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ABSTRACT 

Some supervised-learning algorithms can make effective 

use of domain knowledge in addition to the input-output 
pairs commonly used in machine learning.  However, 

formulating this additional information often requires an in-

depth understanding of the specific knowledge 

representation used by a given learning algorithm.  The 

requirement to use a formal knowledge-representation 

language means that most domain experts will not be able 

to articulate their expertise, even when a learning algorithm 

is capable of exploiting such valuable information. We 

investigate a method to ease this knowledge acquisition 

through the use of a graphical, human-computer interface.  

Our interface allows users to easily provide advice about 

specific examples, rather than requiring them to provide 
general rules; we leave the task of properly generalizing 

such advice to the learning algorithms. We demonstrate the 

effectiveness of our approach using the Wargus real-time 

strategy game, comparing learning with no advice to 

learning with concrete advice provided through our 

interface, as well as comparing to using generalized advice 

written by an AI expert.  Our results show that our 

approach of combining a GUI-based advice language with 

an advice-taking learning algorithm is an effective way to 

capture domain knowledge. 

Categories and Subject Descriptors 

I.2.6 Learning – Knowledge acquisition. 

General Terms 

Algorithms, Experimentation, Human Factors. 

Keywords 

Advice Taking, Human-Computer Interface. 

INTRODUCTION 

Many domains exist in which experts possess extensive 

knowledge and know how to apply that knowledge to 

perform domain tasks; cardiologists determine the 

likelihood of heart disease given diagnostic test results; 

analysts viewing surveillance imagery identify suspicious 

activity; and coaches determine the strategy of a game by 
examining past games of an opposing team.  While 

traditional supervised-learning algorithms use input-output 

pairs, often referred to as positive and negative examples in 

the case of two-class learning problems, some algorithms 

can also use domain knowledge during learning.  For 

instance, various inductive logic programming algorithms 

[12] accept background knowledge in the form of Horn 

clauses, knowledge-based support vector machines [5] use 

knowledge in the form of constraints over regions of a 

task’s feature space, and Markov logic networks [15] 

accept knowledge in the form of weighted first-order logic. 

Articulating domain knowledge for any given algorithm 

requires an in-depth understanding of the specific know-

ledge representation used by the algorithm.  However, for-

mulating domain knowledge in the correct representation 

either requires training a domain expert to provide know-

ledge in the necessary formal representation or requires the 

domain expert to rely on a third party to translate the do-

main knowledge.  This bottleneck greatly limits the appli-
cability of these algorithms. 

One approach to overcoming this limitation is to provide 

the domain expert a human-computer interface (HCI) that 

facilitates the acquisition of the domain knowledge in a 

manner easily understood by the domain expert, but which 

constrains the knowledge such that, through some algo-

rithmic transformation, it is also useable by the learning 

algorithm.  Extensive research exists studying HCIs for this 
purpose.  Some approaches rely on demonstration by the 

domain expert of some process [2,10].  Others provide an 

interface in which the expert may specify additional exam-

ples to guide or correct the learning algorithm [17].  Some 

treat domain knowledge as a form of constraints and pro-

vide an interface to specify those constraints [8]. 

We investigate a method of using an HCI to obtain rela-

tional domain knowledge, in the form of concrete (i.e., 
ground) logical advice (i.e., domain knowledge that may be 

incomplete or incorrect, but may still be useful) about spe-

cific training examples, leaving the task of generalizing the 

domain knowledge to an automatic algorithm.  Relational 

domains are characterized as domains with objects and 

relationships among them (expressed through predicates).  
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Unlike the so-called fixed-length feature vectors of stan-

dard machine learning, examples in relational domains of-

ten contain a variable number of objects and relationships.   

By focusing on ground statements about specific examples, 

we provide the domain expert a method to simply state why 

something is true (or false, depending on the example), 

without requiring them to understand the final knowledge 

representation.  Additionally, by supporting relational ad-

vice, we allow richer knowledge and better support rela-

tional-learning algorithms. Our HCI approach to obtaining 

relational knowledge in a ground format and automatically 

processing it into the required knowledge representation is, 

we believe, unique about this research. 

We demonstrate our approach's effectiveness by examining 

a task in a real-time strategy game.  We providing a simple 

GUI through which a domain expert can specify relational 

advice explaining various scenarios and show that combin-

ing the HCI and a suitable advice-taking learning algorithm 

is effective.  We compare successfully against both (a) us-

ing no advice and (b) hand-written advice. 

OVERVIEW OF APPROACH 

We consider a learning paradigm designed to assist domain 

experts (we will also refer to them as users) in the process 

of creating and refining domain knowledge through the use 

of an HCI.  We view domain knowledge as a form of ad-

vice provided by the user to the learning algorithm.  We 

also consider advice acquisition to be an iterative process 

(see Figure 1) of a user specifying advice, an algorithm 

learning a model, a user reviewing results, and a user refin-

ing or augmenting the advice.  Although this paradigm ap-

plies to many forms of learning, we specifically consider 

supervised learning algorithms that take as inputs both 
training examples and additional domain knowledge. 

Our iterative learning process proceeds in four stages.  

First, we present an HCI through which the user specifies 

advice.  Our HCI accomplishes this by displaying informa-

tion about a single training example and asking the user 

why that example was positive (or negative).  We specifi-

cally consider advice in the form of concrete logical state-

ments.  For instance, in a medical domain, the HCI might 
provide the user with a patient’s information, health histo-

ry, etc. and ask why that patient was high risk for heart 

problems.  The user might have the domain knowledge that 

the patient was a high risk because “the patient’s cholester-

ol was high during her last visit and her father’s family has 

a history of heart disease.”  Through the HCI, the user 

would be able to express this knowledge in the ground log-

ical format without knowing the final representation. 

Although the domain expert does need to understand basic 

logic (that is and, or, and not), beyond that they need only 

makes statements about why a particular example is true or 

false.  We believe that domain experts can specify this 

ground representation of advice more easily than other re-

presentations.  Additionally, relying on ground advice re-

duces the complexity of the HCI since it does not need to 

support logical variables in the advice. 

After the user finishes entering advice for a number of 

training examples, the second phase of our process trans-

lates the advice into a form usable by the learning algo-

rithm.  This usually entails generalizing the advice and pos-

sibly changing the representation of the advice.  The 

process of converting the advice can be quite complex.  

Often there are multiple generalizations with distinct mean-

ings.  Since we do not expect the user to understand the 

underlying representation of the advice, it is often infeasi-

ble to ask the user to correct the advice directly and we rely 

upon our iterative process to indirectly improve the advice.  
Additionally, the user might specify advice over multiple 

examples and the algorithm must determine the meaning of 

the multiple statements. 

Phase three of our process performs the actual learning.  At 

this point, we provide to the learning algorithm both the 

training examples and the generalized advice.  The learning 

algorithm then produces a model.  After learning, we pass 

this model onto phase four.  Here, we evaluate the model 
against additional examples and present an HCI allowing 

the user to review the effectiveness of the model. 

The reviewing HCI presents the user information about 

which 'testset' examples were correctly or incorrectly pre-

dicted by the model.  Based on this, the user may elect to 

return to phase one in order to adjust previously presented 

advice, provide new advice, or label new examples. 

Below we present further details about the first three phases 

of this learning process.  While we believe that the iterative 

process of refining advice is an important step, we do not 

investigate it further here. 

Advice-Taking
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 Figure 1. Our human-computer learning paradigm.  

Initially the user specifies advice through an HCI.  Then the 

advice is processed and learning occurs.  Afterward the 

results are presented to the user via an evaluation HCI.  The 

process iterates until the user is satisfied with the results. 



BACKGROUND AND RELATED WORK 

Extensive research exists studying domain expert know-

ledge acquisition through the use human-computer interac-

tion [16].  Additionally, previous research examines how to 

exploit domain knowledge obtained either through an HCI, 

generated algorithmically or by hand. 

One method used to obtain knowledge is programming by 

demonstration.  In programming by demonstration, a do-

main expert performs a sequence of actions demonstrating 

how to perform some task.  From this demonstration, a 

learning algorithm builds a procedural program intended to 

solve the task.  Often, the learned programs must be ad-

justed through further interaction with the user.  One such 

system [10] allows the user “nudge” the system through the 

inclusion or removal of training examples.  Another ap-

proach [2] allows users to adjust the training data directly, 

adding missing information after the demonstration 
process.  Unlike our approach, both of these system work 

directly with the training examples without providing ex-

plicit background knowledge.  Some approaches do allow 

explicit background knowledge to be specified.  For in-

stance, Vander Zanden and Myers [17] provide a method to 

specify background knowledge, but require understanding 

of the underlying knowledge representation represented in 

Lisp.  Another method of human-computer interaction is 

programming by example.  Here the user provides a proto-

typical example of the desired result, such as the result 

from a database query.  These approaches [4,9] again differ 

from our approach in that they operate on the examples not 
on additional background knowledge. 

Wargus Real-Time Strategy Game 

We use the Wargus video game to illustrate our advice-

acquisition HCI.  In Wargus, a game in the real-time strate-

gy genera, two or more players direct units, such as pea-

sants, swordsmen, archers, etc., in an attempt to conquer 

the opposing players.  Play involves constructing buildings, 

producing unit, harvesting resources, and directing attacks 

against opponents. 

To demonstrate our HCI we use a subset of the Wargus 

game we call tower-defense.  Here an attacking team, con-

sisting of peasants, archers, swordsmen, and ballista, as-

sault a single tower belonging to the defenders.  The learn-

ing task we consider consists of predicting whether the 

tower will survive the attack given the size and composi-

tion of the attacking force.  Figure 2 depicts a typical 

tower-defense game board.  Variations of the game board 

include the existence of a moat, the size and composition of 

the attacking units, and the layout of the game board.  Ta-

ble 1 provides a brief description of the features in the 

tower-defense domain.  Additionally, we define a number 

of background predicates, listed in Table 2, which will be 
available to the user to specify domain knowledge and may 

be used in the learned models. 

An open-source Wargus game engine exists [19] that al-

lows us to simulate the outcome of any game configuration 

(i.e., will the tower stand or fall?) according to the game's 

rules.  Thus, for any given game board, we can determine 

the example label as either towerStands or towerFalls.  

This also allows us to generate as many examples as de-
sired in our experiments. 

Boosted Relational Dependency Networks 

We have chosen one advice-taking algorithm to evaluate 

our approach.  Boosted relational dependency networks 

(bRDNs) [13] provide a relational, probabilistic graphical-

model based learning algorithm.  A dependency network 

[7] approximates a joint distribution over the variables as 

product of conditional distributions.  Relational dependen-

cy networks (RDN) [14] extend these dependency networks 

to a relational setting.  The bRDN algorithm combines rela-
tional dependency networks with a form of gradient-tree 

boosting [3]. 

Category Values 

Units archer, swordsman, ballista,  

peasant, tower 

Unit properties x-location(Unit), y-location(Unit),  

health(Unit) 

Group Properties unitInGroup(Group, Unit), 

groupSize(Group) 

World Properties countOf(UnitType), moatExists,  

contentsOfTile(X,Y) 

 

Table 1. Features describing tower-defense world. Table 2. Background predicates available in tower-

defense predication task. 

Category Predicates 

Numeric Comparators >,  <,  ≥,  ≤,  = 

Spatial Comparators isNearTo, isFarFrom, 

canReach 

 

Figure 2. The Wargus tower-defense task.  Multiple 

attacking units, consisting of swordsmen, archers, and 

ballista, assault the defender’s tower.  Depending on the 

composition of the attacking force, the tower may survive 

or be destroyed.  The Wargus tower-defense learning task 

involves predicting which of these outcomes will occur. 
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RDNs consist of a set of predicate symbols composing the 

nodes of a graphical model.  For each predicate Yi, a condi-

tional probability distribution P(Yi| Xi), defines a distribu-

tion over the values of Yi given the values of the other fea-

tures.  The distribution of a variable    is estimated as 

              
         

            
           (1) 

where          is the potential function of    given all 

other features      . 

The bRDN algorithm approximates these conditional prob-

ability distributions (the 's) through relational decision 
trees [1]; a sample is depicted in Figure 3 (in this figure and 

elsewhere in this article, upper case arguments are logical 

variables, following Prolog notation).  In these relational 

decision trees each interior node is a logical decision point 

and the leaf nodes represent the various potentials, i.e., the 

 ’s, of the conditional probability distribution.  In order to 

obtain the final probabilities, the potentials must be norma-

lized according to Equation (1).  

While the conditional probability distributions in RDNs can 

be represented by a single relational decision tree [6], in 

bRDNs each conditional probability distributions is esti-

mated by a sequence of trees, based upon an initial poten-

tial   and iteratively adjusted via a set of gradients   .  

Thus, after m iterations, the potential is given as    
          .  Here,    is given by       
                            where    is a scalar con-

trolling the gradient step size.  Thus, a set of trees are 

learned for every predicate such that at each iteration a new 

set of regression trees estimates the maximum likelihood of 

the distributions with respect to the potential function. 

By providing advice, users indirectly produce new back-

ground knowledge rules for use by the bRDN algorithm as 

interior nodes in its trees, as is further explained later. 

OUR ADVICE-TAKING HCI 

Next we provide details of the requirements of an advice-

taking HCI designed to obtain ground advice from the do-

main expert.  Design of the HCI depends greatly upon the 

type of the knowledge being gathered.  Figure 4 depicts a 

simple prototypical GUI designed for the Wargus tower-

defense game and used to gather relational advice pertain-

ing to it.  In our approach, the user provides advice through 

the following process: 

1. An example is selected, either manually by the user or 

through some automatic process. 

2. The HCI provides the user (ideally visually) 

information about the example. 

3. The user provides advice through the HCI to explain 

why this example was either positive or negative. 

4. The user either returns to Step 1 to provide more 

advice or stops. 

In order to facilitate this process, our HCI needs to: 

1. Provide information about specific examples. 

2. Allow selection and naming of entities or groups of 

entities. 

3. Provide a method to indicate relations among selected 

entities. 

4. Allow the user to review, and possibly edit, previously 
specified advice. 

Providing Example Information 

The HCI must provide information to the user about exam-

ples.  In our knowledge capture approach, each advice 

statement is about a specific example.  Thus, the HCI needs 

 

When this scenario is run,
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Figure 4.  Prototype GUI for advice taking in Wargus.  The 

GUI consists of 4 sections indicated here (but not in the 

actual GUI) by overlaid dashed boxes: (upper-left) entity 

selection and naming, (upper-right) display of current game 
board, (lower) controls specifying relations between 

selected entities, and (not shown) a list of previously 

specified advice.  Layout and relative size of elements have 

been adjusted for clarity.  Only a partial game board is 

shown in the upper right. 
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Figure 3. A logical decision tree representing a conditional 

probability distribution for determining the probability a 

given tower falls.  Each interior node is a logical decision 

point, with the left branch representing a true evaluation 

and the right branch a false evaluation.  Leaves represent 

output potentials that must be normalized (see Equation 1) 

to produce the output probability. 

 



to provide at least the information about one example.  In 

the Wargus tower-defense game we can depict all informa-

tion about an example as a picture of the game board.  In 

some domains, this is not possible or not desirable.  For 

example, examining patient information in a medical do-

main would require a much different GUI design.   

Selecting and Naming Entities 

Advice in our system consists of relations among entities.  

Here, an entity is any object in the domain.  For instance, in 

the Wargus domain, the various units on the game board 

are entities.  A user needs a method to indicate the entities 

that should be related.  Thus, we require some sort of enti-

ty-selection mechanism.   

The entity-selection methodology will different depending 

on the domain.  In board game domains, such as Wargus, 

simply clicking on one or more entities is sufficient.  How-

ever, for other domains, a much more complex approach 

may be necessary. 

One extension we found particularly useful in our Wargus 

GUI was the ability to name groups of entities.  When se-

lecting entities in Wargus, by default we named single enti-
ties either THIS or THAT.  When selecting groups of enti-

ties, the default names are THESE or THOSE.  Thus, later 

on, when specifying a particular relation, we could state 

THIS is related to THAT or THESE are related to THAT.   

In addition to selecting entities, in many domains, objects 

have additional properties.  For instance, in the Wargus 

domain, all units have a property indicating each unit’s x-y 
location.  Thus, a mechanism is required to access the 

properties. 

Specifying Relations 

In relational logic, we specify relations through  predicates.  

For instance, isNearTo(archer1, tower) or colorOf(archer1, 

green).  The HCI needs to know what predicates the user 

may use to specify relations.  Here, the complexity of the 

HCI will depend greatly on the complexity of the domain.  

Our Wargus domain contains only binary relations, so we 

provide drop-down menus to the entity-relation-entity 

information. 

Our ground advice format allows conjunctions, disjunc-

tions, and negations.  Thus, the HCI must also support spe-

cifying advice with these logical connectives.  In our proto-

type, we provide the negation of all predicates in the “rela-

tion” menu.  A button provides the ability to create con-

junctions of multiple relations.  Disjunctions are implied 

implicitly between different pieces of advice. 

Reviewing Advice 

From a usability standpoint, allowing the user to review 

previous actions is important.  We do not explore this as-

pect of the HCI other than to mention that while using our 

GUI, we often examine previous advice to determine if we 

needed to state something new or not. 

GENERATING GENERALIZED ADVICE 

AND LEARNING 

Here we look at an advice-processing approach that con-

verts the ground advice obtained through the advice-taking 

HCI into background knowledge in the form of generalized 

Horn clauses.  A Horn clause is a disjunctive clause con-

taining at most one positive literal (informally, one can 

view it as an IF-THEN rule written in first-order logic).  

Several relational learning algorithms, such as various in-

ductive logic programming approaches and the bRDN algo-

rithm described earlier, use a Horn-clause representation 

for background knowledge and can use such generated 
background knowledge directly. 

Output from our advice-taking HCI is represented as a set 

of ground logical implications.  As shown in Table 6, the 

consequence of a piece of advice states the category of a 

specific training example.  The antecedent is a conjunction 

of literals defined within the domain (either as 'raw' fea-

tures or via background rules).  Multiple pieces of ground 

advice may be specified for a single training example and 
multiple examples may have associated advice.  So a chal-

lenge we need to face is coherently combining multiple 

pieces of advice into one or more Horn clauses. 

We transform the ground advice into generalized Horn 

clauses using the advice-handling process of Walker et al. 

[18].  Algorithm 1 presents the process.  The algorithm 

performs essentially two phases.  In the first phase (lines 5-
11), it creates a number of conjunctive and disjunctive 

combinations of the ground advice.  These new implica-

tions attempt to deduce possible meanings of the advice 

when considered as a whole.  The algorithm considers three 

different combinations.  First, it creates “per-piece” advice 

by considering each advice statement independently.  

Second, it creates “per-example” advice by conjoining all 

of the advice specified for a given example into a single 

combination.  Finally, it creates “mega-rules.”  The set of 

mega-rules contains various combinations using all of the 

specified advice.  

The “mega-rules” attempt to explain the possible intended 

meaning of all pieces of advice when considered together.  

For instance, the user might have intended that 'positive' 

advice indicates properties all positive examples have while 

'negative' advice states properties the concept lacks (“this is 

a bird because it has wings, this other example is a bird 

because it lays eggs, this third example is not a bird be-

cause it has leaves, this fourth example is not a bird be-
cause it is made of metal. …”).   Alternatively, the user 

might have been specifying a more disjunctive concept 

(“Alice got to work by taking the bus.  Bob got to work by 

walking. … Carl did not make it to work because he slept 

all day.”).  We generate multiple “mega-rules” since there 

is no way to directly determine the correct combination (if 

any). 

As a second phase (lines 13-19), the algorithm generalizes 
each of the generated combinations.  This occurs through a 



process of anti-substitution in which it replaces each dis-

tinct constant that occurs in a given combination with a 

logical variable.  At this point, it also converts the genera-
lized implications into Horn clauses by transforming any 

implications that contain disjunctions into multiple logical 

implications.  After converting the ground advice into ge-

neralized Horn clauses, we pass the background knowledge 

off to the learning algorithm.  Table 3 illustrates the gener-

ated background knowledge for some simple ground ad-

vice. 

EXPERIMENTAL RESULTS 

In order to evaluate our HCI and advice-taking approach 

we performed experiments using the Wargus tower-defense 

game.  We are interested in the effectiveness of advice gen-
erated using our advice-taking HCI versus both hand-

written advice and using no advice. 

Natural Language Advice versus HCI Advice 

Our initial goal is to determine whether our HCI was capa-

ble of representing the types of advice a user might like to 

say in general.  To evaluate that, we had group members 

who were not directly involved with Wargus nor its HCI  

(a) watch Wargus games, (b) learn (in their own minds) 

some basic strategy, and then (c) provide advice in ordinary 

English describing why a tower fell or stood for 5-10 spe-
cific initial states of our Wargus game. 

A vast majority of the natural language advice was given in 

terms of the numbers and types of units in the attacking 

force.  Overall, users provided 311 sentences of advice 

about 100 examples. Table 4 contains some general statis-

tics gleaned from the natural language advice provided by 

the users. Users usually tended to give specific advice in 

terms of certain features such numbers of units, the pres-

ence or absence of a moat, and whether or not there was a 
ballista in the attacking force. For instance, "five archers 

are sufficient to destroy the tower," or conjunctive advice: 

"there is a moat and only footmen; hence the tower stands."  

About 10% of the advice provide in natural language could 

not be expressed via our HCI.  For instance, one user stated 

“the attacks are coming from many directions.”  Another 

mentioned “the north-most footman will absorb damage so 

the weaker archer can live longer.”  A small number of 
users also provided advice that was too vague (e.g., "there 

are too many attackers or "too few attackers") or described 

the existence of paths between attackers and the tower. 

Our HCI is able to capture the vast majority of advice given 

by the users because it exploits the users' inclination to pro-

vide specific advice. Furthermore, it also provides mechan-

isms to allow users to provide general advice in terms of 
groups of units and even units in the scenario. The design is 

flexible enough to allow for various levels of specificity of 

advice as desired by the user. 

Evaluating Advice Effectiveness 

In order to evaluate our approach, we ran three separate 

experiments: one with no advice, one with hand-written 

advice, and one with advice obtained through our HCI.  

The HCI advice was based upon a representative sample of 

Algorithm 1: CREATEGENERALIZEDADVICE 

1. Given: G, a set of ground advice statements. 

2. Do: Generate H, a set of generalized 

3.   Horn-clause background knowledge 

4.  

5. Let K = G // Per piece-of-advice formulas 

6. For each example ej   {e1…en} with advice 

7.    Generate “Per-example” formula p combining 

8.    all advice from ei into a single conjunctive 

9.   Let K = K ∪ { p } 

10.  

11. Let K = K  ∪ { “Mega-Rules” }  // See text 

12.  

13. For each ground advice statement ki   K 

14.    Generalize ki via anti-substitution yield 

15.    the formula fi 

16.     Convert fi to Horn clauses by expanding   

17.    disjunctive formulas into multiple clauses and 

18.    replacing negation by negation via failure  

19.   Add generated Horn clauses to set H 

20.  

21. Return set H containing generalized clauses 

Table 3. Generated background knowledge for some 

simple ground advice.  Initial ground advice is first 

generalized.  Then various combinations are generated 

representing possible guesses at the meaning of the set 

of advice statements. 

Description Advice 

Initial ground  

advice 
ex(pos1) ← p(pos1)  q(pos1). 
ex(pos1) ← r(pos1). 

ex(pos2) ← s(pos2). 

“Per-piece”  

advice 
a1(E) ← p(E)  q(E). 
a2(E) ← r(E). 

a3(E) ← s(E). 

“Per-example” 

advice 
e1(E) ← p(E)  q(E)  r(E). 
e2(E) ← s(E). 

“Mega”  

advice 
m1(E) ← p(E)  q(E)  r(E)  s(E). 

m2(E) ← p(E)  q(E)  r(E)  s(E). 

 

Table 4. General statistics gleaned from the natural 

language advice provided by the users. 

Feature Mentioned 

In Advice 

Context 

Tower 

stands 

Tower 

falls 

Total number of attackers  50  36 

Number of Archers  43  62 

Number of Footmen  50  46 

Number of Ballistae  18  1 

Number of Peasants  0  24 

Presence of Moat  6  28 

Other (terrain/distance/angle)  10  16 

 



seven sentences (Table 5) expressed in natural language 

(we selected these seven sentences before running any ex-

periments and did not modify them during the course of our 

experiments).  We only used relations that could be entered 

through the HCI; we disregarded the rest of the natural lan-

guage advice. 

Table 6 shows some of the ground advice generated via the 

HCI.  After creating the ground advice through the HCI, we 

used the advice generalization algorithm described pre-

viously to generate a set of background clauses, resulting in 

21 separate pieces of background knowledge including the 

per-piece, per-example, and mega rules.  While our advice 

taking learner can accept advice expressed in predicate cal-

culus, the full richness of first-order logic was not needed 

to capture the human provided advice. 

We created the hand-written advice without using the HCI, 

representing what a domain expert who understood the 

required knowledge representation would create, writing 

the advice directly as seven Horn clauses.  Once we created 

the advice, we used the bRDN learning algorithm described 

earlier to generate learning curves comparing the use of (a) 

no advice, (b) hand-written advice, and (c) HCI generated 

advice.   

Results and Discussion 

We evaluated the learned models for the three separate ex-

periments against a held-aside set of 900 testing examples.  

Figure 5 shows the area under the ROC curve (AUROC) 

for the three experiments.  We tested significance of the 

results via the (two-tailed) sign test, a nonparametric test 

based on the binomial distribution [11].  The sign test is an 

exact test (McNemar’s test is an approximation that was 

historically used purely because of computational limita-

tions).  The null hypothesis of the sign test is that both ap-
proaches are equally accurate; hence each test case for 

which the two approaches make different predictions is 

viewed as the flip of a fair coin.  An approach “wins” such 

as test case if it predicts correctly and the other approach 

predicts incorrectly.  Where there are N test cases for which 

the approaches give different predictions, and the most 

wins for either approach is h, the computed p-value is the 

probability of at least h heads by either method under the 

binomial distribution b(N,0.5), that is, in N flips of a fair 

coin. 

The difference in error rates between the HCI advice ap-

proach and the no advice approach is statistically signifi-

cant (p < 0.05) at every point in the curve, with p-values as 

low as 3.89 X 10-15 at the largest difference in the curves (at 

30 training examples).  This demonstrates that, in this do-

main, the HCI-generated advice does improve learning, 

especially in the early regions of the learning curve. 

The difference in error rates when using the two different 

types of advice is significant only for a few points in the 

curve, at 30, 70 and 100 examples.  We consider this a pos-

itive result, as it indicates that our HCI approach performed 

as well as hand-written advice. 

In addition to the bRDN experiments, we also compared 

using the HCI-generated advice with a knowledge-based 

Table 5. The seven sentences of advice used. 

Advice 

about  

towerFalls 

examples 

Three or more footmen can take down a 

tower if there is no moat. 

Five or more archers can take down  

a tower. 

A single ballista is sufficient to destroy 

the tower. 

Advice 

about  

towerStands 

examples 

If there are only peasants, the tower 

stands. 

Four archers or less cannot take down  

a tower. 

One footman cannot take down  

the tower.  

If there is a moat, and no archers or  

ballista, the tower cannot be destroyed. 

 

 

Figure 5. Learning curve showing test set performance 

in the Wargus tower-defense game comparing models 

learned with hand-written advice, HCI generated ad-

vice, and no advice.  All models were learned the using 

boosted relational dependency network algorithm.  The 
HCI generated advice was generalized using the tech-

niques in Walker et al. [18]. 
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Table 6. Sample ground logical statements about the 

Wargus tower-defense game for one positive (pos1) 

and one negative example (neg1), based on Table 5.  

Recall a positive example is when the tower stands. 

Example Advice 

towerStands(pos1) count(archers, pos1) =  0  

count(footman, pos1)  =  0   

count(ballista, pos1) =  0. 

towerStands(pos1) count(archers, pos1) ≤  4. 

towerStands(pos1) count(footman, pos1)  =  1. 

towerStands(pos1) moatExists    

count(archers, pos1) =  0  

count(ballista, pos1) =  0. 

towerStands(neg1) count(footman, neg1) ≥  3. 

towerStands(neg1) count(archers, neg1)  ≥  5.  

towerStands(neg1) count(ballista, neg1) ≥  1. 

 



support vector machine [5] as the learning algorithm.  Al-

though space does not permit a description of this algo-

rithm, its results are similar to bRDN's. 

Although in our relatively simple testbed the value of ad-

vice largely disappears with only 100 labeled example, in 

many tasks it is hard to get sufficient numbers of training 

examples.  Advice is most effective when it is hard to get a 

good number of labeled examples yet easy to articulate 

helpful domain knowledge. 

CONCLUSIONS AND FUTURE WORK 

Providing formalized domain knowledge provides an effec-

tive method of substantially increasing the performance of 

supervised learning algorithms.  However, this effective-
ness is offset by the difficulty of formulating that know-

ledge, especially in the case of domain experts with little or 

no understanding of the learning algorithm or the know-

ledge representation required by these algorithms.  Allow-

ing the domain expert to specify knowledge as ground ad-

vice about specific examples through a human-computer 

interface provides one appealing method of overcoming 

this difficulty.  We have demonstrated that for the Wargus 

tower-defense domain, ground advice obtained through an 

HCI outperforms learning with no advice and performs as 

well as advice written by an AI expert. 

One interesting future direction would be to examine the 

effectiveness of refining advice by presenting the user with 

an HCI displaying the results of learning.  Investigating the 

ability to support the learning of multiple concepts built 

upon one another might also prove insightful.  Finally, al-

lowing the user to provide advice in ordinary English 

would greatly extend the effectiveness of the advice-taking 

approach to improving supervised machine learning.  
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