] are server-based mechanisms for v
tualizing depth and visual that have been designed w
the goal of providing heterogeneity support for migra
tion and replication systems. Our extension compl
ments these developments; together they combine
produce a system for GUI migration that is transpare
to display heterogeneity.

3.5 Maintaining Transparency

The main role of the guimux daemon is to make GU
migration transparent to the application process
translating resource identifiers and sequence numb
that appear in the messages exchanged between
application and the window server. The resource iden
fier mapping is initialized during the regeneration o
GUI resources. The evict client library regenerates
resource by issuing an ordinary X protocol resource cr
ation request containing the original identifier. A
guimux forwards these requests, it replaces the identifi
with an unused identifier that is valid in the current win
dow server. For subsequent messages from the appl
tion to the server, the guimux maps references
resources to their current identifier; it performs a simila
reverse mapping on messages from the server to
application. As the application destroys resources, th
are removed from the map.

Sequence numbers occur in messages sent from
window server to the application and represent the nu
ber of messages the server has processed for the app
tion; they do not occur in messages from the applicatio
The guimux replaces the sequence number of a mess
with the next sequence number expected by the appli
tion process. This procedure is initialized when guievi
synchronizes the communication to the window serve
At the point, the next sequence number expected by
application process is the sequence number containe
the sentinel error reply.

Replication of windows on multiple displays
extends the role of the guimux process. While managi
a replicated GUI, the guimux maintains a separate tran
lation map for each window server connection. Me
sages from the application are translated and sent
each window server. Messages from the window serve
are reverse translated and forwarded in series to
application. To control the behavior of replicated GUIs
guimux accepts a set of commands, sent by the evict
that act as primitives for setting replication policy. Fo
example, the user can suppress the forwarding of ke
board, mouse, and window modification events fro



lar

c-
at-

he
2
nd
n
gh

on
ct-
y.
ld
selected desktop hosts to allow users seated at those
desktops to observe but not modify the state of the GUI;
more sophisticated policies for managing collaborative
work [2,12] can be built over these primitives.

4 EVALUATION

We have evaluated the performance of guievict’s GUI
migration functionality. As a point of reference, we
compared its performance to the proxy-based xmove
system. We measured the time to detach and re-attach a
GUI and the impact on interactive response. We per-
formed our measurements on a 700 MHz Pentium-III
laptop running XFree86 4.2.0 on Linux 2.4.18, and we
used the most recent release of xmove [21]. Overall, the
results are not surprising. Guievict takes somewhat
longer than xmove to detach a GUI from a window
server, but re-attaches in comparable time. Xmove and
guievict (after re-attach) both increase the latency of the
communication between the application process and the
window server, but not enough to be perceptible to
users.

4.1 Detach and Re-attach Latency

We measured the latency of detaching a GUI from a
window server and then re-attaching it to the same win-
dow server for several applications. The guievict detach
latency is the elapsed time from when the evict client
library receives the detach command to just after it
closes the connection to the window server. The guievict
re-attach latency is the elapsed time from when the evict
library receives the re-attach command to just after it
allows the application process to continue. The xmove
latencies are analogous. We ran both the application
process and the window server on the laptop and we
detached the application’s GUI after its initial windows
were drawn but before any user interaction with the
GUI. We report average measurements over five runs.
Our results are reported in Table 1.

Guievict has a more expensive detach operation
than xmove. Table 2 breaks down the average guimux
detach time for one application. The most expensive
stage is mapping the font identifiers to fonts names, dur-
ing which most of the time is spent waiting for the
server to return the complete list of the fonts. More gen-
erally, guievict takes longer to detach because it
retrieves the GUI state when it receives the detach
request, while xmove collects the GUI state as it is cre-
ated. To reduce our detach latency, we plan to enable the
evict client library to incrementally fetch the font list
during idle periods of the application process’s execu-
tion, but we have not implemented this optimization yet.
Guievict and xmove have similar re-attach performance,

which is to be expected because they perform simi
tasks during this stage.

4.2 Interactive Overhead

To measure the impact of guimux and xmove on intera
tive response we created a small application that repe
edly sends a request of minimal size (8 bytes) to t
window server and waits for a reply of minimal size (3
bytes). We measured the average time for 1000 rou
trips for the application by itself, after it has bee
detached and re-attached with guievict, and throu
xmove. Our results are reported in Table 3.

Guievict and xmove have a measurable impact
the round trip time, caused by the overhead of redire
ing the window system communication through a prox
Since the overhead is less than a millisecond, it shou
not ever be perceptible to users.

Application

Guievict Latency
(msec)

Xmove Latency
(msec)

Detach Re-attach Detach Re-attach

Xterm 21,042 46 32 134

Xmame 21,100 55 857 96

Emacs 21,198 148 45 230

Ghostview 21,655 379 315 307

Netscape 21,655 667 362 432

Table 1: Average detach and re-attach latency.

Stage
Time
(usec)

Font List 21,052,039

Pixmaps 562,205

Windows 31,824

Fonts 6,986

Graphics Contexts 1,977

Cursors 113

Colormaps 63

Table 2: Breakdown of detach latency for Netscape.

System
Latency
(usec)

None 70

Guievict 107

Xmove 133

Table 3: Average round trip time for a minimal X
protocol request and reply.



th
r-

er.
n
n
In

li-
-
fter

to

s
ns
ers
t a
of

vel
a-
on

ra-
n.
run
g
e
ther
er

)
e
he
y
s-
to
I

o
.

the

e
be
r-
h

er
o-
e
xy

or-
the
I

5 SECURITY

Our system introduces three issues related to the secu-
rity of X window applications and servers.

First, the owner of the application process must be
able to control who is able to migrate or replicate its
GUI. Our policy is to allow only the owner of a process
to perform guievict operations on the process. This pol-
icy is enforced by two mechanisms. First, because the
standard operating system protection prevents one user
from modifying a process of another user, a process can
only be hijacked by its owner. Second, the evict library
authenticates the messages it receives from the evictor.
It uses the credential passing mechanism of Unix
domain sockets to ensure that the sender of a message is
the same user who owns the application process. These
mechanisms suffice to protect an application process
from ordinary users, but not, of course, from the supe-
ruser of the execution host.

Second, the guievict server extension should not
weaken the security of the X window system, a goal we
believe we have met. Since the GetResources request
only returns information about the resources of the
application that issues the request, it cannot be used to
learn about the resources of another application.
Although a man-in-the-middle attack could be staged to
inject a GetResource request in another application’s
connection to the window system, the information that
would be revealed could also be obtained from passive
eavesdropping on the connection, an old X windows
vulnerability [8]. The defense, then and now, is to
encrypt the connection.

Third, the owner of a desktop host must authorize
guievict to re-attach a GUI to their display. Most X
server access control mechanisms (such asMIT-MAGIC-
COOKIE) require an authorized application to possess a
server-generated capability that it can present to the
server when it establishes a connection. This capability
gives its possessor complete access to the X server. The
desktop owner must have a secure way to transfer the
capability to the guievict user, and they must trust the
guievict user not to abuse the access to the server.
Guievict does not provide capability transfer mecha-
nisms and it does not change the access control policies
of the X server. These issues are trivial in migration sce-
narios, where the desktop user and the guievict user are
usually the same, since the user can transfer the capabil-
ity when they log in to the execution host to run the
evictor. However, these issues must be faced by a GUI
replication system built over guievict’s replication
mechanism.

6 RELATED WORK

Guievict most closely resembles xmove [22] in that bo
systems share the goal of migrating GUIs on a pe
application basis from one desktop host to anoth
Unlike guievict, xmove requires the user to redirect i
advance their application’s window system connectio
through a proxy that tracks the state of its resources.
addition, xmove does not support the migration of app
cationprocesses: it lacks a way to restore the communi
cation between the application and proxy processes a
the application process has migrated, as well as a way
migrate the proxy process or its state.

Other systems, including VNC [18],
Teleporting [17,23], and Slim [20], provide remote
access to asession, a collection of GUIs for remotely
executing applications. Unlike xmove, these system
enable the user to migrate the display of all applicatio
in the session as a single unit, a convenience for us
who want remote access to their entire desktop, bu
hindrance for users who want independent movement
their GUIs. Like xmove, these systems depend on a le
of indirection that must be established when applic
tions are started, and they do not support applicati
process migration.

Recent systems have extended the session mig
tion concept to include application process migratio
Users of the Internet Suspend/Resume system [14]
their entire computing environment, from the operatin
system to their applications, inside a virtual machin
whose state can be saved and regenerated on ano
machine. This system’s mobility model is much coars
than evict’s: all applications (and their operating system
migrate as a single unit and GUI migration cannot b
done separately from application process migration. T
Zap system [16] provides a finer degree of mobility b
allowing users to run their application processes in se
sion abstractions that can be independently migrated
new hosts. However, Zap provides no support for GU
migration; its users must use systems like VNC t
migrate their GUIs, adding another level of indirection

Many systems have been developed to replicate
GUI of unmodified X windows
applications [1,2,4,5,3,13] on multiple desktops. Lik
xmove, most of these systems require applications to
redirected to a proxy when they are started. One inte
esting exception is the HP Shared X [9] system, whic
performs replication through the use of an X serv
extension. Unlike the guievict extension, instead of pr
viding a way to retrieve window session state from th
server, the extended Shared X server itself acts a pro
that regenerates the GUI on the new displays and f
wards messages between the application process and
new displays. The extension is thus unsuitable for GU



te

.
se

t

2)

.
e
al
t,

gn

)

r.

,

.

.

t

.
s

.

migration because it does not allow the application to
detach from its original X server.

7 CONCLUSION

Guievict enables the GUI of an ordinary X windows
application to be migrated to another desktop host or
replicated on multiple desktop hosts without premedita-
tive steps such as redirecting the application process’s
communication through a proxy or relinking the appli-
cation program binary. We have shown that server func-
tionality necessary to retrieve a window session, a
transportable representation of an application’s GUI, is
small and can be encapsulated in a window server exten-
sion without server recompilation, and that ordinary X
windows applications can be hijacked at run time to
retrieve their window session and perform GUI migra-
tion or replication.

We have implemented guievict for x86-based ver-
sions of Linux running the XFree86 window system.
The code is freely available at
http://www.cs.wisc.edu/~zandy/guievict.

REFERENCES

[1] H.M. Abdel-Wahab and M.A. Feit. XTV: A Framework
for Sharing X Window Clients in Remote Synchronous
Collaboration.IEEE TriCom ‘91: Communications for
Distributed Applications and Systems. Chapel Hill, NC,
USA, April 1991, pp. 159-167.

[2] H. Abdel-Wahab and K. Jeffay. Issues, Problems and
Solutions in Sharing X Clients on Multiple Displays.
Internetworking – Research and Practice5, 1, March
1994, pp. 1-15.

[3] J.E. Baldeschwieler, T. Gutekunst, B. Plattner. A Survey
of X Protocol Multiplexors.ACM SIGCOMM Computer
Communication Review23, 2, April 1993.

[4] J. Bazik. XMX – An X Protocol Multiplexor.
http://www.cs.brown.edu/software/xmx.

[5] C. Bormann and G. Hoffmann. Xmc and Xy – Scalable
Window Sharing and Mobility.8th Annual X Technical
Conference, January 1994.

[6] B. Buck and J.K. Hollingsworth. An API for Runtime
Code Patching.Journal of High Performance Computing
Applications14, 4 , Winter 2000, pp. 317-329.

[7] P. Chen and B. Noble. When Virtual is Better Than Real.
8th Workshop on Hot Topics in Operating Systems
(HotOS-VIII), Elmau/Oberbayern, Germany, May 2001.

[8] S. Garfinkel and G. Spafford.Practical UNIX &
Internet Security, 2nd Edition. O’Reilly and Associates,
Sebastopol, CA, April 1996.

[9] D. Garfinkel, B.C. Welti, T.W. Yip. HP SharedX: A Tool
for Real-Time Collaboration.Hewlett-Packard Journal
45, 2, April 1994, pp. 23-36.

[10] J. Gettys. The Future is Coming: Where the X Window
System Should Go.2002 Usenix Annual Techical
Conference (Freenix Track), Monterey, CA, June 2002,
pp. 63-69.

[11] J. Gettys and K. Packard. The X Resize and Rota
Extension —RandR.2001 Usenix Annual Technical
Conference (Freenix Track), Boston, MA, June 2001.

[12] T. Gutekunst, D. Bauer, G. Caronni, Hasan, and B
Plattner. A Distributed and Policy-Free General-Purpo
Shared Window System.IEEE/ACM Transactions on
Networking3, 1, Februrary 1995.

[13] O. Jones. Multidisplay Software in X: A Survey of
Architectures.The X Resource, Issue 6, O’Reilly &
Associates, Jan 1993, pp. 97-113.

[14] M. Kozuch and M. Satyanarayanan. Interne
Suspend/Resume.4th IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA 200,
Callicoon, NY, June 2002, pp. 40-46.

[15] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny
Checkpoint and Migration of UNIX Processes in th
Condor Distributed Processing System. Technic
Report #1346, Computer Sciences Departmen
University of Wisconsin, April 1997.

[16] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Desi
and Implementation of Zap: A System for Migrating
Computing Environments.5th Symposium on Operating
Systems Design and Implementation (OSDI 2002,
Boston, MA, December 2002.

[17] T. Richardson, F. Bennett, G. Mapp, and A. Hoppe
Teleporting in an X Window System Environment.The
X Resource, Issue 13, O’Reilly & Associates, Jan 1995
pp. 133-140.

[18] T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A
Hopper. Virtual Network Computing.IEEE Internet
Computing2, 1, January/February 1998, pp. 33-38.

[19] R.W. Scheifler and J. Gettys. The X Window System
ACM Transactions on Graphics5, 2, April 1986, pp. 79-
109.

[20] B.K. Schmidt, M.S. Lam, J.D. Northcutt. The Interactive
Performance of SLIM: A Stateless, Thin-clien
Architecture. 17th ACM Symposium on Operating
Systems Principles (SOSP ‘99). Kiawah Island, South
Carolina, December 1999.

[21] E. Solomita. Xmove Version 2.0 Beta 2.
ftp://ftp.cs.columbia.edu/pub/xmove, November,
1997.

[22] E. Solomita, J. Kempf and D. Duchamp. Xmove: A
Pseudoserver for X Window Movement.The X
Resource, Issue 11, July 1994, pp. 143-170.

[23] K. Wood, T. Richardson, F. Bennett, A. Harter, and A
Hopper. Global Teleoporting with Java: Toward
Ubiquitous Personalized Computing.Nomadics ‘96, San
Jose, March 1996.

[24] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S
Lehtinen. SSH Protocol Architecture. Internet
Engineering Task Force Internet-Draftdraft-ietf-secsh-
architecture-13, September 2002.

[25] V.C. Zandy, B.P. Miller, and M. Livny. Process
Hijacking. Eighth International Symposium on High
Performance Distributed Computing (HPDC ‘99),
Redondo Beach, CA, August 1999, pp. 177-184.

[26] E.D. Zwicky, S. Cooper, and D.B. Chapman.Building
Internet Firewalls , 2nd Edition. O’Reilly and
Associates, Sebastopol, CA, June 2000.


	Checkpoints of GUI-based Applications
	Abstract �
	1 Introduction
	Figure�1: The elements of a GUI-based application. The user interacts with the application throug...
	Figure�2: Initializing the application process. The evictor stops the application process, forces...
	Figure�3: Detaching a GUI from Desktop A. The evict client library requests the window session fr...

	2 System Overview
	2.1 Initialization
	Figure�4: Re-attaching a GUI to Desktop B. The evict client library establishes a new connection ...

	2.2 GUI Migration
	a. Synchronizes the application’s communication with the window server and blocks the application...
	b. Retrieves the window session from the server;
	c. Closes the connection to the window server.
	a. Opens a connection to the new window server;
	b. Regenerates the state of the window session;
	c. Signals the evict client library to resume the application.

	2.3 GUI Replication
	2.4 GUI+Process Migration
	Figure�5: Replicating a GUI on Desktop B. Replication is similar to migration, except that the co...
	a. Detaches the application’s GUI from its window server;
	b. Terminates the guimux daemon (if one is running);
	c. Checkpoints the application process, producing a checkpoint file�[15] containing the state of ...
	d. Exits the application process.
	e. Restores all the state of the application process except for its GUI;
	f. Attaches the application process to the new window server.



	3 Implementation
	3.1 Hijacking the Application
	Figure�6: Migrating an application process and its GUI from a laptop to a desktop computer. (1) T...

	3.2 Finding the Window Server
	3.3 Synchronizing Communication
	3.4 Retrieving and Regenerating GUI Resources
	3.5 Maintaining Transparency

	4 Evaluation
	4.1 Detach and Re-attach Latency
	Table 1: Average detach and re-attach latency.
	Table 2: Breakdown of detach latency for Netscape.

	4.2 Interactive Overhead�
	Table 3: Average round trip time for a minimal X protocol request and reply.


	5 Security
	6 Related Work
	7 Conclusion
	References
	[1] H.M. Abdel-Wahab and M.A. Feit. XTV: A Framework for Sharing X Window Clients in Remote Synch...
	[2] H. Abdel-Wahab and K. Jeffay. Issues, Problems and Solutions in Sharing X Clients on Multiple...
	[3] J.E. Baldeschwieler, T. Gutekunst, B. Plattner. A Survey of X Protocol Multiplexors. ACM SIGC...
	[4] J. Bazik. XMX – An X Protocol Multiplexor. http://www.cs.brown.edu/software/xmx.
	[5] C. Bormann and G. Hoffmann. Xmc and Xy – Scalable Window Sharing and Mobility. 8th Annual X T...
	[6] B. Buck and J.K. Hollingsworth. An API for Runtime Code Patching. Journal of High Performance...
	[7] P. Chen and B. Noble. When Virtual is Better Than Real. 8th Workshop on Hot Topics in Operati...
	[8] S. Garfinkel and G. Spafford. Practical UNIX & Internet Security, 2nd Edition. O’Reilly and A...
	[9] D. Garfinkel, B.C. Welti, T.W. Yip. HP SharedX: A Tool for Real-Time Collaboration. Hewlett-P...
	[10] J. Gettys. The Future is Coming: Where the X Window System Should Go. 2002 Usenix Annual Tec...
	[11] J. Gettys and K. Packard. The X Resize and Rotate Extension —RandR. 2001 Usenix Annual Techn...
	[12] T. Gutekunst, D. Bauer, G. Caronni, Hasan, and B. Plattner. A Distributed and Policy-Free Ge...
	[13] O. Jones. Multidisplay Software in X: A Survey of Architectures. The X Resource, Issue 6, O’...
	[14] M. Kozuch and M. Satyanarayanan. Internet Suspend/Resume. 4th IEEE Workshop on Mobile Comput...
	[15] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint and Migration of UNIX Process...
	[16] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and Implementation of Zap: A System ...
	[17] T. Richardson, F. Bennett, G. Mapp, and A. Hopper. Teleporting in an X Window System Environ...
	[18] T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A. Hopper. Virtual Network Computing. IEEE...
	[19] R.W. Scheifler and J. Gettys. The X Window System. ACM Transactions on Graphics 5, 2, April ...
	[20] B.K. Schmidt, M.S. Lam, J.D. Northcutt. The Interactive Performance of SLIM: A Stateless, Th...
	[21] E. Solomita. Xmove Version 2.0 Beta 2. ftp://ftp.cs.columbia.edu/pub/xmove, November, 1997.
	[22] E. Solomita, J. Kempf and D. Duchamp. Xmove: A Pseudoserver for X Window Movement. The X Res...
	[23] K. Wood, T. Richardson, F. Bennett, A. Harter, and A. Hopper. Global Teleoporting with Java:...
	[24] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH Protocol Architecture. In...
	[25] V.C. Zandy, B.P. Miller, and M. Livny. Process Hijacking. Eighth International Symposium on ...
	[26] E.D. Zwicky, S. Cooper, and D.B. Chapman. Building Internet Firewalls, 2nd Edition. O’Reilly...



