
Appears in Artificial Intelligence, volume 69 or 70.

Submitted 1/92, Final pre-publication revisions 8/94

Knowledge-Based Artificial Neural Networks

Geoffrey G. Towell
�

Jude W. Shavlik
towell@learning.scr.siemens.com shavlik@cs.wisc.edu

(609) 321-0065 (608) 262-7784
University of Wisconsin
1210 West Dayton St.
Madison, WI 53706

Keywords: machine learning, connectionism, explanation-based learning,
hybrid algorithms, theory refinement, computational biology

Running Head: Knowledge-Based Artificial Neural Networks

�

Current address is: Siemens Corporate Research, 755 College Road East, Princeton, NJ, 08540. Please direct all
correspondence to this address.

Abstract

Hybrid learning methods use theoretical knowledge of a domain and a set of classified
examples to develop a method for accurately classifying examples not seen during
training. The challenge of hybrid learning systems is to use the information provided
by one source of information to offset information missing from the other source. By
so doing, a hybrid learning system should learn more effectively than systems that
use only one of the information sources. KBANN(Knowledge-Based Artificial Neural
Networks) is a hybrid learning system built on top of connectionist learning techniques.
It maps problem-specific “domain theories”, represented in propositional logic, into
neural networks and then refines this reformulated knowledge using backpropagation.
KBANN is evaluated by extensive empirical tests on two problems from molecular
biology. Among other results, these tests show that the networks created by KBANN

generalize better than a wide variety of learning systems, as well as several techniques
proposed by biologists.

ii

1. Introduction

Suppose you are trying to teach someone who has never seen a class of objects to
recognize members of that class. One approach is to define the category for your
student. That is, state a “domain theory”1 that describes how to recognize critical
facets of class members and how those facets interact. Using this domain theory,
your student could distinguish between members and nonmembers of the class. A
different approach to teaching someone to recognize a class of objects is to show
the person lots of examples. As each example is shown, you would tell your student
only whether the example is, or is not, a member of the class. After seeing sufficient
examples, your student could classify new examples by comparison to those already
seen.

These two methods of teaching roughly characterize two approaches to achieving
problem-specific expertise in a computer: hand-built classifiers (e.g., expert systems
[58]) and empirical learning [42, 47]. Hand-built classifiers correspond to teaching
by giving a person a domain theory without an extensive set of examples; one could
call this learning by being told. Conversely, empirical learning corresponds to giving a
person lots of examples without any explanation of why the examples are members
of a particular class. Unfortunately, for reasons listed in the following section, neither
of these approaches to achieving machine expertise is completely satisfactory. They
each suffer from flaws that preclude them from being a generally applicable method.

The flaws of each method are, for the most part, complementary (see Sections 2.1–
2.2). Hence, a “hybrid” system that effectively combines a hand-built classifier with an
empirical learning algorithm might be like a student who is taught using a combination
of theoretical information and examples. That student might be able to combine
both sources of information to fill gaps in her knowledge which would otherwise
exist. Similarly, hybrid learning systems (reviewed in Sections 2.4 and 6) should find
synergies that make them more effective than either hand-built classifiers or empirical
learning algorithms used in isolation.

KBANN (Knowledge-Based Artificial Neural Networks) – the successor to our EBL-ANN
algorithm [51] – is such a system. The approach taken by KBANN is outlined in Table 1.
Briefly, the idea is to insert a set of hand-constructed, symbolic rules (i.e., a hand-built
classifier) into a neural network. The network is then refined using standard neural
learning algorithms and a set of classified training examples. The refined network can
then function as a highly-accurate classifier. A final step for KBANN, the extraction of
refined, comprehensible rules from the trained neural network, has been the subject
of much effort [56] but is beyond the scope of this paper.

Section 3 describes the KBANN algorithm. Empirical tests in Section 5, using the DNA

1In machine learning, a domain theory [28] is a collection of rules that describes task-specific inferences
that can be drawn from the given facts. For classification problems, a domain theory can be used to prove
whether or not an object is a member of a particular class.

1

TABLE 1 The KBANN approach to learning.

� Given:

– A list of features used to describe examples

– An approximately-correct domain theory describing the problem to be
solved

– A set of classified training examples

� Do:

– Translate the domain theory into a neural network

– Train the kmowledge-based network using the classified examples

– Use the trained network to classify future examples

– (Optionally) extract a refined domain theory [56]

sequence-analysis tasks described in Section 4, show that KBANN benefits from its
combination of a hand-built classifier and empirical learning. These tests show on the
datasets we examine that KBANN generalizes better than methods that learn purely
from examples, and other methods which learn from both theory and examples.
(Following convention, we assess generalization by testing systems on examples not
seen during training.) Further testing reveals that KBANN is able to profitably use
domain theories that contain significant amounts of misinformation. Hence, our tests
show that, under a broad range of conditions, KBANN yields the hoped-for synergies
of a hybrid approach to learning.

2. The Need for Hybrid Systems

Before describing KBANN, we further motivate the development of hybrid systems
by listing some of the important weaknesses of hand-built classifiers and empirical
learning systems. Following these lists is a brief overview of the reasons that hybrid
systems are an active area of machine learning research.

2.1. Hand-built classifiers Hand-built classifiers are non-learning systems (except insofar as they are later altered
by hand). They simply do what they are told; they do not learn at the knowledge level
[9]. Despite their apparent simplicity, such systems pose many problems for those
that build them.

� Typically, hand-built classifiers assume that their domain theory is complete and
correct. However, for most real-world tasks, completeness and correctness are
extremely difficult, if not impossible, to achieve. In fact, in explanation-based
learning [28] one of the major issues is dealing with incomplete and incorrect
domain theories.

2

� Domain theories can be intractable to use [28]. To make a domain theory as
complete and correct as possible, it may be necessary to write thousands of
interacting, possibly recursive, rules. Use of such rule sets may be intolerably
slow.

� Domain theories can be difficult to modify [3]. As interactions proliferate in a rule
set, it becomes difficult to predict all of the changes resulting from modifying a
single rule.

2.2. Empirical learning Empirical learning systems inductively generalize specific examples. Thus, they re-
quire little theoretical knowledge about the problem domain; instead they require a
large library of examples. Their almost complete ignorance of problem-specific theory
means that they do not address important aspects of induction. Some of the most
significant problems are:

� An unbounded number of features can be used to describe any object [48].
Hence, the user’s choice of features can make a computer and a cookie appear
very similar or very different.

� Features relevant to classification are context dependent [48]. For example, the
observation that paper money is flammable may be only relevant when a bank
is on fire.

� Complex features constructed from the initial features may considerably simplify
learning [44]. However, feature construction is a difficult, error-prone, enterprise.

� Even when a large set of examples are available, small sets of exceptions may
be either unrepresented or very poorly represented [16]. As a result, uncommon
cases may be very difficult to correctly handle.

2.3. Artificial neural
networks

Artificial neural networks (ANNs), which form the basis of KBANN, are a particular
method for empirical learning. ANNs have proven to be equal, or superior, to other
empirical learning systems over a wide range of domains, when evaluated in terms
of their generalization ability [50, 2]. However, they have a set of problems unique to
their style of empirical learning. Among these problems are:

� Training times are lengthy [50].
� The initial parameters of the network can greatly affect how well concepts are

learned [1].
� There is not yet a problem-independent way to choose a good network topology,

although there has been considerable research in this direction (e.g., [10]).
� After training, neural networks are often very difficult to interpret [56].

2.4. Hybrid Learning
Systems

There is a significant gap between the knowledge-intensive, learning-by-being-told
approach of hand-built classifiers and the virtually knowledge-free approach of empir-
ical learning. Some of this gap is filled by “hybrid” learning methods, which use both
hand-constructed rules and classified examples during learning.

Several trends have made the development of such systems an active area in machine
learning. Perhaps the most important of these trends is the realization that knowledge-
intensive (e.g., [28]) and knowledge-free learning are just two ends of a spectrum along

3

Neural
Learning

Symbolic
Knowledge

Initial Initial
Neural

NetworkNetwork
to

Rules

Training
Examples

Trained
Neural

Network

Figure 1 Flow chart of theory-refinement by KBANN.

which an intelligent system may operate. This realization has lead to recent specialized
workshops (e.g., [6, 26]). Staying at one end or the other of the spectrum of possible
learning systems simplifies the learning problem by allowing strong assumptions to
be made about the nature of what needs to be learned. However, the middle ground
is appealing; it offers the possibility that synergistic combinations of theory and data
will result in powerful learning systems.

Another trend spurring the development of hybrid systems is the growth of a body of
psychological evidence that people rarely, if ever, learn purely from theory or examples
[62]. For instance, Murphy and Medin suggest that “feature correlations are partly
supplied by people’s theories and that the causal mechanisms contained in theories
are the means by which correlational structure is represented” [32, page 294]. That
is, theory and examples interact closely during human learning. While it is clear that
people learn from both theory and examples, the way in which the interaction occurs
is yet to be determined. This has been the subject of much research [38, 62] which
affects work in machine learning.

Finally, there is a purely practical consideration; hybrid systems have proven effective
on several real-world problems [57, 33, 36, 54, 19] (also Section 5).

3. KBANN

This section describes the KBANN methodology, which Figure 1 depicts as a pair
of algorithms (on the arcs) that form a system for learning from both theory and
examples. The first algorithm, labeled “Rules-to-Network”, is detailed in Section 3.3.
This algorithm inserts approximately-correct, symbolic rules into a neural network.
Networks created in this step make the same classifications as the rules upon which
they are based.

The second algorithm of KBANN, labeled “Neural Learning”, refines networks using the
backpropagation learning algorithm [47]. (Although all of our experiments use back-
propagation, any method for supervised weight revision — e.g., conjugate gradient
[4] — would work.) While the learning mechanism is essentially standard backprop-
agation, the network being trained is not standard. Instead, the first algorithm of
KBANN constructs and initializes the network. This has implications for training that

4

Initial
Symbolic

Knowledge

Examples
Training

Symbolic
Learning
Algorithm

Final
Symbolic

Knowledge

Figure 2 Flow chart of “all-symbolic” theory-refinement.

are discussed in Section 3.7. At the completion of this step, the trained network can
be used as a very accurate classifier.

Before beginning a detailed description of KBANN, consider the difference between
Figures 1 and 2. These figures present two alternative architectures for systems
that learn from both theory and examples. As described above, Figure 1 shows the
architecture of KBANN. By contrast, Figure 2 represents the architecture of EITHER [36]
and Labyrinth-k [54], two “all-symbolic” hybrid learning systems to which KBANN is
compared in Section 5. Whereas KBANN requires two algorithms, these all-symbolic
systems require only a single algorithm because their underlying empirical learning
mechanism operates directly upon the rules rather than their re-representation as a
neural network. Tests reported in Chapter 5 show that the extra effort entailed by
KBANN is well rewarded, as KBANN generalizes better than these all-symbolic systems
on our testbeds.

The next subsection presents a brief overview of the type of neural networks we use.
Subsequent to this is a high-level overview of KBANN. The following two subsections
contain in-depth descriptions of each of KBANN’s algorithmic steps.

3.1. Neural Networks The neural networks we use in this paper are all “feedforward” neural networks that
are trained using the backpropagation algorithm [47]. Units have a logistic activation
function, which is defined by Equations 1 and 2. Roughly speaking, when the net
incoming activation to a unit exceeds its bias, then the unit has an activation near
one. Otherwise, the unit has an activation near zero.

NetInputi =
�

j ��� Connected Units �
Weightji � Activationj (1)

Activationi =
1

1 + e � (NetInputi � Biasi)
(2)

3.2. Overview of KBANN As shown in Figure 1, KBANN consists of two largely independent algorithms: a
rules-to-network translator and a refiner (i.e., a neural learning algorithm). Briefly, the
rules-to-networks translation is accomplished by establishing a mapping between a
rule set and a neural network. This mapping, specified by Table 2, defines the topology
of networks created by KBANN as well as the initial link weights of the network (see
Section 3.3).

By defining networks in this way, some of the problems inherent to neural networks
and empirical learning are ameliorated. The translation specifies the features that
are probably relevant to making a correct decision. This specification of features
addresses problems such as spurious correlations, irrelevant features, and the un-

5

TABLE 2 Correspondences between knowledge-bases and neural networks.
Knowledge Base Neural Network
Final Conclusions ��� Output Units
Supporting Facts ��� Input Units

Intermediate Conclusions ��� Hidden Units
Dependencies ��� Weighted Connections

boundedness of the set of possible features. Rule translation can specify important
“derived” features, thereby simplifying the learning problem [44]. Moreover, these
derived features can capture contextual dependencies in an example’s description.
In addition, the rules can refer to arbitrarily small regions of feature space. Hence, the
rules can reduce the need for the empirical portion of a hybrid system to learn about
uncommon cases [16]. This procedure also indirectly addresses many problems of
hand-built classifiers. For instance, the problem of intractable domain theories is
reduced because approximately-correct theories are often quite brief.

The second major step of KBANN is to refine the network using standard neural learning
algorithms and a set of classified training examples. At the completion of this step,
the trained network can be used as a classifier that is likely to be more accurate than
those derived by other machine learning methods. Section 5.1 contains empirical
evidence that supports this claim.

3.3. Inserting Knowledge
into a Neural Network

The first step of KBANN is to translate a set of approximately-correct rules into a
knowledge-based neural network (henceforth, a KBANN-net). Rules to be translated
into KBANN-nets are expressed as Horn clauses. (See Appendix A for a complete
description of the language accepted by KBANN.) There are two constraints on the
rule set. First, the rules must be propositional. This constraint results from the use of
neural learning algorithms which are, at present, unable to handle predicate calculus
variables. Second, the rules must be acyclic. This “no cycles” constraint simplifies
the training of the resulting networks. However, it does not represent a fundamental
limitation on KBANN, as there exist algorithms based upon backpropagation that can
be used to train networks with cycles [40]. Moreover, others have extended KBANN

to handle recursive finite-state grammars [23].

In addition to these constraints, the rule sets provided to KBANN are usually hierarchi-
cally structured. That is, rules do not commonly map directly from inputs to outputs.
Rather, at least some of the rules provide intermediate conclusions that describe use-
ful conjunctions of the input features. These intermediate conclusions may be used
by other rules to either determine the final conclusion or other intermediate conclu-
sions. It is the hierarchical structure of a set of rules that creates derived features for
use by the example-based learning system. Hence, if the domain knowledge is not
hierarchically structured, then the networks created by KBANN will have no derived
features that indicate contextual dependencies or other useful conjunctions within
example descriptions. Also, the KBANN-net that results from translating a rule set with
no intermediate conclusions would have no hidden units. As a result, it would be
capable of only Perceptron-like learning [46].

The rules-to-network translator is described in the next three subsections. The first
of these subsections provides a detailed description of the translation; the second
contains an example of the translation process; and the third contains a pair of intuitive
arguments that KBANN’s translator is correct (full proofs appear in [55]).

6

TABLE 3 The rules-to-networks algorithm of KBANN.

1. Rewrite rules so that disjuncts are expressed as a set of rules that each have only one antecedent.

2. Directly map the rule structure into a neural network.

3. Label units in the KBANN-net according to their “level.”

4. Add hidden units to the network at user-specified levels (optional).

5. Add units for known input features that are not referenced in the rules.

6. Add links not specified by translation between all units in topologically-contiguous levels.

7. Perturb the network by adding near-zero random numbers to all link weights and biases.

A :− A’.
A’ :− B, C, D.

A :− A’’.
A’’ :− D, E, F, G.

Initial Rules Final Rules
R
e
w
r
i
t
i
n
g

A :− B, C, D.
A :− D, E, F, G.

Figure 3 Rewriting rules to eliminate disjuncts with more than one term, so that the rules may be translated into a
network that accurately reproduces their behavior.

3.4. The rules-to-network
algorithm

Table 3 is an abstract specification of the seven-step rules-to-network translation
algorithm. This algorithm initially translates a set of rules into a neural network. It
then augments the network so that it is able to learn concepts not provided by the
initial rules. In this subsection we describe, in detail, each of the seven steps of this
algorithm.

Step 1, Rewriting. The first step of the algorithm transforms the set of rules into a
format that clarifies its hierarchical structure and makes it possible to directly translate
the rules into a neural network. If there is more than one rule for a consequent,
then every rule for this consequent with more than one antecedent is rewritten as
two rules. (The only form of disjunction allowed by KBANN is multiple rules with the
same consequent.) One of these rules has the original consequent and a single,
newly-created term as an antecedent. The other rule has the newly-created term
as its consequent and the antecedents of the original rule as its antecedents. For
instance, Figure 3 shows the transformation of two rules into the format required by
the next steps of KBANN. (The need for this rewriting is explained in Section 3.6).

Step 2, Mapping. In the second step of the rules-to-network algorithm, KBANN

establishes a mapping between a transformed set of rules and a neural network.
Using this mapping, shown in Table 2, KBANN creates networks that have a one-to-
one correspondence with elements of the rule set. Weights on all links specified by
the rule set, and the biases on units corresponding to consequents are set so that the
network responds in exactly the same manner as the rules upon which it is based.
(See Section 3.6 for an explanation of the precise settings).

At the completion of this step, the KBANN-net has the information from the set of rules
concerning relevant input and derived features. However, there is no guarantee that

7

the set of rules refers to all of the relevant features or provides a significant collection
of derived features. Hence the next four steps augment the KBANN-net with additional
links, inputs units, and (possibly) hidden units.

Step 3, Numbering. In this step, KBANN numbers units in the KBANN-nets by their
“level.” This number is not useful in itself, but is a necessary precursor to several
of the following steps. KBANN defines the level of each unit to be the length of the
longest path to an input unit.2

Step 4, Adding hidden units. This step adds hidden units to KBANN-nets, thereby
giving KBANN-nets the ability to learn derived features not specified in the initial rule
set but suggested by the expert. This step is optional because the initial rules often
provide a vocabulary sufficient to obviate the need for adding hidden units. Hence,
hidden units are only added upon specific instructions from a user. This instruction
must specify the number and distribution among the levels established in the previous
step of the added units.

The addition of hidden units to KBANN-nets is a subject that has been only partially
explored. Methods of unit addition are described and evaluated elsewhere (e.g.,
[55, 35]).

Step 5, Adding input units. In this step, KBANN augments KBANN-nets with input
features not referred to by the rule set but which a domain expert believes are relevant.
This addition is necessary because a set of rules that is not perfectly correct may not
identify every input feature required for correctly learning a concept.

Step 6, Adding links. In this step, the algorithm adds links with weight zero to
the network using the numbering of units established in step 4. Links are added to
connect each unit numbered n � 1 to each unit numbered n. Adding links in this way,
in conjunction with the numbering technique described above, is slightly better than
several other methods for adding links that we have explored [55].

Step 7, Perturbing. The final step in the network-to-rules translation is to perturb
all the weights in the network by adding a small random number to each weight. This
perturbation is too small to have an effect on the KBANN-net’s computations prior to
training. However, it is sufficient to avoid problems caused by symmetry [47].

3.5. Sample
rules-to-network translation

Figure 4 shows a step-by-step translation of a simple set of rules into a KBANN-net.
Panel a shows a set of rules in PROLOG-like notation. Panel b is the same set of
rules after they have been rewritten in step 1 of the translation algorithm. The only
rules affected by rewriting are two which together form a disjunctive definition of the
consequent B.

2This numbering technique implicitly assumes that every chain of reasoning is complete; that is, every
intermediate conclusion is a part of a directed path from one or more inputs to one or more outputs.
However, there is no requirement that every chain will be complete. For incomplete chains, we attach
the unconnected antecedents directly to every input unit and unconnected consequents directly to every
output unit (with low-weight links).

8

A :− B, Z.
B :− C, D.
B :− E, F, G.
Z :− Y, not X.
Y :− S, T.

a − Prior to Step 1

A :− B, Z.
B :− B’.
B :− B’’.
B’ :− C, D.
B’’ :− E, F, G.
Z :− Y, not X.
Y :− S, T.

b − Step 1

c − Step 1 d − Step 2

e − Step 3 f − Steps 4−6

1 1 1

2 2

3

A

B Z

Y

C D E F G S T X

B’ B’’

Key

unnegated
dependency

negated
dependency

conjunction

Key

positively
weighted

link

negatively
weighted

link

unit

Figure 4 Sample rules-to-network translation.

Panel c is a graphical representation of the rules in panel b that shows the hierarchical
structure of the rules. In this figure, dotted lines represent negated antecedents while
solid lines represent unnegated antecedents. Arcs connecting antecedents indicate
conjuncts (i.e., this a standard AND/OR tree).

The next step of the translation algorithm (step 2 in Table 3) is to create a neural
network by mapping the hierarchical structure of the rules into a network. As a result,
there is little visual difference between the representations of the initial KBANN-net in
panel d and the hierarchical structure of the rules in panel c.

Panels e and f illustrate the process whereby links, input units, and hidden units not
specified in the set of rules are added to the KBANN-net (steps 3–6 of the algorithm).
Panel e shows units in the KBANN-net numbered by their “level.” In addition, panel
e shows a hidden unit (it is shaded) added to the network at level one. (For the
purposes of this example, assume that the user somehow instructed the network-to-
rules translator to add a single hidden unit at level one.)

Panel f shows the network after links with zero weight have been added to connect all
units that are separated by one level. Note that in addition to providing existing units
with access to information not specified by the domain knowledge, the low-weighted
links connect the added hidden units to the rest of the network.

There is no illustration of the final step of the rules-to-network translation algorithm
because the perturbation of link weights results only in minute changes that never
qualitatively affect the calculations of the initial network.

9

B C D

A

E

ω ω ω −ω

A :− B, C, D, not(E).

θ = 5ω/2

Figure 5 Translation of a conjunctive rule into a KBANN-net.

3.6. Translation of rules into
KBANN-nets

This section describes how KBANN translates rules containing the logical connectives
AND, OR, and NOT into a KBANN-net. Recall that individual rules are assumed to
be conjunctive, nonrecursive, and variable-free; disjuncts are encoded (without loss
of generality) as multiple rules as described above. The discussion in this section
assumes that features are only binary-valued. (The restriction to binary-valued features
is made here only for clarity of explanation. See Appendix A for a specification of the
language that KBANN can accept.)

The rules-to-network translator sets weights on the links and the biases of units so that
units have significant activation (i.e., activation near one) only when the corresponding
deduction can be made using the domain knowledge.3 Likewise, when the deduction
cannot be made using the knowledge base, then the corresponding unit should be
inactive (i.e., have activation near zero).

KBANN translates conjunctive rules into a neural network by setting weights on all
links corresponding to positive (i.e., unnegated) antecedents to v, weights on all links
corresponding to negated antecedents to � v, and the bias on the unit corresponding
to the rule’s consequent to (P �

1
2)v. P is the number of positive antecedents on a rule.

KBANN commonly uses a setting of v = 4, a value we empirically found to work well.
For example, Figure 5 shows a network that encodes: A:- B, C, D, not(E).

Intuitively, this translation method is reasonable. The weighted input from the links
minus the bias can only exceed zero when none of the negated antecedents are true
and all of the positive antecedents are true. This is the only case in which Equation 2,
the logistic activation function, will result in a value near 1.0. For instance in Figure 5,
if each of B, C and D have activations approximately equal to 1.0 and E has an
activation approximately equal to 0.0 then the net incoming activation to A will be
about 3v which is greater than 5

2 v. More generally, units encoding conjunctive rules
will only be significantly active when all positively-weighted links carry a signal near
one and all negatively-weighted links carry a signal near zero.

KBANN handles disjunctive rules, with two exceptions, in the same way it handles
conjunctive rules. The first exception is that KBANN rewrites disjuncts as multiple rules
with the same consequent in step 1 of the rules-to-network algorithm. The rewriting is
necessary to prevent combinations of antecedents from activating a unit in situations
where the corresponding consequent could not be deduced. For example, assume
there exists a consequent Y that can be proven by two rules, R1 and R2. Further
assume, that there are seven unnegated antecedents (labeled to 1, . . . , 7) to Y and
that [1 2 3] are antecedents for R1 while [4 5 6 7] are antecedents for R2. If the

3The translation of rules into neural structures has been described by McCulloch and Pitts [25] and
Kleene [20] for units with threshold functions. Thus, the original contribution of this work is the idea of
training networks that have been so constructed, rather than simply the construction of these networks.

10

A:−B. A:−C. A:−D. A:−E.

B C D

A

E

ω ω ω ω

θ = ω/2

Figure 6 Translation of disjunctive rules into a KBANN-net.

antecedents of R1 and R2 are all connected to Y such that either [1 2 3] or [4 5
6 7] can activate Y, then there is no way to set the bias of Y such that unwanted
combinations (e.g., [1 3 4 7]) cannot also activate Y. KBANN avoids this problem by
rewriting R1 and R2 as independent rules.

The second difference, from the conjunctive case, in the translation of disjunctive
rules is that the bias in the unit encoding the consequent is always set to v

2 . As in the
conjunctive case, KBANN sets link weights equal to v. For example, Figure 6 shows
the network that results from the translation of four disjunctive rules into a KBANN-net.
Intuitively, this is a reasonable strategy; the incoming activation overcomes the bias
when one or more of the antecedents is true.

3.7. Refining KBANN-nets KBANN refines its networks using backpropagation [47], a standard neural learning
method (other methods for the refinement of weights given classified examples could
be used [59]). Unfortunately, KBANN-nets create problems for backpropagation be-
cause they start with confident answers (i.e., the output units have activation near
zero or one), regardless of the correctness of those answers. This causes prob-
lems because under the standard formulation of backpropagation, when answers are
confident, little change is made to the network regardless of the correctness of the
answer. Rumelhart et al. argue this is a desirable property for standard neural net-
works because it means that they tend to be noise resistant [47, page 329]. However,
when the outputs of networks are completely incorrect, this property makes it very
difficult to correct the aspects of the networks that cause the errors.

In the general context of neural networks, several solutions that require only minor
adjustments to backpropagation have been proposed for this problem [15]. (Other,
more significant changes to backpropagation also address the problem [59].) The
results for KBANN-nets described in this article use the cross-entropy error func-
tion – Eq. 4 – suggested by Hinton [15] rather than the standard error function –
Eq. 3. The cross-entropy function interprets the training signal and network outputs
as conditional probabilities and attempts to minimize the difference between these
probabilities. In these equations, ai is the activation of output unit i, di is the desired
activation for unit i, and n is the number of output units.

Error =
1
2

n�

i=1

(di � ai)2 (3)

Error = �

n�

i=1

[(1 � di) � log2(1 � ai) + di � log2(ai)] (4)

In our experience, the cross-entropy error function has yielded improvements in both
training time and generalization for KBANN-nets.

11

In addition to changing the definition of error, we experimented with augmenting the
error function with a term that penalizes the network for making changes to the original
domain theory by adding to Equation 4 the regularization term in Equation 5.

regularizer = l
�

i � v

(vi � viniti)
2

1 + (vi � viniti)2
(5)

The l term in Equation 5 controls the tradeoff between the ability of the network to
learn the training set and distance from the initial rules. The principal effect of the ad-
dition of this regularization term is to increase the interpretability of trained KBANN-nets
by encouraging networks to leave their original weights unchanged. As interpreting
trained networks is beyond the scope of this paper, none of the experiments reported
here use Equation 5. However, it has proven beneficial to other work [35].

4. Experimental Testbeds

This section describes the two real-world datasets from the domain of molecular biol-
ogy, in particular DNA sequence analysis, that we use as testbeds. (For the purposes
of this article, it is sufficient to view DNA as a linear sequence of characters drawn
from

�
A, G, C, T � . Biologists refer to these as nucleotides.) Molecular biology,

and especially DNA sequence analysis, is an area well-suited for computational anal-
ysis. Because of the ‘Human Genome Project’ there is a large and growing database
of sequenced DNA that has been extensively studied. Thus, there is a large body of
training examples to work with. In addition, the Human Genome Project promises
to sequence DNA faster than it can be studied in biological laboratories. As a result,
there is a need for computer-based analysis that is able to augment the efforts of
biologists.

We have previously used both datasets described below to demonstrate the useful-
ness of the KBANN algorithm [33, 57]. Following a description of the notation used in
this paper, there are brief descriptions of the promoter and splice-junction datasets.
(See [55] for detailed descriptions.)

4.1. Notation The two biological datasets described below use a special notation for specifying
locations in a DNA sequence. The idea is to number locations with respect to a fixed,
biologically-meaningful, reference point. Negative numbers indicate sites preceding
the reference point while positive numbers indicate sites following the reference point.
Figure 7 illustrates this numbering scheme.

When a rule’s antecedents refer to input features, they first state a location relative
to the reference point in the sequence vector, then a DNA symbol, or a sequence of
symbols, that must occur. So @3 ‘AGTC’ means that an ‘A’ must appear three
nucleotides to the right of the reference point, a ‘G’ must appear four nucleotides
to the right of the reference point, etc. By biological convention, position numbers of
zero are not used. In rule specifications, ‘*’ indicates that any nucleotide will suffice.

In addition to this notation for specifying locations in a DNA sequence, Table 4 specifies

12

-5 -4 -3 -2 -1 +1 +2 +3 +4 +5

A G G T G C A T C C

Location
Number

Sequence

Reference Point

Figure 7 Location numbering in DNA sequences.

TABLE 4 Single letter codes for expressing uncertain DNA sequence locations.

Code Meaning Code Meaning Code Meaning
M A or C R A or G W A or T
S C or G Y C or T K G or T
V A or C or G H A or C or T D A or G or T
B C or G or T X A or G or C or T

a standard notation for referring to all possible combinations of ‘nucleotides’ using a
single letter [17]. They are compatible with the codes used by the EMBL, GenBank,
and PIR data libraries, three major collections of data for molecular biology.

4.2. Promoter recognition The first testbed used in this article is prokaryotic promoter recognition. (Prokaryotes
are single-celled organisms that do not have a nucleus — e.g., E. coli.) Promoters are
short DNA sequences that precede the beginnings of genes. Thus, an algorithmic
method of promoter recognition would make it possible to better identify the starting
locations of genes in long, uncharacterized sequences of DNA. Promoters can be
detected in “wet” biological experiments; they are locations at which a protein named
RNA polymerase binds to the DNA sequence.

The input features for promoter recognition are a sequence of 57 consecutive DNA
nucleotides. Following biological convention, the reference point for promoter recog-
nition is the site at which gene transcription begins (if the example is a promoter). The
reference point is located seven nucleotides from the right of the 57-long sequence.
Thus, positive examples contain the first seven nucleotides of the transcribed gene.

Table 5 contains the initial rule set used in the promoter recognition task. For example,
according to these rules there are two sites at which the DNA sequence must bind to
RNA polymerase – the minus 10 and minus 35 regions. (These regions are named for
their distance from the reference point.) These rules were derived from the biological
literature [34] by M. Noordewier [57]. The rule set in Table 5 is translated by KBANN

into a neural network with the topology shown in Figure 8. Recall that KBANN adds
additional low-weighted links (not shown) so that if additional sequence information is
relevant, the algorithm can capture that information during training.

The training examples consist of 53 sample promoters and 53 nonpromoter se-
quences. Prior to training, the rules in Table 5 do not classify any of the 106 examples
as promoters. Thus, the rules are useless as a classifier. Nevertheless, they do
capture a significant amount of information about promoters.

The promoter recognition problem, which we previously introduced [57], has become

13

TABLE 5 Initial rules for promoter recognition. (‘*’ matches to anything at the sequence location.)

promoter :- contact, conformation.
contact :- minus-35, minus-10.

minus-35 :- @-37 ‘CTTGAC’. minus-10 :- @-13 ‘TA*A*T’.
minus-35 :- @-36 ‘TTGACA’. minus-10 :- @-12 ‘TA***T’.
minus-35 :- @-36 ‘TTG*CA’. minus-10 :- @-14 ‘TATAAT’.
minus-35 :- @-36 ‘TTGAC’. minus-10 :- @-13 ‘TATAAT’.

conformation :- @-45 ‘AA**A’.
conformation :- @-45 ‘A***A’, @-28 ‘T***T*AA**T’, @-04 ‘T’.
conformation :- @-49 ‘A****T’, @-27 ‘T****A**T*TG’, @-01 ‘A’.
conformation :- @-47 ‘CAA*TT*AC’, @-22 ‘G***T*C’, @-08 ‘GCGCC*CC’.

Promoter

Contact

ConformationMinus 10Minus 35

-50 +7DNA Sequence

Figure 8 The initial KBANN-net for promoter recognition (low-weighted links are not shown). Each box at the bottom
of the figure represents one sequence location which is encoded by four input units.

one of the standard problems for theory-revision systems. It has been used to
test inductive theory-refinement systems (e.g., LABYRINTH [54] and EITHER [36]) and
inductive logic-programming systems (e.g., FOCL and GRENDEL [7]). It has also been
used as a test problem for exemplar-based learning systems (e.g., [8]). However, to
our knowledge no system has exceeded the performance we report in this article.

4.3. Splice-junction
determination

The second testbed is eukaryotic splice-junction determination. (Unlike prokaryotic
cells, eukaryotic cells have a nucleus.) Splice junctions are points on a DNA sequence
at which the cell removes superfluous DNA during the process of protein creation.
The problem posed in this dataset is as follows: given a sequence of DNA, recognize
the boundaries between exons (the parts of the DNA sequence retained after splicing)
and introns (the intervening parts of the DNA sequence that are spliced out). This
problem consists of two subtasks: recognizing exon/intron boundaries (referred to
in this paper as “E/I” sites — biologists call these sites “donors”), and recognizing
intron/exon boundaries (“I/E” sites — “acceptors”).

14

TABLE 6 Initial rules for splice-junction determination.

E/I :- @-3 ‘MAGGTRAGT’, not(E/I-stop).

E/I-stop:-@-3 ‘TAA’. E/I-stop:-@-4 ‘TAA’. E/I-stop:-@-5 ‘TAA’.
E/I-stop:-@-3 ‘TAG’. E/I-stop:-@-4 ‘TAG’. E/I-stop:-@-5 ‘TAG’.
E/I-stop:-@-3 ‘TGA’. E/I-stop:-@-4 ‘TGA’. E/I-stop:-@-5 ‘TGA’.

I/E :- pyramidine-rich, @-3 ‘YAGG’, not(I/E-stop).
pyramidine-rich :- 6 of (@-15 ‘YYYYYYYYYY’).
For i from (-30 to +30 skipping 0)

{@<i> ‘Y’ :- @<i> ‘C’. @<i> ‘Y’ :- @<i> ‘T’.}

I/E-stop:-@1 ‘TAA’. I/E-stop:-@2 ‘TAA’. I/E-stop:-@3 ‘TAA’.
I/E-stop:-@1 ‘TAG’. I/E-stop:-@2 ‘TAG’. I/E-stop:-@3 ‘TAG’.
I/E-stop:-@1 ‘TGA’. I/E-stop:-@2 ‘TGA’. I/E-stop:-@3 ‘TGA’.

See Table 4 for meanings of letters other than A, G, T, C. The construct “For i . . . ”
creates 120 rules that define a disjunct at each location in the input. Consequents
with an antecedent of the form ‘n of (...)’ are satisfied if at least n of the
parenthesized antecedents are true.

This dataset contains 3190 examples, of which approximately 25% are I/E, 25% are
E/I and the remaining 50% are neither. (Due to processing constraints, most of our
tests involving this dataset use a randomly-selected set of 1000 examples.) Each
example consists of a DNA sequence, which is 60 nucleotides long, categorized
according to the type of boundary at the center of the sequence; the center of the
sequence is the reference location used for numbering nucleotides.

In addition to the examples, information about splice-junctions includes the set of
23 rules in Table 6. (This count does not include the rules defined by the iterative
construct ‘‘For i from . . . ’’ which define the meaning of ‘Y’.) M. Noordewier
[33] derived this set of rules from the biological literature [60]. Using these rules,
networks are configured with output units for the categories I/E and E/I. The third
category (neither) is considered true when neither I/E nor E/I exceeds a threshold.
(All tests reported in this work use 0.5 as the threshold.) These rules classify 61%
of the examples correctly. As with promoter recognition, the success rate of the
initial splice-junction rules is due largely to their tendency to “just say no”; the rules
correctly classify only 40% of the I/E and 3% of the E/I examples. Figure 9 depicts an
abstracted version of a KBANN-net constructed from these rules.

5. Empirical Tests of KBANN

This section details three sets of empirical tests that explore how well KBANN works
as opposed to Section 3, which describes how KBANN works. In this empirical study
we address the following questions:

15

−30 +30

I/E−stop E/I−stop

I/EE/I

pyramidine−rich

@−3 ’Y’
@−3 ’M’ @3 ’R’

DNA Sequence

Figure 9 The initial splice-junction KBANN-net. Each box at the bottom of the figure represents one sequence location
which is encoded by four input units. Shaded units represent definitional features. By choice, they are
“fixed” in that neither the weights of incoming links nor the bias may change during training.

� How does KBANN compare with:

– purely inductive learners?

– other hybrid systems?

– solutions proposed in the biological literature?

� How much of KBANN’s performance is dependent upon:

– the identification of informative input features?

– the identification of relevant derived features?

� How does KBANN’s relative performance depend upon:

– the number of training examples?

– the quality of the domain theory?

Briefly, tests in Section 5.1, show that trained KBANN-nets are very effective classifiers
by comparison to every other method we have tried. The next set of tests, also in
Section 5.1, show that the relative advantage of KBANN over standard backpropa-
gation (KBANN’s underlying empirical algorithm) varies inversely with the number of
training examples. Following this, tests in Section 5.5 show that it is the combina-
tion of feature identification and derived feature construction that are responsible for
KBANN’s relative effectiveness. Finally, in Section 5.9, lesion studies show that our
approach is robust to errors in the initial domain theory.

5.1. KBANN versus other
learning systems

Tests in this section explore the hypothesis that KBANN is an effective and efficient
learning algorithm, in terms of its ability to generalize to examples not seen dur-
ing training. We compare KBANN, using Section 4’s splice-junction and promoter
testbeds, to six empirical learning systems and two systems which learn from both
theory and data.

16

5.2. KBANN versus empirical
learners

This section compares the generalization ability of KBANN to systems that learn strictly
from training examples. The comparisons are run in three ways. First, we compare
KBANN to six algorithms for its ability to extract information from the training examples.
Second, KBANN is compared to backpropagation — the most effective of the six em-
pirical algorithms — to investigate KBANN ’s ability to learn from small sets of examples.
Third, we compare the learning and generalization of KBANN and backpropagation in
terms of training effort.

Seven-way comparison of algorithms
In this section, KBANN is compared to six empirical learning algorithms: standard back-
propagation [47], ID3 [42], “nearest neighbor”, PEBLS [8], Perceptron [46], and Cobweb
[11]4. For standard backpropagation, we use networks with a single, completely-
connected layer of hidden units in which weights are initialized to randomly selected
values with an absolute value of less than 0.5. (Networks for promoters and splice-
junctions respectively have 23 and 24 hidden units.) This topology generalizes as well
as, or better than, all others we tried during a coarse search of topology space. The
results of these tests show that, in almost every case, KBANN is statistically-significantly
superior to these strictly-empirical learners.

Method. Following Weiss and Kulikowski’s suggestion [61] we evaluate the systems
using cross-validation5. For the 106-example promoter dataset we use leaving-one-
out cross-validation. “Leaving-one-out” is an extreme form of cross-validation in
which each example is successively left out of the training set. So, for promoter
recognition leaving-one-out requires 106 training passes in which the training set has
105 examples and the testing set has one example. Leaving-one-out becomes pro-
hibitively expensive as the number of available examples grows. Weiss and Kulikowski
[61] suggest, as the size of the training set grows, that 10-fold cross-validation yields
generalization results that are equivalent to leaving one out. Hence, we use 10-fold
cross-validation for the 1000-example splice-junction determination dataset.

In N-fold cross-validation the initial ordering of examples affects the split into training
and testing examples. As a result, testing on the splice-junction problem uses eleven
different example orderings. The error rates we report are simple averages of the
eleven trials. Training and testing set membership is not affected by the initial ordering
of examples in leaving-one-out testing as the test set always consists of a single
example.

Every algorithm other than ID3 and nearest neighbor is sensitive to the order of
example presentation6. Hence, the tests of algorithms other than ID3 and nearest
neighbor, use eleven different orderings of the 106 promoter examples. Rather than

4These tests all use implementations written at Wisconsin that are based on the descriptions in the
cited references. The lone exception is Cobweb, for which we used Gennari’s CLASSIT code [14].

5Note that we use the term “cross-validation” in the sense used by Weiss and Kulikowski [61] to indicate
a testing methodology in which the set of examples are permuted and divided into N sets. One division is
used for testing, the remaining N � 1 divisions are used for training. The testing division is never seen by
the learning algorithm during its training. This procedure is repeated N times so that every partition is used
once for testing. This is a different definition for cross-validation than is often found in the neural networks
literature, in which a “cross-validation” set is used during training to prevent overfitting of the training set.

6Backpropagation is not sensitive to presentation order when weights are updated only after the pre-
sentation of all of the training examples. In all of our tests, weights are updated after every example.

17

simply recording the average number of errors over the eleven trials, statistics are
maintained for each example. Examples are counted as incorrect only if they are
incorrectly classified on the majority of the eleven trials. This error-scoring method
captures the best result of each algorithm; it always results in a decrease in the number
of errors. For example, Cobweb is quite sensitive to presentation order. It misses
many examples two or three times, but misses few examples more than six times.
Hence, the simple average error rate for Cobweb7 is more than double than the level
reported in Figure 10. Conversely, Perceptron is relatively insensitive to presentation
order. Hence, this definition of incorrectness has little effect on Perceptron; its error
rate drops by less than one example. The effect on other algorithms is between these
extremes, reducing the error rate by from one to two examples8.

For KBANN and standard backpropagation, classification of examples is made with
respect to a threshold. If the activation of the output unit is greater than the threshold,
then the example takes the category of the most active output unit. Otherwise, the
example falls into the negative category. For instance, in the splice-junction problem,
if the output activations of the E/I and I/E outputs are 0.8 and 0.6 respectively and
the threshold is 0.5, then the example would be categorized as E/I. Conversely, if the
activations of the E/I and I/E units are 0.1 and 0.2 and the threshold is still 0.5, then
the category assigned by the network would be neither.

Finally, the initial randomization of weights in a neural network can affect learning. To
compensate for this, an extra level of experimentation is required for both standard
backpropagation and KBANN. Specifically, each of the eleven example permutations of
each dataset is tested using ten different initial states. Hence, each test requires 110
separate runs of N-fold cross-validation.9 The average of the output unit activations
from the ten trained networks determines the classification. So, if the output unit of
a promoter recognition network is 0.60 on nine trials and 0.01 on the tenth trial, then
the classification of the network is based upon the relationship between 0.55 and the
threshold. For all tests, the threshold was set to 0.5.

We train networks until one of three following stopping criteria is satisfied:

1. On 99% of the training examples, the activation of every output unit is within
0.25 of correct.

2. Every training example is presented to the network 100 times. (I.e., the network
has been trained for 100 epochs.)

3. The network is classifying at least 90% of the training examples correctly but
has not improved it ability to classify the training examples for five epochs. (This
implements the patience stopping criterion [10].)

In general, networks trained for promoter recognition stopped training on the first
criterion – they are able to perfectly learn the training data. On the other hand,

7For an incremental system like Cobweb, it may not be reasonable to count promoter errors following
the method described. The method implies that an error is only an error if it occurs most of the time, over
different instance orderings. However, the hypothesis of incremental systems is that the user cannot do
this sort of post-collection analysis. Instead, the algorithm is expected to execute and provide answers
in real-time and provide answers while running. As a result, the simple average error rate is probably the
best indicator of the true error rate for Cobweb. Nevertheless, numbers reported for Cobweb reflect the
counting method used for the other algorithms to allow controlled comparisons.

8Due to processing time considerations, all tests of the promoter domain after Figure 11 use simple
average error rates and 10-fold cross-validation.

9For the promoter dataset in which leaving-one-out testing is used, this meant training 11,660 networks!

18

KBANN

Cobweb

BP

PEBLS
Perceptron

Nearest
Neighbor

ID3
O’Neill

Stormo

0 3 6 9 12
Number of False Positives

0 3 6 9 12
Number of False Negatives

Figure 10 Test-set performance on the promoter recognition task assessed using leaving-one-out cross-validation.

KBANN-nets for splice-junction determination often terminate on the second or third
criterion because it is difficult for them to perfectly learn the training data.

These termination criteria are stringent enough so that it is possible that the networks
could overfit the training set, and thereby impair generalization. Hence, in a separate
experiment, we empirically tested for overfitting by assessing generalization after each
epoch of training. Networks were trained with this periodic generalization assessment
until they reached one of the three above criteria. If the networks had overfit the
training data, then we would have observed a decline in generalization at the end of
the training period. Although generalization often peaked before the end of training,
we never observed a significant or consistent decline. Because we were unable to
detect overfitting, we did not pursue any techniques for its prevention. For example,
we did not prune the decision trees created by ID3 [27]. Nor did we use a “tuning
[cross-validation] set” [63] to decide when to stop training our neural networks.

Results and discussion. Figures 10 and 11 present the comparisons of KBANN

to the six empirical-learning algorithms listed above10. In addition to these empirical
algorithms, Figure 10 contains the accuracies of two methods suggested by biologists
for promoter recognition. One of these methods was suggested by Stormo [53]. This
method learns through the presentation of a set of examples of some category. It
counts how many times each nucleotide appears at each position. These counts
are used to build a scoring matrix, which is then applied to new sequences; those
that score above some threshold (we used a threshold of zero) are predicted to be
members of the class being learned.

The other method suggested by a biologist is a non-learning, hand-refined, technique
for differentiating between promoters and non-promoters described by O’Neill [34].
He analyzed a set of promoters and produced a collection of filters to be used for
promoter recognition. If a sequence properly matches the filters, it is classified as a
promoter. We directly implemented this approach. (Note that although we derived
the promoter domain theory from the conclusions of O’Neill’s paper; it is not identical
to the promoter-finding technique he proposed.)

KBANN generalizes better than every empirical learning system tested on both of the
biological domains. In most cases, differences are statistically significant with 99.5%
confidence based on a one-tailed t-test. The only exceptions to this generalization

10Cost and Salzburg [8] report making only four errors on the promoter testbed. However, we were
unable to reproduce their results with our implementation of PEBLS.

19

KBANN

PEBLS

BP

ID3

Perceptron

Cobweb

Nearest
Neighbor

0 10 20 30
Percent Errors

on ‘neither’

0 10 20 30
Percent Errors

on E/I

0 10 20 30
Percent Errors

on I/E

Figure 11 Test-set performance, assessed using 10-fold cross-validation, on the splice-junction determination task
with 1000 training examples.

Examples
Training (75%) Testing (25%)
Training Set 1
Training Set 2
Training Set 3

Figure 12 The partitioning of a set of examples to form a learning curve.

are that KBANN is only marginally better than standard backpropagation and PEBLS

on the splice-junction problem. We attribute the comparatively poor performance of
KBANN on this problem to the sparseness of the initial theory of splice junctions (see
Table 6 or Figure 9).

Learning from small sets of examples
One hypothesis about hybrid learning systems is that they should be more efficient
than a system that learns from data alone. An aspect of this efficiency hypothesis is
that a theory and data learning system should require fewer training examples than
systems that learn only from data. Hence, the performance of algorithms when a
large amount of training examples are available, as exemplified by the tests in the
prior section, is only part of the story. The ability to learn from relatively few training
examples is important because training examples are often hard to find or expensive
to collect. Thus, it is important for a learning system to be able to extract useful
generalizations from a small set of examples.

Method. These tests compare KBANN only to standard backpropagation, as the
above tests show backpropagation to be the most effective of the systems for learning
from examplesonly. “Learning curves” are built by splitting the set of examples into two
subsets, one containing approximately 25% of the examples and the other containing
the remaining examples. The 25% set is put aside for testing. Then, the 75% set
is partitioned into sets of increasing size, such that smaller sets are always subsets
of larger sets. Networks are trained using subsets of the 75% set and tested using
the 25% set. Figure 12 illustrates the method of example partitioning we use to form
learning curves.

20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 10 20 30 40 50 60 70 80 90 100
Number of Training Examples (26 Examples Reserved for Testing)

T
es

t S
et

 E
rr

or
 R

at
e

KBANN
ANN

Figure 13 Learning curves for the promoter domain with 106 examples. For KBANN, zero training examples represents
the accuracy of the initial theory. For ANN, zero training examples represents random guessing.

0.
0

0.
2

0.
4

0.
6

0 100 200 300 400

T
es

t S
et

 E
rr

or
 R

at
e

Number of Training Examples (798 Examples Reserved for Testing)

ANN

KBANN

400 800 1200 1600 2000 2400

Figure 14 Learning curves for the splice-junction domain with 3190 examples. For KBANN, zero training examples
represents the accuracy of the initial theory. For ANN, zero training examples represents random guessing.

This partitioning is dependent upon the ordering of the examples. Hence, we repeat
the partitioning eleven times with the same permutations used for each algorithm. As
above, these tests are repeated using ten initial sets of network weights. (The ten
initial weight sets and eleven permutations are the same as those in the seven-way
comparison of algorithms.)

Results and discussion. The results, presented in Figures 13 and 14, verify the
hypothesis that KBANN is more efficient than standard backpropagation in terms of
its ability to extract accurate generalizations from a small set of training examples.
For both the promoter and splice-junction datasets, the test set error rate on small
sets of training data is about 20 percentage points less for KBANN than for standard
backpropagation. The difference steadily declines on both datasets as the number
of training examples increases. On the promoter set (Figure 13), KBANN has an
advantage of about four percentage points with respect to standard backpropagation
after training using the largest training set. On the other hand, KBANN has a two
percentage point disadvantage with respect to backpropagation on the splice junction
set after training on the largest available set of training examples.11

A different way of analyzing these learning curves is in terms of how quickly error rates
reach the levels attainable using every training example. On the promoter dataset,
KBANN-nets require only about 15 training examples to achieve an error rate within five
percentage points of that achieved with the full set of 80 training examples. On the
other hand, standard backpropagation requires more than 50 training examples to

11At 900 training examples, in Figure 14, KBANN is at a 1.2 percentage point disadvantage to standard
ANNs. This contrasts with results reported in the seven-way comparison that show KBANN slightly superior
to standard ANNs when trained with 900 examples. This dichotomy of results reflects a difference in
error counting. Figure 14 uses a simple average whereas the Figure 11 uses the more complex method
described earlier in this section.

21

approach the levels it achieves with 80 training examples. The results on the splice-
junction problem are similar. KBANN requires roughly one-third the number of training
examples required by backpropagation to reach error rates on testing examples that
are close to the levels asymptotically attained by each system.

Discussion of the comparison of KBANN to empirical learning algorithms
The results reported in Figures 10 and 11 describe only the asymptotic performance of
each system. On the basis of these comparisons, KBANN is the most effective learning
algorithm. However, many problems are characterized by a paucity of data. Hence,
the performance of systems when there is little data available is at least as important as
the performance when a large collection of examples is available. Thus, the learning
curves in Figures 13 and 14, which compare the performance of backpropagation to
that of KBANN, are at least as important as the results in Figures 10 and 11.

5.3. KBANN versus theory
and data learners

Tests in this section compare KBANN to two systems that learn from both theory
and data. The first system is EITHER [36]. This system uses ID3 to make minimal
corrections to domain theories. The second system is Labyrinth-k [54], an extension
of Labyrinth that allows the insertion of domain knowledge. Labyrinth is, in turn,
based on Cobweb [11]. (See Section 6.1 for a more detailed description of these
algorithms.) Like KBANN, these systems are able to use initial knowledge that is both
incorrect and incomplete as the basis for learning.

Method. Results for both Labyrinth-k and EITHER were supplied by the authors of
the respective systems, and appear in published sources [36, 54]. Fortunately, the
systems were tested using virtually identical procedures. The testing of KBANN closely
follows the method used by these systems.

The systems were tested on only the promoter dataset. To our knowledge, neither
Labyrinth-k nor EITHER have been tested on the splice-junction problem. EITHER

cannot currently be applied to the splice-junction problem because it is unable to
handle negated antecedents. The methodology for constructing these learning curves
is very similar to that of the prior section. Specifically, the initial step was to partition
the promoter dataset into a test set of 26 examples and a training set of 80 examples.
We further partitioned the training set into sets of 10, 20, . . . , 80 examples in which
smaller sets are subsets of larger sets. These subsets were used for training. To
smooth statistical fluctuations, we repeated this procedure five times.

Results. Figure 15 plots the predictive accuracy of each of the three hybrid learning
systems. As seen in this figure, KBANN is consistently at least 5 percentage points
better than both of the other systems. Aside from a blip in the initial performance of
Labyrinth-k, EITHER consistently has the poorest performance on this problem.

5.4. Discussion of the
empirical comparisons

The results of the tests in this section suggest that KBANN generalizes better than both
(a) systems that learn only from examples (i.e., empirical learners) and (b) systems that,
like KBANN, learn from both theory and data. KBANN’s relative weakness on the splice-
junction dataset can be attributed to two factors. First, the splice-junction domain
theory is sparse. It allows for little more than Perceptron-like learning. Hence, one
might expect that a richer domain theory would improve the performance of KBANN-

22

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 10 20 30 40 50 60 70 80 90 100
Number of Training Examples (26 Examples Reserved for Testing)

T
es

t S
et

 E
rr

or
 R

at
e

KBANN

EITHER
Labyrinth-k

Figure 15 Accuracy of three hybrid learning systems for promoter recognition.

nets. This hypothesis is yet to be tested, as there is no better domain theory for splice
junctions.

A second hypothesis to explain the relatively poor performance of KBANN on the
splice-junction problem is that standard backpropagation better utilizes the large
dataset available in the splice-junction domain. An alternate view of this hypothesis
is that the domain theory prevents the network from learning a solution which differs
significantly from the solution proposed by the theory. This hypothesis suggests that
standard backpropagation should outperform KBANN only when large amounts of
training data are available. The learning curve in Figure 14 supports this hypothesis.

5.5. Sources of KBANN’s
Strength

Taking a very narrow view, the results in the prior section indicate that, given just the
right amount of training data, KBANN generalizes better than systems that learn from
theory and data (Figure 15) and systems that learn from data alone (Figures 10 and 11).
This section further explores these results. In particular, the first subsection tests (and
rejects) the hypothesis that the difference between KBANN and other hybrid learning
systems is due only to differences in the learning algorithms underlying each system.
The following subsection investigates two hypotheses that attempt to explain why
KBANN improves upon standard backpropagation, its underlying empirical learning
algorithm.

5.6. Comparing KBANN to
other theory & data learners

One hypothesis to account for KBANN’s advantage with respect to EITHER and Labyrinth-
k (on the datasets we tested) is that the difference is due wholly to KBANN’s underlying
learning algorithm. In other words, KBANN outperforms both EITHER and Labyrinth-k
because backpropagation generalizes better than both ID3 and Labyrinth on our
molecular-biology datasets. Data presented earlier (Figures 10 and 11) support
this contention; these figures show that backpropagation outperforms both ID3 and
Cobweb12 on both the promoter and splice-junction datasets. Figure 16 compares
backpropagation, ID3, and Cobweb using the same experimental methodology as
Figure 15. This figure lends further credence to this hypothesis concerning the relative
ability of backpropagation. In addition, a number of empirical studies [50, 2] suggest
that, over a wide range of conditions, backpropagation is as good or better than other
empirical learning systems at classifying examples not seen during training. There-
fore, it is reasonable to conclude that some of the power of KBANN is due simply to
its underlying empirical learning algorithm.

Yet, Figure 17 indicates that there is more to KBANN than simply backpropagation.
This figure plots the improvement of each hybrid system over its underlying empirical
algorithm as a percentage of the total possible improvement. It shows that KBANN

12Labyrinth slightly outperforms Cobweb [54].

23

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 10 20 30 40 50 60 70 80 90 100
Number of Training Examples (26 Examples Reserved for Testing)

T
es

t S
et

 E
rr

or
 R

at
e

backpropagation

ID3

Labyrinth

Figure 16 Accuracy of empirical algorithms underlying hybrid learning systems on the promoter data.

0
10

20
30

40
50

60

0 10 20 30 40 50 60 70 80 90 100
Number of Training Examples (26 Examples Reserved for Testing)

Im
pr

ov
em

en
t

KBANN

EITHER
Labyrinth-k

improvement � 100 �
< error rate of underlying algorithm > � < error rate of hybrid algorithm >

< error rate of underlying algorithm >

Figure 17 Improvement of hybrid learning systems over their underlying empirical algorithms.

proportionally improves more on its underlying learning algorithm than both EITHER

and Labyrinth-k. In other words, KBANN makes more effective use of the domain
knowledge than the other two systems. This result refutes the above hypothesis that
KBANN’s effectiveness is due wholly to the relative superiority of its underlying learning
algorithm.

5.7. Comparing KBANN to
standard backpropagation

The results just presented indicate that KBANN’s superiority to other hybrid systems is
due partly, but not wholly, to its use of backpropagation. However, the results do not
address why KBANN improves upon backpropagation. This is discussed below.

Two hypotheses may account for KBANN’s abilities with respect to backpropagation:

1. Structure is responsible for KBANN’s strength. That is, the topology of a KBANN-
net is better suited to learning in a particular domain than a standard ANN (i.e.,
an ANN with a single layer of hidden units and complete connectivity between
layers).

2. Initial weights are responsible for KBANN’s strength. That is, the initial weights
of a KBANN-net select critical features of the domain, thereby simplifying learn-
ing and reducing problems resulting from spurious correlations in the training
examples.

The following subsections test each of these hypotheses using the promoter domain.

24

Standard KNN "structure−only" network

Figure 18 Standard KBANN-nets versus structure-only networks.

Structure is responsible for KBANN’s strength
If the first hypothesis is correct, then a network that has the structure given by the rules,
but initially random weights, should be as effective at predicting unseen examples as
a standard KBANN-net.

Method. We test this hypothesis by creating networks that have the exact structure
of a KBANN-net, but with all link weights and biases randomly distributed around zero.
The learning abilities of these “structure-only” networks can then be compared to
that of standard KBANN-nets. Figure 18 graphically depicts the difference between
standard and structured networks.

This experiment uses the following procedure to tightly control the results.

Create a KBANN-NET.
Duplicate the network.
In the duplicate network, reset all link weights set by the domain

knowledge to randomly selected values within 0.5 of zero.
In the duplicate network, reset all biases to randomly selected

values within 0.5 of zero.
Test the pair of networks using eleven repetitions of ten-fold

cross-validation. (Use the same example orderings as those used
in previous experiments.)

To smooth any differences resulting from slightly different initial weight settings, we
repeat this procedure ten times. Hence, we compare structure-only networks and
standard KBANN-nets using 110 repetitions of ten-fold cross-validation.

Results. Figure 19 contains the results of these tests. It reports two sets of data:
generalization performance and training effort (measured in terms of number of epochs
required for training). The results clearly refute the hypothesis that the strength of
KBANN arises solely from the determination of network topology. Not only is the
structured network worse at generalizing to promoter testing examples, it is slower
to train than standard KBANN-nets on both domains. The differences are statistically
significant with 99.5% confidence according to a one-tailed, paired-sample t-test.

Note that the structured network is also slower to train and worse at generalizing
to testing examples than standard ANNs. However, the difference in generalization
between standard ANNs and structured networks is not statistically significant.

25

5
10

15

Standard
KBANN

Structured
network

Standard
ANN

T
ra

in
in

g
E

po
ch

s

0
4

8
12

Standard
KBANN

Structured
network

Standard
ANN

T
es

t s
et

 e
rr

or
 r

at
e

Error

Epochs

Figure 19 Learning by standard KBANN-nets and structure-only nets.

Network to which no links
have been added

Network to which 33% of the missing links
have been added

Figure 20 The creation of networks to test the hypothesis that initial weights are a significant contributor to KBANN.
(Darkened input units indicate features identified as important by the domain theory.)

Initial weights are responsible for KBANN’s strength
This section tests the second hypothesis, that the strength of KBANN results from the
weights on links in KBANN-nets identifying relevant features of the environment. We
were unable to devise a direct test of this hypothesis. Hence, we reformulated this as
follows: If feature identification is the source of KBANN’s strength, then an ANN that is
preferentially connected to the features identified by the domain theory should be as
effective at generalization as a KBANN-net.

Method. To test this reformulated hypothesis, we used standard ANNs except
that the single layer of hidden units was initially connected to only those input units
explicitly mentioned by the domain knowledge (as illustrated in Figure 18). In the
promoter domain, this creates a network with about 1

4 of the number of links in a
fully-connected network.

To this network, we added the missing links between the input and hidden layers
in 5% increments (by random selection) until the hidden and input layers were fully
connected. At each 5% step of the missing links were added, the network was
copied, and the copy was put aside for experimentation. Figure 20 illustrates this link
addition procedure when 33% of the links have been added.

To smooth fluctuations resulting from the addition of particularly important links, we re-

26

0.00

0.05

0.10

0.15

0.0 0.2 0.4 0.6 0.8 1.0

Probability of a Link Being Added

T
es

t S
et

 E
rr

or
 R

at
e

KBANN

Fully-Connected ANN

Figure 21 The classification performance of standard ANNs that initially have links only to those features specified by
the promoter domain theory.

peated this procedure three times, thereby creating 60 networks. These 60 networks
were trained using ten-fold cross-validation and the standard eleven permutations of
the training examples.

Results. Figure 21 plots the average error rate of these “missing link” networks.
Networks which have only links identified by the initial domain knowledge are worse at
generalizing to testing examples than both KBANN-nets and standard ANNs. However,
by the time 5% of the missing links have been added, the missing-link networks
outperform standard ANNs. Missing-link networks remain superior to standard ANNs
until 80% of the missing links have been added. From 80% to 95% of the links
added, the missing-link networks are slightly inferior to fully-connected networks.
The inversion between 80% and 95% appear to be anomalous; it is not statistically
significant. The performance of missing-link networks peaks when 15% of the missing
links have been added. This best-case performance is significantly inferior to that of
KBANN (with 99.5% confidence using a one-tailed t-test). Thus, these results indicate
that some, but not all of the improvement of KBANN over standard backpropagation,
results from its identification of important input features.

5.8. Discussion of the
sources of KBANN’s strength

These tests indicate that alone neither structure nor weight (focusing) account for the
superiority of KBANN-nets over standard ANNs. Therefore, the third hypothesis, that it
is a combination the structure and the focusing weights that give KBANN its advantage
over backpropagation, is likely true.

An analysis of the rules-to-network translation algorithm makes it less than surpris-
ing that the combination of structure and weighting are necessary for the success
of KBANN. This combination focuses the network on significant input features and
provides the set of derived features that are likely important. Structure alone provides
only the potential for the derived features while weight alone provides only the signif-
icant inputs. It is the combination of structure and weight that supplies the derived
features that give KBANN its power.

5.9. Noise in domain
theories

Tests in this section address the hypothesis that KBANN-nets are relatively insensitive to
noise in domain theories. If this hypothesis is correct, then the domain theory provided
to KBANN need only be approximately correct for it to supply useful information. This
hypothesis is tested by systematically adding noise to domain theories. Tests of this
hypothesis, in addition to verifying the hypothesis, suggest bounds on the correctness
of the initial domain theory within which KBANN can be expected to generalize better

27

than standard ANNs.

There has been little other work on the addition of noise to domain theories and
the existing work does not completely investigate the problem space. For example,
Richards tested the effect of the number of errors in a domain theory on his FORTE

system [45]. Pazzani et al. [37] investigated the effect of several different types of
domain-theory problems by introducing random faults into theories in much the style
we describe below. Because neither of these papers was extant at the time of our
experiments, the types of noise described here, and the methods used to approximate
that noise, represent our independent attempt to identify and test important types of
“domain-theory noise.”

Domain-theory noise can be split into two categories: rule-level noise and antecedent-
level noise. Each of these categories has several subcategories. The discussion
below assumes, for the sake of clarity, a two-category (i.e., positive and negative)
domain and that the rules use negation-by-failure.

Rule-level noise affects only whole rules. It appears in either of the following two
guises:

� missing rules: Rules required for the correct operation of the domain theory
are missing. The effect of missing rules which are used either to predict an
output class or as unnegated antecedents of other rules is to render some
chains of reasoning impossible. As a result, a rule set that is missing some rules
underpredicts the positive class.

� added rules: Rules not required for correct operation of the domain theory are
present. The effect of added rules is to make possible proofs that should not
occur. Hence, rule sets with extra rules overpredict the positive class.

Antecedent-level noise is independent of whether a rule set is missing rules or has
unnecessary rules. Rather, antecedent-level noise looks at the problems that result
from the improper statement of the antecedents of individual rules. This impropriety
can occur in any of three forms:

� extra antecedents: Extra antecedents are those not required in the correct
rule. Their effect is to overconstrain the application of a rule. Hence, extra
antecedents result in a rule set that underpredicts the positive class.

� missing antecedents: Missing antecedents are antecedents that should be part
of a rule, but are not. The effect of missing antecedents is to underconstrain the
application of a rule. As a result, missing antecedents, much like added rules,
result in overpredicting the positive class.

� inverted antecedents: Inverted antecedents are antecedents that should appear
in a rule, but in the opposite way. That is, a negated antecedent should actually
be unnegated (or vice versa). The effect of an inverted antecedent is to make the
rule apply in the wrong situation. This can result in labeling positive examples
as negative or the converse.

Method. Tests for antecedent-level noise start with the initial domain theory, then
probabilistically add noise (with a uniform distribution) to the theory. As with all other

28

experiments involving increasing quantities, we add noise incrementally. That is, to a
domain theory with no noise, the smallest noise fraction is added. Then, the slightly
noisy rule set has further noise added to it so that the total noise is equal to the second
smallest fraction. We repeat this procedure four times for each of the three kinds of
antecedent noise.

We add antecedent-level noise using the following procedure:

For each antecedent AA of every rule:
Probabilistically decide whether or not to add noise
If the decision is yes then add noise using one of the
following procedures:
ADD: Randomly select an antecedent to be added from

among the input features, and any consequents
‘below’ - where ‘below’ is defined by the labeling
procedure of Section 3.3.1 - the consequent of the
rule being considered. Add the selected antecedent
to the rule of which the scanned antecedent is a member.

DELETE: Simply delete AA from the rule of which it is a member.
INVERT: Negate AA. If AA is already negated, delete the negation.

We use a similar incremental procedure to probabilistically add rule-level noise to the
domain theory. We expand domain theories by creating new rules that are simple
conjunctions of randomly-selected input features. The number of antecedents to
each putative rule is a random number in the range [2. . . 6].13 We add the newly-
created rules to the domain theory only to existing disjuncts in the domain theory. The
reason for this restriction is to allow only minimal changes to the structure of the rule
set. Two other kind of additions are possible but not used. First, rules could be added
to the conditions of a conjunct. This would require adding antecedent-level noise in
addition to rule-level noise. Second, rules could be added that create new ways to
prove a consequent that is not disjunctive. This sort of addition requires significant
alterations to the hierarchical structure of the rules.

All rules other than the rule leading to final conclusions are subject to deletion. As
with antecedent noise, we repeat this procedure four times for each type of noise.

Results and discussion. Figure 22 presents the results of increasingly adding
antecedent-level noise to the promoter domain theory. As might be expected, in-
verting antecedents has the largest effect of the approaches to inserting antecedent-
level noise. After the addition of 30% of this type of noise to the domain theory, the
resulting KBANN-net generalizes worse than a standard ANN. On the other hand, irrel-
evant antecedents have little effect on KBANN-nets, with 50% noise (that is for every
two antecedents specified as important by the original domain theory, one spurious
antecedent was added) the performance of KBANN-nets is still superior to that of a
standard ANN. Not appearing in Figure 22 are tests in which noise of all three types
was added to the domain theory. Not surprisingly, the resulting KBANN-nets perform
at about the average of the three types of noise individually.

Results were much the same for rule-level noise, as Figure 23 indicates. In this
case, up to 10% of the initial rules can be deleted while leaving KBANN-nets superior
to ANNs. The addition of randomly created rules has little effect on the accuracy

13We use the range [2. . . 6] because it contains the number of antecedents in most of the rules in the
promoter and splice-junction domain theories.

29

0.
0

0.
1

0.
2

0.
3

0.
4

0 10 20 30 40 50

Probability of the Addition of Noise to an Antecedent

T
es

t S
et

 E
rr

or
 R

at
e Invert an antecedent

Drop an antecedent
Fully-connected standard ANN
Add an antecedent

Figure 22 The effect of antecedent-level noise on classification performance of KBANN-nets in the promoter domain.

0.
0

0.
1

0.
2

0.
3

0.
4

0 10 20 30 40 50
Probability of the Addition of Rule-Level Noise

T
es

t S
et

 E
rr

or
 R

at
e Delete rules

Add disjuncts
Fully-connected standard ANN

Figure 23 The effect of rule-level noise on classification performance of KBANN-nets in the promoter domain.

of KBANN-nets. The inability of added rules to influence the correctness of KBANN-
nets is not surprising. The added rules have an average of four, randomly-chosen,
antecedents. Hence, these rules can be expected to match only one in every 256
patterns (this assumes a DNA sequence analysis domain where each feature has four
possible values). As a result, the chances are good that the rules never match the
training or testing patterns. Had the introduced rules matched the training patterns,
the effect would have been similar to adding a single highly-weighted link to the input
unit. Since Figure 22 indicates that KBANN-nets are relatively insensitive to this type
of noise, the effect of the irrelevant rules can be expected to be minimal.

These results show the networks created by KBANN outperform standard ANNs
through a sizable range of domain-theory quality. The theory of promoters could
have been up to 30% more incorrect than it was originally and still provide a benefit
over standard ANNs.

The moral of these tests is clear (if somewhat overstated): if a rule or antecedent
might be useful, include it in the domain theory. It is better to say too much than too
little. On the other hand, it is better to say nothing than something that is absolutely
false.

5.10. General Discussion of
KBANN’s Effectiveness

The results of the experiments presented in this section suggest a fairly concise
definition of the abilities of KBANN. Namely, KBANN is more effective at generalizing
to examples not seen during training than many empirical learners and two systems
that learn from both theory and data. This superiority has at least two causes. First,
KBANN is built upon a more effective empirical learning system than other systems that
learn from both theory and data. Second, KBANN gets more out of the combination
of theory and data than other systems.

A separate set of tests indicates that reasonably-accurate domain theories are suffi-
cient to allow KBANN to create a network that generalizes well. Specifically, the results

30

in Section 5.9 show that KBANN is most effective at learning from domain theories that
are overly specific. This result is serendipitous; both the promoter and splice-junction
domain theories are overly specific. Both domain theories we used for testing were
extracted directly from the biological literature by a person who was unfamiliar with
this property of KBANN.14 Hence, the success of KBANN on these domains does not
reflect an intentional bias in its favor. As tests on small, artificial domains show quali-
tatively similar results [51, 35, 56], we are optimistic that future tests will continue to
show the success of the KBANN algorithm. Indeed, work by us and our colleagues on
another biological domain (protein secondary-structure prediction) [23] and a process
control problem [49] have shown the generality of the approach.

Finally, our tests show that KBANN’s value is due to both the identification of informa-
tive input features and useful derived features (thereby establishing a good network
topology). Neither focusing attention nor topology selection suffice alone.

6. Other Approaches to Hybrid Learn-
ing

We stated earlier that there has been much recent work in the field of hybrid learn-
ing (e.g., [6, 26, 30]). Rather than trying to review the whole field, in this section
we will closely compare our approach to several representative approaches. The
initial systems compared to KBANN are “all-symbolic” approaches. EITHER [36] and
Labyrinth-k [54] will be used as examples of this approach. Following the all-symbolic
approaches, we compare KBANN to inductive logic programming, using FOCL [37] as
a representative of this field. We lastly compare KBANN to the work of Fu [13] and Katz
[18] which we use as representatives of systems that, like KBANN, base their hybrid
systems on neural networks.

6.1. All-symbolic
approaches

EITHER [36] and Labyrinth-k [54] take a similar approach to forming a hybrid system,
one that is in many ways similar to KBANN. Like KBANN, each of these systems uses
a previously developed empirical learning algorithm to modify a user-supplied propo-
sitional domain theory. However, because these two systems use symbolic learning
algorithms, they avoid the elaborate translation mechanism required by KBANN. As
a result, the underlying empirical learner directly modifies the initial knowledge rather
than a rerepresentation of that knowledge. Hence, after learning is complete, the
modified domain theory is directly observable.

Labyrinth-k uses the initial knowledge to create a structure that Cobweb15 [11], its
underlying empirical algorithm, might create if given an appropriate set of examples.
This structure is then acted on by Cobweb almost exactly as if Cobweb had created
the structure in the first place.

14At the time the theories were extracted, we too were unaware of this property.
15Labyrinth-k actually uses an extension of Cobweb that allows Cobweb to use “structured” domains

[54].

31

By contrast, EITHER uses the initial knowledge to sort examples into those correctly
classified and those incorrectly classified. The incorrect group is further broken down
to reflect the part of the initial knowledge whose failure resulted in the misclassification.
The underlying learning algorithm, ID3 [42], is then executed using the particular
incorrect examples and all the correct examples to determine a modification of the
knowledge that makes the examples in both groups correct.

Both systems allow the initial knowledge to have arbitrary types of errors. This is a
significant step forward form earlier systems (e.g., [22, 12]) which required that the
domain theory have only certain classes of mistakes. Moreover, the systems are able
to create knowledge (in the form of rules) when supplied with no initial information.
In addition, both systems use the initial knowledge to focus learning on relevant
features, thereby simplifying the learning problem. Hence, they can be expected to
require fewer examples and be less affected by spurious correlations than standard
empirical learning systems.

6.2. Systems based on
inductive logic programming

There has been a recent proliferation of work in “Inductive Logic Programming” (e.g.,
[30]) often with the same goal as KBANN; namely, to refine an existing domain theory
using classified examples. In addition, like KBANN, inductive logic programming has
been applied to several problems in computational biology [31, 19]. Inductive logic
programming systems are closely related to EITHER and Labyrinth-k except that they
are not limited to propositional rules. As an example of these systems, we use FOCL
[37].

FOCL is an extension of FOIL [43] that allows the inductive learning mechanism of
FOIL to work on user-supplied background knowledge. Hence, FOCL is able to add
and delete relations from existing rules as well as add entirely new rules to the existing
domain theory. Using an ID3-like information gain heuristic, FOCL is able to correct
arbitrary types of errors in the provided domain theory when given a set of positive
and negative examples of the problem.

Tests on artificial domains show that FOCL, like KBANN, is tolerant of a variety of errors
in the initial domain theory and the training examples [39]. However, FOCL is unable
to directly handle the promoter domain theory because that theory classifies every
training example in the same way. After a slight modification, FOCL is able to handle
this problem, but its generalization is inferior to that of KBANN [7]. (Using 80 examples
for training, FOCL has an error rate of 14.2% [7]. With the same number of examples,
KBANN’s error rate is 7.5%.)

6.3. Systems based on
Neural Networks

Many hybrid systems have been developed recently that use neural networks as their
basis. The focus of these systems has varied from reducing the number of examples
required for robot learning [29], to probabilistic logics [24], to the propagation of Mycin-
like certainty factors [21], to the refinement of systems for fuzzy logic [5]. Rather than
trying to review these diverse system, we focus on two systems developed at about
the same time as KBANN which took slightly different paths.

Fu [13] described a system very similar to KBANN in that it uses symbolic knowledge
in the form of rules to establish the structure and connection weights in a neural
network. However, Fu’s system uses non-differentiable activation functions to handle
disjunctions in rule sets. To tolerate this non-differentiability, Fu carefully organizes his
networks into layers in which all of the units at a given layer are either differentiable or
not. Then during training, different learning mechanisms are applied to the different

32

types of units. An empirical study in medical diagnosis showed this technique to
be quite effective. However, the method is closely tied to its particular learning
mechanism. Hence, his system is unable to use developments in the methods of
training neural networks, (e.g., [59]).

Katz [18] describes a system which, much like KBANN, uses a knowledge base that
has been mapped (apparently by hand) into a neural network. The focus of Katz’s
work is on improving the time required to classify an object rather than generalization.
This speed increase is achieved by building new connections which allow his system
to bypass intermediate processing stages. As a result, the initial resemblance of the
network to the knowledge base is rapidly lost during learning. Thus, although the
network is able to make corrections to its initial knowledge, it is impossible to interpret
those corrections as symbolic rules which could be used in the construction of future
networks.

6.4. Trends in hybrid
systems research

There has been a pronounced trend in the development of hybrid systems. Specif-
ically, constraints on the quality and form of information have been eased. Early
systems such as UNIMEM [22] required correct theoretical information. While subse-
quent systems eased the correctness requirement, they introduced new constraints
such as strict over-generality of the domain theory [12]. More recent systems such
as KBANN allow arbitrary imperfections in theories. On the data side, earlier systems
required that data be noise free while more recent systems allow noisy examples.
However, these reductions in quality requirements for both theory and data are gen-
erally accompanied by the need for more examples

In addition, a recent trend is the new hybrid systems tend to be built on top of an
established empirical learning system. This is the case for Labyrinth-k, EITHER, FOCL
and KBANN. Earlier systems tended to have specially-designed empirical components
which were able to take advantage of the strong constraints on theory and data that
these systems made.

7. Limitations and Future Work

While the empirical results in the previous section show that KBANN is an effective
learning system, there is much unfinished about KBANN. Some of the more significant
limitations of KBANN are described below, along with proposals for their elimination.
(See [55] for additional open issues.)

� The concepts KBANN learns are incomprehensible to humans. Due to its neu-
ral representation, it is difficult to identify the basis for KBANN’s classification
of future examples. Moreover, trained neural networks cannot explain their
decisions, so it is difficult to convince experts of the reliability of the system’s
conclusions. Also, it is difficult to transfer what KBANN has learned to the so-
lution of related problems. (See [41] for a possible transfer method.) This
problem can be partially addressed by more sophisticated training techniques
and error functions. For instance, in addition to penalizing networks for incor-

33

rect answers, penalize the squared distance between the expert-assigned and
trained weights [35]. Doing so should help to maintain the interpretability of the
trained networks. Also, a network-to-rules translator that we have developed
[55] directly addresses these problems.

� KBANN’s rule syntax is limited. KBANN can not handle rules with cycles or
variables. A research area is the expansion of KBANN to admit certain type
of cyclic rules [23]. However, it is unlikely that in the near future KBANN will
be able to handle quantified variables in its rules, as there are currently no
appropriate techniques for binding variables within neural networks. Inductive
logic programming systems such as FOIL [43], FOCL [37] and GOLEM [19] allow
relational rule sets; hence, they avoid the restrictions inherent to KBANN.

� There is no mechanism for handling uncertainty in rules. This point cuts in two
ways. First, KBANN has no mechanism through for assigning different weights
to antecedents. (See [24] for an approach.) Second, KBANN has no mechanism
for expressing the partial truth of consequents. Mycin-like certainty factors [52]
could be integrated into the rules-to-network translator [13, 21]. These factors
would adjust link weights in the resulting network. Hence, links would have
weights that depend both upon a global link weight and a certainty factor. This
change in the definition of link weights would require modification of the method
for setting the bias. However, little else in the rules-to-network translator would
need to be changed.

� Neural learning in KBANN ignores the symbolic meaning of the initial network. As
a result, training the networks created by KBANN may be unnecessarily difficult. A
tighter integration of symbolic and neural learning may result in reduced training
times and improved generalization. Preliminary experiments with an algorithm
designed to more tightly integrate the symbolic and neural elements of KBANN

support this hypothesis [55].

� There is no mechanism for changing the topology of the network. In addition
to missing antecedents, rules are often also missing from a domain theory.
As it is described here, the only way for KBANN to handle this problem is to
somehow alter an existing rule so that it also represents the missing one. One
the effects of such combination is to make the network very difficult to interpret.
Such combination may also impair generalization because they force otherwise
correct rules to change. One solution is to add a mechanism which proposes
new rules and appropriately modifies the topology of the network [35].

In addition, almost all of the tests reported in Section 5 should be repeated with an
artificial domain for which the theory and relevant features are known with certainty.
An artificial problem would allow tightly controlled experiments that are not possible
in the real-world problems studied in this paper. For instance, an artificial problem
would allow a closely controlled experiment on the effects of irrelevant and missing
antecedents. Yet, even without the tests made possible by an artificial problem, the
results in Section 5 show KBANN to be a robust learning algorithm.

34

8. Final Summary

This article describes and empirically analyzes the KBANN system, a hybrid method for
learning using both domain knowledge and classified training examples. KBANN uses
a combination of “subsymbolic” and “symbolic” learning to create an algorithm that
learns from examples and rules, one which generalizes better and is more efficient
(in terms of the number of training examples required) than algorithms that make
use of only one of these sources of information. KBANN operates by translating
a propositional rule set into a neural network. In so doing, the topology of the
network is set so that the network initially reproduces the behavior of the rules. The
network is then trained using a set of classified examples and standard neural learning
techniques. Empirical testing shows that a network so created and trained is effective
at generalizing to examples not seen during training.

The principle empirical results showing the effectiveness of KBANN appear in Sec-
tion 5. In that section, KBANN is shown to generalize better than six empirical learning
algorithms, as well as two other hybrid algorithms. Moreover, other results presented
in this paper show that the method is effective under a wide variety of conditions,
ranging from few training examples to low-quality domain knowledge. Also, the re-
sults show that KBANN is effective at learning in two real-world domains. These DNA
sequence-analysis domains, promoter recognition and splice-junction determination,
are two small problems from a field that is growing rapidly as a result of the Human
Genome Project. The ideas underlying KBANN have also been used for protein folding
[23] and process control [49].

While much work remain to be done on KBANN, as well as the more general topic of
learning from both theory and data, the KBANN system represents a first step along
a significant research path. In conclusion, this paper has shown that it is possible to
profitably combine symbolic and connectionist approaches to artificial intelligence.

35

Acknowledgements
This research is partially supported by Office of Naval Research Grant N00014-90-
J-1941, National Science Foundation Grant IRI-9002413, and Department of Energy
Grant DE-FG02-91ER61129.

For creating the two datasets we investigated, we especially thank Michiel Noordewier.
In addition we would like to thank David Aha and Patrick Murphy at UC - Irvine for
maintaining a database of machine learning problems. Both of the datasets we
describe in this paper are available there.

Finally, we want to thank Richard Maclin, Charles Squires, Mark Craven, Derek Zahn,
David Opitz, Sebastian Thrun, R. Bharat Rao, Lorien Pratt and two anonymous re-
viewers for their insightful commentary and, in some cases, programming assistance.

References

[1] S. Ahmad, A Study of Scaling and Generalization in Neural Networks, Technical
Report CCSR-88-13, University of Illinois, Center for Complex Systems Research
(1988).

[2] L. Atlas, R. Cole, Y. Muthusamy, A. Lippman, J. Connor, D. Park, M. El-Sharkawi,
and R. J. Marks, A peerformance comparison of trained multi-layer perceptrons
and trained classification trees, Proceedings of IEEE 78 (1990) 1614–1619.

[3] J. Bachant and J. McDermott, R1 Revisited: Four Years in the Trenches, AI
Magazine 5 (1984) 21–32.

[4] E. Barnard and R. A. Cole, A Neural-Net Training Program based on Conjugate-
Gradient Optimization, Technical Report CSE 89-014, Oregon Graduate Insti-
tute, Beaverton, OR (1989).

[5] H. R. Berenji, Refinement of Approximate Reasoning-Based Controllers by Rein-
forcement Learning, in: Proceedings of the Eighth International Machine Learn-
ing Workshop, Evanston, IL (1991), 475–479.

[6] L. A. Birnbaum and G. C. Collins, eds, Proceedings of the Eighth International
Machine Learning Workshop, Morgan Kaufmann, Evanston, IL (1991).

[7] W. W. Cohen, Compiling Prior Knowledge into an Explicit Bias, in: Proceed-
ings of the Ninth International Machine Learning Workshop, Aberdeen, Scotland
(1992), 102–110.

[8] S. Cost and S. Salzberg, A Weighted Nearest Neighbor Algorithm for Learning
With Symbolic Features, Machine Learning 10 (1993) 57–78.

[9] T. G. Dietterich, Learning at the Knowledge Level, Machine Learning 1 (1986)
287–316.

[10] S. E. Fahlman and C. Lebiere, The Cascade-Correlation Learning Architecture,
in: Advances in Neural Information Processing Systems, volume 2, Denver, CO
(1989), 524–532.

36

[11] D. H. Fisher, Knowledge Acquisition via Incremental Conceptual Clustering,
Machine Learning 2 (1987) 139–172.

[12] N. S. Flann and T. G. Dietterich, A Study of Explanation-Based Methods for
Inductive Learning, Machine Learning 4 (1989) 187–226.

[13] L. M. Fu, Integration of Neural Heuristics into Knowledge-Based Inference,
Connection Science 1 (1989) 325–340.

[14] J. Gennari, P. Langley, and D. Fisher, Models of incremental concept formation,
Artificial Intelligence 40 (1989) 11–61.

[15] G. E. Hinton, Connectionist Learning Procedures, Artificial Intelligence 40 (1989)
185–234.

[16] R. C. Holte, L. E. Acker, and B. W. Porter, Concept Learning and the Problem of
Small Disjuncts, in: Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, Detroit, MI (1989), 813–819.

[17] IUB Nomenclature Committee, Ambiguity Codes, European Journal of Bio-
chemistry 150 (1985) 1–5.

[18] B. F. Katz, EBL and SBL: A Neural Network Synthesis, in: Proceedings of the
Eleventh Annual Conference of the Cognitive Science Society, Ann Arbor, MI
(1989), 683–689.

[19] R. D. King, S. Muggleton, R. A. Lewis, and J. E. Sternberg, Drug Design
by Machine Learning: The use of Inductive Logic Programming to Model the
Structure—Activity Relationships of Trimethoprim Analogues Binding to Dihydro-
folate Reductase, Proceeding of the National Academy of Sciences, USA 89
(1992) 11322–11326.

[20] S. C. Kleene, Representation of Events in Nerve Nets and Finite Automata,
in: Automata Studies, C. E. Shannon and J. McCarthy (Eds.), 3–41, Princeton
University Press, Princeton, NJ (1956).

[21] R. C. Lacher, S. I. Hruska, and D. C. Kuncicky, Backpropagation Learning in
Expert Networks, IEEE Transactions on Neural Networks 3 (1992) 62–72.

[22] M. Lebowitz, Integrated Learning: Controlling Explanation, Cognitive Science
10 (1986) 219–240.

[23] R. Maclin and J. W. Shavlik, Refining Algorithms with Knowledge-Based Neural
Networks: Improving th Chou-Fasman Algorithm for Protein Folding, Machine
Learning 11 (1993) 195–213.

[24] J. J. Mahoney and R. J. Mooney, Combining connectionist and symbolic learning
to refine certainty-factor rule-bases, Connection Science 5 (1993) 339–364.

[25] W. S. McCulloch and W. A. Pitts, A Logical Calculus of Ideas Immanent in
Nervous Activity, Bulletin of Mathematical Biophysics 5 (1943) 115–133.

[26] R. S. Michalski and G. Tecuci, eds, Proceedings of the First International Work-
shop on Multistrategy Learning, George Mason University, Harpers Ferry, W. Va.
(1991).

[27] J. Mingers, An Empirical Comparison of Pruning Methods for Decision Tree
Induction, Machine Learning 4 (1989) 227–243.

37

[28] T. M. Mitchell, R. Keller, and S. Kedar-Cabelli, Explanation-Based Generalization:
A Unifying View, Machine Learning 1 (1986) 47–80.

[29] T. M. Mitchell and S. B. Thrun, Explanation-Based Neural Network Learning
for Robot Control, in: Advances in Neural Information Processing Systems,
volume 5, Denver, CO (1992), 287–294.

[30] S. Muggleton, ed, Inductive Logic Programming, Academic Press, San Diego,
CA (1992).

[31] S. Muggleton, R. D. King, and J. E. Sternberg, Protein Secondary Structure
Prediction Using Logic-Based Machine Learning, Protein Engineering 5 (1992)
647–657.

[32] G. L. Murphy and D. L. Medin, The Role of Theories in Conceptual Coherence,
Psychological Review 91 (1985) 289–316.

[33] M. O. Noordewier, G. G. Towell, and J. W. Shavlik, Training Knowledge-Based
Neural Networks to Recognize Genes in DNA Sequences, in: Advances in Neural
Information Processing Systems, volume 3, Denver, CO (1991), 530–536.

[34] M. C. O’Neill, Escherichia Coli Promoters: I. Consensus as it relates to spac-
ing class, specificity, repeat substructure, and three dimensional orgainzation,
Journal of Biological Chemistry 264 (1989) 5522–5530.

[35] D. W. Opitz and J. W. Shavlik, Heuristically Expanding Knowledge-Based Neural
Networks, in: Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence, Chambery, France (1993).

[36] D. Ourston and R. J. Mooney, Theory refinement combining analytical and
empirical methods, Artificial Intelligence 66 (1994) 273–310.

[37] M. Pazzani and D. Kibler, The Utility of Knowledge in Inductive Learning, Machine
Learning 9 (1992) 57–94.

[38] M. J. Pazzani, The influence of prior knowledge on concept acquisition- Exper-
imental and computational results, Journal of Experimental Psychology- Learn-
ing, Memory & Cognition 17 (1991) 416–432.

[39] M. J. Pazzani, C. A. Brunk, and G. Silverstein, A Knowledge-Intensive Approach
to Learning Relational Concepts, in: Inductive Logic Programming, S. Muggleton
(Eds.), 373–394, Academic Press (1992).

[40] F. J. Pineda, Generalization of Back-Propagation to Recurrent Neural Networks,
Physics Review Letters 59 (1987) 2229–2232.

[41] L. Y. Pratt, J. Mostow, and C. A. Kamm, Direct Transfer of Learned Information
Among Neural Networks, in: Proceedings of the Ninth National Conference on
Artificial Intelligence, Anaheim, CA (1991), 584–589.

[42] J. R. Quinlan, Induction of Decision Trees, Machine Learning 1 (1986) 81–106.

[43] J. R. Quinlan, Learning Logical Definitions from Relations, Machine Learning 5
(1990) 239–266.

[44] L. Rendell and H. Cho, Empirical Learning as a Function of Concept Character,
Machine Learning 5 (1990) 267–298.

[45] B. L. Richards and R. J. Mooney, Refinement of first-order horn-clause domain
theories, Machine Learning (to appear).

38

[46] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms, Spartan, New York (1962).

[47] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal Represen-
tations by Error Propagation, in: Parallel Distributed Processing: Explorations
in the microstructure of cognition. Volume 1: Foundations, D. E. Rumelhart and
J. L. McClelland (Eds.), 318–363, MIT Press, Cambridge, MA (1986).

[48] R. Schank, G. C. Collins, and L. E. Hunter, Transcending Inductive Category
Formation in Learning, Behavioral and Brain Sciences 9 (1986) 639–686.

[49] G. M. Scott, J. W. Shavlik, and W. H. Ray, Refining PID Controllers using Neural
Networks, Neural Computation 4 (1992) 746–757.

[50] J. W. Shavlik, R. J. Mooney, and G. G. Towell, Symbolic and Neural Net Learning
Algorithms: An Empirical Comparison, Machine Learning 6 (1991) 111–143.

[51] J. W. Shavlik and G. G. Towell, An Approach to Combining Explanation-Based
and Neural Learning Algorithms, Connection Science 1 (1989) 233–255.

[52] E. H. Shortliffe and B. G. Buchanan, A Model of Inexact Reasoning in Medicine,
in: Rule-Based Expert Systems, B. G. Buchanan and E. H. Shortliffe (Eds.),
233–262, Addison-Wesley, Reading, MA (1984).

[53] G. D. Stormo, Consensus Patterns in DNA, in: Methods in Enzymology, volume
183, 211–221, Academic Press, Orlando, FL (1990).

[54] K. Thompson, P. Langley, and W. Iba, Using Background Knowledge in Con-
cept Formation, in: Proceedings of the Eighth International Machine Learning
Workshop, Evanston, IL (1991), 554–558.

[55] G. G. Towell, Symbolic Knowledge and Neural Networks: Insertion, Refine-
ment, and Extraction, PhD thesis, Computer Sciences Department, University
of Wisconsin, Madison, WI (1991).

[56] G. G. Towell and J. W. Shavlik, Extracting Refined Rules from Knowledge-Based
Neural Networks, Machine Learning 13 (1993) 71–101.

[57] G. G. Towell, J. W. Shavlik, and M. O. Noordewier, Refinement of Approx-
imately Correct Domain Theories by Knowledge-Based Neural Networks, in:
Proceedings of the Eighth National Conference on Artificial Intelligence, Boston,
MA (1990), 861–866.

[58] D. A. Waterman, A Guide to Expert Systems, Addison Wesley, Reading, MA
(1986).

[59] R. L. Watrous, Learning Algorithms for Connectionist Networks: Applied Gradi-
ent Methods of Nonlinear Optimization, in: Proceedings of the First International
Conference on Neural Networks, volume II (1987), 619–627.

[60] J. D. Watson, H. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner, The
Molecular Biology of the Gene, Benjamin-Cummings, Menlo Park, CA (1987).

[61] S. M. Weiss and C. A. Kulikowski, Computer Systems that Learn, Morgan
Kaufmann, San Mateo, CA (1990).

[62] E. J. Wisniewski and D. L. Medin, Is it a Pocket or a Purse? Tightly Coupled
Theory and Data Driven Learning, in: Proceedings of the Eighth International
Machine Learning Workshop, Evanston, IL (1991), 564–569.

[63] D. H. Wolpert, On Overfitting Avoidance as Bias, Technical Report LA-UR-90-
3460, Santa Fe Institute, Santa Fe, NM (1992).

39

A. KBANN’s Language

The rules-to-network translator (Section 3.3) requires from a user two sets of infor-
mation to describe each problem. The first set of information is a specification of the
features that are used to describe the examples. The second set of information is a
set of rules that encode the knowledge of the problem which is supplied to the system
(i.e., a domain theory). The following two sections define the syntax of each of these
information types, and how they are handled by KBANN’s rules-to-network translator.

A.1. Information about
Features

KBANN is able to handle examples described using the following five types of features
that are commonly used in machine learning:

nominal from among a list (e.g., red, green, blue)
Boolean values must be either true or false
hierarchical values exist in an ISA hierarchy
linear values are numeric and continuous
ordered values are non-numeric but have a total ordering

The subsections below contain, for each feature, a brief definition and a description
of how it is encoded by KBANN.16 Missing values are handled in a consistent manner
across the feature types. Namely, when the value of a feature is not known, all of
the units used to encode it are given an equal activation. In addition, the sum of the
activations of the units is set so that the total activation of the units is equal to the total
activation of the units had the value been known. In this way, the network cannot
learn to distinguish missing values merely on the basis of total activation. Empirical
tests [50] have shown that this method of encoding missing values results in better
generalization than other methods (such as setting all activations to zero.)

A.2. Nominal This is the simplest type of feature; all the possible values of the feature are named.
KBANN translates the feature color with the values (red blue green) into three binary
units: color-is-red, color-is-blue, and color-is-green.

A.3. Binary Binary-valued features are a special subclass of nominal features that have values of
only two values (e.g., True, False). To reduce the number of input units, binary-valued
features are given only a single input unit. When there is no information available
about a binary feature, its activation is 0.5. Note that this is a departure from the
“consistent total activation” approach to handling missing variables.

16While we have implemented all of these feature types, our testing has focused on nominal and binary
features.

40

Material

Non-insulating Insulating

Ceramic Paper Styrofoam Open-cell foam

Figure 24 A hierarchy of cup materials.

A.4. Hierarchical Hierarchical features are features defined in the context of an ISA hierarchy. For
instance, Figure 24 illustrates a hierarchy of materials that might be used in making a
cup.

Hierarchical features act much like nominal features in that exactly one of the base-
level units can be active. When no information is available concerning a hier-
archical feature, then the activation of units at each level in the hierarchy is the
reciprocal of the number of units in that level. Hence, in the above example,
Styrofoam, open-cell-foam, paper, and ceramic would all have activations
of 1

4 , insulating and non-insul would have activations of 1
2 , and material

would have an activation of 1.

A.5. Linear Linear features have numeric values. Normally these values are continuous, but any
feature with numeric values may be described using an linear feature. For linear
features, KBANN requires that the user define a set of subranges within the range of
the feature. Each of these subranges is translated into an input unit that is activated
according to Equations 6 and 7.

zi =
1

1 + exp(abs(v � [upB � lowB] � 2)
upB � lowB)

(6)

ai =
(zi)2�

j (zj)2
(7)

In these equations:
upB is the top of the subrange
lowB is the bottom of the subrange
v is the exact value of the feature
zi is an intermediate stage in the calculation of the activation
ai is the activation of the unit
i,j are indices ranging over the units used to encode a feature

As with nominal features, when no information is available about a linear feature, each
unit take a value of 1

N , where N is the number of units used to encode the feature.

A.6. Ordered Ordered features are a special type of nominal features for which the values are totally
ordered. For example, size could be represented using the totally ordered set

�
tiny, small, medium, large, huge � .

Like nominal features, ordered features are handled by creating one input unit for each
possible value. However, ordered features cannot be treated like simple nominal

41

features because the boundaries between subsequent values in the ordering are
typically indistinct. Therefore, when an object is described as having medium size, it
might be equally correctly be described as being either large or small. To account
for the lack of precision inherent in ordered features, all values of an ordered feature
are activated according to their distance from the given value using the formula given
in Equation 8.

activation =
1
2

distance from given value

(8)

A.7. Information about Rules This section describes the syntax of rules that KBANN is currently able to translate into
a neural network and specifies how KBANN translates them. Rules for use by KBANN
must be in the form of propositional Horn clauses. In addition, disjuncts may only
be expressed as multiple rules with the same consequent. Finally, the rules may not
contain cycles.

A.8. Rule Types KBANN recognizes two distinct types of rules. The first type is “definitional.” Def-
initional rules are rules that are not to be changed during the training phase. (For
instance, a definitional rule might be used for “blots” in backgammon.) As a result,
the consequents of fixed rules are connected only to those antecedents mentioned
in the rule and the weights on the connections to the antecedents are not allowed to
change during training.

The second type of rule is “nondefinitional” or “variable.” Variable rules are standard
rules; they are subject to change during training. Therefore, consequents are con-
nected to antecedents other than those mentioned in the rule, and weights on the
links entering into the consequent are changed during neural learning.

A.9. Special antecedents In addition to simply listing positive antecedents to form a simple conjunctive rule,
KBANN allows the following special predicates in the antecedents of its rules.

Predicate Description Example
Not Negate an antecedent Figure 25a
Greater-than Only for “linear” and “ordered” features Figure 25b
Less-than Only for “linear” and “ordered” features Figure 25b
N-true Allows compact specification of concepts of the form “if N of the

following M antecedents are true then . . . ”
Figure 25c

The specification of antecedents is recursive. Hence, any of these types of an-
tecedents many be nested within each other.

42

A :− B, not(C), not(D).

B C D

A

ω −ω −ω

g :− (less−than size bus).

G

bread
 box

car bus house

−ω −ω0 0

A :− (n−true 2 (B, C, D, E)).

B C D

A

ω

E

ω ω ω

(a) (b)

(c)

θ = ω/2
θ = −ω/2

θ = 3ω//2

Figure 25 Encoding rules in a neural network.

43

