
le sim-
steady

s [1] in
io of
ands of
well in
lem we

pecially

ation;
the tool
n [23]
called
user

r be co-
t, com-

ms
an the

tools
es these
able.

data

l
ro-
MRNet: A Software-Based Multicast/Reduction Network

for Scalable Tools1

Philip C. Roth, Dorian C. Arnold, and Barton P. Miller

Computer Sciences Department
University of Wisconsin, Madison

1210 W. Dayton St.
Madison, WI 53706-1685 USA

{pcroth,darnold,bart}@cs.wisc.edu

Abstract

We present MRNet, a software-based multicast/reduction network for building scalable performance and system
administration tools. MRNet supports multiple simultaneous, asynchronous collective communication operations.
MRNet is flexible, allowing tool builders to tailor its process network topology to suit their tool’s requirements and
the underlying system’s capabilities. MRNet is extensible, allowing tool builders to incorporate custom data
reductions to augment its collection of built-in reductions. We evaluated MRNet in a simple test tool and also
integrated into an existing, real-world performance tool with up to 512 tool back-ends. In the test tool, MRNet’s
performance was comparable to that of previous tool infrastructure. In the real-world tool, we used MRNet not only
for multicast and simple data reductions but also with custom histogram and clock skew detection reductions.
Although the tool’s start-up protocol was already highly tuned, our tests of MRNet with 512 tool back-ends show
significant improvements in average start-up latency.

Keywords: Scalability, tools, multicast, reduction, aggregation.

1 Introduction
The desire to solve large-scale problems in areas like climate modelling, computational biology, and partic

ulation has driven the development of increasingly large parallel computing resources. There has been a
deployment of traditional high-end parallel systems with many processors, such as the various ASCI system
the USA, Japan’s Earth Simulator [9], and HPCx [26] in the UK. Coupled with the low price/performance rat
commodity hardware, this desire has also led to the proliferation of clusters with hundreds and even thous
nodes (e.g., [7,13,23]). Unfortunately, performance, debugging, and system administration tools that work
small-scale environments often fail to scale well as systems and applications get larger. To address this prob
have developed MRNet, an infrastructure providing scalable multicast and data aggregation support es
designed for scalable tools.

A parallel tool’s functionality can be divided into two categories: (1) data collection, analysis, and present
and (2) control of application processes. These activities are implemented by one or more components within
system. The components of a typical tool system are shown in Figure 1a; tools like TotalView [10] and Parady
follow this organization. Data collection and process control occurs in the tool’s back-end components (often
tool daemons) running on the nodes of a parallel or distributed system. The user interacts with the tool via the
interface component. Data analysis and high-level control may be implemented in a separate component o
located with the tool back-ends. Often, analysis and user interface are implemented in the same componen
monly called the tool’sfront-end. All tool functionality comes at a cost, though the cost may take different for
(e.g., computation, communication, and storage) depending on the activity. If the activity’s cost is larger th
underlying system can support, that activity limits the tool’s overall scalability.

MRNet is a parallel tool infrastructure that reduces the cost of many important tool activities. MRNet-based
incorporate a tree of processes between the tool’s front-end and back-ends as shown in Figure 1b. MRNet us
internal processesto distribute tool activities, reducing analysis time and keeping tool front-end loads manage
MRNet-based tools send data between front-end and back-ends on logical flows of data calledstreams. MRNet inter-
nal processes usefilters to synchronize and aggregate data sent to the tool’s front-end. Using filters to manipulate

1. This work is supported in part by Department of Energy Grant DE-FG02-93ER25176, Lawrence Livermore Nationa
Lab grant B504964, and NSF grants CDA-9623632 and EIA-9870684. The U.S. Government is authorized to rep
duce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.
1

omplex

r, sev-

cess

can be

s,
work to
calable
o uses a
.g. func-

ed
ing data

its the
ontrol

le oper-

and
scalable
pli-
le

finding
f perfor-
harac-
tool

rience
igating
in parallel as it passes through the network, MRNet can efficiently compute averages, sums, and other more c
aggregations on back-end data.

This type of communication structure has been examined previously (e.g., [3,11,17,20,21,25,28]). Howeve
eral features make MRNet especially well-suited as a general facility for building scalable parallel tools:
• Flexible organization. MRNet does not dictate the organization of MRNet and tool processes. MRNet pro

organization is specified in a configuration file that can specify common network layouts likek-ary andk-nomial
trees, or custom layouts tailored to the system(s) running the tool. For example, MRNet internal processes
allocated to dedicated system nodes or co-located with tool back-end and application processes.

• Scalable, flexible data aggregation.MRNet’s built-in filters provide efficient computation of averages, sum
concatenation, and other common data reductions. Custom filters can be loaded dynamically into the net
perform tool-specific aggregation operations. For example, Paradyn uses custom filters to implement a s
algorithm for detecting the clock skew between the tool front-end and each Paradyn daemon. Paradyn als
custom histogram filter to place its back-ends into equivalence classes based on the program resources (e
tions) discovered by each back-end.

• High-bandwidth communication. MRNet transfers data within the tool system using an efficient, pack
binary representation. Zero-copy data paths are used whenever possible to reduce the cost of transferr
through internal processes.

• Scalable multicast.As the number of back-ends increases, serialization when sending control requests lim
scalability of existing tools. MRNet supports efficient message multicast to reduce the cost of issuing c
requests from the tool front-end to its back-ends.

• Multiple concurrent data channels. MRNet supports multiple logicalstreamsof data between tool compo-
nents. Data aggregation and message multicast takes place within the context of a data stream, and multip
ations (both upward and downward) can be active simultaneously.
MRNet is part of a larger effort to improve the scalability, reliability, and resiliency of parallel performance

system administration tools. MRNet addresses the problem of non-scalable global data processing and non-
global command and control.Global data processingis the aggregation of data taken from all processes in an ap
cation or nodes in a system, whereaslocal data processingis the collection and analysis of data taken from a sing
process or system node. Other aspects of our scalability work involve a distributed strategy for automatically
application performance problems, distributed performance data management, and scalable visualizations o
mance analysis results. This paper introduces MRNet and evaluates its scalability; its reliability and resiliency c
teristics will be addressed in future work. The context for our work is Paradyn [23], a parallel performance
supporting automated application performance problem searches.

In the next section, we detail MRNet concepts, implementation, and API. Section 3 describes our expe
integrating MRNet into the Paradyn performance tool. Section 4 presents a quantitative analysis invest
MRNet’s impact on tool scalability. We discuss how MRNet relates to previous work in this area in Section 5.

(a) (b)

Figure 1: The components of a typical parallel tool (a) and an MRNet-based parallel tool (b).
Shaded boxes show potential machine boundaries.

User Interface

Analysis and Control

Back-End 0

Process 0

Back-End 1

Process 1

Back-End n-1

Process n-1

...

...

User Interface

Analysis and Control

Back-End 0

Process 0

Back-End 1

Process 1

Back-End n-1

Process n-1

...

...

......... ...

... ...

M
R

N
et Internal

P
rocesses

...
2

t has
nd
s. The
RNet.

sts and
re, fol-

instan-

strate
mm pro-
thus the

. While
tion 2.6

2],
dcast

ntical
t com-
ont-end
ts the
raction.
com-
e back-

unica-
ate tool

ypes are

string.

ackets.
duce or
am
the data

roniza-
sforma-
2 The Multicast/Reduction Network
MRNet is a customizable, high-throughput communication software infrastructure for parallel tools. MRNe

two main components:libmrnet, a library that is linked into a tool’s front-end and back-end components, a
mrnet_comm, a program that runs on intermediate nodes interposed between the front-end and back-end
MRNet library exports an API that enables interaction between the front-end and groups of back-ends via M
The primary purpose of mrnet_comm is to distribute data processing functionality across multiple computer ho
to implement efficient and scalable group communications. We present an overview of the MRNet architectu
lowed by discussions of the interface, internal process implementation, data aggregation mechanisms, system
tiation, and process network topology issues.

2.1 MRNet Overview
The MRNet library, libmrnet, allows a tool to use a network of internal processes as a communication sub

between the tool’s front-end and back-end processes. The internal processes are instances of the mrnet_co
gram. The connection topology and host assignment of these processes is determined by a configuration file,
geometry of MRNet’s process tree can be customized to suit the physical topology of the underlying hardware
MRNet can generate a variety of standard topologies, users can easily specify their own topologies. See Sec
for further discussion on MRNet process topologies.

MRNet usescommunicatorsto represent groups of network end-points. Like communicators in MPI [2
MRNet communicators provide a handle that identifies a set of end-points for point-to-point, multicast or broa
communications. In contrast to MPI applications that typically have a non-hierarchical layout of potentially ide
processes, MRNet enforces a tree-like layout of all processes rooted at the tool front-end. Accordingly, MRNe
municators are created and managed by the front-end, and communication is only allowed between a tool’s fr
and its back-ends, i.e. back-ends cannot interact with each other directly via MRNet. This limitation reflec
design of current run-time tools but might be relaxed in the future if there appears to be a demand for such inte

A streamis a logical channel that connects the front-end to the end-points of a communicator. All tool-level
munication via MRNet uses streams. Streams carry data packets downstream, from the front-end toward th
ends, and upstream, from the back-ends toward the front-end. Each stream has a uniquestream idthat is used to iden-
tify packets sent on that stream. MRNet uses this stream id to support multiple, simultaneous streams of comm
tion among the same components within a tool instance. However, communication via MRNet between separ
instantiations is not supported; each tool has its own MRNet network instantiation.

Data packets carry typed data, enabling data aggregation operations to be associated with a stream. T
specified using a format string similar to that used by C formatted I/O primitivesprintf andscanf. For example, a
packet whose data is described by the format string “%d %f %s” contains an integer, float, and character
MRNet also adds specifiers for arrays of simple data types.

Data aggregation is the process of transforming multiple input data packets into one or more output p
Though it is not necessary for aggregation to result in less data or even different data, aggregations that re
modify data values are most common. MRNet usesfilters to aggregate data packets. A filter may be bound to a stre
when the stream is created, thus specifying the aggregation operation to perform and the expected type(s) of
sent on the stream. MRNet uses two types of filters: synchronization filters and transformation filters. Synch
tion filters organize data packets from downstream nodes into synchronized waves of data packets, while tran
tion filters operate on the synchronized data packets yielding one or more output packets.

front_end_main(){

1. MR_Network * net;
2. MR_Communicator * comm;
3. MR_Stream * stream;
4. float result;

5. net = new MR_Network(config_file);

6. comm = net->get_broadcast_communicator();

7. stream = new MR_Stream(comm, FMAX_FIL);

8. stream->send(“%d”, FLOAT_MAX_INIT);

9. stream->recv(“%f”, result);
}

back_end_main(){
1. MR_Stream * stream;
2. int val;

3. MR_Network::init_backend();

4. MR_Stream::recv(“%d”, &val, &stream);
5. if(val == FLOAT_MAX_INIT){
6. stream->send(“%f”, rand_float);
 }

}

Figure 2: MRNet front-end and back-end sample code.
3

jects
et net-

ainer for

ter the
cifica-
mmu-
use a
then
an inte-
t-end.

e
back-end

rovide
s and

. Conse-
y control

is
e associ-
propriate
other
tes the
ath that

onality
s aggre-
rs must
esent a
usy con-
ultiplex
te stream
n, pack-
ission to
ly when

uffers
rs for the
ta packet
pying.

me and
ut the
ets and
ization
.
ildren
d at the
2.2 MRNet Interface
The MRNet API, provided by libmrnet, consists of network, end-point, communicator, and stream C++ ob

that a tool’s front-end and back-end use for communication. The network object is used to instantiate the MRN
work and access end-point objects representing available tool back-ends. The communicator object is a cont
groups of end-points, and streams are used to send data to the end-points in a communicator.

Simplified code for an example tool front-end and back-end is shown in Figure 2. In the front-end code, af
variable definitions in lines 1-4, an instance of the MRNet network is created in line 5 using the topology spe
tion fromconfig_file. At line 6, the newly created network object is queried for an auto-generated broadcast co
nicator that contains all available end-points. In line 7, this communicator is used to build a stream that will
“floating point maximum” filter to find the maximum value of floating point data sent upstream. The front-end
might send one or more initialization messages to the back-ends; on line 9 of our example code, we broadcast
ger initializer and await the single floating point value result. The back-end code reflects the actions of the fron
Each tool back-end first connects to the MRNet network via theinit_backend call in line 3. In contrast to the front-
end’s stream-specificrecv call, the back-ends call a stream-anonymousrecv that returns both the integer sent by th
front-end and a stream object representing the stream that the front-end used to send the data. Finally, each
sends a scalar floating point value upstream toward the front-end.

2.3 MRNet Internal Processes
While libmrnet provides access to MRNet capabilities, it is the internal processes of a MRNet tree that p

the core functionality. MRNet internal processes implement logical channels for the flow of control message
data between the tools components and perform data aggregation or reduction operations as appropriate
quently, an internal process’ main task is to create and manage these logical channels or streams and correctl
the flow of packets through the system.

Internal processes use astream managerobject to manage control flow and route packets. When a stream
established, an internal process creates a new stream manager and initializes it with the set of end-points to b
ated with the stream and the filter(s) to be used on upstream data. The stream manager also maintains an ap
list of children nodesfor the stream; a child node object represents a connection directly to an end-point or to an
internal process through which at least one end-point in the set can ultimately be reached. Figure 3 illustra
organization of the functional layers within an internal process. We describe these layers by discussing the p
user data packets take on upstream and downstream flows.

Upstream dataflow is the more complex process; it exercises all the layers of internal process functi
bounded by the dashed line in Figure 3. Packets must be unbatched, demultiplexed, synchronized, perhap
gated, and re-batched before continuing their upstream journey toward the front-end. Incoming packet buffe
first be unbatched into individual packets. Data packets are batched into packet buffers, which logically repr
series of communications destined for the same process, to allow for fewer larger messages to be sent over b
nections, reducing overall communication costs. Each packet is tagged with its stream id that is used to dem
the packets into their appropriate streams. At the demultiplexing phase, packets are passed to the appropria
manager instance that delegates control to filter objects for synchronization and aggregation. After aggregatio
ets destined for the upstream node are re-batched into a single packet buffer that is then scheduled for transm
the upstream node in the tree. Note that packets are never copied; they are manipulated by reference. It is on
passing through a transformation filter that data might be moved.

Downward dataflow is simpler since filters are usually not applied to downward flows. Incoming packet b
only need to be unbatched and routed to appropriate child nodes. Data packets are then re-batched into buffe
appropriate downstream nodes. Since a single packet may be directed to multiple destinations, the same da
may be placed in multiple packet buffers. Like the upward path, packets are buffered by reference to avoid co

2.4 Filters
Filters operate on data flowing upstream in the network. Synchronization filters receive packets one at a ti

do not output any packets until the specified synchronization criteria has occurred. Transformation filters inp
group of synchronized packets, perform some type of data transformation on the data contained in the pack
output one or more packets. A distinction between synchronization and transformation filters is that synchron
filters are independent of the packet data type, but transformation filters operate on packets of a specific type

Synchronization filters provide a mechanism to deal with the asynchronous arrival of packets from ch
nodes; the synchronizer collects packets and typically aligns them into waves, passing an entire wave onwar
4

ndepen-

anager.

more
packets,
tream’s
from one
ould be

es on
rs and
r func-

ch data

ks are

filter.
g the
shared

ctions
acilities
tem. In
system).

pecified
front-

nication
ted it. The
levant
same time. Therefore, synchronization filters do no data transformation and can operate on packets in a type-i
dent fashion. MRNet currently supports three synchronization modes:
• Wait For All: wait for a packet from every child node;
• Time Out: wait a specified time or until a packet has arrived from every child (whichever occurs first); and
• Do Not Wait: output packets immediately.
Synchronization filters use one of these three criteria to determine when to return packets to the stream m
Although we do not anticipate a need for it, new types of synchronization filters can be added by the user.

Transformation filters combine data from multiple packets by performing an aggregation that yields one or
new data packets. Since transformation filters are expected to perform computational operations on data
there is a type requirement for the data packets to be passed to this type of filter: the data format string of the s
packets and the filter must be the same. Transformation operations must be synchronous, but can carry state
transformation to the next using static storage structures. MRNet provides several transformation filters that sh
of general use:
• Basic scalar operations: min, max, sum and average on integers or floats
• Concatenation: operation that inputsn scalars and outputs a vector of lengthn of the same base type.

MRNet is designed to allow tool developers to add new filters to the provided set. This discussion focus
transformation filters; however, synchronization filters share the same basic design with transformation filte
may be added using similar techniques. In order to establish a new filter, a tool developer must provide a filte
tion that implements the data transformation operation. Filter functions have the following signature:

void filter_func(DataElements **in_elems, int in_size, DataElements ***out_elems, *out_size);

The filter function takes an array of data elements and outputs an array of data elements of arbitrary size. Ea
element is essentially a C union of type integer, float, character, or a pointer to arrays of these types.

Filter functions implemented by the tool developer must be named and made known to MRNet. Both tas
accomplished using theload_filter function provided by the MRNet API.load_filter takes the name of a shared
object file that contains the filter function to be used by the new filter, and returns an id that identifies the new
MRNet requires that each shared object file implement a single filter function with a well-known name, allowin
front-end and internal processes to access the filter function using the operating system’s API for managing
objects (e.g.,dlopen anddlsym on UNIX systems).

2.5 MRNet Instantiation
While conceptually simple, creating and connecting the MRNet process network is complicated by intera

with the various job management systems. In the simplest environments, we can launch jobs manually using f
like rsh or ssh.In more complex environments, it is necessary to submit all requests to a job management sys
this case, we are constrained by the operations provided by the job manager (and these vary from system to
We currently support two modes of instantiating MRNet-based tools.

In the first mode of process instantiation, MRNet creates the internal and back-end processes, using the s
MRNet topology configuration to determine the hosts on which the components should be located. First, the
end consults the configuration and uses rsh or ssh to create internal processes for the first level of the commu
tree on the appropriate hosts. Each newly created process establishes a connection to the process that crea
first activity on this connection is a message from parent to child containing the portion of the configuration re

Figure 3: Functional layers within an MRNet internal process.

Data Encoding

Data Transformation Operation

Data Decoding

Data-Specific Aggregation

Packet Synchronization

Packet Batching/Unbatching

Packet Batching/Unbatching
5

hen a
ccessible
uentially.
branches

me or all
control

the pro-
cess.
lication
does not
system to
ack-ends,
as the

t, using

com-
can be
the

optimal
ction 4
mine

hether
nal pro-
oadcast
e data
ut for

l pro-
assumes

flaws in
es, per-
cesses
rogram’s
pplica-
running
s are co-
location

th bal-
parallel
ernas-
vel flat
inimum

and data
n trees.
or sinks

r work.
MRNet
worse
munica-
to that child. The child then uses this information to begin instantiation of the sub-tree rooted at that child. W
sub-tree has been established, the root of that sub-tree sends a report to its parent containing the end-points a
via that sub-tree. Each internal node establishes its children processes and their respective connections seq
However, since the various processes are expected to run on different compute nodes, sub-trees in different
of the network are created in concurrently, maximizing the efficiency of network instantiation.

In the second mode of process instantiation, MRNet relies on a process management system to create so
of the MRNet processes. This mode accommodates tools that require their back-ends to create, monitor, and
the application processes. For example, IBM’s POE uses environment variables to pass information, such as
cess’ rank within the application’s global MPI communicator, to the MPI run-time library in each application pro
In cases like this, MRNet cannot provide back-end processes with the environment necessary to start MPI app
processes. As a result, MRNet creates its internal processes recursively as in the first instantiation mode, but
instantiate any back-end processes. MRNet then starts the tool back-ends using the process management
ensure they have the environment needed to create application processes successfully. When starting the b
MRNet must provide them with the information needed to connect to the MRNet internal process tree, such
leaf processes’ host names and connection port numbers. This information is provided via the environmen
shared filesystems or other information services as available on the target system.

2.6 MRNet Process Layout
MRNet allows a tool to specify a node allocation and process connectivity tailored to its computation and

munication requirements and to the system running the tool. Choosing an appropriate MRNet configuration
difficult due to the complexity of the tool’s own activity and its interaction with the system. We briefly discuss
issues related to process layout, but because our current work focuses on tool scalability a full treatment of
MRNet configurations is beyond the scope of this paper. The configurations we used for our experiments in Se
were chosen for their ability to show MRNet’s effect on tool scalability. We anticipate future research will exa
the issue of MRNet topology in more detail.

When choosing the process configuration for an MRNet-based tool, there are two key issues to consider: w
the MRNet internal processes are co-located with the application processes under study, and how the inter
cesses are connected. Our primary measures of a configuration’s quality are its: (1) latency for a single br
operation, measured from initiation by the front-end to the last receipt by a back-end; (2) latency for a singl
aggregation operation, measured from initiation by the back-ends to receipt by the front-end; (3) throughp
streams of broadcasts and data aggregations; and (4) CPU utilization of the MRNet internal processes.

The first issue to consider when choosing an MRNet configuration is whether to co-locate MRNet interna
cesses and application processes on the same nodes. While the literature on broadcast/reduction networks
that internal processes will be co-located with application processes, we believe this approach has serious
practice. First, the internal processes would contend with application processes for CPU and network resourc
haps seriously impacting the application’s performance. Second, differing loads across MRNet internal pro
could create an imbalance among the application processes, skewing their performance. Because a parallel p
speed is often limited by its slowest process, this performance skew would increase the tool’s impact on the a
tion. As a result, we recommend that MRNet’s internal processes be located on resources distinct from those
the application processes. Regardless of whether the MRNet internal processes and application processe
located or are run on distinct nodes, their overall resource usage is similar. Therefore, we advocate separate
to achieve more predictable and understandable application behavior.

The second issue to consider when choosing an MRNet configuration is the internal process topology. Bo
anced and unbalanced tree topologies have attractive properties for MRNet configurations. The literature on
collective communication algorithms argues for unbalanced tree topologies in many situations. For example, B
chi and Iannello [5] show that the optimal communication tree for broadcast is somewhere between a single-le
tree and a binomial tree, depending on the latency for transferring messages between processes and the m
interval between message send operations in a process. Similarly, optimal algorithms for several broadcast
aggregation problems evaluated under the LogP [8,16] and LogGP [3] models use unbalanced communicatio
Unfortunately, this literature assumes all processes involved in the operation are data sources (for reductions)
(for broadcasts), which is not the case for MRNet’s internal processes.

Balanced tree topologies provide several attractive advantages over unbalanced tree topologies for ou
Their regularity makes them easier to analyze when choosing the most appropriate size and shape for the
internal process tree. Also, although the latency of individual collective communication operations may be
with balanced trees than unbalanced trees, they can provide better throughput for sequences of collective com
6

end to
ro-

ends
ency
ding on
nced
the
of the
reach

ologies,
e abil-
cess is

arallel
mplex
perfor-
t in the

ted in

en they
e might

rocess
applica-
roblems
d ver-
dae-

ement

atego-
onfigura-
lication
tems are
ported
art-up
pecify
tion operations. For example, consider the MRNet tree topologies shown in Figure 4 connecting a tool front-
sixteen tool back-ends. Assuming a LogP model with a minimum gapg between successive send operations in a p
cess, an overheado for each send and receive, and a message transfer latencyL, the time required to complete a
broadcast operation to all sixteen back-ends using the balanced tree topology shown in Figure 4a is8g+4o+2L, but
the tool can start a new broadcast each4gcycles. A comparable unbalanced tree topology reaching sixteen back-
is shown in Figure 4b. This topology is constructed from a binomial tree with four nodes providing low-lat
broadcast to each binomial tree node, with four MRNet back-ends attached to each binomial tree node. Depen
the relative values ofg, o, andL, a single broadcast operation using this topology may complete before the bala
tree’s broadcast, but a tool using this topology needs at least6g cycles between each broadcast operation due to
larger fan-out at the tree’s root. Furthermore, if the tool supports six-way fan-out as is being used at the root
unbalanced tree topology, then it could use a balanced topology with a six-way fan-out throughout the tree to
far more than sixteen tool back-ends. Therefore, in this paper we chose to experiment using balanced tree top
leaving an examination of unbalanced trees and optimal communication topologies for future work. Because th
ity of each internal process to keep up with its upward and downward data flow, the fan-out at each internal pro
limited. Therefore, our experiments use multi-level balanced trees with moderate fan-outs of four and eight.

3 A Real-World Tool Example
To evaluate MRNet’s usefulness for building real-world scalable parallel tools, we modified the Paradyn p

performance tool to use MRNet. There are two main ways that Paradyn can use MRNet: to simplify the co
interactions between front-end and tool daemons during process start-up and initialization, and to off-load the
mance data processing tasks from the Paradyn front-end. Here we report on our experience with using MRNe
more complex and demanding case of tool initialization. A quantitative evaluation of this use is presen
Section 4.2.

Tools such as debuggers and performance tools may transfer large amounts of data during tool start-up wh
create or attach to an application’s processes. For example, a debugger that sets breakpoints by function nam
deliver the names and addresses of all functions to the tool’s user interface. In parallel tools that follow the p
organization shown in Figure 1a, the front-end becomes a bottleneck when connected to a large number of
tion processes. Besides reducing tool interactivity, the start-up latency caused by this bottleneck may create p
for parallel runtime systems that fail if the application processes are not created in a timely fashion. Our modifie
sion of Paradyn uses both built-in and custom MRNet aggregation filters for all activities involving the tool’s
mons (i.e., its back-ends) during the tool start-up phase, including:
• reporting data about Paradyn daemons to the front-end;
• distributing data about known performance data metrics to all daemons;
• detecting clock skew between the front-end process and each daemon process; and
• reporting data about application processes to the front-end.
Although most of these activities manipulate Paradyn-specific data, our techniques for using MRNet to impl
them are applicable to many activities commonly performed by parallel tools.

During Paradyn start-up, most of the data transferred within the tool system can be placed into one of two c
ries: data describing the daemon and application processes sent from the back-ends to the front-end, and c
tion data sent from the front-end to all back-ends. At tool start-up, the Paradyn back-ends examine app
processes to identify the relevant parts of the program, such as modules, functions, and process ids. Such i
calledresourcesin Paradyn terminology. Once the back-ends have identified application resources, they are re
to the front-end along with statically-determined call-graphs for all application processes. The bulk of the st
information sent from the front-end to the back-ends is a collection of performance metric definitions that s
how to instrument processes to collect performance data.

(a) (b)

Figure 4: Comparable MRNet internal process topologies with the same number of back-ends.
The latency of a single broadcast or aggregation operation might be better with the unbalanced

topology (b), but the balanced topology (a) has better throughput for pipelined operations.
7

d. The
.g., func-

es). If the
ring tool
and run

ry of the
binning

ont-end
h class’
ifferent
ncatena-
erlying

adyn,
e front
road-

igms
nsists of
n each
s tree).
of skew
twork.
it adds
of its

aradyn

radyn, a
asured
educ-
f impor-
9] at
by an

d runs
roves

of our
. Once

on gen-
cuted
st har-

ork, the
of data

le par-
ools),
process
nced
nd-trip

the flat
gh each
effect of
Paradyn uses MRNet in two ways to reduce the cost of reporting data from daemons to the front-en
method used depends on whether the data is likely to be the same across a significant number of processes (e
tion names and their addresses) or is likely to be different across processes (e.g., process ids and host nam
data is likely to be the same across a significant number of processes, then most of the data transferred du
start-up is redundant (especially if the application processes are created from a small number of executables
on a collection of homogeneous hosts). To report this data, each Paradyn daemon first computes a summa
data (i.e., a checksum). Next, the daemons write the checksums to an MRNet stream created to use a custom
filter. This filter partitions the daemons into equivalence classes based on their checksum values. When the fr
receives the final set of equivalence classes, it requests complete function resource information only for eac
representative process. Unlike function names, data like process identifiers and host names are likely to be d
across hosts. Nevertheless, Paradyn also leverages MRNet for reporting this data. Paradyn uses a parallel co
tion aggregation to construct larger resource report messages that are more efficiently delivered by the und
communication subsystem than many small resource report messages.

Paradyn uses MRNet to deliver configuration data efficiently from the front-end to all back-ends. In Par
metric definitions describing how to instrument processes to collect metric performance data are provided to th
end in a configuration file written in the Paradyn Metric Definition Language [15]. The front-end uses simple b
cast operations to deliver the metric definitions to all tool back-ends.

Clock skew detection is the only start-up activity that does not fall neatly into the two communication parad
mentioned earlier. The MRNet-based clock skew detection scheme occurs in two phases. The first phase co
repeated broadcast/reduction pairs on a special stream reserved for finding clock “local” clock skew betwee
process and the downstream processes to which it is directly connected (i.e., its children in the MRNet proces
The second phase consists of a single broadcast to all daemons requesting them to initiate the collection
results. Each daemon initializes its “cumulative skew” value to zero, and passes it upstream into the MRNet ne
When an MRNet internal process receives a cumulative skew value from one of its downstream connections,
its observed local clock skew value for that connection to the cumulative value, thereby computing the skew
clock with each daemon reachable along that connection. By induction, when the algorithm finishes the P
front-end holds the skews between its clock and the clocks of each tool back-end.

4 Evaluation
To evaluate MRNet, we measured its performance alone within a test harness and then integrated with Pa

real-world parallel performance tool. Our micro-benchmark experiments with the test harness tool me
MRNet’s start-up latency, the round-trip latency of a single broadcast followed by a reduction, and MRNet’s r
tion throughput using several process tree topologies. Our Paradyn experiments compared the performance o
tant start-up activities with and without MRNet. Our experiments were run on the ASCI Blue Pacific system [1
Lawrence Livermore National Laboratory. Blue Pacific contains 280 nodes (256 compute nodes) connected
IBM SP switch interconnect. Each node contains four 332 MHz PowerPC 604e processors, 1.5 GB RAM, an
AIX 5.1.0 with Parallel System Support Programs version 3.4. Our results show that MRNet significantly imp
the scalability of key activities in parallel performance and system administration tools.

4.1 Micro-benchmark Results
We began by measuring the low-level performance of MRNet within a minimal test harness. For each run

test harness tool, we requested an appropriately-sized partition from the Blue Pacific batch scheduling system
we were given our partition, we determined the partition nodes’ host names and used an automatic configurati
erator program to build an MRNet configuration file with the desired topology within the partition. We then exe
the tool’s front-end program, passing the configuration file’s name as an argument. During each run of the te
ness, we measured three MRNet performance characteristics: the latency to instantiate the MRNet netw
latency of a broadcast operation followed by a data reduction, and the MRNet’s throughput during a sequence
reductions. The results of these experiments are shown in Figure 5.

Our micro-benchmark measurements show the necessity of infrastructure like MRNet for building scalab
allel tools. Using a flat, single-level topology (which closely approximates the architecture of many parallel t
instantiation latency grows quickly as the number of tool back-ends increases due to the serialization of the
creation operations. The instantiation latency grows quite slowly when using MRNet with fully-populated bala
tree topologies with four- and eight-way fan-outs because MRNet creates the process tree in parallel. The rou
latency and data reduction throughput measurements also show the benefits of MRNet to parallel tools. In
topology, each broadcast or reduce is implemented using serialized point-to-point message transfers. Althou
message transfer is less time-consuming than the rsh used to create processes during tool instantiation, the
8

end is
mpletes.
. Fur-

through
bench-
ses such

RNet
redun-
ach tool
es based
ivalence

KB
mselves
and the

seri-
to rise

outs, the
verall
d the

hese

t end

spond
nternal

etec-

to find

e pro-

data
logy
erall
 tools.
serialization is similar: the latency grows rapidly as the number of back-ends increases. Also, the tool front-
involved in every message transfer, so it cannot start a subsequent reduction before the previous operation co
Multi-level MRNet process configurations allow MRNet to perform point-to-point message transfers in parallel
thermore, the moderate fan-outs at each MRNet process allows data reductions to be pipelined as they pass
the network, keeping reduction throughput high as application size increases. The trends in MRNet’s micro-
mark scalability studies are perhaps to be expected; previous tool infrastructures using a hierarchy of proces
as the Ladebug parallel debugger [4] and Lilith [11] show similar scalability trends.

4.2 Integrated Performance Results
To evaluate MRNet’s real-world performance, we modified the Paradyn parallel performance tool to use M

during tool start-up as described in Section 3. Paradyn’s start-up protocol was already highly tuned to reduce
dant data transfer. For several data transfers from tool daemons to the front-end, it used a technique whereby e
daemon computes a checksum over its own data, the front-end partitions the daemons into equivalence class
on the checksum values, and then requests the complete data from only a single representative of each equ
class. We measured the latency of Paradyn’s start-up activities when preparing to monitorsmg2000 [6], a parallel lin-
ear equation solver. Thesmg2000 executable is relatively small, containing approximately 434 functions in a 290
executable. We started the timer when all daemons were known to have been started (but not yet reported the
to the tool front-end), and stopped the timer after the daemons had reported information about themselves
application processes they created, and were ready to run the application.

The results of our scalability study with several MRNet topologies are shown in Figure 6a. Without MRNet,
alization of the communication between Paradyn’s front-end and daemons causes overall start-up latency
exponentially as the number of daemons increases. Using MRNet and process topologies with moderate fan-
start-up latency curves are much flatter and growth is nearly linear, indicating a significant improvement in o
tool scalability. To investigate how much of the overall start-up latency that MRNet could affect, we measure
latency of individual start-up activities with and without MRNet for our largest experimental configuration; t
results are shown in Figure 6b. The individual activities shown in the figure are:
• ReportSelf: Using an MRNet concatenation filter, each daemon reports basic characteristics to the fron

such as the host on which it is running;
• ReportMetrics: The front-end broadcasts Metric Definition Language data to all daemons; the daemons re

using the equivalence class algorithm described above to report all metrics that they support (including i
metrics not specified in the MDL data);

• Find Clock Skew: The front-end finds its clock skew with respect to each daemon using the clock skew d
tion algorithm described in Section 3;

• Parse Executable:Each daemon examines the application executable and the shared libraries it uses
names and addresses of all functions, and parses the code to discover the application’s static call graph;

• Report Process:After creating or attaching to an application process, each daemon reports data about th

(a) start-up latency (b) round-trip latency (c) reduction throughput

Figure 5: MRNet micro-benchmark experiment results.
Tool instantiation latency (a), round-trip latency of a single broadcast followed by a single reduction (b), and
reduction throughput (c) using single- and multi-level MRNet topologies. Compared to the single-level topo

commonly found in parallel tools, multi-level MRNet topologies exhibited dramatically better scalability and ov
performance, showing the necessity of multi-level process networks like MRNet for building scalable parallel

0 100 200 300 400 500 600

Back-Ends

0

100

200

300

400

500

600

700

800

900
T

im
e(

se
c)

Flat
4-way Fanout
8-way Fanout

0 100 200 300 400 500 600

Back-Ends

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e(
se

c)

Flat
4-way Fanout
8-way Fanout

0 100 200 300 400 500 600

Back-Ends

0

10

20

30

40

50

60

70

80

T
hr

ou
gh

pu
t

(o
ps

/s
ec

)

Flat
4-way Fanout
8-way Fanout
9

aemon
mand to

host,

ns

ns
o the

using
either
een a
int-to-
ediate
sed the

art-up
n-out

start-

it uses
whereas
by the
switch
ication
me, the
data and
ock and
from the
is value
w using
he actual
clock
d using

ctivity.
cess to the front end including its process id, its command-line arguments, whether it was created by the d
or was already created when the daemon attached to it, and whether the front-end should issue the com
resume the process when all start-up activities are complete;

• Report Machine Resources:Using a concatenation filter, each daemon defines Paradyn resources for the
process, and initial thread of its application processes via Paradyn’s resource definition protocol;

• Report Code Eq ClassesandReport Code Resources:Using the equivalence class algorithm, the daemo
define resources for all functions and modules in the application executable;

• Report Callgraph Eq Classesand Report Callgraph: Using the equivalence class algorithm, the daemo
report their static call-graph information (built during the “Parse Executable” activity described above) t
front-end; and

• Report Done:The daemons indicate the end of the start-up phase.
Each activity that used MRNet to communicate with all daemons showed a significant latency reduction by
MRNet. The activities that did not show a significant improvement from using MRNet are activities that consist
of work done entirely in parallel by the daemons (“Parse Executable”) or point-to-point communication betw
small number of daemons and the front-end (“Report Code Resources”, “Report Callgraph”). In fact, the po
point communication activities transferred data via MRNet; the additional overhead of passing through interm
MRNet processes was observed to be negligible. Overall, the benefit of using MRNet increased as we increa
number of tool daemons. With our largest configuration of 512 back-ends, the latency for performing all st
activities was 3.4 times faster with MRNet and a balanced, fully-populated tree configuration with eight-way fa
than without MRNet. Based on our investigation of MRNet’s benefit for each individual activity during Paradyn
up, we expect this trend to continue with configurations significantly larger than 512 daemons.

Clock skew detection was the Paradyn start-up activity that benefitted most from using MRNet, because
repeated broadcast/reduction operations to distribute and collect clock samples and intermediate skew results
the other activities perform only one or two collective operations. We evaluated the clock skews computed
MRNet-based clock skew detection algorithm by comparing them to skews computed using Blue Pacific’s SP
clock (a globally-synchronous clock) and to skew results computed using a commonly-used direct-commun
scheme. To compute its clock skew with respect to a given daemon under the direct communication sche
front-end sends a small amount of data to the daemon. The daemon samples its clock when it receives the
sends this sample to the front-end. When the front-end receives the daemon’s sample, it samples its own cl
computes the round-trip latency of the sends and receives. The front-end approximates the one-way latency
round-trip latency, adds the one-way latency to the daemon’s clock sample, and uses the difference between th
and the front end’s receive timestamp as the clock skew. In our experiments, the front-end measured the ske
the direct communication scheme 100 times and used the observed skew with the smallest absolute value as t
clock skew. Using a 64-daemon topology with four-way fan-out (a three-level topology), the MRNet-based
skew detection algorithm produced skews with an average error of 10.5% as compared to the skews compute

(a) (b)

Figure 6: Paradyn start-up latency for increasing numbers of daemons (a) and by activity for 512 daemons (b).
In (b), bold activity names indicate use of MRNet for data aggregation or concatenation for some part of the a

0 100 200 300 400 500 600

Daemons

0

10

20

30

40

50

60

70

L
at

en
cy

 (
se

c)

No MRNet
4-way Fanout
8-way Fanout
16-way Fanout

0 5 10 15 20 25

Time (sec)

Report Self

Report Metrics

Find Clock Skew

Report Process

Report Machine Resources

Report Code Eq Classes

Report Callgraph Eq Classes

Report Done

No MRNet
8-way Fanout

Parse Executable

Report Code Resources

Report Callgraph
10

ection
as 80.4,
clock

re scal-

ional-
appli-

tion
are
m the
f the
parallel
llective
esses
ut the
ge of
oten-

-
similar
lus-
for data

llecting
lability

suggest
ciently
tor pro-

ing data
less sen-
ams of
egation,
tional
hereas

gation
eduction
collec-
com-
rid.

a WAN,
[27]
ental

imized
e MPI
et’s

ict with
creates

o be trans-
I for col-
Net as
the globally-synchronous switch clock, while the average error in the skews produced by the direct-conn
method was 17.5%. However, the standard deviation of the errors produced by the MRNet-based algorithm w
slightly higher than the standard deviation in the direct connection method’s errors at 78.9. In short, MRNet’s
skew detection algorithm produced results comparable to the direct-connection method but is significantly mo
able.

5 Related Work
MRNet provides data aggregation and multicast services for building scalable parallel tools. Similar funct

ity has been found previously in software-based collective communication infrastructure for parallel tools and
cations, and in parallel databases and overlay networks.

MRNet, Lilith [11], and Ygdrasil [3] are parallel tool infrastructures providing multicast and data aggrega
functionality. MRNet differs from Lilith and Ygdrasil in its communication model, tool architecture, and softw
engineering trade-offs. In Lilith’s communication model, synchronous waves of messages are sent to or fro
tool’s front-end at the root of the process tree [12]. Generalizing the multicast/reduction capabilities o
Ladebug [4] parallel debugger, Ygdrasil is best suited to a synchronous request/response model for tools like
debuggers. In contrast, MRNet’s communication model supports multiple simultaneous asynchronous co
communication operations. Tools built with MRNet and Ygdrasil share a similar architecture with internal proc
distinct from the tool’s back-ends. Lilith’s architecture allows tool back-end code at each process througho
Lilith process network. For tool extensibility, both Lilith and Ygdrasil are implemented in Java and take advanta
that language’s natural ability to load code dynamically. MRNet trades this ease of extensibility for the higher p
tial data throughput of C++-based data serialization.

A network of processes as is used in MRNet is often called anoverlay networkbecause it defines a logical net
work that overlays a physical network. Several overlay network projects have data aggregation functionality
to MRNet. Ganglia [21] defines a hierarchical overlay network like MRNet’s in an infrastructure for monitoring c
ters and federations of clusters, and Supermon [25] servers can be organized into a hierarchical infrastructure
aggregation. Neither of these systems is designed to support high throughput, and would be ill-suited for co
and manipulating application performance data sampled with high frequency. Also, Ganglia relies on the avai
of IP multicast within clusters which may not be enabled for all target systems.

Data aggregation has also been studied in the context of parallel databases. Shatdal and Naughton [24]
several algorithms for efficient data aggregation in parallel databases. Gray et al [14] suggest ways for effi
implementing their “data cube” aggregation operator. Neither approach uses a separate network of aggrega
cesses as is used in MRNet. Like a parallel database, TAG [20] provides a SQL-based interface for express
aggregation queries, and a relational database model for representing aggregation results collected from wire
sor networks. Similar to MRNet, TAG supports multiple simultaneous aggregation operations and supports stre
aggregated data in response to an aggregation request. However, TAG only supports ordinal data aggr
whereas MRNet’s flexibility allows filters that align and aggregate timestamped data. TAG uses a SQL/rela
interface, in contrast to our RPC-style interface. Also, TAG organizes its sensors with an ad-hoc routing tree, w
MRNet’s network configuration is specifieda priori via a configuration file.

Most work in software-based collective communication has focused on providing multicast and data aggre
support for applications. The Message Passing Interface [22] standard defines broadcast and a few data r
operations. Whereas some MPI implementations use serialized point-to-point operations to implement these
tive operations, others provide optimized implementations. For example, MagPIe [17] provides MPI collective
munication primitives optimized for applications run in a geographically-distributed environment like the G
MagPIe uses a process tree consisting of a flat, single-level tree at the root for efficient communication across
followed by a binary tree for efficient communication within the local network. As another example, the ACCT
system automatically tunes its MPI collective communication algorithms based on modelling and experim
results, tailoring the algorithms to the system on which the MPI application runs. Unfortunately, because opt
MPI implementations are not universally available, we cannot depend on the availability of a high-performanc
layer for efficient collective communication in parallel tools. Also, MPI reductions are more restrictive than MRN
data aggregations because they are applied ordinally to the operands. Finally, a tool’s use of MPI may confl
MPI use in the monitored application. For example, in a common tool start-up scenario, a process manager
tool back-end processes, which then create application processes. The back-end processes are supposed t
parent to the process manager, but may not be if they are also MPI-based programs. MRNet does not use MP
lective communication, so it is safe to use in tools that monitor MPI applications. We would advocate using MR
a substitute for MPI’s implementation for efficient broadcast and data reduction support.
11

oup. We
hank
cific.

erica

LogP

rk.

LogP:

uted

, 2003.
be: A

tion

r>,

c>,

orks.

, and
uting/

nd

Line
Acknowledgments
This paper benefited from the hard work of many past and present members of the Paradyn research gr

especially wish to thank Victor Zandy and Bryan Wylie for several fruitful discussions on the topic. We also t
John Gyllenhaal, Jeff Vetter, and Chris Chambreau for help with the computing environment on ASCI Blue Pa

References
[1] Advanced Simulation and Computing program, National Nuclear Security Administration, United States of Am

Department of Energy. <http://www.nnsa.doe.gov/asc/home.htm>, February 6, 2003.
[2] A. Alexandrov, M.F. Ionescu, K.E. Schauser, and C. Scheiman. LogGP: Incorporating Long Messages into the

Model.Journal of Parallel and Distributed Computing44, 1, July 1997, pp. 71–79.
[3] Susanne M. Balle. Personal communication, November 2002.
[4] S.M. Balle, B.R. Brett, C.-P. Chen, and D. LaFrance-Linden. A New Approach to Parallel Debugger Architecture.Sixth

International Conference PARA 2002, Espoo, Finland, June 2002. Published asLecture Notes in Computer Science2367,
J. Fagerholm et al (Eds), Springer, Heidelberg, June 2002, pp. 139–149.

[5] M. Bernaschi and G. Iannello. Collective Communication Operations: Experimental Results vs. Theory.Concurrency:
Practice and Experience10, 5, April 1998, pp. 359–386.

[6] P.N. Brown, R.D. Falgout, and J.E. Jones. Semicoarsening Multigrid on Distributed Memory Machines.SIAM Journal on
Scientific Computing21, 5, 2000, pp. 1823–1834.

[7] Center for Computational Research, University at Buffalo, The State University of New Yo
<http://www.ccr.buffalo.edu>, February 6, 2003.

[8] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian, and T. von Eicken.
Towards a Realistic Model of Parallel Computation.ACM SIGPLAN Notices28, 7, July 1993, pp. 1–12.

[9] Earth Simulator Center. <http://www.es.jamstec.go.jp>, February 6, 2003.
[10] Etnus LLC, “TotalView User’s Guide”, Document version 6.0.0-1, January 2003. <http://www.etnus.com>
[11] D.A. Evensky, A.C. Gentile, L.J. Camp, and R.C. Armstrong. Lilith: Scalable Execution of User Code for Distrib

Computing.Sixth IEEE International Symposium on High Performance Distributed Computing (HPDC ‘97), Portland,
Oregon, August 1997, pp. 306–314.

[12] D.A. Evensky. Personal communication, November 2001.
[13] Forecast Systems Laboratory, National Oceanic and Atmospheric Administration. <http://hpcs.fsl.noaa.gov>, Feb 6
[14] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data Cu

Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals.Data Mining and Knowledge
Discovery1,1, April 1997, pp. 29–53.

[15] J.K. Hollingsworth, B.P. Miller, M.J.R. Goncalves, O. Naim, Z. Xu, and L. Zheng.International Conference on Parallel
Architectures and Compilation Techniques (PACT’97), San Francisco, California, November 1997, pp. 201–213.

[16] R.M. Karp, A. Sahay, E.E. Santos, and K.E. Schauser. Optimal Broadcast and Summation in the LogP Model.Fifth ACM
Symposium on Parallel Algorithms and Architectures, Velen, Germany, June 1993, pp. 142–153.

[17] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, R.A.F. Bhoedjang. MagPIe: MPI’s Collective Communica
Operations For Clustered Wide Area Systems.ACM SIGPLAN Notices34, 8, August 1999, pp. 131–140.

[18] Lawrence Livermore National Laboratory. Multiprogrammatic Capability Cluster. <http://www.llnl.gov/linux/mc
February 6, 2003.

[19] Lawrence Livermore National Laboratory. Using ASCI Blue Pacific. <http://www.llnl.gov/asci/platforms/bluepa
February 13, 2003.

[20] S. Madden, M.J. Franklin, J.M Hellerstein, and W. Hong. TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Netw
Fifth Symposium on Operating Systems Design and Implementation (OSDI), Boston, Massachusetts, December, 2002.

[21] M.L. Massie, B.N. Chun, and D.E. Culler. The Ganglia Distributed Monitoring System: Design, Implementation
Experience. University of California, Berkeley Technical Report, <http://ganglia.sourceforge.net/talks/parallel_comp
ganglia-twocol.pdf>, February 2003.

[22] Message Passing Interface Forum. MPI: A Message Passing Interface Standard.International Journal of Supercomputing
Applications8, 3/4, Fall/Winter 1994.

[23] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic, K. Kunchithapadam, a
T. Newhall. The Paradyn Parallel Performance Measurement Tool.IEEE Computer28, 11, November 1995, pp. 37–46.

[24] A. Shatdal and J.F. Naughton. Adaptive Parallel Aggregation Algorithms.ACM SIGMOD Record24, 2, May 1995, pp. 104–
114.

[25] M.J. Sottile and R.G. Minnich. Supermon: A High-Speed Cluster Monitoring System.Cluster 2002, Chicago, Illinois,
September 2002.

[26] UoE HPCX Ltd. <http://www.hpcx.ac.uk>, February 6, 2003.
[27] S.S. Vadhiyar, G.E. Fagg, and J. Dongarra. Automatically Tuned Collective Communications.2000 ACM/IEEE Conference

on Supercomputing (SC2000), Dallas, Texas, November 2000.
[28] A. Waheed, D.T. Rover, and J.K. Hollingsworth. Modeling and Evaluating Design Alternatives for an On-

Instrumentation System: A Case Study.IEEE Transactions on Software Engineering24, 6, June 1998, pp. 451–470.
12

	MRNet: A Software-Based Multicast/Reduction Network for Scalable Tools
	Philip C. Roth, Dorian C. Arnold, and Barton P. Miller
	Computer Sciences Department
	University of Wisconsin, Madison
	1210 W. Dayton St.
	Madison, WI 53706-1685 USA
	{pcroth,darnold,bart}@cs.wisc.edu
	Abstract
	1 Introduction
	Figure�1: The components of a typical parallel tool (a) and an MRNet-based parallel tool (b). Sha...
	Figure�2: MRNet front-end and back-end sample code.

	2 The Multicast/Reduction Network
	2.1 MRNet Overview
	2.2 MRNet Interface
	2.3 MRNet Internal Processes
	Figure�3: Functional layers within an MRNet internal process.

	2.4 Filters
	2.5 MRNet Instantiation
	2.6 MRNet Process Layout
	Figure�4: Comparable MRNet internal process topologies with the same number of back-ends. The lat...

	3 A Real-World Tool Example
	4 Evaluation
	Figure�5: MRNet micro-benchmark experiment results. Tool instantiation latency (a), round-trip la...
	4.1 Micro-benchmark Results
	4.2 Integrated Performance Results
	Figure�6: Paradyn start-up latency for increasing numbers of daemons (a) and by activity for 512 ...

	5 Related Work
	Acknowledgments

	References
	[1] Advanced Simulation and Computing program, National Nuclear Security Administration, United S...
	[2] A.�Alexandrov, M.F.�Ionescu, K.E.�Schauser, and C.�Scheiman. LogGP: Incorporating Long Messag...
	[3] Susanne M. Balle. Personal communication, November 2002.
	[4] S.M. Balle, B.R. Brett, C.-P. Chen, and D. LaFrance-Linden. A New Approach to Parallel Debugg...
	[5] M. Bernaschi and G. Iannello. Collective Communication Operations: Experimental Results vs. T...
	[6] P.N. Brown, R.D. Falgout, and J.E. Jones. Semicoarsening Multigrid on Distributed Memory Mach...
	[7] Center for Computational Research, University at Buffalo, The State University of New York. <...
	[8] D.E.�Culler, R.M.�Karp, D.A.�Patterson, A.�Sahay, K.E.�Schauser, E.�Santos, R.�Subramonian, a...
	[9] Earth Simulator Center. <http://www.es.jamstec.go.jp>, February 6, 2003.
	[10] Etnus LLC, “TotalView User’s Guide”, Document version 6.0.0-1, January 2003. <http://www.etn...
	[11] D.A. Evensky, A.C. Gentile, L.J. Camp, and R.C. Armstrong. Lilith: Scalable Execution of Use...
	[12] D.A. Evensky. Personal communication, November 2001.
	[13] Forecast Systems Laboratory, National Oceanic and Atmospheric Administration. <http://hpcs.f...
	[14] J.�Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. ...
	[15] J.K. Hollingsworth, B.P. Miller, M.J.R. Goncalves, O. Naim, Z. Xu, and L. Zheng. Internation...
	[16] R.M.�Karp, A.�Sahay, E.E.�Santos, and K.E.�Schauser. Optimal Broadcast and Summation in the ...
	[17] T. Kielmann, R.F.H.�Hofman, H.E.�Bal, A.�Plaat, R.A.F.�Bhoedjang. MagPIe: MPI’s Collective C...
	[18] Lawrence Livermore National Laboratory. Multiprogrammatic Capability Cluster. <http://www.ll...
	[19] Lawrence Livermore National Laboratory. Using ASCI Blue Pacific. <http://www.llnl.gov/asci/p...
	[20] S. Madden, M.J. Franklin, J.M Hellerstein, and W. Hong. TAG: a Tiny AGgregation Service for ...
	[21] M.L. Massie, B.N. Chun, and D.E. Culler. The Ganglia Distributed Monitoring System: Design, ...
	[22] Message Passing Interface Forum. MPI: A Message Passing Interface Standard. International Jo...
	[23] B.�P.�Miller, M.�D.�Callaghan, J.�M.�Cargille, J.�K.�Hollingsworth, R.�B.�Irvin, K.�L.�Karav...
	[24] A. Shatdal and J.F. Naughton. Adaptive Parallel Aggregation Algorithms. ACM SIGMOD Record 24...
	[25] M.J. Sottile and R.G. Minnich. Supermon: A High-Speed Cluster Monitoring System. Cluster 200...
	[26] UoE HPCX Ltd. <http://www.hpcx.ac.uk>, February 6, 2003.
	[27] S.S. Vadhiyar, G.E. Fagg, and J. Dongarra. Automatically Tuned Collective Communications. 20...
	[28] A. Waheed, D.T. Rover, and J.K. Hollingsworth. Modeling and Evaluating Design Alternatives f...

