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ABSTRACT 1. Introduction 

CLAM is an object-otientcd system designed to support the 
building of extensible graphical user interfaces. CLAM provides a 
basic windowing environment with the ability to extend its func- 
tions using dynamically loaded C++ classes. The dynamically 
loaded classes allow for pcrfonnance tuning (by transparently Ioad- 
ing the class in either the client or the CLAM server) and for sharing 
of new functions. 

In addition to the traditionally layering of output abstractions, 
CLAM allows the programmer to easily layer input abstractions. 
The input functions include providing distributed upward calIs 
through the layers, and light weight processes to support asynchto- 
nous input. 

CLAM is an open system for graphical user interfaces. The 
overall goals for CLAM are to supply a flexible and extensibIe 
environment for the development and support of parallel and distri- 
buted programming applications, and to provide tools for debug- 
ging, performance monitoring and specifying such applications 
CLAM provides a framework on which a consistent user interface 
can be made available to the various applications. This interface is 
based on providing windows on a bitmapped display and various 
devices for user input, such as a pointing device and a keyboard. 
CLAM’s extensibility gives us the ability to provide an efficient 
common user interface. The current implementation is on 4.3BSD 
UNIX [l]. 

CLAM is currently running under 4.3BSD UNIX on a 
MicroVax-II workstation. 

CLAM uses the framework supported by object-oriented data 
abstractions, such as those in Smalltalk [2] and C++ [3]. Through 
the use of inheritance and layered classes we have the ability to 
build flexible abstractions. The Iayercd approach provides us with a 
user interface that can be easily extended by adding or replacing 
specific layers provided by the environment. An object-oriented 
system which provides sharing in a distributed environment, while 
keeping the concept of layered classes, is especially useful in 
designing a graphical user interface. The object-oriented environ- 
ment of Emerald [4] has a different philosophy of sharing, not based 
on inheritance, but does provide sharing and abstraction in a distri- 
buted environment. 

Flamingo[5] is another object-oriented system designed for 
user interface management. It also employs remote procedure calls 
(called remote method invocation in Flamingo). CLAM uses a 
much different approach for handling input events, supporting 
extensions to the basic system, and providing protection, The 
emphasis in Flamingo is towards supporting multiple display 
managers. 
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The overall structure of CLAM is based on the client/server 
model. Other interface managers, such as NeWS [6] and the X 
Window System [7] use this model. This model allows us to place 
low level, commonly shared routines into one package, providing a 
consistent interface to all clients. Flexibility in CLAM is achieved 
by allowing each client to specify extensions of these low level 
functions tailored to their specific applications. This model allows 
the applications to share all of the abstractions presented by the 
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We chose a less restrictive model than employed by some 
existing server models. X. for example, provides a fixed set of func- 
tions in the server. This can lead to a sewer whose design must be 
continually expanded to match changes in its application commun- 
ity. If an application requires some extension to these functions, for 
example, dragging a user-defined object around inside of a window 
with the mouse, input events must be sent from the server to the 
client, which must update the position of the object and send com- 
mands back to the server to update the display. This communica- 
tion can result in lower performance. We would like an extensible 
environment that would allow clients to dynamically create objects, 
layers, and extensions as needed, and, for improved performance, to 
load these classes into the server itself. This would lead to an 
environment specifically tailored to the needs of each client but with 
the advantages of having the objects and operations existing in the 
server. Using this feature we can tune the performance of the sys- 
tem by careful separation of the application into the client and 
server parts. 

1.1. Design Goals 

We want the extensibility that is provided by a dynamic 
environment and to be able to specify these extensions in a natural 
way. NeWS provides extensibility by communicating with its 
clients using an extended version of Postscript[8], which allows the 
definition of new functions at execution time. Unfortunately, 
NeWS requires the programmer to manipulate the display using a 
language different from the one in which they write their applica- 
tions. In addition, the interpreted approach used in NeWS may have 
lower performance than precompiled functions. To address these 
issues, we base our environment on C++, an object-oriented high 
level programming language, and provide dynamical loading of 
precompiled classes. The programmer has the choice of either stati- 
cally linking the classes to the application program (as is usually 
done) or dynamically loading the class into the server. 

The interface manager should provide support for both input 
and output. Output is a well understood problem, and all existing 
interface managers handle it well. Input, especially in an layered, 
object-oriented environment, is harder to support in a consistent 
manner. The approach taken in Swift [9], called upcalls, allows low 
level abstractions to call higher levels in an environment contained 
within a single address space. We extend the upcall method to dis- 
rributed upculls, which allows the low level objects to make upcalls 

that can cross the process boundary back to a client. We would like 
to provide for the maximum amount of concurrency between appli- 
cations for both input and display operations. To achieve this goal, 
the CLAM server provides light-weight processes to the applica- 
tions. NeWS also provides light-weight processes to its clients. 
Light-weight processes can increase the concurrency possible in 
updating the display. They also simplify passing asynchronous 
input events upwards through the levels of abstraction. 

There are several other goals for the CLAM design. First, we 
want to provide a higher level of sharing of abstractions than is 
currently available. Second, we want to provide protection in the 
interface manager, both between clients and from intruders. Last, 
we want to be able to tune performance by distributing an applica- 
tion between the clients and the server. 

The CLAM design addresses these problems. It provides a 
dynamic loading facility based on the high-level, object-oriented 
language, C++. The client/server model is employed for the inter- 
face manager, but the operations provided by the server are not 
fixed at compile time; rather, the server defines a set of primitive 
operations and is extensible both in the number and types of objects 
it can support. This model, in an object-oriented environment, 
allows US to provide sharing and protection, and flexibility in perfor- 
mance tuning. Through the use of distributed upcalls. CLAM pro- 
vides the same level of support for input management as is com- 
monly available for output. 

1.2. Structural Overview 

Figure 1 shows an overview of the CLAM system. Clients 
access the basic functions of CLAM by using remote procedure 
calls. The user writes these remote procedures (indicated by the 
dashed lines) using the class structure of C++, and can load them 
into the CLAM server. Our C++ compiler automatically generates 
the RPC stub routines (shown in the dotted lines). 

Our discussion of the design and implementation of CLAM is 
as follows. First, we address the language and remote access issues. 
Next. we discuss CLAM’s dynamic loading and binding mechanism. 
This includes a discussion of techniques used for version control 
and protection. Third, we discuss our approach to the asynchronous 
input problem, including support for threads of control that cross 
address space boundarics. Finally, we give our conclusions and the 
current status of the project. 

2. Language and RPC Issues 

The first step in designing CLAM was to pick an appropriate 
object-oriented language. We wanted a language that provided for 
layering, abstraction, inheritance and distributed programming sup- 
port. Also, we wanted the programmer to be able to access all 
objects in a uniform way. Emerald is close to the language we 
wanted, but its philosophy does not include the idea of inheritance. 
Rather, Emerald includes rype confortniry. which allows objects to 
be shared only if they share the same interface; that is, the parame- 
ters to operations must be the same, but the operations may be 
implemented in different ways. We wanted inheritance based on 
implementation, where classes can inherit the implementation of an 
operation from other classes. No such language was available to us 
for a distributed environment, so we chose to add a remote pm- 
cedurc. call (RPC) mechanism to C++. We use the RPC mechanism 
to access classes that have been dynamically loaded into the inter- 
face server. The RPC mechanism is restricted to work only with 
classes and class operations to enforce an object-oriented program- 
ming style. The choice of C++ over similar languages was based on 
practical issues: the C++ compiler was available to us and is a good 
systems programming language. 

An important goal in our design was to integrate, as much as 
possible, the RPC mechanism into the existing programming 
language. In some existing languages, for example, in Cedar 
Mesa[lOj, a separate language is used by a stub generator to 
describe the parameters to remote procedures and the manner in 
which they should be passed to the remote procedure. We felt that 
this duplication of effort was unnecessary. To add RPC to Cu. we 
extended the specification of formal parameters and return values in 
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Figure 1: Overview of CLAM System 

the language and require a few programming style conventions not 
normally required in C++. A stub language is not needed and, in 
most cases, modifications do not need to be made to existing class 
definitions to use the RPC mechanism. The modified C++ compiler 
wiIl generate, given only the class specification and the class ftmc- 
tions, object code to operate on objects on this class as well as the 
client and server stubs for parameter passing. 

2.1. Parameter Bundlers 

Each procedure that is called remotely (from another process) 
requires additional code to package parameters, ship them to the 
remote site, unpackage the parameters, and make a local call to the 
ptocedute. Output parameters are handled in a similar manner. 
Procedure return values are handled the same as are output parame- 
ters. 

Given a formal procedure declaration, our modified C++ com- 
piler automatically generates a bundler for each of the parameters. 
The bundler packages the parameters and uses SUN’s External Data 
Repmsentation[ 1 l] to pass them from the client to the server or vice 
versa, in a machine independent manner. In many cases, the com- 
piler can decide on how to package a parameter. Parameters that 
contain no pointer references are packaged as simple data items or 

groups of simple items. Parameters that contain pointers are more 
complex. One alternative is to have the compiler (or RPC stub gen- 
erator) form the transitive closure by following all contained 
pointers, and packaging all data in the closure. While this is con- 
ceptually the cleanest approach, this approach has several problems 
relating to system performance. 

First, the mechanism to generate the closure and to follow the 
pointers to package them is complex, and this complexity can add 
cost to all bundling activities. Second, there are cases where gen- 
erating the closure may not be the desired action. For example, to 
pass a single element from a linked list might cause a large part (or 
even all) of the list to be packaged. While this is logically correct, 
the performance cost could bc large. 

By default, our compiler does not follow pointers in data 
strucmres but passes them as raw data. These pointers am unusable 
to the server but usable if passed back to the client. If the program- 
mer wishes to pass parameters in some way other than the default, 
they may supply a bundler for this special purpose. This escape 
mechanism allows the compiler to automatically bundle parameters 
in the simple cases, but allows C++ parameter semantics to be 
preserved through manual intervention. 
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class sum ( 
int total; 
int num-entrys; 
char* label; 

public : 
void makelabel (conat char*) ; 
char* getlabel(); 
int add(int, int*); 

I: 

// Newlabel is a const parameter, 60 it is only truraferred in. 
// The stringbundler is used to bundle the string newlabel points 
// at. There is no return value. 
void 
sum: :makelabel (con& char* newlabel @ stringbundler 
1 

label = new char[strlen(nerlabel)+l]; 
(void) stropy(labe1, newlabel); 

1 

// Getlabel returns the label that was stored by newlabel. 
// Stringbundler is used once again to transfer the &ring. 
// The procedure i8 written a8 if the caller and the sum 
// class veto in the mum procsss. 
char* 
aum::getlabel() @ atringbundlero 
I 

return label: 
I 

// Avg is an "out" parameter. Z%e bundler provided by the colrpiler 
// will be used. 
// l%e return value is assumed to be an out parameter." 
int 
sum::add(int new-value, out int* l vg) 
1 

total += new-value; 
*avg = total / ++num-entrys: 

return total: 
1 

Figure 2: C++ Procedure Declarations with Bundlers 

We provide a library of common user specified bundlers. The 
most common example is for character strings. In UNIX, character 
strings are most often represented as a sequence of characters ter- 
minated by a null (zero) value character. The string is accessed by 
using a character pointer. There is a user bundler that understands 
this format and correctly passes strings to remote procedures. Fig- 
ure 2 shows an example of a user bundler declaration. The class 
sum is used to keep a running total of values. The sum::makelabel 
procedure is used to give an object of class sum a name; 
sum::getlabel returns this label (for printing). Sum::add updates the 

total. Notice that the procedures themselves assume they can access 
the strings directly. Sum::m+kelabel relies on the string bundler to 
pass it a pointer to the string, and sum::getlabel assumes that the 
string bundler will bundle its return value on the server side and 
unbundle it on the client. In this way, CC+ semantics are. preserved. 

We also added two new type specifiers, ouz and inout, to the 
C++ formal parameter syntax; an in specifier is unnecessq because 
C++ already has a const specifier with the needed semantics. These 
specifiers are necessary for efficiently passing C++ pointers. If we 
wanted to pass only a pointer to a remote procedure there would be 
no problem; however, sometimes we want to pass the data to which 
the pointer refers. The specifiers allow the parameter bundler to 
pass parameters in one direction rather than both, which is what 
C++ does normally (actually, C++ semantics pass pointers by refer- 
ence, while with RPC, we can only pass parameters by value-result). 
Figure 2 shotis an example of the use of these new specifiers. The 
sum::add procedure makes use of the out specifier. The avg param- 
eter will only be passed from the server back to the client. 

We consider the user bundler mechanism to be a Limitation of 
the current implementation. One interesting alternative is to pro- 
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vide a pointer fault mechanism, whereby a reference to a pointer 
which is remote would cause the remote object or data structure to 
be copied only at that time. This is similar to the ideas being 
researched in distributed virtuai memory [ 12,131. We plan to inves- 
tigate this alternative in the future. 

2.2. Programming Conventions for using RPC 

We require certain programming conventions to make this 
work. First, all of the operations for a given object must be com- 
piled together. This requirement simplifies the generation of the 
stub code that runs in the CLAM server. As a matter of style, we 
believe this requirement also to be a good idea. Second, only value 
parameters or explicit pointers are allowed to be passed to remote 
procedures; C++ reference parameters are not allowed. It is possi- 
ble to allow remote reference parameters, but the programmer 
would have to supply bundlers for these parameters (as is done for 
explicit pointer variables). 

The most important change is that all objects that belong to a 
dynamically loaded class must be declared dynamically. A new 
instance of an object is created by using the constructor for that 
class. so all dynamically loaded classes must contain constructor 
procedures. Staticly declared instances of objects for dynamically 
loaded class types are not permitted. This is because all object 
instances for a dynamically loaded class are stored in the server with 
the class. When a new instance of an object is created, a handle for 
that object instance is created. This handle is essentially a capabil- 
ity. The .handle contains 4 parts: class identifier, protection key, 
version number, and pointer to the address (within the server) of the 
instance data structure. The class identifier specifies the class to 
which the object belongs. The protection key is a random number 
used to protect against simple access errors. The key can be con- 
sidered part of the class identifier. The version number is described 
in Section 3.3. 

The remote procedure call mechanism for objects is well 
suited to the C++ language. The additions to the syntax am 
straight-forward, and the new types are useful in C++ in general, not 
just for the RFC mechanism. The programmer can access remote 
classes without adopting a totally different style of programming or 
using a different programming language. 

3. Dynamic Loading and Binding 

CLAM provides dynamic loading and binding of C++ classes. 
The dynamic loading and binding facility supports the goals of 
extensibility, sharing, and performance tuning. In addition to the 
basic facilities, the CLAM design includes features for protection 
and revisions and versions. 

3.1. System Structure 

The CLAM server uses dynamically loaded classes to define its 
basic client interface. There are a few built-in classes, which are a 
static part of the server and are linked at server compile time, but all 
other functions am in dynamically loaded classes. A dynamically 
loaded class has access to all previously loaded classes and to the 
built-in library routines contained in the server. The ConrrolCluss, 
which manages dynamic loading of new classes, is an example of a 
built-in class. The ControlClass also provides other client func- 

bOns, such as querying the contents of the server. Other built-in 
classes define the lowest level display and input manipulanOn KXJ- 
tines for the CLAM interface. All clients share these built-in classes, 
but each client is free to customize its specific environment by 

dynamically loading higher level classes. The actual loading and 
binding mechanism Of the COntrolClass is described in SeCtiOn 3.3. 

The built-in classes do not have to be identical between CLAM 
implementations. Except for the ControlClass, the client will rarely 
access the built-in classes directly. Most clients will build their 
applications on the basic CLAM library that is dynamically loaded 
when the server is started. This provides a uniform interface for 
clients while allowing for differences in the server implementation. 
For example,. a workstation may have sophisticated display 
hardware, so it may be able to directly perform functions that 
another workstation may have to do in software. The goal is to keep 
actual built-in server code as small as possible, to reduce the likeli- 
hood of bugs and future changes. This is similar to the philosophy 
behind building a small operating system kernel. 

3.2. Versions and Revisions 

The user of a class may find that the class needs to be to be 
modified sometime after it has been loaded. The modification may 
be compatible with the current object data structure implementation 
or may be an incompatible change. A compatible change to a class 
is one that will still work correctly on previously created objects of 
that class. This type of change is called a revision. An incompati- 
ble change is called a version. These types of changes are similar to 
the facilities found in some database systems [14, IS]. The goat in 
CLAM is to make both revisions and versions transparent to the 
users of classes. 

The version feature allows incompatible changes to be made 
in a class without affecting currently running clients. For example, 
consider the implementation of a queue or bounded-buffer. We may 
initially implement the queue as a linked list, but later decide to use 
an array implementation. Both class implementations have the 
same name and set of functions and can exist together. To keep the 
server and its internal data structures from growing too large, old 
versions are discarded when there are no remaining objects of that 
class and version. 

Revisions are a simple change to the implementation of a 
class. All subsequent requests to that class wiLl access the revision 
of the code. The old code is discarded after all requests that are 
currently in progress complete. To be compatible with the previous 
implementation of the class, revisions must be both data structure 
compatible and must have the same set of public functions. 

33. Loading and Binding Mechanism 

The mechanism that performs the dynamic loading is built 
into the CLAM server and is part of a special ConnolClass. 
Through the use of this special class, a client can request that the 
server load a class. When the server receives a load class request, it 
locates the precompiled C++ class and then links and loads the code 
into the server, and returns to the client a handle for the newly 
loaded class. A client can only access classes in the server for 
which it has a handie. The dynamic loading of a class is a relatively 
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// Load clam "sum" from a standard place if the class ia not 
// already loaded, otherwise use the lateat version. 
void* ~umbandlc = Control->LoedClaea(lleuml'): 

// Load class "sum" from the specified file if the class is not 
// already loaded, otherwise use the latest veraion. 
void* mmhandle = Control->LoadClaau (“sumTT, “fileV’ ) ; 

// Load a new revision of the clrsa “11um” from the specified file, 
// replacing the lateat veraian of 'rsum". 
void* sumhandls = Control->LoadClass (“mmV’, “fileV* , REVISION) : 

// Load a new version of the class rrsum" from the specified file. 
// This veraion becomas the latest version. 
void* sumhandle = Control->LoadCla8s("sum", "file", VF.RSIm); 

Figure 3: Methods for loading a new class 

expensive operation compared to calling a remote procedure, but it 
is done infrequently relative to subsequent accesses to the class. 

If clients want to share dynamically loaded classes, then the 
server needs only to load the code for the class once. The code for a 
class is loaded the first time any client requests the class. Any sub- 
sequent request from that client, or any other client, for loading that 
same class will be recognized by the server as unnecessary work 
since the class is already present. With this mechanism, sharing 
between clients is handled completely in the server. No extra com- 
munication between clients is necessary for them to sham common 
classes. 

An exception to the “no handle - no access” rule is needed 

for initially connecting a client to the server. To establish connec- 
tions, the client calls the OpenChm() function, which is a library 
function linked in with each client. This function makes tbe initial 
connection to the CLAM server and requests a handle for an object 
of the ControlClass. The OpenClam function stores this handle in 
the private data area of the ControlClass stub. At this point the 
client is able to call functions in the ControlClass using this handle 
without any other special treatment. 

All dynamic loading requests are made with the ControlClass 
handle using the LoadCluss() function. Figure 3 shows the four 
forms of the LoadCluss() function. The LoadCfass() function 
allows a client to specify whether the class is a regular load request, 
a revision or a version. It also allows a client to Specify the file 
from which to load the class. The server keeps track of the most 
recent version loaded. When a request for loading a new version is 
made (the fourth form in Figure 3), that version becomes the latest 
version. When a revision is loaded, by using the third form of 
LoadCluss() from Figure 3, it replaces only the latest version of the 
specified class. Other versions remain unchanged. If the client 
specifies neither revision nor version (first and second forms in 
Figure 3), the server will either load the new class if it is not yet 
loaded, or use the latest version of the class. The server maintains 
the different versions through the use of version numbers in the 
object handles. Clients that are using older versions continue to 
access their version, unaffected by new versions. Revisions and 
versions are transparent to clients. 

There are two ways a client can request to load a class. The 
first is an implicit load request. This is automatically built into the 
client code for the constructors. When the constructor of a class is 
caged, a check is made to see if the client already has a handle for 
that class. If the client does not have a-handle for the class, a call is 

made to the LoudClass() function requesting the latest version. 
After the handle is obtained for the class, then the constructor func- 
tion is actually called. The second way to load a class is through an 
explicit call to the L.mdClass() function. The explicit call is useful 

for loading revisions or versions. 

Handles are used for identifying both classes and individual 
objects. Class handles are stored in a private data area associated 
with each class stub in the client. The stub only requests a new 
class handle if it does not already have one. This has the side effect 
that a client accesses only one version of a class. Even if the client 
performs an explicit LoadClass a second time, the stub will not 
obtain the new handle and will continue to use the old version of the 
class. Object handles are stored on the heap in the client. They 
appear to the client code as opaque, structureless, data objects. 
‘Object handles are automatically created by object constructors and 
deallocated by destructors. 

3.4. Protection 

Three layers of protection are needed in a server based. user 
interface manager. These areas am authorization to access the sys- 
tem, restriction of privilege access once authorization is permitted, 
and error detection and robustness in the server. These three layers 
cormspond to respectively lower levels of structure in the CLAM 
server. 

The server must he protected from unauthorized access. Our 
current approach to this problem is to use the host based authoriza- 
tion provided by TCP/TP network connections, similar to the 
approach used in X [7]. There are two problems with this approach. 
First, the authorization is done on a per host basis and does not pro- 
vide a fine enough level of granularity of protection if multiUSer 
systems are used. Any user on the authorized host can gain access 
to the server, where typically we wish to limit access to a SdeCt Set 

of users. ‘The second problem is that we rely on the netwOrk to pm- 
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vide host authentication. There is no guarantee that our communi- 
cation media is secure and the current network protocols do not pro- 
vide reliable autbcntication. Host authentication is a temporary 
mechanism that WC are using in our prototype server. We arc plan- 
ning to base connection and authentication on a secure connection 
server, similar to [ 161. 

After a process has permission to access the server, we may 
want to limit the classes, functions, and objects that it may access. 
For example, we may want to prevent the user from loading new 
classes or modify existing ones. We will also provide a private 
attribute for a class. A private class is one that can be accesses only 
by the creator of the class or by a user who receives a copy of a han- 
dle for (an object of) the class from the creator (much like capabil- 
ity). More work will be done in this area once CLAM starts using 
user authentication with the connection server. 

A third area of protection is coping with execution errors. 
Once a processes has the capability to modify or add classes to the 
server, we want to protect against that code violating the integrity of 
the server. While we cannot (currently) pmtect the internals of the 
server from damage by bad memory references, we can prevent 
some logic errors from crashing the server and disrupting service to 
other clients. Since we can not determine, a priori, that a given set 
of functions are error free, we must detect errors at run time. We 
are able to handle such errors as arithmetic errors (e.g., overflow and 
divide by zero), nondestructive memory faults, and system protec- 
tion violations. Whenever such an error is detected, the server 
regains control and unloads the faulty class. 

3.5. Debugging and Performance Tuning 

A class can be statically linked with the client or dynamically 
loaded in the server. Code in the server is much more difficult to 
debug than code in the client. Testing and debugging of new 
classes can be done by first linking the class with the client and 
using the debugging tools provided by the operating system for mg- 
ular C++ code. Once the routines am debugged they can be 
removed fmm the client and dynamically loaded into the server. 
Using the protection mechanism which unloads faulty classes, we 
can achieve a primitive debugging facility by informing the 
appropriate client when the class they were using failed. We are 
currently investigating other types of debugging facilities that can 
be provided by the server. 

The combination of a server model and dynamic loading per- 
mits us to tune system performance by carefully dividing the appli- 
cation into client and server parts so as to optimize communication 
and computation loads. Using the mechanisms for dynamic loading 
and knowledge about CLAM’s environment, users can dynamically 
tune the performance of the system. There ate two interesting cases 
to consider when tuning the performance. The first case deals with 
communications bandwidth. It is often desirable to decrease the 
amount of communication between the client and the server. Com- 
munication costs between the client and the server require interpm- 
cess communication overhead, whrle calls within the server are 
close to the cost of a procedure call. When the client and server are 
on different machines, this cost different is increased. The second 
case is to consider the use of processing power. It is desirable to put 
the heavy computation where it can best be handled. For example, 

if the client was on a Cray-2 computer and the server was on a small 
workstation, then we would put as much computation as possible on 
the client. If the client was on an overloaded timesharing system 
and the server was on a powerful workstation, we might do the 
opposite. 

CLAM allows the user to experiment with these options 
without changing programming semantics. The programmer has 
already divided the computation into well defined classes (using the 
object oriented structure of C++), so performance tuning is only a 
matter of where to place the classes. 

4. Handling Asynchronous Input 

The layering of output abstractions is well understood. For 
example, we might display three dimensional (3-D) objects by con- 
structing them from 2-D objects, and constructing these objects 
from raster operations. Each request to display a high level object 
propagates down through the layers of abstraction. 

Layering of input abstractions is more difficult. A common 
method for input in a layered system is to have an input request gen- 
erated at the top level and propagating it down through the lower 
layers. This is essentially polling and requires that the input 
requests match the frequency of the actual input events, so as to pm- 
vide interactive response to the input events. Input events include 
mouse and keyboard operations. 

We would like input events to propagate upwards through the 
layers of abstraction, as the events occur. Each event causes 
changes in state to occur in layers up to a specified level. These 
changes are asynchronous, their timing depending only on the tim- 
ing of the input events. Above the specified level, input requests are 
made in the same way as are output requests - synchronously. Each 
application or input abstraction determines the boundary defined by 
the level up to which asynchronous input propagates. 

Two parts are needed to build the input system described 
above. The first part is the mechanism to call upwards through the 
layers of abstraction. CLAM uses a distributed upcall mechanism 
for propagating asynchronous input to higher level abstractions. 
Upcalls [91 allow procedure calls to be used when a lower level 
class wishes to call a higher level class. The distributed upcall 
mechanism can propagate these requests from the server back to the 
client. 

The second part is a facility that provides multiple threads of 
execution in the server. This facility is used to support asynchro- 
nous input events. Threads of execution must also be able to span 
pmcess boundaries. 

4.1. Distributed Upcails 

The concept of distributed upcalls is simple to understand. If 
an object of a higher level class wishes to be called asynchronously 
when some lower level event occurs, it registers its intent with au 
object of the lower level class. Registration is a matter of passing 
the address of a procedure in the higher level class to the registra- 
tion procedure of an object for the lower level class. The low level 
object stores this address and a pointer to the higher level object in 
its own state. At a later time, when the appropriate event occurs, the 
lower level object will call the registered procedure to pass on this 
information to the higher level object. The information is passed 
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upwards by a simple procedure call. The goal is to make upcalls 
work, without special effort by the programmer, even when the 
upcall requires a remote procedure call back to the client process. 

Light-weight processes, called fusks[9], arc used to provide 
the flow of control between objects. A new task is started whenever 
an asynchronous input event occurs and completes when the pro- 
cedure handling the input tcrminatcs. Scheduling is non-preemptive 
for both simplicity and to assure that events are handled in the order 

in which they occur. Tasks may also block themselves. Upcalls 
and downcalls may cross process boundaries, so the Row of control 
must also be able to cross the boundary between client and server. 
When an upcall crosses a process boundary, the task in the server is 
blocked and a corresponding task is created in the client. Control is 
given to the client task, which eventually returns a result to the 
object in the server. At this point, the task in the server is 
unblocked and continues. The use of tasks allows asynchronous 
events to propagate through as many layers as have registered pro- 
cedures. CLAM places no limits on the level. 

There are several problems in using distributed upcalls. The 
first problem is what an object should do if no higher level object 
has registered to receive the event. The answer depends on the 
semantics of the object. If no receivers are registered, the event 
could be queued and then sent on later when an object registered to 
receive it, the event could be thrown away, or the object could per- 
form some arbitrary action depending on its state. 

The second problem with implementing upcalls in an object- 
oriented environment is type-checking the parameters to a registered 
procedure. The object itself may not be able to have its type 
checked because its class might not have existed when the lower 
level class was being compiled. We cannot rely on the compiler to 
guarantee that the types in an upcall are Correct, so we need some 
kind of runtime support to provide this type checking. We do not 
have this support at this time, so we depend on the programmer to 
specify correct types. 

The third problem with upcalls in a distributed environment is 
that pointers to procedures cannot be passed between processes. 
Our modified C++ compiler provides a special bundler for bundling 
procedure pointers. When a pointer to a procedure is unbundled in 
the server, this pointer is saved away in the state of a special distri- 
buted (remote) upcall (RUC) class object, and a pointer to a pro- 
cedure within the RUC class is actually registered. When the pro- 
cedure pointer is used, a procedure in the RUC class is called and it, 
in turn, makes a remote procedure call back to the client, receives 
return values, and returns them to the caller. While this is complex 
at the implementation level, the programmer is not required to use 
any special syntax to make the distributed upcall work. The com- 
piler and runtime support automatically make distributed upcalls as 
easy to use as upcalls in a single process environment. 

4.2. An Example 

This section presents an example of the use of upcalls. 
Assume that there are two classes, window and screen, shown in 
Figure 4, and two additional application defined classes, user1 and 
user2. Screen is a low level class that handles updates to the display 
screen. The window class provides a window abstraction layered 
over the screen abstraction. User1 is a class linked into a client pro- 

cess and accesses the window class using a remote upcall. User2 
has been dynamically loaded into the server. 

When the server begins execution, it creates an instance, S, of 
the screen class and an instance, BaseW, of the window class. 
While creating BaseW, the window class registers the 
window::mouse procedure with S (by calling S.postinput) to handle 
all mouse button events. Spostinput saves the pointer to BaseW 
and window::mouse in S’s state. Later, an instance, U2, of the 
user2 class is created. it creates an instance, W2, of the window 
class and registers its user2::mouse procedure to receive mouse 
events by calling W2.postinput. Let us assume that creating W2 
notifies BaseW of the new window, so it can pass events to objects 
that have registered themselves with W2. An instance, Ul, of the 
client class user1 is also created. LJI creates a window, Wl, and 
registers its userl::mouse procedure to receive mouse events. 
Notice that the parameter bundler will automatically translate the 
procedure pointer into a pointer to the RUC class. For each transla- 
tion, an object instance is created in the RUC class. 

At this point, the state of the system is ready to handle mouse 
events. If a mouse button is pressed, the screen::mouse procedure 
sees the event and, using the initial registration, makes an upcall to 
the BaseW.mouse procedure. This procedure determines if the 
mouse was inside any other windows and, if so, makes upcalls to 
them as well. If the mouse was in the region covered by Wl, 
BaseW then makes an upcall to Ul.mouse. This causes the Rem- 
Call procedure to make a remote procedure call to the client process 
containing Ul. 

As tbis example shows, the combination of distributed upcalls 
and normal downward procedure calls combine to provide a 
straight-forward flow of control between objects in an object-orient 
system. Down calls are not ncedcd to get information from lower 
level abstractions. 

5. Conclusion and Status 

CLAM is based on the idea that complex systems are more 
easily built by providing a small collection of basic functions and a 
powerful means of composing these functions. The facilities in 
such a system are easily extended. Programmers write their exten- 
sions in the same language as they use for their applications. Pro- 
grammers also have the flexibility to move these extensions 
between the client and the server. 

A major part of the CLAM design is to allow users to abstract 
input as easily as output. This facility seems to provide a useful and 
powerful organization, but more experience is needed to test this 
design. 

Protection in a single address space is a difficult problem. 
Some relief is offered by using compiler generated checks, but this 
is not bullet proof. This is an arca for future study. 

The current CLAM implementation is on a McroVax-II 
workstation nmning 4,3BSD/NFS UNIX [ 1,171. The initial version 
of CLAM is now being tested. The C++ compiler has been modified 
to produce the necessary code for remote procedure calIs and the 
language has been extended to allow the user to specify bundler rou- 
tines. The basic display routines and dynamic loading facility are 
running. One of the first large applications will be an X window 
library interface. This will allow us to use the collection of existing 
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X-based applications until we can build more of these facilities 
directly into CLAM. 
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