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Abstract. In an interpreted execution there is an interdependence be-
tween the interpreter's execution and the interpreted application's ex-
ecution; the implementation of the interpreter determines how the ap-
plication is executed, and the application triggers certain activities in
the interpreter. We present a representational model for describing per-
formance data from an interpreted execution that explicitly represents
the interaction between the interpreter and the application in terms of
both the interpreter and application developer's view of the execution.
We present results of a prototype implementation of a performance tool
for interpreted Java programs that is based on our model. Our prototype
uses two techniques, dynamic instrumentation and transformational in-
strumentation, to measure Java programs starting with unmodi�ed Java
.class �les and an unmodi�ed Java virtual machine. We use perfor-
mance data from our tool to tune a Java program, and as a result, im-
prove its performance by more than a factor of three.

1 Introduction

An interpreted execution is the execution of one program (the interpreted ap-
plication) by another (the interpreter); the application code is input to the in-
terpreter, and the interpreter executes the application. Examples include just-
in-time compiled, interpreted, dynamically compiled, and some simulator exe-
cutions. Performance measurement of an interpreted execution is complicated
because there is an interdependence between the execution of the interpreter
and the execution of the application; the implementation of the interpreter de-
termines how the application code is executed and the application code trig-
gers what interpreter code is executed. We present a representational model for
describing performance data from an interpreted execution. Our model charac-
terizes this interaction in a way that allows the application developer to look
inside the interpreter to understand the fundamental costs associated with the
application's execution, and allows the interpreter developer to characterize the
interpreter's execution in terms of application workloads. This model allows for
a concrete description of behaviors in the interpreted execution, and it is a ref-
erence point for what is needed to implement a performance tool for measuring
interpreted executions. An implementation of our model can answer performance
questions about speci�c interactions between the interpreter and the application.
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For example, we can represent performance data of Java interpreter activities
like thread context switches, method table lookups, garbage collection, and byte-
code instruction execution associated with di�erent method functions in a Java
application. We present results from a prototype implementation of our model
for measuring the performance of interpreted Java applications and applets. Our
prototype tool uses Paradyn's dynamic instrumentation [4] to dynamically in-
sert and remove instrumentation from the Java virtual machine and Java method
byte-codes as the byte-code is interpreted by the Java virtual machine. Our tool
requires no modi�cations to the Java virtual machine nor to the Java source nor
class �les prior to execution.

The di�culties in measuring the performance of interpreted codes is demon-
strated by comparing an interpreted code's execution to a compiled code's exe-
cution. A compiled code is in a form that can be executed directly on a particu-
lar operating system/architecture platform. Performance tools for compiled code
provide performance measures in terms of platform-speci�c costs associated with
executing the code; process time, number of page faults, and I/O blocking time
are all examples of platform-speci�c measures. In contrast, an interpreted code
is in a form that can be executed by the interpreter virtual machine. The in-
terpreter virtual machine is itself an application program that executes on some
operating system/architecture platform. One obvious di�erence between com-
piled and interpreted application execution is the extra layer of the interpreter
program that, in part, determines the application's performance (see Figure 1).
A performance tool for measuring the performance of an interpreted execution
needs to measure the interaction between the Application layer (AP) and the
InterpreterVM layer (VM).

There are potentially two di�erent program developers that would be in-
terested in performance measurement of the interpreted execution: the virtual
machine developer and the application program developer. Both want perfor-
mance data described in terms of platform-speci�c costs associated with execut-
ing parts of their program. However, each views the platform and the program
as di�erent layers of the interpreted execution. The VM developer sees the AP
as input to the VM program that is run by the Platform layer (left side of the
interpreted execution in Figure 1). The AP developer sees the Application layer
as the program that is run on the VM (right side of the interpreted execution in
Figure 1). For a VM developer, this means characterizing the virtual machine's
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Fig. 1. Compiled application's execution vs. Interpreted application's execution. VM
and AP developers view the interpreted execution di�erently.



performance in terms of Platform layer costs of the VM program's execution of
its input (AP)|for example, the amount of process time executing VM func-
tion invokeMethod while interpreting AP method foo. The application program
developer wants performance data that measures the same interaction to be de-
�ned in terms of VM-speci�c costs associated with AP's execution; for example,
the amount of method call context switch time in AP method foo.

Another characteristic of an interpreted execution is that the application
program has multiple execution forms. By multiple execution forms we mean that
AP code is transformed into another form or other forms while it is executed. For
example, a Java class is read in by the Java VM in .class �le format. It is then
transformed into an internal form that the Java VM executes. This di�ers from
compiled code where the application binary is not modi�ed as it executes. Our
model characterizes AP's transformations as a measurable event in the code's
execution, and we represent the relationship between di�erent forms of an AP
code object so that performance data measured for one form of the code object
can be mapped back, to be viewed in previous forms of the object.

2 Performance Measurement Model

We present a representational model for describing performance data from an
interpreted execution that explicitly represents the interaction between the ap-
plication program and the virtual machine. Our model addresses the problems
of representing an interpreted execution and describing performance data from
the interpreted execution in a language that both the virtual machine developer
and the application program developer can understand.

2.1 Representing an Interpreted Execution

Our representation of an interpreted execution is based on Paradyn's represen-
tation of a program execution as a set of resource hierarchies. A resource is a
physical or logical component of a program (a semaphore, a function, and a pro-
cess are all examples of program resources). A resource hierarchy is a collection
of hierarchically related program resources. For example, the Process resource
hierarchy views the running program as a set of processes. It consists of a root
node that represents all processes in the application, and some number of child
resources|one for each process in the running program. Other examples of re-
source hierarchies are a Code hierarchy for the code view of the program, a
Machine hierarchy for the set of machines on which the application is running,
and a Synchronization hierarchy for the set of synchronization objects in the ap-
plication. An application's execution might be represented as the following set
of resource hierarchies: fProcess, Machine, Code, SyncObjg. An individual
resource is represented by a path from its root node. For example, the func-
tion resource main is represented by the path /Code/main.C/main. Its path
represents its relationship to other resources objects in the Code hierarchy.
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Fig. 2. Example resource hierarchies for the virtual machine and the application pro-
gram.

Since both the application program and the virtual machine can be viewed
as executing programs, we can represent each of their executions as a set of re-
source hierarchies. For example, AP's execution might be represented by fCode,
Thread, SyncObjg (right half of Figure 2), and the virtual machine's execution
might be represented as fMachine, Process, Code, SyncObjg (left half of Fig-
ure 2). The resource hierarchies in this �gure represent AP and VM's executions
separately. However, there is an interaction between the execution of the two
that must be represented. The relationship between the virtual machine and
its input (AP) is that VM runs AP. We represent the VM runs AP relation-
ship as an interaction between program resources of the two; code, process, and
synchronization objects in the virtual machine interact with code, process, and
synchronization objects in the application program during the interpreted execu-
tion. The interpreted execution is the union of AP and VM resource hierarchies.
Figure 3 is an example of an interpreted execution represented by fMachine,

Code, Process, SyncObj, APCode, APThreads, APSyncObjg.

The application program's multiple execution forms are represented by a set
of sets of resource hierarchies{one set for each of the forms that AP takes during
its execution, and a set of mapping functions that map resources in one form to
resources in another form of AP. For example, in a dynamically compiled Java
application, method functions may be translated from byte-code form to native
code form during execution. Initially we create one AP Code hierarchy for the
byte-code form of AP. As run-time transformations occur, we create a new AP
code hierarchy for the native form of AP objects, and create mapping functions
that map resources in one form to resources in the other form.
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2.2 Representing Points in an Interpreted Execution

We can think of a program's execution as a series of events. Executing an in-
struction, waiting on a synchronization primitive, and accessing a memory page
are examples of events. Any event in the program's execution can be represented
as a subset of its active resources|those resources that are currently involved in
the event. For example, if the event is \process 1 is executing code in function
foo", then the resource /Code/main.C/foo and the resource /Process/pid 1
are both active when this activity is occurring. These single resource selections
from a resource hierarchy are called constraints. The activity speci�ed by the
constraint is active when its constraint function is true.

De�nition 1. A constraint is a single resource selection from a resource hierarchy. It
represents a restriction of the hierarchy to some subset of its resources.

De�nition 2. A constraint function, constrain(r), is a boolean function of resource
r that is true when r is active. For example, constrain(/Process/pid 1) is true when
process 1 is active (i.e. running).

Constraint functions are resource-speci�c; all constraint functions test whether
their resource argument is active, but the type of test that is done depends on
the type of the resource argument. The constraint function for a process resource
will test whether the speci�ed process is running. The constraint function for a
function resource will test whether the program counter is in the function. Each
resource hierarchy exports the constraint functions for the resources in its hier-
archy. For example, Code.constrain(/Code/main.C) is the constraint function
applied to the Code hierarchy resource main.C.

Constraint functions can be combined with AND and OR to create boolean
expressions containing constraints on more than one resource. By combining one
constraint from each resource hierarchy with the AND operator, we represent
di�erent activities in the running program. This representation is called a focus.

De�nition 3. A focus is a selection of resources (one from each resource hierarchy). It
represents an activity in the running program. A focus is active when all of its resources
are active (i.e., the AND of the constraint functions).

If the focus contains resources that are re�ned on both VM and AP resource
hierarchies, then it represents a speci�c part of virtual machine's execution of
the application program. For example,

</Machine, /Code/main.C/invokeMethod, /Process/pid 1, /SyncObj,

/APCode/foo.class/foo, /APThreads, /APSyncObj>

is a focus from Figure 3 that represents when VM's process 1 is executing func-
tion invokeMethod, and interpreting AP method foo. This activity is occurring
when the corresponding constraint functions are all true.

2.3 Performance Data for Interpreted Execution

To describe performance data that measure the interaction between the appli-
cation program and the virtual machine, we provide a mechanism to selectively



constrain performance information to any part of the execution. There are two
complementary (and occasionally overlapping) ways to do this: constraints are
either implicitly speci�ed by metric functions or explicitly speci�ed by foci. A
metric function is a time-varying function that measures some aspect of a pro-
gram execution's performance. Metric functions consist of time or count func-
tions combined with boolean expressions built from constraint functions and
constraint operators. For example:

{ CPUtime = [ ]processTime/sec. The amount of process time per second.

{ methodCallTime = [Code.constrain(/Code/main.C/invokeMethod)]
processTime/sec. The time spent in VM function invokeMethod.

{ io wait = [Code.constrain(/Code/libc.so/read) OR Code.constrain(

/Code/libc.so/write)] wallTime/sec. The time spent reading or writing.

The second way to constrain performance data is by specifying foci that represent
restricted locations in the execution. Foci with both VM and AP resources repre-
sent an interaction between VM and AP. The focus</Code/main.C/fetchCode,

/APCode/foo.class/foo> represents the part of the execution when the virtual
machine is fetching AP code object foo. This part of the execution is active when
[Code.constrain( /Code/main.C/fetchCode) AND APCode.constrain(

/APCode/foo.class/foo)] is true. If we combine metric functions with this
focus, we can represent performance data for the speci�ed interaction.

We represent performance data as metric-focus pairs. The AND operator is
used to combine a metric with a focus. The following are some example metric{
focus pairs (we only show those components of the focus that are re�ned beyond
a hierarchy root node):

1. CPUtime, </APCode/foo.class/foo>:
[ ] processTime/sec AND [APCode.constrain(/APCode/foo.class/foo)]

2. CPUtime, </Code/main.C/invokeMethod,/APCode/foo.class/foo>:
[ ] processTime/sec AND [Code.constrain(/Code/main.C/invokeMethod)
AND APCode.constrain(/APCode/foo.class/foo)]

3. methodCallTime, </APCode/foo.class/foo>:
[Code.constrain(/Code/main.C/invokeMethod)] processTime/sec

AND [APCode.constrain(/APCode/foo.class/foo)]

Example 1 measures the amount of process time spent in AP function foo.
The performance measurements in examples 2 and 3 are identical|both measure
the amount of process time spent in VM function invokeMethodwhile interpret-
ing AP function foo. However, example 2 is represented in a form that is more
useful to a VM developer and example 3 is represented in a form that is more
useful to an AP developer. Example 3 uses an VM-speci�c metric. VM-speci�c
metric functions measure activities that are speci�c to a particular virtual ma-
chine. They are designed to present performance data to an AP developer who
may have little or no knowledge of the virtual machine; they encode knowledge
of the virtual machine in a representation that is closer to the semantics of the
application language. Thus, an AP developer can measure VM costs associated
with the execution of their program without having to know the details of the



implementation of the VM; the methodCallTime metric encodes information
about the VM function invokeMethod that is used to compute its value.

A �nal issue is representing performance data for foci with application pro-
gram resources. An AP object may currently be in one form, while its perfor-
mance data should be viewable in any of its forms. To do this, AP mapping
functions are used to map performance data that is measured in one form of an
AP object to a logical view of the same object in any of its other forms.

3 Measuring Interpreted Java applications

We present a tool for measuring the performance of interpreted Java applica-
tions and applets running on Sun's version 1.0.2 of the Java VM [6]. The tool
is an implementation of our model for representing performance data from an
interpreted execution.

The Java VM is an abstract stack-based processor architecture. A Java pro-
gram consists of a set of classes, each compiled into its own .class �le. Each
method function is compiled into byte-code instructions that the VM executes.

To measure the performance of an interpreted Java application or applet,
our performance tool (1) discovers Java program resources as they are loaded
by the VM, (2) generates and inserts SPARC instrumentation code into Java
VM routines, and (3) generates and inserts Java byte-code instrumentation into
Java methods and triggers the Java VM to execute the instrumentation code.

Since the Java VM performs delayed loading of class �les, new classes can
be loaded at any point during the execution. We insert instrumentation code in
the VM that noti�es our tool when a new .class �le is loaded. We parse the
VM's internal form of the class to create application program code resources for
the class. At this point, instrumentation requests can be made for the class by
specifying metric{focus pairs containing the class's resources.

We use dynamic instrumentation [4] to insert and delete instrumentation into
Java method code and Java VM code at any point in the execution. Dynamic
instrumentation is a technique where instrumentation code is generated in the
heap, a branch instruction is inserted from the function's instrumentation point
to the instrumentation code, and the function's instructions that were replaced
by the branch are relocated to the heap and executed before or after the in-
strumentation code. Because the SPARC instruction set has instructions to save
and restore stack frames, the instrumentation code and the relocated instruc-
tions can execute in their own stack frames. Thus instrumentation code will not
destroy the values in the function's stack frame.

Using this technique to instrument Java methods is complicated by the fact
that a method's byte-code instructions push and pop operands from their own
operand stack. Java instrumentation code should use its own operand stack and
have its own execution stack frame. The Java instruction set does not contain
instructions to explicitly save and restore execution stack frames or to create
new operand stacks. Our solution uses a technique called transformational in-

strumentation. This technique forces the Java VM to create a new operand stack



and execution stack frame for our instrumentation code. The following are the
transformational instrumentation steps:

1. The �rst time an instrumentation request is made for a method, relocate the
method byte-code to the heap and expand its size by adding nop byte-code in-
structions around each instrumentation point. The nop instructions will be replaced
with branches to instrumentation code.

2. Get the VM to execute the relocated method byte-code by replacing the �rst
bytes in the original method with a goto w byte-code instruction that branches to
the relocated method. Since the goto w instruction is inserted after the VM has
veri�ed that this method byte-code is legal, the VM will execute this instruction
even though it branches outside the original method function.

3. Generate instrumentation code in the heap. We generate SPARC instrumentation
code in the heap, and use Java's native methods facility to call our instrumentation
code from the Java method byte-code.

4. Insert method call byte-code instructions in the relocated method to call the native
method function that will execute the instrumentation code. This will implicitly
cause the VM to create a new execution stack frame and value stack for the in-
strumentation code.

4 Results

We present results from running a Java application with our performance tool.
The application is a CPU scheduling simulator that consists of eleven Java classes
and approximately 1200 lines of Java code. Currently, we can represent perfor-
mance data in terms of VM program resources, AP code resources, and the
combination of VM and AP program resources using both foci and VM-speci�c
metrics to describe the interaction. Figure 4 shows the resource hierarchies from
the interpreted execution, including the separate VM and AP code hierarchies.

We began by looking at the overall CPU utilization of the program (about
98%). We next tried to account for the part of the CPU time due to method
call context switching and object creation in the Java VM. To measure these, we
created two VM-speci�c metrics|MethodCall CS measures the time for the
Java VM to perform a method call context-switch, and obj create measures
the time for the Java VM to create a new object. Both are a result of the VM
interpreting certain byte-code instructions in the AP. We measured these values
for the Whole Program focus (no constraints). As a result, we found that a

Fig. 4. Resource Hierarchies from the interpreted execution.



Fig. 5. Time Histogram showing CPU utilization, object creation time, and method
call context switching time. This graph shows that method call context switching time
plus object creation time account for � 35% of the total CPU time.

large portion (� 35%) of the total CPU time is spent handling method context
switching and object creation (Figure 5)2.

Because of these results, we �rst tried to reduce the method call context
switching time by in-lining method functions. Figure 6 shows the method func-
tions that are accounting for the most CPU time and the largest number of
method function calls. We found that the nextInterrupt() and isBusy()meth-
ods of the Device class were being called often, and were accounting for a rel-
atively large amount of total CPU time. By examining the code we found that
the Sim.now() method was also called frequently. These three methods return
the value of a private data member, and thus are good candidates for in-lining.
After changing the code to in-line calls to these three method functions, the
total number of method calls decreased by 31% and the total execution time
decreased by 12% (second row in Table 1).

We next tried to reduce the object creation time. We examined the CPU
time for the new version of the AP code, and found that the Sim, Device, Job,
and StringBuffer classes accounted for most of the CPU time. The time spent
in StringBuffer methods is due to a large number of calls to the append and
constructor methods made from the Sim and Device classes. We were able to
reduce the number of StringBuffer and String objects created by removing
strings that were created but never used, and by creating static data members
for parts of strings that were recreated multiple times (in Device.stop() and
Device.start()). With these changes we are able to reduce the total execution
time by 70% (fourth row in Table 1).

2 With CPU enabled for every Java class, about 45% is due to executing Java code,
5% to method call context switching, and 40{45% to instrumentation overhead.



Fig. 6. AP classes and methods that account for the largest % CPU (left) and that
are called the most frequently (right). The �rst column lists the focus, and the second
column lists the metric value for the focus.

Table 1. Performance results from di�erent versions of the application.

Optimization Number of Number of Total Execution
Method Calls Object Creates Time (in seconds)

Original Version 13,373,200 465,140 389.29
Method in-lining 9,213,400 (31% less) 465,140 343.99 (-12% change)
Fewer Obj. Creates 9,727,800 (27% less) 17,350 (96% less) 234.13 (-40% change)
Both Changes 5,568,100 (58% less) 17,350 113.60 (-70% change)

In this example, our tool provided performance data that is di�cult to ob-
tain with other performance tools. Our tool provided performance data that
described expensive interactions between the Java VM and the Java applica-
tion, and accounted for these costs in terms of AP resources. With this data, we
were easily able to determine what changes to make to the Java application to
improve its performance.

5 Related Work

There are many general purpose program performance measurement tools [3,
5, 7, 4] that can be used to measure the performance of the virtual machine.
However, these are unable to present performance data in terms of the appli-
cation program or in terms of the interaction between VM and AP. There are
some performance tools that provide performance data in terms of AP's execu-
tion [1, 2]. These tools provide performance data in terms of Java application
code. However, they do not represent performance data in terms of the Java
VM's execution or in terms of the interaction between the VM and the Java
application. If the time values provided by these tools include Java VM method
call, object creation, garbage collection, thread context switching, or class �le
loading activities in the VM, then performance data that explicitly represents



this interaction between the Java VM and the Java application's execution will
help an application developer determine how to tune his or her application.

6 Conclusion and Future Work

This paper describes a new approach to performance measurement of inter-
preted executions that explicitly models the interaction between the interpreter
program and the interpreted application program so that performance data can
be associated with any part of the execution. Performance data is represented in
terms that either an application program developer or an interpreter developer
can understand.

Currently, we are working to expand our prototype to include a larger set of
VM-speci�c metrics, AP thread and synchronization resource hierarchies, and
support for mapping performance data between di�erent views of AP code ob-
jects. With support for AP thread and synchronization resources our tool can
provide performance data for multi-threaded Java applications.
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