Appendix A

SPECIFYING EXAMPLES AND
RULES

The rules-to-network translator (Section 2.2) requires two sets of information from a user to
describe each problem. The first set of information is a specification of the features that are
used to describe the examples. The second set of information is a set of rules that encode
the knowledge of the problem which is supplied to the system. The following two sections
define the syntax of each of these information types, and how they are handled by KBANN’s
rules-to-network translator.

A.1 Information about Features

The features used to describe an example take the general form:
(feature name feature_type feature_values)
where:

feature name is simply the name for a feature (e.g., size, color, etc),

feature_type is one of the following types in common usage in machine learning:

nominal from among a named list (e.g., red, green, blue)
boolean values must be either T or F

hierarchical values exist in an ISA hierarchy

linear values are numeric and continuous

ordered values are non-numeric but have a total ordering

feature_values is a specification of the allowable values of a feature. Each type of feature
has a different format in which values are expected.

The following subsections supply four pieces of information about each feature type:
1. a brief definition,
2. an example of how the feature type can be used,

3. an example of how the feature type is written for presentation to KBANN,

147

148 APPENDIX A. SPECIFYING EXAMPLES AND RULES

4. a description of how the feature is encoded by KBANN.

Missing values are handled in a consistent manner across the feature types. Namely, when the
value of a feature is not known, all of the units used to encode it are given an equal activation.
In addition, the sum of the activations of the units is set so that the total activation of the
units is equal to the total activation of the units had the value been known. In this way, the
network cannot learn to distinguish missing values merely on the basis of activation. Empirical
tests [Shavlik91] have shown that this method of encoding missing values results in better
generalization than other methods (such as setting all activations to zero.)

A.1.1 Nominal

This is the simplest type of feature. All the possible values of the feature are named. For the
feature color of a coffee cup might be given by:
(color nominal (red blue green))

KBANN would translate this feature into three units. The sole criteria for the activation of
nominal features is that the summed activation of the units corresponding to a feature is equal
to one. Hence, when there is information about a nominal feature, one of the units will have an
activation of one and the others will have an activation of zero. When there is no information,
each unit in normally given an activation equal to % where N is the number of values of that
feature. Alternately, the activations of each unit could be set to the prior probability of the
feature having the value.

A.1.2 Binary

Binary-valued features are a special subclass of nominal features that have values of only two
values (e.g., T, F'). To reduce the number of input units, binary-valued features are given only
a single input unit. The following is a binary feature:

(temperature-is-hot binary (T F))
When there is no information available about a binary feature, its activation is 0.5. Note that
this is a departure from the consistent total activation approach to handling missing variables.

A.1.3 Hierarchical

Hierarchical features are features defined in the context of an ISA hierarchy. For example,
the following creates a feature which uses seven units to encode the information appearing in
Figure A.1:

(material hierarchy (material (insulating (styrofoam)
(open-cell-foam))
(non-insul (paper)
(ceramic))))

Hierarchical features act much like nominal features in that exactly one of the base-level
units can be active. When no information is available concerning a hierarchical feature, then
the activation of units at each level in the hierarchy is the reciprocal of the number of units
in that level. Hence, in the above example, styrofoam, open-cell-foam, paper and ceramic

A.1. INFORMATION ABOUT FEATURES 149

Material
e AN
Non-insulating Insulating
N el AN
Ceramic Paper Styrofoam Open-cell foam

Figure A.1: A hierarchy of cup materials.

Table A.1: Equations used to encode a linear feature.

1

(A.1)

2

b (2)
o > (%) (8-2)

where wupB s the top of the subrange
lowB is the bopttom of the subrange

v is the exact value of the feature

Z is an intermediate stage in the calculation of the activation
a; is the activation of the unit

1,] are indices ranging over the units used to encode a feature

would all have activations of i; insulating and non-insul would have activations of %, and

material would have an activation of 1.

A.1.4 Linear

Linear features have numeric values. Normally these values are continuous, but any feature
with numeric values may be described using an linear feature. For example, the following
feature describes the price of a cup in terms of three subranges.

(price linear ((low-price O 3)
(med-price 3 7)
(high-price 7 10)))

KBANN uses one unit to encode subrange. The activation of units is determined by Equa-
tions A.1 and A.2. Figure A.2 plots the activation of each feature over the whole range for
price. So, if the value of the price feature is 6, then low-price would have and activation of
0.10, med-price would have an activation of 0.61 and high-price would have an activation
of 0.29. When there is no information about a linear feature, each unit is activated as if the
value was just outside of the range covered by the feature.

This encoding scheme allow users to write rules that refer to ranges rather than specific
prices. Hence, this encoding creates a convenient shorthand for writing rules. However, the

150 APPENDIX A. SPECIFYING EXAMPLES AND RULES

1.0 1.0

0.8 low-price

high-price [~08
0.6

— 0.4

Activation

—0.2

0.0

0 1 2 3 4 5 6 7 8 9 10
Value for the feature "price"

Figure A.2: The activation of units encoding a linear-valued feature.

user-defined ranges are unlikely to perfectly fit the data. As a result, schemes that just assign
activations of zero or one to units for a linear features may not work. For instance, if the value
of a feature indicates that the price is high, it may still be correct to consider the price as
medium. However, it is rather unlikely that the price should really be considered low.

Thus, the activation scheme described above activates the inputs units according to how
closely the value of the feature agrees with the range that each unit encodes. The idea be-
hind this encoding scheme is that the ranges are not precise and exclusive. That is, because
something has a high price does not mean that the price could not also be considered medium.
However, when some thing has a price in the high range, it is rather unlikely that the price
should really be considered low. Note that this approach to handling numeric features is
very similar to “coarse coding”, a common approach to handling real-values inputs in neural
networks [Hinton86].

As with nominal features, when no information is available about a linear feature, each
unit take a value of #, where NV is the number of units used to encode the feature.

A.1.5 Ordered

Ordered features are a special type of nominal features for which the values are totally ordered.
For example, size could be represented using the totally ordered set { tiny small medium
large huge }. The specification for this feature would be:
(size ordered (tiny small medium large huge))

Like nominal features, ordered features are handled by creating one input unit for each possible
value. However, ordered features cannot be treated like simple nominal features because the
boundaries between subsequent values in the ordering are typically indistinct. Therefore, when
an object is described as having medium size, it might be equally correctly be described as being
either large or small. To account for the fuzziness [Zadeh83] inherent in ordered features,
all values of an ordered feature are activated according to their distance from the given value
using the formula given in Equation A.3.

1 distance_from_given_value

activation = 2 (A.3)

Using this equation, when an object is described as small, the unit corresponding to small

A.2. INFORMATION ABOUT RULES 151

would have an activation of 1.0, while the units corresponding to tiny and medium would have
activations of 0.5. The activations of large and huge would be 0.25 and 0.125, respectively.
When information about an ordered feature is missing, activations are set exactly as for a
nominal feature.

A.2 Information about Rules

This section describes the syntax of rules that KBANN is currently able to translate into a
neural network and specifies how KBANN translates them. The general form of a rule is:
(indicator consequent antecedentl antecedent2 ...)
Consequents and antecedents may take either of the two following forms.
(feature value) or name
In the antecedents of a rule, the first form is normally used for reference to input units while
the second form is used for reference to an intermediate conclusion.

Except as described in Sections A.2.2 and A.2.3 a consequent is true when all of the an-
tecedents are true. That is, individual rules are purely conjunctive. Disjuncts are must be
encoded as multiple rules with the same consequent. Thus, the rule which says that a conse-
quent A is true if F is true and either G, or H or J is true is written for use in KBANN as the
following three rules:

(<-AFG)
(<-AFH)
(<-AFJ)

The following two sections describe options in the “rule indicator” and antecedents. A final
part of this section describes the use of variables in the writing of rules. Variables are used
only as a shorthand notation, they are not used in the network.

A.2.1 Rule types

There are two kinds of rule types in KBANN:

<= A “definitional” rule.

Definitional rules are rules that are not to be changed during the training phase. (For
instance, a definitional rule might be used for “blots” in backgammon.)As a result, the
consequents of fixed rules are connected only to those antecedents mentioned in the rule
and the weights on the connections to the antecedents are not allowed to change during
training.

Note, because definitional rules never change, they act like inputs to the network. Thus,
units corresponding to the consequents of definitional rules are counted as if they were
input units for the purposed of adding links to the network. (See Section 2.2.1 for details
of link addition.)

<- A “variable” rule.
Variable rules are standard rules; they are subject to change during training. Therefore,
consequents may be connected to antecedents other than those mentioned in the rule, and

152 APPENDIX A. SPECIFYING EXAMPLES AND RULES

weights on the links entering into the consequent may be changed during backpropagation
training.

A.2.2 Antecedents

In addition to simply listing positive antecedents to form a simple conjunctive rule, KBANN
allows the following special predicates in the antecedents of its rules.

Gnot Negate an antecedent.

Greater-than Only for “linear” and “ordered” features.

Less-than Only for “linear” and “ordered” features.

N-true Allows compact specification of “n-of-m” concepts.
The specification of antecedents is recursive. Hence, the user may nest any of these types of
antecedents within each other.

The format for including special predicates in rules, and the situations in which special
predicates can be used are described below. In addition, each of these descriptions includes
a picture showing the translation of a rule containing one of the special antecedents into a
network.

Gnot

Gnot! allows rules to state that an antecedent must not be true for the consequent to be true.
When multiple antecedents must not be true, each one should be in its own Gnot clause. Thus,
the rule:

A:-BA-=-CA-=D
would be written for KBANN as:

(<- A B (GNOT C) (GNOT D))
Figure A.3a shows how KBANN translates this rule into a neural network. Briefly, this figure
shows that the negated antecedents are attached to the consequent with a weight that is the
negative of the weight on the unnegated antecedents. Section 2.2.3 contains a proof that this
encoding of negated antecedents is correct.

Greater-than and less-than

Greater-than and less-than both are defined only for “linear” and “ordered” features. (See
the previous section (A.1) for descriptions of these feature types.) For instance, given a linear
feature defined by:

(size linear ((breadbox 0 10) (car 10 50)
(bus 50 100) (house 100 200)))

then a rule that states “an object must be smaller than a bus” would be written:

(<- goodsize (less-than size bus))
Figure A.3b shows how KBANN translates this rule into a neural network. The figure shows
that the network has negative weight links from bus and house and positive weight links from
breadbox and car. Hence, is the example is either car or breadbox sized, the net activation

!The term “Gnot” is used rather than simply “Not” simply to differentiate it from a function in the language
used to implement KBANN.

A.2. INFORMATION ABOUT RULES 153

A - B, not(C), not(d). g :— (less—than size bus).

Figure A.3: Encoding rules in a neural network.

to the unit encoding the consequent will be greater than the bias. As a result, the unit will be
active. Otherwise, the net activation will be less than the bias so the unit will be inactive.

N-true

N-true is a way of compactly specifying concepts characterized by requiring that n of m an-
tecedents (m > n) be true. The antecedents are written in the form:

(N-TRUE n (antecedentl ...antecedentM))
Figure A.3b shows how KBANN translates an n-of-m rule into a neural network. This figure
shows that the network to encode an n-of-m rule is exactly equivalent to a network to encode
a conjunct except for the bias which is reduced to reflect the fact that not every antecedent
must be true for the consequent to be satisfied.

A.2.3 Variables

Recall that KBANN only allows the user to specify propositional knowledge. Hence, predicate-
calculus variables are not allowed in rules. However, KBANN is able to use variables in a very
limited way to reduce the number of rules that the user needs to write. The essential idea is to
replace the value in a (feature value) antecedent with a variable. (Variables are denoted by a
‘?? prefix. Thus, ?name is treated by KBANN as a variable.) KBANN expands all variables for
which there is a known set of possible values by creating multiple rules, each with one value
from the known set. When multiple values of a single rule are replaced by the same variable
name, then KBANN expands the variable with values that appear in both sets.

154 APPENDIX A. SPECIFYING EXAMPLES AND RULES

For example, consider the problem of comparing two objects to determine whether or not
they are similar. One of the requirements for similarity might be that the objects are the same
color. If the possible colors for the objects are {red, green, blue} then the user could encode
the comparison of the two objects using the following three rules:

(<- samecolor (objl red) (obj2 red))

(<- samecolor (objl green) (obj2 green))

(<- samecolor (objl blue) (obj2 blue))
Alternately, these three rules could be written using the following single rule by merely using
variables in the antecedents appropriately.

(<- samecolor (objl ?y) (obj2 ?y))

Appendix B

PSEUDOCODE

This appendix contains pseudocode for the major parts of KBANN. Following this pseudocode,
readers should be able to re-implement the code used in this thesis. In combination with the
datasets available from the collection at UC-Irvine, this makes possible the reproduction of
every experiment described in this thesis.

Note: in all of the following pseudocode, lines beginning with semicolons are comments.

B.1 Pseudocode for the Rules-to-Network Translator

The pseudocode in this section is for a basic implementation of the rules-to-networks translator.
It assumes that all features are nominal and all antecedents are positive. This translator is
sufficient for the promoter recognition problem and needs only a small expansion (to handle
n-of-m style predicates) for the splice-junction determination problem.

Rules-to-Network()
Let: U be a data structure for units with the following fields
linksFrom - an initially empty list
ruleCount - initially 0
bias - initially 0
level - initially 0
name - no initial value
€ be a very small number
w be the initial weight for links specified by knowledge

Given: R - a list of rules with no internal disjunctions and
no external disjunctions with more than one antecedent
;; See Appendix A.2 and Chapter 2
F - alist of nominal features where each item in the list is in
the form (featureName valuel value2 ...):
;; See Appendix A.1

155

156 APPENDIX B. PSEUDOCODE

;; First create all the input units for the KBANN-net by going through each nominal
;; feature and making a unit with the name fearure Name.value N ame
;; Note that i/ : name refers to the name field of unit ¢/
V(feF)
V(v €< values of f>)
create a unit ¢/ with
U :name = fo
U :level =1

;; Next create hidden and output units by creating a unit that corresponds
;; to every unique consequent and antecedent in the set of rules. Also,
;; link each consequent to its antecedents and increment the bias of each
;; consequent on the assumption that the rule is conjunctive.
;; This code above assumes that all disjunctive rules with more than one
;; antecedent originally in R have been rewritten according to Section 2.2.
V(reR)
Let U, be the unit with U,.name =< consequent of r >
if U, does not exist then create it
Increment ¥/, .ruleCount
V(a €< antecedentsofr >)
Let ¢/, be the unit with i/,.name = a
if ¢4, does not exist then create it
Create a link from U, to U, with weight w and put it in U,.linksFrom
Add w to U, .bias
2P-1

:: Now adjust the bias of each unit so that it is either 2 W
;; for conjunctive units or % for disjunctive units
;; If a unit encodes a disjunct, then its rulecount will be greater then one.
Yu €< listofunits >)

if (u.rulecount > 1) then u.bias = %

2
else Decrement u.bias by %

Establish levels of units according to one of the schemes described in Section 2.2.
;; Add low weight links to the network by fully connecting all units
;; separated by one level
Yu €< listofunits >)
Yuu €< listofunits >)
if ((u.level = uu : level + 1) and (there is no existing link between u and uu))
THEN create a link from uu to u with weight 0

;; Finally, slightly perturb the network by adding to each weight a number close to zero.
;; This prevents problems resulting from symmetries in the network.
V(u €< listofunits >)
V(I € u:linksFrom)
add a random number in the range [—¢...+ €] to the weight of [
add a random number in the range [—€...+ €] to u : bias

B.2. PSEUDOCODE FOR THE NETWORK-TO-RULES TRANSLATOR 157

B.2 Pseudocode for the Network-to-Rules Translator

B.2.1 The SuBsET algorithm

SUBSET():

GIVEN: U, a set initially containing each output unit
Z, a positive number (typically 1.0)
[r, a beam width for subsets of negatively weighted links
Bp, a beam width for subsets of positively weighted links

;; Form rules for only the units which participate in other rules or lead to a final conclusion
WHILE U # {}
;; begin by finding combinations of the positively weighted links that exceed the bias
LET v = pop(U)
o =<basonv>+7Z
ExceedingSubsets = BBSEARCH(positively weighted links to v, ¢,3,)
;; then find combinations for the negatively weighted links that drive
;; each positive combination below the bias
V(es € ExceedingSubsets)
ADD to U the units in es that have not previously been seen
LET ® =< sum of link wetghts in es > +7Z— < bias on v >
NegatingSubsets = BBSEARCH (negatively weighted links to v, ®, 3,,)
V(ns € NegatingSubsets)
ADD to U units in ns that have not previously been seen
FORM a rule: if es and (not ns) then v.

BBSEARCH(links, threshold, beamW idth)
;; this algorithm simply implements a beam search
;; with a branch-and-bound component
LET branches be every link in links
V(b € branches)
LET branchSum be weight of link
LOOP
Eliminate all branches for which threshold is greater than
<sum of the weights of all links of lesser weight than any link in the branch>
4+ branchSum
KEEP only beamWidth of branches by eliminating branches with smallest branchSum
IF every member of branches has branchSum > threshold then Terminate LOOP
IF there are no ways to expand any member of branches then Terminate LOOP
WITH every branch
Form new branches using every link of lesser weight than any link in the branch
Increment branchSum of new branches by the weight of then added link

Return all members of branches with branchSum > threshold

158 APPENDIX B. PSEUDOCODE

B.2.2 The NorM algorithm

N-of-M()
GIVEN U, a set initially containing each output unit
exs, the training examples
;; U is a set containing all consequents that have not yet been expanded into rules
WHILE U # {}
LET v = pop(U)
1=0,sum =0
¢ = bias on v
7 be a set of groups found using GROUPER(links to v)
Rv be a rule corresponding to the unit v;
initially Rv has no antecedents and a threshold = ¢
v=DELETEGROUPS(v,p,exs)
;; With only important antecedents remaining, rewrite the result as a single rule
V(g €7)
Y(ga € g)
Add to Rv an antecedent ga with weight vy.weight
Add to U ga unless ga is an input units or has already been added to U

Regularize the rules by making the threshold on every rule the same
and adjust antecedent weights accordingly
Re-express all of the rules as a neural network using the rules-to-network translator.
Freeze weights on all links
Optimize thresholds using training examples and backpropagation

Simplify rules by eliminating weights on antecedents and thresholds

DELETE_GROUPS(groups, threshold, examples)
;; This function heuristically eliminates clusters of links that are not useful
;; for the classification of training examples
Associate with each group a counter need_group which has an initial value of 0.
V(e € examples)
Compute the activation of every unit
If the current example is correctly classified
;; eliminate the activation traveling along each group to see if that group
;; is important for the correct classification of the current example
Y(g; € groups)
Set the weight on all links in g; to 0.
Compute the activation of every unit
if the state of any consequent changes
then increment need_group;
Reset the weight of the links in g; -
Y(g; € groups)
if (need_group; = 0 then remove every link in g; from the network
Return groups

B.2. PSEUDOCODE FOR THE NETWORK-TO-RULES TRANSLATOR

GROUPER(links)

;; The group finding algorithm for NorM that runs in O(n *lg(n)) time
Sort links in descending order by weight magnitude

Delete all links whose magnitude is below a threshold 7 ; typically 7 = 0.1

LET 7 = {}
g=1{}
g-avg =0

7 = a user defined threshold from [0...1] (Typically 0.75)
V(L € links)
LET lw = < magnitude of wetght on L >
IF (¢ = {}) THEN
;; the current group is empty so start a new one
g-maz = lw
PUSH L onto g
ELSE
IF (lw > 7T % g_avg) THEN
;; add link to the existing group as it is close enough to the group’s average
PUSH L onto g
g-avg = average(<magnitude of link weights in g>)
ELSE

;; The link is too small to be added so close the current group and start a new one

PUSH g onto v
g-avg = lw g=4{L} g-maz = lw
IF (g-maz > g-avg * %) THEN
;; the addition of a link drags the average down so that the highest weight link is

;; too large. So eliminate the current link from the current group, close the current

;; group and start a new group

REMOVE L from g

PUSH g onto v

g_avg = lw g=4{L} g-maz = lw
RETURN ~

159

160 APPENDIX B. PSEUDOCODE

B.3 Pseudocode for the DAID Algorithm

In the pseudocode of this section, the notation p[true]plincorrect]¢[present]is used to identify
a single counter from among the eight set up at each input unit from each low level conse-
quent. Replacing a name inside ’[]” with a 7 indicates that either value is acceptable. Hence,
pl?lplincorrect]p[present] is equivalent to p[true]p[incorrect|p[present]+p| false]p[incorrect|p[present].

DAID()
V(¢ € InputFeatures) ;; First initialize counters
V(p € Rules)
Set up the counters for each of the following 8 situations:
plT'rue|False]p[Correct|Incorrect|p| Present| Absent]
FOREACH (p € Rules)
Establish a state-variable p_consequentCorrect
V(e € Exzamples) ;; scan each example incrementing the appropriate counters
Compute truth value of each rule
V(fc € FinalConclusions)
BackUpAnswer(fc, correct Answer, false)
V(¢ € InputFeatures)
V(p € Rules)
Increment the appropriate counter from among
plT'rue|Falselp[Correct|Incorrect|p| Present| Absent]
;; with counters complete, now compute a number that captures the contribution
;; of each feature-value pair to correcting errors of each of the
;; lowest level antecedents V(¢ € InputFeatures)
V(p € Rules)

on — p[true]plcorrect]$[?] (p[true]p[incgrrect]qﬁ[present] _ p[false]p[?]¢[present])
p[true]]p[[?]gb[?] pltrue]plincorrect]d(?] p[falselp[?]4[?]
of f = plfalse]lplcorrect]d[?] " (p[true]p[?]gi)[p'resent] _ p[false]p[zncgrrect]d)[p’resent])
plfalse]p[?]4[7] pltruelp[?]6[7] plfalse]plincorrect][?]

on = maz(0,0n)

of f = min(0,0ff)
Replace the 8 counters of ¢ with: p_useweight = if (on > abs(off)) on else of f

BackUpAnswer(consequent, correct Answer, currentlyCorrect)
;; a recursive procedure for stepping backward through a rule set, following
;; trails of correct and incorrect reasoning by the rules.
p-consequentCorrect = (currentlyCorrect or ValueOfConsequent = correct Answer)
;; first determine if the truth-value of the consequent is correct.
;; It is correct if either its parent is correct or the truth-value is the same as correct Answer.
FOREACH (d € DependenciesO fConsequent)
IF <at a negative dependency>
dd = not(correctAnswer)
ELSE dd = correct Answer
BackUpAnswer(d, dd, p_consequentCorrect)

Appendix C

KBANN TRANSLATION
PROOFS

This appendix contains detailed proofs that the scheme used by the rules-to-network translator
accurately translates both conjunctive and disjunctive rules. These proofs complement the
proofs appearing in Section 2.2.3. Specifically, Theorems 3 and 5 restate Theorems 1 and 2
but use a significantly different approach in the proof.

The following terms are used in the proof of Theorem 3:

Ca

the minimum activation for a unit to be considered active
a number such that C, < A4 < 1.0

the maximum activation for a unit to be considered inactive
a number such that 0.0 < I <

1/(1 4+ e™*), the standard logistic activation function

the weight on links corresponding to positive dependencies
the weight on links corresponding to negated dependencies
the bias

the number of positive antecedents to the rule

the number of negated antecedents to the rule

the total number of antecedents to a rule (K = P+ N)

a number such that 1 <p < P

a number such that 1 <n < N.

Theorem 3: (Repeats Theorem 1) Setting:

1wy =-w, =w>0

2. 0= -2,

2

correctly encodes conjunctive rules into networks that reproduce the behavior of the rules
under the conditions specified below.

The proof of this theorem uses Lemmas 3A and 3B.

Lemma 3A: Part 1 of Theorem 3, that w, = —w, = w, results in an accurate encoding of
conjunctive rules.

161

162 APPENDIX C. KBANN TRANSLATION PROOFS

Proof of Lemma 3A:

The method for mapping conjunctive rules into a KBANN-net is correct when Inequal-
ities C.1 — C.4 are satisfied. Briefly, Inequality C.1 describes the only condition under
which the consequent of a conjunctive rule is true; namely that all of its positive depen-
dencies are true and none of its negative dependencies are true. Inequality C.1 simply
translates this statement into a network, saying that for a unit to be active all of its
positive antecedents must be active and none of its negated antecedents can be active.
Inequality C.2! states the condition that a unit is inactive when fewer than all of its
positive antecedents are active. Similarly, Inequality C.3 states the condition that a unit
is inactive when at least one of its negated antecedents in active. Inequality C.4 gives
the fourth possible condition on a unit; a unit is inactive when fewer than all of its
positive antecedents are active and more that one of its negated antecedents are active.
Hence, these inequalities describe all of the conditions which a conjunctive unit created
by KBANN may experience.

Cy < F[PwpA+ Nwyl + 6] (C.1)
Ci > FI(P - puyA + puyl + Nuw,I + 0] (C.2)
C; > FlPwpyA+ (N — n)w,I + nw, A + 6] (C.3)
Cs > FI(P = p)wpA + puoy] + (N — nyuwnl + nw, A + 0 (C.4)

The interesting conditions on these four inequalities are when they are at their bound-
aries. For instance, the interesting case for Inequality C.1 is when the net incoming
activation to a unit is minimized. This occurs when each of the positive antecedents
has an activation of exactly C, and each of its negative antecedents has an activation of
exactly C;. If the resulting activation at this boundary condition only equals C, then
Inequality C.1 will always be satisfied because the every change to the network for which
the rule remains true must increase the net incoming activation. Hence, any change must
increase the activation of the unit. Equation C.5 expresses this boundary condition on
Inequality C.1.

For units that should be inactive — because the consequent of the underlying rule is not
satisfied — the converse of the preceding discussion applies. Thus, interesting boundary
condition on Inequality C.2 occurs when the net incoming activation to a unit is max-
imized. This occurs exactly one of positive antecedents inactive, the activation of that
antecedent is C;, the activation of the remaining (P — 1) positive antecedents is 1.0, and
the activation of every negative antecedent is 0.0. If, at this maximum, the unit has an
activation of C';, then Inequality C.2 will always be satisfied. Equation C.6 expresses this
boundary condition on Inequality C.2.

nequality C.2 should be written
P N
Ca < F[Y wpA;+ Y wali + 6]
J=1 =1

to be precisely correct. The complete statement is not made simply for brevity.

163

The final interesting boundary condition (on Inequality C.3) is very similar to the bound-
ary condition on Inequality C.2. It occurs when exactly one of the negative antecedents
is active. Specifically, the net incoming activation is maximized when the activation of
each of the positive antecedents is 1.0, the activation of the active negated antecedent is
(4, and the activation of every negative antecedent is 0.0. Again, at this maximum, the
unit must have an activation no greater than ;. Equation C.7 expresses this boundary
condition on Inequality C.3.

Equations C.6 and C.7 capture both of the interesting boundary conditions that might
result from Inequality C.4. Hence, Equations C.5 — C.7 capture all of the interesting
boundary conditions on the activation of a unit that encodes a conjunct. Equations C.8-
C.10 simply restate these equations in more algebraically tractable forms.

Cy = F[Pw,Cy + Nw,C; + 6] (C.5)
C;=F[(P - 1wy,l.0 + w,C; + Nw,0.0 + 6] (C.6)
C; = F[Pw,1.0 + (N — 1)w,0.0 + w,,Cy + 6] (C.7)
1
—lg(C—— 1) = Pw,Cy + Nw,C; + 6 (C.8)
1
—lg(a -1)=(P - 1w,1.0 + w,C; + 6] (C.9)
1
—lg(a— 1) = Pw,1.0+ w,C, + 0] (C.10)
Finally, let C; = 1 — C,, (Cy > C;); this is reasonable as it yields a nice symmetric
solution. Simply subtracting Equation C.10 from Equation C.9 results in w, = —w,.
Hence, Lemma 1A is correct.?
O

Lemma 3B: The maximum number of antecedents for which a network can consistently en-

code a conjunctive rule is given by K < 19&.
Consider the following equations:
Pw,Cy + Nw,C; + 0 > (P — Dw,1.0 + w,C; + 6 (C.11)
PuCy— (K —P)w(l1-Cy)+0>w(P—-1)—w(l-C,)+ 0 (C.12)
Ca
K 1
<y . (C.13)

Inequality C.11 states the relationship between the right sides of equations Equations C.8
and C.9. This inequality simply states that the net incoming activation to a unit that is

2Note that the strict equality of w, and —w, results for the assumption that Equations C.6 and C.7 both
equal C;. Relaxing this assumption to results in defining a range for w, given a selection for w,. Specifically:
—wp — C; < wy, < —wp + ;. As wp = —wy, is at the center of this range, the results in the rest of this section
will use these values.

164 APPENDIX C. KBANN TRANSLATION PROOFS

active must be greater than the net incoming activation to a unit that is inactive. Sub-
stituting 1 — C, for C; (as in Lemma 1A), w for w, and —w for w,, (the result of Lemma
1A) and K — P for N yields Inequality C.12. This inequality reduces to Inequality C.13.
Thus, Lemma 1B, which bounds the total number of antecedents admissible in a rule, is
correct.

O

Proof of Theorem 3:
Lemma 3A proves that first part of Theorem 3.

One last step before completing Theorem 3; in addition to the work they have already
done, the above equations can be used to determine values for the link weights. Specifi-
cally, substituting Lemma 3A that w, = —w, into Equations C.8 and C.10, subtracting
Equation C.10 from C.8 and solving for w, yields Equation C.14. (The denominator of
this equation re-expresses the bound defined by Lemma 3B.) This equation shows that
the weight on links to encode a conjunctive rule is a function of both the amount a unit
is allowed to differ from one (i.e., C';) or zero and the number of antecedents in the rule.

lg(& — 1)~ lg(2—1)
Co+ K(Cp—1)

(C.14)

wp:

At long last, the second part of Theorem 1 can be approached. This part of the theorem,

which states that § = —ZPT_lw, is not algebraically correct. However, it is very close to
correct. The following establishes bounds on the error for this method of setting for the
bias.

Equation C.15 is Equation C.8 into which has been substituted Lemma 1A that w, =
—wy,. Solving Equation C.15 for # (by substituting the setting for w in Equation C.14)
yields Equation C.18. (Equations C.16 and C.17 show two steps of the simplification).

So, the formula for setting the bias given by part 2 of Theorem 1 is exactly correct when
1 =C, + KC;. Unfortunately, this situation only occurs when K = 1. As rules rarely
have only a single antecedent, the setting proposed in part 2 of this theorem is rarely
exactly correct. However, substituting Lemma 1B that K < 1—08‘(1 into C, + KC; yields

the result that €', + K'C; must always be in the range [1...2]. Therefore, § = —2132—_1w

is never far from correct.

1
6= —lg(c— - 1) - PwC, + NwC; (C.15)
1 —2lg(g-— 1)
0=-lg(—-1)—[K(C,— 1)+ P 2 C.16
o =1~ (= 1)+ Pl R8s (C.16)
y _ (ol = DliCa+ K(Cu = D)= [K(Co= 1)+ Pl= 2yl =1)
B Co+K(Cy—1) '
0:—2P—|—CQ—|—I&CZ'w (C.18)

2

165

link weights= w link weights= 1.33w

Figure C.1: The encoding of two disjunctive rules with multiple antecedents.

Moreover, while there will always be differences when using the simple function 6 =
—QPT_lw to set the bias, these differences are too small to have an important effect on the
resulting encoding of a conjunctive rule. Hence, § = —ZPT_lw results in an approximately
correct setting for the bias.

Therefore, given that K < ITO%:, setting w, = —w, = w and 0 = —2P2_1w yields an

encoding of conjunctive rules that is very close to correct.
O

Recall that the first step of the rules-to-network algorithm (Table 2.2) rewrites disjuncts
so that all rules with the same consequent have exactly one antecedent. Figure C.1 illustrates
the need for this rewriting. The figure shows two rules, one with four antecedents (named 1,
2, 3, and 4) and one with three antecedents (named 5, 6, and 7) all feeding unit Z. The bias
on unit 7, and the links on to all of the antecedents are set so that Z will be active if either
rule is true. However, Z will also be active when neither rule is true. For instance, if the units
corresponding to antecedents 2, 3, 4, and 5 are all active, then 7 will be active.

This example illustrates the need for rewriting disjunctive collections of rules to eliminate
rules with more than one antecedent. The following theorem proves the necessity of this
rewriting.

166 APPENDIX C. KBANN TRANSLATION PROOFS

Theorem 4: There is no way to correctly encode a set of disjunctive rules each of which has
more than one antecedent into a neural network that uses a single unit to encode the
consequent.

Proof:
This proof will proceed by assuming that the theorem is false and showing a contradic-
tion. The following terms are used:

v a consequent of a set of disjunctive rules.
v; a rule for v

N; the number of antecedents in rule v,

0 the bias on the unit corresponding to v

wg the weight on the link corresponding to the j** antecedent of rule v;

The proof makes three nonrestrictive assumptions: (1) that there are no negative an-
tecedents to rules (this assumption can easily be enforced through the addition of a unit
that encodes not), (2) that there exists two rules vy and vy such that no combination of
the antecedents of these two rules forms some other rule v; and (3) that all units have

an activation of either zero or one (this assumption is made only for simplicity).

The network encoding this set of rules must satisfy, for each rule 2:
N;]
—0 <> w! (C.19)
J=1

Assume the opposite of the theorem, namely that the only combination of link weights
which exceed @ contain at least one of the rules v as a subset. Under these assumptions,
the following inequalities are true:

2 N;)
TS (C.20)

=1 j7=1

—0 > wi +w; (C.21)

Equation C.20 simply states that the sum of two rules must be greater than twice —#6
since each rule by itself must activate the unit. Equation C.21 says that the sum of the
first antecedents of rules v; and v is less than —@. This follows from the assumption that
no unwanted combinations exceed 6. Subtracting w] +w3 from each side of Equation C.20
yields Equation C.22. Note that the term to the left of the inequality in Equation C.22
subtracts from —260 an number that is less than —f. Hence, Equation C.23 follows directly
from Equation C.22.

2 N;]
—20 —w] —wy <Y Y] (C.22)
=1 7=2
2 N;)
—0 < =20 —wf —wy <> D (C.23)

=1 7=2

167

But, Equation C.23 indicates that there is a combination of link weights of vy and v
that exceeds —f. But, by assumption (2) no rules are composed of the antecedents of vy
and vg. This contradiction proves that the theorem is true.

O

The following terms are used in the next theorem:

C, the minimum activation for a unit to be considered active
C; the maximum activation for a unit to be considered inactive
F(z) 1/(14 e "), the standard logistic activation function

w, the weight on links corresponding to positive dependencies
0 the bias

R the number of rules encoding the disjunct

r a number such that 1 <r < R

Theorem 5: Setting:

2. 0=-%
results in a unit that accurately encodes a disjunct under the conditions specified below.

Proof: The method for mapping disjunctive sets of rules into a KBANN-net is correct when
Inequalities C.24 and C.25 are satisfied. These two equations simply state the condition
that a unit should be active when one or more of its inputs are active. It only should be
inactive when all of its inputs are inactive.

Co < FlrwpA+ (R — r)wyl + 6] (C.24)
C; > F[Rwyl + 0] (C.25)

As in Theorem 3, this proof will proceed by analysis of the extreme cases. By ensuring
that Inequalities C.24 and C.25 are satisfied in the extreme cases, the non-extremes are
guaranteed.

The extreme for Inequality C.24 occurs when one of the antecedents is true and carries the
smallest signal indicative of truth (i.e., C;) while all of the other antecedents are false
and carry the smallest signal indicative of falsehood (i.e., 0). This extreme condition
is given by Equation C.26. The parallel extreme condition for falsehood occurs when
every antecedent is false and carries a signal of C;. This extreme condition is given by
Equation C.27.

Equations C.28 and C.29 simply restate Equations C.26 and C.27 in a more algebraically
tractable form.

Flwp,Cyq + (R — 1)w,0.0 + 6] (C.26)

Ca
C; = F[Rw,C; + 0] (C.27)

168

APPENDIX C. KBANN TRANSLATION PROOFS

—zg(ci 1) = w,Cy 40 (C.28)

—lg(% —1)= Rw,C; + 0 (C.29)

—2lg(CL -1)=w,C, — Rw,(}; (C.30)
—2lg(z; - 1)

= 2 31

T O~ R(1- Cy) (C.31)

Following Theorem 1, let C; = (1 — C,). So, subtracting Equation C.29 from Equa-
tion C.28 yields Equation C.30 (note that lg(c% -1) = —lg(c% —1)). Equation C.31
results from solving Equation C.30 for w,. There are two notes about Equation C.31.
First, Theorem 3 has the same limitation as that imposed on Theorem 1 by Lemma
1B, as the Equation C.31 is only correct when R < 1TC%: (since w, > 0). Second, this
equation suggests setting w, =~ 4 given the fairly-common conditions that C'; = 0.9 and
R = 4. Hence, the empirically derived value of w = 4 is supported analytically.

Finally, substituting the value for w, in Equation C.29 gives Equation C.32. Solving for
6 yields Equation C.33 (following much the same process as was used to solve for 4 in
Theorem 1). Hence, when C,+ RC; = 1 the setting proposed by Theorem 3 of § = —0.5w
is exactly correct. As in Theorem 1, the bound on R of R < % restricts C, + RC; to
the range [1...2]. Thus, the setting for the bias proposed in theorem 3 can never be far
from correct.

1 —2lg(g; - 1)
—lg(= —1) = RC; a 0 .32
91 Co—RO—Cy) T (C.32)
ww _ 0 (C.33)

Therefore, the scheme for mapping disjuncts into KBANN-nets results in networks that
accurately encode disjunctive rules under a wide range of conditions.
O

In conclusion, the proofs of Theorems 3 and 5 show that the simple methods for translating

rules into neural networks are close to correct. The proofs also exactly specify correct methods
for translating rules into networks. In practice, it is unnecessary to translate with complete
fidelity because training of the network is easily able to overcome errors resulting from inexact
translation.

Appendix D

ADDITIONAL EXPERIMENTAL
RESULTS

This appendix contains the results of tests not reported elsewhere in the thesis. In particular,
these results complement the comparisons of the algorithms of Section 3.2. Testing methodol-
ogy is not described here, it follows Section 3.2.

Tables D.1 and D.2 report statistical comparisons of the results of ten-fold cross-validation
testing on each dataset. The splice-junction table repeats data appearing in Figure 3.8. How-
ever, a similar table could not be built for the promoter dataset because Figure 3.7 uses a
method of summarizing the data that reduces eleven tests to a single result. Hence, the results
for promoters in Table D.1 are for ten-fold cross-validation testing follows the procedures used
in Section 3.2 for testing splice-junctions. Briefly, each datapoint represents the average over
eleven cross-validation tests to average out the effects of example presentation order and test-
ing versus training set splits. In addition, the results for standard ANNs and KBANN-nets are
average over ten trials using different initial weight sets to smooth the differences in learning
that result from small differences in the initial weights of the neural networks.

Table D.1, which reports tests for promoters, shows KBANN to be significantly superior to
the six empirical learning systems with which it is compared. The algorithms are compared
using the “relative information score” (RIS); an information theoretic measure of learning
efficiency suggested by Kononenko and Bratko [Kononenko91]. Figure D.1 presents the leaving-
one-out results that appear in Figure 3.7 alongside the results of ten-fold cross-validation.

Large discrepancies between the two measures point to systems which benefited significantly
from the error-counting method used for the leaving-one-out study. For instance, the relative
information score for Cobweb differs by more than 30 points between ten-fold cross-validation
and leaving-one-out. Recall that examples are counted as incorrect in the leaving-one-out
study only when the example was misclassified on a majority of the eleven runs. Hence, this
method of error counting enhances the results of systems such as Cobweb which frequently
make between one and five classification errors but rarely make more than six errors. The
effect of the differences in error counting is quite apparent in Tables D.3 - D.5 which show
the results for leaving-one-out and ten-fold cross-validation for all of the 106 examples in the
promoter training set.

Tables D.3 - D.5 present the results of both ten-fold cross-validation and leaving-one-out
for every promoter example. Hence, these tables allow a visual comparison of the results

169

170 APPENDIX D. ADDITIONAL EXPERIMENTAL RESULTS

Table D.1: Statistical analysis of learning for promoter recognition.

RIS t statistic
System RIS Std. Near
Name Avg. Dev. Cbwb ID3 Neigh. Ptron PEBLS BP
KBANN 90.4 295 184 172 20.2 15.8 5.7 8.8

BackProp 823 3.62 16.0 13.8 10.4 5.2 1.1 —
PEBLS 80.8 3.84 12.8 133 7.9 3.6 — —
Perceptron 75.4 2.38 129 10.7 6.3 — — —
Near.Neigh 65.4 4.64 6.3 4.5 — — — —
1ID3 53.7 6.04 1.3 — — — — —
Cobweb 51.1 6.25 — — — — — —

The t statistic is for one-tailed paired-sample comparisons of the systems. When
t > 1.8 then the system whose name is given by the row is superior with 95%
confidence to the system whose name is given by the column.

‘ . 10-fold cv |:| leave one out
ID3 53.7

I 1 62.3

Nearest—Neighbor—.— 654 736
Perceptron—.— B4 op
PEBLS—I— 808 6.8
Standard-Backprop_l— 82.3
Cobweb—.— 51.1 1 88.7
KBANN— 999%_5

1 88.7

—71r 1 - 1 - 1 - 1T - 1 - 1T - 1T T
0 10 20 30 40 50 60 70 80 90 100

Relative Information Score

Figure D.1: Promoter recognition scores for both leaving-one-out and ten-fold
cross-validation.

under two different testing methods. Numbers in bold in the ten-fold cross-validation columns
indicate that the example was classified wrong in the majority of cases. The ten-fold cross-
validation column for Perceptron reports decimals because Perceptron often could not make
a clear decision. Frequently, it identified an example as being both a promoter and a non-
promoter or, it identified en example as being neither. In both of these cases, the error count
was incremented by the probability of randomly choosing the correct answer (i.e., 0.5).

An interesting comparison can be made between the results in Tables D.3 - D.5 and Fig-
ure D.2 which presents a cluster analysis of the 106 examples. The cluster analysis shows a
tight central core of promoters that have names ‘RR*’. The seven learning systems detailed in
Table D.2 make virtually no errors on these examples. While the non-examples of promoters
have no similar central cluster, the examples that are farthest away from the central promoter

171

Table D.2: Significance of differences in the splice-junction domain.

RIS t statistic

System RIS Std. Near
Name Avg. Dev. Neig. Cbwb ID3 Ptron PEBLS BP
KBANN 90.2 031 746 14.8 27.2 222 7.2 2.2
BackProp 89.5 1.07 586 13.1 13.3 12.5 1.9 —
PEBLS 88.7 0.63 56.1 10.7 18.6 12.3 — —
KBANN 88.0 0.76 60.5 9.0 132 9.5 — —
Perceptron 83.9 0.84 52.2 3.4 0.2 — — —
ID3 83.9 0.78 43.0 2.8 — — — —
Cobweb 81.9 1.86 205 — — — — —
Near.Neigh 69.3 0.82 — — — — — —

The t statistic is for one-tailed paired-sample comparisons of the systems. When
t > 1.8 then the system whose name is given by the row is superior with 95%
confidence to the system whose name is given by the column.

cluster are consistently correctly classified. To be specific, the 20 examples of non-promoters
that cluster farthest from any promoter have about half the average error rate for the full
set of examples. The 20 promoters closest to the central promoter cluster have about % of
the average error rate. On the other hand, the 20 promoters and non-promoters nearest to
boundary between promoters and non-promoters have about double the average error rate.

172 APPENDIX D. ADDITIONAL EXPERIMENTAL RESULTS

L 1163
L 663
L1442

Figure D.2: Cluster analysis of the 106 example promoter set.

173

Table D.3: Results for every promoter example — part 1
learning algorithms
Standard Nearest

Example | KBANN ANN PEBLS Neighbor ID3 Perceptron | Cobweb
Name L1 10fold | L1 10fold | L1 10fold | L1 10fold | L1 10fold | L1 10fold | L1 10fold
0019 0 0 0 0 3 0.0 3
0035 1 0 2 4 8 2.0 1
0039 2 0 0 0 4 0.5 0
0091 0 2 * 11 * 11 * 7 2.0 0
0093 0 0 0 4 0 0.0 0
0217 0 0 0 2 0 0.0 2
0230 0 0 0 4 4 0.5 0
0244 0 0 0 * 11 6 2.5 1
0260 0 2 0 6 5 2.0 0
0296 * 8 5 0 2 2 * 5.0 1
0313 0 0 0 0 * 1 0.0 0
0413 0 0 1 0 1 0.5 0
0464 0 5 7 10 7 6.5 2
0507 4 * 11 6 11 11 * 9.0 * 11
0521 0 0 0 10 6 3.5 2
0557 0 0 0 4 0 0.5 0
0630 0 0 0 0 2 1.0 1
0648 0 0 0 0 0 0.5 0
0660 0 0 0 3 * 0 0.0 1
0663 0 0 0 5 5 2.5 2
0668 2 3 * 8 1 3 3.5 1
0751 0 0 0 * 7 * 6 0.0 1
0753 0 0 2 0 * 3 0.5 1
0780 0 0 0 2 0 0.0 0
0794 0 0 0 1 0 1.5 2
0799 0 0 0 0 1 0.0 1
0802 0 3 4 0 4 5.0 0
0835 2 2 1 * 11 3 5.0 5
0850 0 0 0 0 5 0.5 2
0867 0 0 0 0 0 0.0 1
0915 0 0 0 0 0 0.0 1
0918 0 0 0 3 1 0.0 1
0957 0 0 0 4 6 1.0 1
0987 0 0 0 0 2 1.5 1
0988 0 3 * 9 11 9 * 5.0 * 7
0991 0 0 1 * 11 0 0.0 0

Notes: ‘L1’ indicates that the leaving-one-out methodology is used.

ko

in a ‘L1’ column

indicates an incorrect classification. Numbers in ‘10fold’ columns indicate the num-
ber of incorrect classifications eleven trials using eleven orderings of the examples.
Numeric names indicate examples that are non-promoters.

174 APPENDIX D. ADDITIONAL EXPERIMENTAL RESULTS
Table D.4: Results for every promoter example — part 2
learning algorithms
Standard Nearest

Example | KBANN ANN PEBLS Neighbor ID3 Perceptron | Cobweb
Name L1 10fold | L1 10fold [L1 10fold | L1 10fold | L1 10fold | L1 10fold |L1 10fold
1019 0 1 0 0 4 4.0 0
1024 0 0 0 0 1 0.0 0
1108 0 * 11 3 3 1 * 6.0 5
1149 0 0 2 0 9 1.0 3
1163 0 0 2 * 10 3 2.5 2
1169 0 0 0 0 0 0.5 0
1171 0 0 0 0 3 0.0 1
1203 0 0 0 0 4 0.5 1
1216 0 0 0 5 1 2.0 1
1218 0 0 0 0 * 6 0.0 0
1226 0 0 0 2 0 0.0 0
1320 0 0 0 0 0 0.0 1
1321 0 0 0 0 5 0.0 0
1355 0 0 0 0 0 0.0 0
1384 0 0 0 0 0 0.0 0
1442 0 0 0 * 11 0 0.0 2
1481 0 0 0 1 1 0.0 1
alas 0 0 1 0 2 0.5 3
ampc 0 0 0 0 1 1.0 3
arabad 0 0 1 0 0 2.5 2
arac 0 0 0 0 8 0.0 1
aroh 0 0 0 0 * 0 0.0 0
bioa 0 0 3 0 * 2 1.0 0
biob 0 0 0 0 0 5.5 1
deopl 0 0 4 0 2 0.0)
deop?2 * 8 0 4 0 5 1.0 3
fol 0 0 0 0 3 2.0 3
galp2 0 0 0 0 * 1 0.0 4
glns 0 0 0 0 0 0.0 1
his 0 0 0 0 0 0.0 0
his) 0 0 0 0 3 0.5 0
ilvgeda 0 0 0 0 1 0.0 0
laci * 11 * 11 * 9 * 8 11 3.5 9
lacpl 0 5 2 1 3 * 35 7
levl-trna 0 0 0 0 * 9 0.0 0
lexa 0 0 0 0 2 0.5 3

Notes: ‘L1’ indicates that the leaving-one-out methodology is used.

ko

in a ‘L1’ column

indicates an incorrect classification. Numbers in ‘10fold’ columns indicate the num-
ber of incorrect classifications eleven trials using eleven orderings of the examples.
Numeric names indicate examples that are non-promoters.

Table D.5: Results for every promoter example — part 3

175

learning algorithms

Standard Nearest
Example | KBANN ANN PEBLS Neighbor ID3 Perceptron | Cobweb
Name L1 10fold |L1 10fold | L1 10fold | L1 10fold | L1 10fold | L1 10fold | L1 10fold
lpp 0 0 0 0 1 0.0 1
mlrna 0 0 0 0 1 2.0 3
malefg 0 0 0 0 8 0.0 6
malk 5 0 4 0 8 1.5 2
malt 2 * 10 0 0 2 * 7.0 4
pori-1 0 0 1 0 0 0.0 2
pori-r 0 1 2 0 9 * 5.0 5
reca 0 0 0 0 0 0.0 0
rplj 0 0 0 0 1 0.0 2
rpoa 0 0 0 0 0 0.0 0
rpob 0 * 11 0 0 11 * 7.0 * 7
rrnab-pl 0 0 0 0 0 0.0 0
rrnab-p2 0 0 0 0 0 0.0 0
rrnd-pl 0 0 0 0 0 0.0 0
rrndex-p2 0 0 0 0 0 0.0 0
rrne-pl 0 0 0 0 0 0.0 0
rrng-pl 0 0 0 0 0 0.0 0
rrng-p2 0 0 0 0 1 0.0 0
rrnx-pl 0 0 0 0 0 0.5 0
s10 0 0 0 0 0 2.5 1
spc 0 0 0 0 7 0.0 1
spot42 0 0 0 0 1 0.0 0
str 0 0 0 0 0 0.0 0
subb-e 0 0 0 0 0 0.0 0
thr 0 0 0 0 0 0.0 0
tnaa 2 0 0 0 2 0.0 5
trp 0 0 0 0 0 0.0 0
trpp2 0 0 0 3 0 0.0 1
trpr * 9 * 11 2 * 9 0 * 100 | * 10
tufb 0 0 0 0 1 1.5 2
tyrt 0 0 0 0 7 0.0 0
uvrbpl 0 0 0 0 1 0.0 0
uvrbp2 0 4 1 * 11 * 0 0.5 5
uvrbp3 0 2 7 0 3 6.0 4
totals 4 5.1 6 94 | 7 9.1 |14 184 (19 245 |9 130 |6 159

Notes: ‘L1’ indicates that the leaving-one-out methodology is used.

£33

mm a ‘L1’ column

indicates an incorrect classification. Numbers in ‘10fold’ columns indicate the num-
ber of incorrect classifications eleven trials using eleven orderings of the examples.
Numeric names indicate examples that are non-promoters.

176 APPENDIX D. ADDITIONAL EXPERIMENTAL RESULTS

Appendix E

BASE MODEL FOR GEOMETRY
LEARNING

Tables E.1 - E.5 present the complete set of rules used by the KBANN-based model of geometry
learning to simulate the knowledge of children prior to formal instruction in geometry. That is,
these rule reproduce the geometric reasoning of children who have not had formal instruction
in geometry.

Table E.6 defines the features used to describe each of the geometric figures used during
the training and testing of the model.

177

178 APPENDIX E. BASE MODEL FOR GEOMETRY LEARNING

Table E.1: Shape-naming rules — part 1.

name(triangle, ?obj) - tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,somewhat), point-direction(?obj,up),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
name(triangle, ?obj) - tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,very), point-direction(?obj,up),
shape(?objmedium), 2-long-and-2-short-sides(?obj,no).

name(triangle, ?obj) - tilted(?obj,0), slanty-lines(?obj,yes), area(?objlittle),
pointy(?obj,somewhat), point-direction(?obj,right),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
name(triangle, ?obj) - tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,big),
pointy(?obj,somewhat), point-direction(?obj,up),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
name(triangle, ?obj) - tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,very), point-direction(?obj,down),
shape(?obj,skinny), 2-long-and-2-short-sides(?obj,no).

name(triangle, ?obj) - tilted(?obj,0), slanty-lines(?obj,yes), area(?obj little),
pointy(?obj,somewhat), point-direction(?obj,down),
shape(?objmedium), 2-long-and-2-short-sides(?obj,no).
name(pentagon, ?obj) - tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,not), point-direction(?obj,none),
shape(?objmedium), 2-long-and-2-short-sides(?obj,no).

name(pentagon, ?obj) - tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,large),
pointy(?obj,not), point-direction(?obj,none),
shape(?objmedium), 2-long-and-2-short-sides(?obj,no).
name(hexagon, ?obj) - tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).

name(hexagon, ?obj) - tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,large),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
name(quadrilateral, ?obj) :- tilted(?obj,0), slanty-lines(?objno), area(?obj,big),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
name(quadrilateral, ?obj) :- tilted(?obj,0), slanty-lines(?objno), area(?obj,medium),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).

Table E.2: Shape-naming rules — part II.

179

name(square, ?obj)

name(square, ?obj)

name(rectangle, ?obj)

name(rectangle, ?obj)

name(rectangle, ?obj)

name(rhombus, ?obj)

name(rhombus, ?obj)

name(parallelogram, ?obj)

name(parallelogram, ?obj)

name(parallelogram, ?obj)

name(trapezoid, ?obj)

name(trapezoid, ?obj)

name(trapezoid, ?obj)

tilted(?0bj,0), slanty-lines(?obj,no), area(?objmedium),
pointy(?obj,not), point-direction(?obj,none),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).

tilted(?obj,0), slanty-lines(?obj,no), area(?obj,big),
pointy(?obj,not), point-direction(?obj,none),

shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
tilted(?obj,0), slanty-lines(?obj,no), area(?objmedium),
pointy(?obj,not), point-direction(?obj,none),

shape(?obj,medium), 2-long-and-2-short-sides(?obj,yes).

tilted(?obj,0), slanty-lines(?obj,no), area(?objmedium),
pointy(?obj,not), point-direction(?obj,none),

shape(?obj,skinny), 2-long-and-2-short-sides(?obj,yes).
tilted(?obj,0), slanty-lines(?obj,no), area(?objmedium),
pointy(?obj,not), point-direction(?obj,none),

shape(?obj,fat), 2-long-and-2-short-sides(?obj,yes).

tilted(?0bj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,somewhat), point-direction(?obj,right),
shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
tilted(?obj,0), slanty-lines(7obj,yes), area(?obj,little),
pointy(?obj,somewhat), point-direction(?obj,up),

shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).

tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,somewhat), point-direction(?obj,left),

shape(?obj,medium), 2-long-and-2-short-sides(?obj,yes).
tilted(?0bj,0), slanty-lines(?obj,yes), area(?obj,big),
pointy(?obj,somewhat), point-direction(?obj,right),
shape(?obj,fat), 2-long-and-2-short-sides(?obj,yes).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,little),
pointy(?obj,very), point-direction(?obj,left),

shape(?obj,skinny), 2-long-and-2-short-sides(?obj,yes).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,very), point-direction(?obj,right),

shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,medium),
pointy(?obj,somewhat), point-direction(?obj,up),

shape(?obj,medium), 2-long-and-2-short-sides(?obj,no).
tilted(?obj,0), slanty-lines(?obj,yes), area(?obj,big),
pointy(?obj,somewhat), point-direction(?obj,left),

shape(?obj,fat), 2-long-and-2-short-sides(?obj,no).

180 APPENDIX E. BASE MODEL FOR GEOMETRY LEARNING

Table E.3: Feature-counting rules.

same-name(?objl, ?obj2) :- name(?nme, 7objl), name(?nme, ?obj2).

same-tilted(?7obj1, ?7obj2) - tilted(7objl, 7tlt), tilted(7obj2, ?tlt).

same-slanty-lines(?objl, ?obj2) - slanty-lines(?objl, ?slant), slanty-lines(?obj2, ?slany).

same-area(?objl, ?obj2) .- area(?Tobjl, 7area), (?obj2, ?area).

same-pointy(?objl, ?obj2) :- pointy(?objl, ?pty), pointy(?obj2, ?pty).

same-point-direction(?objl, ?obj2) :- point-direction(?objl, ?pd), point-direction(?obj2, ?pd)

same-shape(?objl, ?obj2) :- shape(?objl, ?shp), shape(?obj2, ?shp).

same-2-2(?objl, ?obj2) - 2-long-and-2-short-sides(?objl, ?two),
2-long-and-2-short-sides(?obj2, ?two).

Table E.4: Similarity-recognition rules.

Let 8-Antecedents represent the following set of eight antecedents:
same-2-2(?objl, ?obj2), same-shape(?objl, ?obj2),
same-point-direction(?objl,mkvobj2), same-pointy(?objl, ?obj2),
same-area(?objl, ?obj2), same-slanty-lines(?objl, ?obj2),
same-tilted(?objl, ?obj2), same-name(?objl, ?obj2)

similarity(?objl, ?obj2,very) - n-true-antecedents(7, 8-Antecedents).
similarity(?objl, ?obj2,quite) - n-true-antecedents(6, 8-Antecedents).
similarity(?objl, ?obj2,mostly) - n-true-antecedents(5, 8-Antecedents).
similarity(?objl, ?obj2,fairly) - n-true-antecedents(4, 8-Antecedents).
similarity(?objl, ?obj2,sort-of) - n-true-antecedents(3, 8-Antecedents).
similarity(?objl, ?obj2,not-very) :- n-true-antecedents(2, 8-Antecedents).

Table E.5: Combining rules.

most-similar-pair(?objl, ?obj2) similarity(?objl, ?obj2,very),
not similarity(?objl, ?obj3,very),
not similarity(?obj3, ?obj2,very).
similarity(?objl, ?obj2,quite),
not similarity(?objl, ?obj3,quite),
not similarity(?obj3, ?obj2,quite).
most-similar-pair(?objl, ?obj2) :- similarity(?objl, ?obj2,mostly),
not similarity(?objl, ?obj3,mostly),
not similarity(?obj3, ?obj2,mostly).
most-similar-pair(?objl, ?obj2) :- similarity(?objl, ?obj2 fairly),
not similarity(?objl, ?obj3,fairly),
not similarity(?obj3, ?obj2,fairly).
most-similar-pair(?objl, ?obj2) :- similarity(?objl, ?obj2sort-of),
not similarity(?objl, ?obj3,sort-of),
not similarity(?obj3, ?obj2,sort-of).
most-similar-pair(?objl, ?obj2) :- similarity(?objl, ?obj2,not-very),
not similarity(?objl, ?obj3,not-very),
not similarity(?obj3, ?obj2,not-very).

most-similar-pair(?objl, ?obj2)

Table E.6: Features and their possible values.

Feature Name

Possible Values

Visual Features

Tilted

Slanty

Area

Shape

Pointy

Point Direction

2 long and 2 short sides

Symbolic Features

Convex
Number of Sides
Number of Angles

Number of Right Angles

Number of Pairs of Parallel Sides
Number of Pairs of Equal Opposite Angles

Adajacent Angles Sum to 180

Number of Pairs of Opposite Sides Equal
Number of Lines of Symmetry

All Sides Equal

All Angles Equal

Number of Equal Sides

Number of Equal Angles

{0 10 20 30 40}
{Yes No}

{Little Medium Big}
{Skinny Fat Medium}

{Yes No}

{None Up Down Right Left}
{Yes No}

{Yes No}
{34568}
{34568}

{01234}

{01234}
{01234}

{Yes No}
{01234}
{01234568}
{Yes No}
{Yes No}
{023456 8}
{023456 8}

181

182 APPENDIX E. BASE MODEL FOR GEOMETRY LEARNING

Bibliography

[Aha91] Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-based learning algorithms.
Machine Learning, 6:37—66.

[Ahmad88] Ahmad, S. (1988). A study of scaling and generalization in neural networks. Tech-
nical Report CCSR-88-13, University of Illinois, Center for Complex Systems Research.

[Alberts88] Alberts, B. M. (1988). Mapping and Sequencing the Human Genome. National
Academy Press, Washington, D.C.

[Atlas89] Atlas, L., Cole, R., Connor, J., El-Sharkawi, M., Marks II, R. J., Muthusamy, Y.,
and Barnard, E. (1989). Performance comparisons between backpropagation networks and
classification trees on three real-world applications. In Advances in Neural Information
Processing Systems, volume 2, pages 622-629, Denver, CO. Morgan Kaufmann.

[Barnard89] Barnard, E. and Cole, R. A. (1989). A neural-net training program based on
conjugate-gradient optimization. Technical Report CSE 89-014, Oregon Graduate Institute,
Beaverton, OR.

[Bennett88] Bennett, S. (1988). Real world EBL: Learning error tolerant plans in the robotics
domain. In Proceedings of the AAAI Explanation-Based Learning Symposium, pages 122—
126, Stanford, CA.

[Berenji91] Berenji, H. R. (1991). Refinement of approximate reasoning-based controllers by
reinforcement learning. In Proceedings of the Eighth International Machine Learning Work-
shop, pages 475-479, Chicago, IL.

[Blum88] Blum, A. and Rivest, R. L. (1988). Training a 3-node neural network is NP-complete.
In Proceedings of the 1988 Workshop on Computational Learning Theory, pages 9-18, Cam-
bridge, MA.

[Breiman84] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classifica-
tion and Regression Trees. Wadsworth, Belmont, CA.

[Brunak91] Brunak, S., Engelbrecht, J., and Knudsen, S. (1991). Prediction of human mRNA
donor and acceptor sites from the DNA sequence. Available in the neuroprose archive at
archive.cis.ohio-state.edu as brunak.netgene.ps.Z.

[Brunner56] Brunner, J. S., Goodnow, J. J., and Austin, G. A. (1956). A Study of Thinking.
Wiley, New York.

183

184 BIBLIOGRAPHY

[Buntine91] Buntine, W. L. and Weigand, A. S. (1991). Bayesian back-propagation.

[Chauvin88] Chauvin, Y. (1988). A back-propagation algorithm with optimal use of hidden
units. In Advances in Neural Information Processing Systems, volume 1, pages 519-525,
Denver, CO. Morgan Kaufmann.

[Cost90] Cost, S. and Salzberg, S. (1990). A weighted nearest neighbor algorith for learning
with symbolic features. Technical Report JHU-90/11, Johns Hopkins, Baltimore, MD.

[Craven90] Craven, M. W. (1990). Experiments in optimal brain damage. Unpublished
manuscript.

[Craven92] Craven, M. W. and Shavlik, J. W. (1992). Visualizing learning and computation
in artificial neural networks. International Journal on Artificial Intelligence Tools, 1(2).
(Forthcoming).

[Danyluk89] Danyluk, A. P. (1989). Finding new rules for incomplete theories: Explicit biases
for induction with contextual information. In Proceedings of the Sixth International Machine
Learning Workshop, pages 34-36, Ithaca, NY.

[DeJong86] DeJong, G. F. and Mooney, R. F. (1986). Explanation-based learning: An alter-
native view. Machine Learning, 1:145-176.

[Dennis91] Dennis, S. and Phillips, S. (1991). Analysis tools for neural networks.

[Diederich88] Diederich, J. (1988). Knowledge-intensive recruitment learning. Technical Re-
port ICSI-TR-88-010, International Computer Science Institute, Berkeley, CA.

[Dietterich86] Dietterich, T. G. (1986). Learning at the knowledge level. Machine Learning,
1:287-316.

[Dietterich90] Dietterich, T. G., Hild, H., and Bakiri, G. (1990). A comparative study of ID3
and backpropagation for English text-to-speech mapping. In Proceedings of the Seventh
International Conference on Machine Learning, pages 24-31, Austin, TX.

[Duda79] Duda, R., Gaschnig, J., and Hart, P. (1979). Model design in the prospector consul-
tant system. In Michie, D., editor, Fzpert Systems in the Microelectronic Age. Edinburgh
University Press, Edinburgh, Scotland.

[Fahlman88] Fahlman, S. E. (1988). Faster learning variations on back-propagation: An em-
pirical study. In Touretsky, D., Hinton, G., and Sejnowski, T., editors, Proceedings of the
1988 Connectionist Models Summer School, pages 38-51. Morgan Kaufmann, San Mateo,
CA.

[Fahlman89] Fahlman, S. E. and Lebiere, C. (1989). The cascade-correlation learning archi-
tecture. In Advances in Neural Information Processions Systems, volume 2, pages 524-532,
Denver, CO. Morgan Kaufmann.

[Fisher87] Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering.
Machine Learning, 2:139-172.

BIBLIOGRAPHY 185

[Fisher89] Fisher, D. H. and McKusick, K. B. (1989). An empirical comparison of ID3 and
back-propagation. In Proceedings of the Fleventh International Joint Conference on Artificial
Intelligence, pages 788-793, Detroit, MI.

[Flann89] Flann, N. S. and Dietterich, T. G. (1989). A study of explanation-based methods
for inductive learning. Machine Learning, 4:187-226.

[Fozzard88] Fozzard, R., Bradshaw, G., and Ceci, L. (1988). A connectionist expert system
that actually works. In Advances in Neural Information Processing Systems, volume 1, pages
248-255, Denver, CO. Morgan Kaufmann.

[Franzini87] Franzini, M. A. (1987). Speech recognition with back propagation. In IFEE Ninth
Annual Conference of the Fngineering in Medicine and Biology Society, pages 1702-1703.

[Fu89] Fu, L. M. (1989). Integration of neural heuristics into knowledge-based inference. Con-
nection Science, 1:325-340.

[Fu91] Fu, L. M. (1991). Rule learning by searching on adapted nets. In Proceedings of the
Ninth National Conference on Artificial Intelligence, pages 590-595, Anaheim, CA.

[Fuys88] Fuys, D., Geddes, D., and Tischler, R. (1988). The van Hiele model of thinking in
geometry among adolescents. In Journal for Research in Mathematics Education, Monograph
No. 3. National Council of Teachers of Mathematics, Reston, VA.

[Gallant88] Gallant, S. I. (1988). Connectionist expert systems. Communications of the ACM,
31:152-169.

[Goodman83] Goodman, N. (1983). Fact, Fiction and Forecast. Harvard University Press,
Cambridge, MA.

[Hall88] Hall, R. J. (1988). Learning by failing to explain: Using partial explanations to learn
in incomplete or intractable domains. Machine Learning, 3:45-77.

[Hanson90] Hanson, S. J. and Burr, D. J. (1990). What connectionist models learn: Learning
and representation in connectionist networks. Behavioral and Brain Sciences, 13:471-518.

[Hanson88] Hanson, S. J. and Pratt, L. Y. (1988). Comparing biases for minimal network
construction with back-propagation. In Advances in Neural Information Processing Systems,
volume 1, pages 177-185, Denver, CO. Morgan Kaufmann.

[Harley87] Harley, C. B. and Reynolds, R. P. (1987). Analysis of E. coli promoter sequences.
Nucleic Acids Research, 15:2343-2361.

[Hartigan75] Hartigan, J. A. (1975). Clustering Algorithms. Wiley, New York.

[Hawley83] Hawley, D. K. and McClure, W. R. (1983). Compilation and analysis of Fscherichia
Coli promoter DNA sequences. Nucleic Acids Research, 11:2237-2255.

[Hayashi90] Hayashi, Y. (1990). A neural expert system with automated extraction of fuzzy if-
then rules. In Advances in Neural Information Processing Systems, volume 3, pages 578-584,
Denver, CO. Morgan Kaufmann.

186 BIBLIOGRAPHY

[Hebb49] Hebb, D. O. (1949). The Organization of Behavior. Wiley, New York.

[Hinton89] Hinton, G. E. (1989). Connectionist learning procedures. Artificial Intelligence,
40:185-234.

[Hinton91] Hinton, G. E. (1991). Personal communication.

[Hinton86] Hinton, G. E., McClelland, J. L., and Rumelhart, D. E. (1986). Distributed rep-
resentations. In Rumelhart, D. and McClelland, J., editors, Parallel Distributed Processing:

Ezxplorations in the microstructure of cognition; Vol. 1: Foundations, pages 77-109. MIT
Press, Cambridge, MA.

[Hirsh89] Hirsh, H. (1989). Combining empirical and analytical learning with version spaces.
In Proceedings of the Sixzth International Machine Learning Workshop, pages 29-33, [thaca,
NY.

[Hoehfeld91] Hoehfeld, M. and Fahlman, S. E. (1991). Learning with limited numerical preci-
sion using the cascade-correlation architecture. Technical Report CMU-CS-91-130, Carnegie-
Mellon, Pittsburgh, PA.

[Holland86a] Holland, J. H. (1986a). Escaping brittleness: The possibilities of general-purpose
learning algorithms applied to parallel rule-based systems. In Michalski, R., Carbonell, J.,
and Mitchell, T., editors, Machine Learning: An Al Approach, volume 2, pages 593-624.
Morgan Kaufmann, San Mateo, CA.

[Holland86b] Holland, J. H., Holyoak, R. J., Nisbitt, R. E., and Thagard, P. (1986b). Induc-
tion: Processes of Inference, Learning and Discovery. MIT Press, Cambridge, MA.

[Holley89] Holley, L. and Karplus, M. (1989). Protein secondary structure prediction with a
neural network. Proceedings of the National Academy of Science, 56:152—156.

[Hollis90] Hollis, P. W., Harper, J. S., and Paulos, J. J. (1990). The effects of precision
constraints in a backpropagation learning network. Neural Computation, 2:363-373.

[Holte89] Holte, R. C., Acker, L. E.; and Porter, B. W. (1989). Concept learning and the
problem of small disjuncts. In Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, pages 813-819, Detroit, MI.

[Honavar88] Honavar, V. and Uhr, L. (1988). A network of neuron-like units that learns to
perceive by generation as well as reweighting of its links. In Hinton, G. E., Sejnowski, T. J.,
and Touretzky, D. S., editors, Proceedings of the 1988 Connectionist Models Summer School,
pages 472-484. Morgan Kaufmann, San Mateo, CA.

[Hunter91] Hunter, L. (1991). Classifying for prediction: A multistrategy approach to pre-
dicting protein secondary structure. In Proceedings of the First International Workshop on
Multistrateqy Learning, pages 394-402, Harpers Ferry, WV.

[IUB Nomenclature Committee85] IUB Nomenclature Committee (1985). Ambiguity codes.
Furopean Journal of Biochemistry, 150:1-5.

BIBLIOGRAPHY 187

[Jones89] Jones, M. A. and Story, G. A. (1989). Inheritance reasoning in connectionist net-
works. In International Conference on Neural Networks.

[Judd88] Judd, S. (1988). On the complexity of loading shallow neural networks. Journal of
Complexity, 4:177-192. Also appears in Readings in Machine Learning.

[Katz89] Katz, B. F. (1989). EBL and SBL: A neural network synthesis. In Proceedings of the
Eleventh Annual Conference of the Cognitive Science Society, pages 683-689, Ann Arbor,
MI.

[Kleene56] Kleene, S. C. (1956). Representation of events in nerve nets and finite automata.
In Shannon, C. E. and McCarthy, J., editors, Automata Studies, pages 3-41. Princeton
University Press, Princeton, NJ.

[Koedinger90] Koedinger, K. R. and Anderson, J. R. (1990). Theoretical and empirical mo-
tivations for the design of ANGLE: A new geometry learning environment. In Proceedings
of the AAAI Symposium on Knowledge-Based Fnvironments for Learning and Teaching,
Stanford, CA.

[Kolen90] Kolen, J. F. and Pollack, J. B. (1990). Back-propagation is sensitive to initial
conditions. In Advances in Neural Information Processing Systems, volume 3, Denver, CO.
Morgan Kaufmann.

[Kononenko91] Kononenko, I. and Bratko, I. (1991). Information-based evaluation criterion
for classifier’s performance. Machine Learning, 6:67-80.

[Koudelka87] Koudelka, G. B., Harrison, S. C., and Ptashne, M. (1987). Effect of non-
contacted bases on the affinity of 434 operator for 434 repressor and Cro. Nature, 326:886—
888.

[Kruschke88] Kruschke, J. K. (1988). Creating local and distributed bottlenecks in hidden
layers of back-propagation networks. In Hinton, G. E., Sejnowski, T. J., and Touretzky,
D. S., editors, Proceedings of the 1988 Connectionist Models Summer School, pages 357—
370. Morgan Kaufmann, San Mateo, CA.

[Kruschke91] Kruschke, J. K. and Movellan, J. R. (1991). Benefits of gain: Speeded neural
learning and minimal hidden layers in back-propagation networks. IFEF Transactions on
Systems, Man and Cybernetics, 21(1).

[Langley89] Langley, P. (1989). Editorial: Toward a unified science of machine learning. Ma-
chine Learning, 3:253-259.

[Lapedes89] Lapedes, A., Barnes, C., Burkes, C., Farber, R., and Sirotkin, K. (1989). Appli-
cation of neural networks and other machine learning algorithms to DNA sequence analysis.
In Computers and DNA, SFI Studies in the Science of Complexity VII. Addison-Wesley,
Reading, MA.

[Le Cun89] Le Cun, Y., Denker, J. S., and Solla, S. A. (1989). Optimal brain damage. In
Advances in Neural Information Processing Systems, volume 2, pages 598-605, Denver, CO.
Morgan Kaufmann.

188 BIBLIOGRAPHY

[Lebowitz86] Lebowitz, M. (1986). Integrated learning: Controlling explanation. Cognitive
Science, 10:219-240.

[Lehrer89] Lehrer, R., Knight, W., Love, M., and Sancilio, L. (1989). Software to link action
and description in pre-proof geometry. Presented at the Annual Meeting of the American
Educational Research Association.

[Litzkow88] Litzkow, M., Livny, M., and Mutka, M. W. (1988). Condor — a hunter of idle
workstations. In Proceedings of the Fighth International Conference on Distributed Com-
puting Systems.

[Lukashin89] Lukashin, A. V., Anshelevich, V. V., Amirikyan, B. R., Gragerov, A. L., and
Frank-Kamenetskii, M. D. (1989). Neural network models of promoter recognition. Journal
of Biomolecular Structure and Dynamics, 6:1123-1133.

[Maclin91] Maclin, R. and Shavlik, J. W. (1991). Refining domain theories expressed as finite-
state automata. In Proceedings of the Fighth International Machine Learning Workshop,
pages 524-528, Chicago, IL.

[Masuoka90] Masuoka, R., Watanabe, N., Kawamura, A., Owada, Y., and Asakawa, K. (1990).
Neurofuzzy system — fuzzy inference using a structured neural network. In Proceedings of
the International Conference on Fuzzy Logic & Neural Networks, pages 173-177.

[Matheus90] Matheus, C. J. (1990). Feature Construction: An Analytic Framework and an
Application to Decision Trees. PhD thesis, University of [llinois at Urbana-Champaign.

[McCulloch43] McCulloch, W. S. and Pitts, W. A. (1943). A logical calculus of ideas immanent
in nervous activity. Bulliten of Mathematical Biophysics, 5:115-133.

[McDermott82] McDermott, J. (1982). R1: A rule-based configurer of computer systems.
Artificial Intelligence, 19.

[McMillan91] McMillan, C., Mozer, M. C., and Smolensky, P. (1991). The connectionist sci-
entist game: Rule extraction and refinement in a neural network. In Proceedings of the
Thirteenth Annual Conference of the Cognitive Science Society, Chicago, IL.

[Michalski83] Michalski, R. S. (1983). A theory and methodology of inductive learning. Arti-
ficial Intelligence, 20:111-161.

[Miller56] Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits
on our capacity for processing information. Psychological Review, 63:81-97.

[Minsky63] Minsky, M. (1963). Steps towards artificial intelligence. In Figenbaum, E. A. and
Feldman, J., editors, Computers and Thought. McGraw-Hill, New York.

[Minsky88] Minsky, M. L. and Papert, S. (1988). Perceptrons: Ezpanded Edition. MIT Press,
Cambridge, MA. Original edition published in 1969.

[Mitchell82] Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18:203~
226.

BIBLIOGRAPHY 189

[Mitchell86] Mitchell, T. M., Keller, R., and Kedar-Cabelli, S. (1986). Explanation-based
generalization: A unifying view. Machine Learning, 1:47-80.

[Moody88] Moody, J. and Darken, C. (1988). Learning with localized receptive fields. In
Hinton, G. E., Sejnowski, T. J., and Touretzky, D. S., editors, Proceedings of the 1988
Connectionist Models Summer School, pages 133-143. Morgan Kaufmann, San Mateo, CA.

[Mooney89] Mooney, R. J. and Ourston, D. (1989). Induction over the unexplained: Integrated
learning of concepts with both explainable and conventional aspects. In Proceedings of the
Sizth International Workshop on Machine Learning, pages 5-8, Ithaca, NY.

[Mooney91a] Mooney, R. J. and Ourston, D. (1991a). Personal communication.

[Mooney91b] Mooney, R. J. and Ourston, D. (1991b). Constructive induction in theory re-
finement. In Proceedings of the Fighth International Machine Learning Workshop, pages
178-182, Evanston, IL.

[Mozer88] Mozer, M. C. and Smolensky, P. (1988). Skeletonization: A technique for trim-
ming the fat from a network via relevance assessment. In Advances in Neural Information
Processing Systems, volume 1, pages 107-115, Denver, CO. Morgan Kaufmann.

[Murphy85] Murphy, G. L. and Medin, D. L. (1985). The role of theories in conceptual coher-
ence. Psychological Review, 91:289-316.

[Murphy91] Murphy, P. M. and Pazzani, M. J. (1991). ID2-0f-3: Constructive induction of N-
of-M concepts for discriminators in decision trees. In Proceedings of the Eighth International
Machine Learning Workshop, pages 183-187, Evanston, IL.

[Nessier62] Nessier, U. and Weene, P. (1962). Hierarchies in concept attainment. Journal of
Ezxperimental Psychology, 64:640-645.

[Ng90] Ng, K. and Lippmann, R. P. (1990). A comparative study of the practical characteristics
of neural networks and conventional pattern classifiers. In Advances in Neural Information
Processing Systems, volume 3, pages 970-976, Denver, CO. Morgan Kaufmann.

[Noordewier91] Noordewier, M. O., Towell, G. G., and Shavlik, J. W. (1991). Training
knowledge-based neural networks to recognize genes in DNA sequences. In Advances in
Neural Information Processing Systems, volume 3, Denver, CO. Morgan Kaufmann.

[Nowlan91] Nowlan, S. J. and Hinton, G. E. (1991). Simplifying neural networks by soft
weight-sharing. In Advances in Neural Information Processing Systems, volume 4, Denver,
CO. Morgan Kaufmann.

[Oliver88] Oliver, W. L. and Schneider, W. (1988). Using rules and task division to augment
connectionist learning. In Proceedings of the Tenth Annual Conference of the Cognitive
Science Society, pages 5561, Montreal, Canada.

[O'Neill89] O’Neill, M. C. (1989). Escherichia coli promoters: 1. Consensus as it relates to
spacing class, specificity, repeat substructure, and three dimensional organzation. Journal
of Biological Chemistry, 264:5522-5530.

190 BIBLIOGRAPHY

[O’Neill89] O’Neill, M. C. and Chiafari, F. (1989). Eserichia Coli promoters II: A spacing-class
dependent promoter search protocol. Journal of Biological Chemistry, 264:5531-5534.

[O’Rorke82] O’Rorke, P. (1982). A comparative study of inductive learning systems AQ15 and
ID3 using a chess endgame test problem. Technical Report UIUCDCS-F-82-899, University
of Illinois, Department of Computer Science, Urbana, IL.

[Ourston90] Ourston, D. and Mooney, R. J. (1990). Changing the rules: A comprehensive
approach to theory refinement. In Proceedings of the Fighth National Conference on Artificial
Intelligence, pages 815-820, Boston, MA.

[Ourston91] Ourston, D. and Mooney, R. J. (1991). Improving shared rules in multiple category
domain theories. In Proceedings of the Eighth International Machine Learning Workshop,
pages 534-538, Evanston, IL.

[Pazzani88] Pazzani, M. J. (1988). Learning Causal Relationships: An Integration of Empir-
ical and Ezxplanation-Based Learning Methods. PhD thesis, Computer Science Department,
University of California, Los Angles.

[Pazzani89] Pazzani, M. J. and D, S. (1989). The influence of prior theories on the ease of
concept acquisition. In Proceedings of the Eleventh Annual Conference of the Cognitive
Science Society, pages 844-851, Ann Arbor, MI.

[Pineda87] Pineda, F. J. (1987). Generalization of back-propagation to recurrent neural net-
works. Physics Review Letters, 59:2229-2232.

[Pratt91] Pratt, L. Y. and Kamm, C. A. (1991). Direct transfer of learned information among
neural networks. In Proceedings of the Ninth National Conference on Artificial Intelligence,
pages 584-589, Anaheim, CA.

[Qian88] Qian, N. and Sejnowski, T. J. (1988). Predicting the secondary structure of globular
proteins unsing neural networks models. Journal of Molecular Biology, 202:856-884.

[Quinlan86] Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1:81-106.

[Quinlan91] Quinlan, J. R. (1991). Improved estimates for the accuracy of small disjuncts.
Machine Learning, 6:93-98.

[Rajamoney87] Rajamoney, S. A. and DelJong, G. F. (1987). The classification, detection
and handling of imperfect theory problems. In Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, pages 205-207, Milan, ITtaly.

[Record89] Record, T. (1989). Personal communication.

[Redmond89] Redmond, M. (1989). Combining case-based reasoning, explanation-based learn-
ing, and learning from instruction. In Proceedings of the Sixth International Workshop on
Machine Learning, pages 20-22, Ithaca, NY.

[Rendell90] Rendell, L. and Cho, H. (1990). Empirical learning as a function of concept
character. Machine Learing, 5:267-298.

BIBLIOGRAPHY 191

[Rendell89] Rendell, L. A., Cho, H. H., and Seshu, R. (1989). Improving the design of

similarity-based rule-learning systems. International Journal of Fzpert Systems, 2:97-133.

[Rosenblatt62] Rosenblatt, . (1962). Principles of Neurodynamics: Perceptrons and the The-
ory of Brain Mechanisms. Spartan, New York.

[Rueckl88] Rueckl, J. G., Cave, K. R., and Kosslyn, S. M. (1988). Why are “what” and “where”
processed by separate cortical visual systems? A computational investigation. Journal of
Cognitive Neuroscience, 1(2).

[Rumelhart91] Rumelhart, D. (1991). Personal communication.

[Rumelhart86] Rumelhart, D. E.; Hinton, G. E., and Williams, R. J. (1986). Learning internal
representations by error propagation. In Rumelhart, D. E. and McClelland, J. L., editors,
Parallel Distributed Processing: Ezplorations in the microstructure of cognition. Volume 1:
Foundations, pages 318-363. MIT Press, Cambridge, MA.

[Saito88] Saito, K. and Nakano, R. (1988). Medical diagnostic expert system based on PDP
model. In Proceedings of IEFE International Conference on Neural Networks, volume 1,
pages 255-262.

[Schank86] Schank, R., Collins, G. C., and Hunter, L. E. (1986). Transcending inductive
category formation in learning. Behavioral and Brain Sciences, 9:639-686.

[Scott91] Scott, G. M., Shavlik, J. W., and Ray, W. H. (1991). Refining PID controllers using
neural networks. In Advances in Neural Information Processing Systems, volume 4, Denver,
CO. Morgan Kaufmann.

[Sejnowski87] Sejnowski, T. J. and Rosenberg, C. (1987). Parallel networks that learn to
pronounce English text. Complex Systems, 1:145-168.

[Sestito90] Sestito, S. and Dillon, T. (1990). Using multi-layered neural networks for learning
symbolic knowledge. In Proceedings of the 1990 Australian Artificial Intelligence Conference,
Perth, Australia.

[Shavlik90a] Shavlik, J. W. (1990a). Case-based reasoning with noisy case boundaries: An
application in molecular biology. Technical Report 988, University of Wisconsin, Madison,

WL

[Shavlik90b] Shavlik, J. W. (1990b). Eztending Ezplanation-Based Learning by Generalizing
Ezxplanation Structures. Pitman, London.

[Shavlik91] Shavlik, J. W., Mooney, R. J., and Towell, G. G. (1991). Symbolic and neural net

learning algorithms: An empirical comparison. Machine Learning, 6:111-143.

[Shavlik89] Shavlik, J. W. and Towell, G. G. (1989). An approach to combining explanation-
based and neural learning algorithms. Connection Science, 1:233-255.

[Shortliffe84] Shortliffe, E. H. and Buchanan, B. G. (1984). A model of inexact reasoning in
medicine. In Buchanan, B. G. and Shortliffe, E. H., editors, Rule-Based Ezxpert Systems,
pages 233-262. Addison-Wesley, Reading, MA.

192 BIBLIOGRAPHY

[Smolensky87] Smolensky, P. (1987). On variable binding and the representation of symbolic
structures in connectionist systems. Technical Report CU-CS-355-87, University of Colorado
- Boulder.

[Smolensky88] Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral
and Brain Sciences, 11:1-23.

[Sobel87] Sobel, M. A., editor (1987). Mathematics. McGraw-Hill, New York.

[Squires91] Squires, C. S. and Shavlik, J. W. (1991). Experimental analysis of aspects of the
cascade-correlation learning architecture. Machine Learning Research Group Working Paper
91-1. University of Wisonsin — Madison.

[Stormo90] Stormo, G. D. (1990). Consensus patterns in DNA. In Methods in Enzymology,
volume 183, pages 211-221. Academic Press, Orlando, FL.

[Tesauro89] Tesauro, G. and Sejnowski, T. J. (1989). A parallel network that learns to play
backgammon. Artificial Intelligence, 39:357-390.

[Thompson91] Thompson, K., Langley, P., and Iba, W. (1991). Using background knowledge in
concept formation. In Proceedings of the Eighth International Machine Learning Workshop,
pages 554-558, Evanston, IL.

[Touretsky88] Touretsky, D. S. and Hinton, G. E. (1988). A distributed connectionist produc-
tion system. Cognitive Science, 12:423-466.

[Towell91] Towell, G. G. and Shavlik, J. W. (1991). Interpretation of artificial neural networks:
Mapping knowledge-based neural networks into rules. In Advances in Neural Information
Processing Systems, volume 4, Denver, CO. Morgan Kaufmann.

[Towell90] Towell, G. G., Shavlik, J. W., and Noordewier, M. O. (1990). Refinement of ap-
proximately correct domain theories by knowledge-based neural networks. In Proceedings of
the Fighth National Conference on Artificial Intelligence, pages 861-866, Boston, MA.

[Ts0i90] Tsoi, A. C. and Pearson, R. A. (1990). Comparison of three classification techniques,
CART, C4.5, and multi-layer perceptrons. In Advances in Neural Information Processing
Systems, volume 3, pages 963-969, Denver, CO. Morgan Kaufmann.

[van Hiele86] van Hiele, P. M. (1986). Structure and Insight. Academic Press, New York.

[van Hiele-Geldof57] van Hiele-Geldof, D. (1957). De didaktick van de Meetkunde in de eerste
klass van het (The Didactics of Geometry in the Lowest Class of Secondary School). PhD
thesis, University of Utretch. English translation by M. Verdonck.

[von Heijne87] von Heijne, G. (1987). Sequence Analysis in Molecular Biology: Treasure Trove
or Trivial Pursuit. Academic Press, San Deigo, CA.

[Wantanabe69] Wantanabe, S. (1969). Knowing and Guessing: A Formal and Quantatative
Study. Wiley, New York.

BIBLIOGRAPHY 193

[Waterman86] Waterman, D. A. (1986). A Guide to Ezpert Systems. Addison Wesley, Reading,
MA.

[Watson87] Watson, J. D., Hopkins, H. H., Roberts, J. W., Steitz, J. A., and Weiner, A. M.
(1987). The Molecular Biology of the Gene. Benjamin-Cummings, Menlo Park, CA.

[Wattenmaker87] Wattenmaker, W. D., Nakamura, G. L., and Medin, D. L. (1987). Relation-
ships between similarity-based and explanation-based categorization. In Hilton, D., editor,
Contemporary Science and Natural Ezplanations: Common Sense Concepts of Causality,
pages 205—41. Harvester Press, Sussex, England.

[Weigand90] Weigand, A. S., Rumelhart, D. E., and Huberman, B. A. (1990). Generalization
by weight-elimination with application to forecasting. In Advances in Neural Information
Processing Systems, volume 3, pages 875-882, Denver, CO. Morgan Kaufmann.

[Weiss89] Weiss, S. M. and Kapouleas, I. (1989). An empirical comparison of pattern recogni-
tion, neural nets, and machine learning classification methods. In Proceedings of the Fleventh
International Joint Conference on Artificial Intelligence, pages 688-693, Detroit, MI.

[Weiss90] Weiss, S. M. and Kulikowski, C. A. (1990). Computer Systems that Learn. Morgan
Kaufmann, San Mateo, CA.

[Wejchert89] Wejchert, J. and Tesauro, G. (1989). Neural network visualization. In Advances
in Neural Information Processing Systems, volume 2, pages 465-472, Denver, CO. Morgan
Kaufmann.

[Whewell89] Whewell, W. (1989). Theory of the Scientific Method. Hackett, Indianapolis.
Originally published in 1840.

[Wieland87] Wieland, A. and Leighton, R. (1987). Geometric analysis of neural network ca-
pabilities. In Neural Networks Conference, San Diego, CA.

[Wisniewski89] Wisniewski, E. J. (1989). Learning from examples: The effect of different
conceptual roles. In Proceedings of the Eleventh Annual Conference of the Cognitive Science
Society, pages 844-851, Ann Arbor, MI.

[Wisniewski91] Wisniewski, E. J. and Medin, D. L. (1991). Is it a pucket or a purse? Tightly
coupled theory and data driven learning. In Proceedings of the Eighth International Machine
Learning Workshop, pages 564-569, Evanston, IL.

[Zadeh83] Zadeh, L. A. (1983). The role of fuzzy logic in the management of uncertainty in
expert systems. Fuzzy Sets and Systems, 11:199-227.

