
Transfer Learning

Lisa Torrey and Jude Shavlik

University of Wisconsin, Madison WI, USA

Abstract. Transfer learning is the improvement of learning in a new
task through the transfer of knowledge from a related task that has al-
ready been learned. While most machine learning algorithms are designed
to address single tasks, the development of algorithms that facilitate
transfer learning is a topic of ongoing interest in the machine-learning
community. This chapter provides an introduction to the goals, formu-
lations, and challenges of transfer learning. It surveys current research
in this area, giving an overview of the state of the art and outlining the
open problems. The survey covers transfer in both inductive learning and
reinforcement learning, and discusses the issues of negative transfer and
task mapping in depth.

INTRODUCTION

Human learners appear to have inherent ways to transfer knowledge between
tasks. That is, we recognize and apply relevant knowledge from previous learning
experiences when we encounter new tasks. The more related a new task is to our
previous experience, the more easily we can master it.

Common machine learning algorithms, in contrast, traditionally address iso-
lated tasks. Transfer learning attempts to change this by developing methods
to transfer knowledge learned in one or more source tasks and use it to improve
learning in a related target task (see Figure 1). Techniques that enable knowl-
edge transfer represent progress towards making machine learning as efficient as
human learning.

This chapter provides an introduction to the goals, formulations, and chal-
lenges of transfer learning. It surveys current research in this area, giving an
overview of the state of the art and outlining the open problems.

Transfer methods tend to be highly dependent on the machine learning al-
gorithms being used to learn the tasks, and can often simply be considered
extensions of those algorithms. Some work in transfer learning is in the context
of inductive learning, and involves extending well-known classification and infer-
ence algorithms such as neural networks, Bayesian networks, and Markov Logic
Networks. Another major area is in the context of reinforcement learning, and
involves extending algorithms such as Q-learning and policy search. This chapter
surveys these areas separately.

Appears in the Handbook of Research on Machine Learning Applications, published
by IGI Global, edited by E. Soria, J. Martin, R. Magdalena, M. Martinez and A.
Serrano, 2009.

1

Given

Data

Source-Task
Knowledge

Learn

Target Task

Fig. 1. Transfer learning is machine learning with an additional source of information
apart from the standard training data: knowledge from one or more related tasks.

The goal of transfer learning is to improve learning in the target task by
leveraging knowledge from the source task. There are three common measures by
which transfer might improve learning. First is the initial performance achievable
in the target task using only the transferred knowledge, before any further learn-
ing is done, compared to the initial performance of an ignorant agent. Second is
the amount of time it takes to fully learn the target task given the transferred
knowledge compared to the amount of time to learn it from scratch. Third is the
final performance level achievable in the target task compared to the final level
without transfer. Figure 2 illustrates these three measures.

If a transfer method actually decreases performance, then negative transfer

has occurred. One of the major challenges in developing transfer methods is
to produce positive transfer between appropriately related tasks while avoiding
negative transfer between tasks that are less related. A section of this chapter
discusses approaches for avoiding negative transfer.

When an agent applies knowledge from one task in another, it is often nec-
essary to map the characteristics of one task onto those of the other to specify
correspondences. In much of the work on transfer learning, a human provides
this mapping, but some methods provide ways to perform the mapping auto-
matically. Another section of the chapter discusses work in this area.

pe
rf

or
m

an
ce

training

with transfer
without transfer

higher start

higher slope higher asymptote

Fig. 2. Three ways in which transfer might improve learning.

2

Source
Task

Target
Task

Task
1

Task
2

Task
3

Task
4

Transfer Learning Multi-task Learning

Fig. 3. As we define transfer learning, the information flows in one direction only, from
the source task to the target task. In multi-task learning, information can flow freely
among all tasks.

We will make a distinction between transfer learning and multi-task learn-

ing [5], in which several tasks are learned simultaneously (see Figure 3). Multi-
task learning is clearly closely related to transfer, but it does not involve des-
ignated source and target tasks; instead the learning agent receives information
about several tasks at once. In contrast, by our definition of transfer learning,
the agent knows nothing about a target task (or even that there will be a target
task) when it learns a source task. It may be possible to approach a multi-task
learning problem with a transfer-learning method, but the reverse is not possi-
ble. It is useful to make this distinction because a learning agent in a real-world
setting is more likely to encounter transfer scenarios than multi-task scenarios.

TRANSFER IN INDUCTIVE LEARNING

In an inductive learning task, the objective is to induce a predictive model from a
set of training examples [28]. Often the goal is classification, i.e. assigning class la-
bels to examples. Examples of classification systems are artificial neural networks
and symbolic rule-learners. Another type of inductive learning involves model-
ing probability distributions over interrelated variables, usually with graphical
models. Examples of these systems are Bayesian networks and Markov Logic
Networks [34].

The predictive model learned by an inductive learning algorithm should make
accurate predictions not just on the training examples, but also on future exam-
ples that come from the same distribution. In order to produce a model with this
generalization capability, a learning algorithm must have an inductive bias [28]
– a set of assumptions about the true distribution of the training data.

The bias of an algorithm is often based on the hypothesis space of possible
models that it considers. For example, the hypothesis space of the Naive Bayes
model is limited by the assumption that example characteristics are condition-
ally independent given the class of an example. The bias of an algorithm can also
be determined by its search process through the hypothesis space, which deter-
mines the order in which hypotheses are considered. For example, rule-learning
algorithms typically construct rules one predicate at a time, which reflects the

3

assumption that predicates contribute significantly to example coverage by them-
selves rather than in pairs or more.

Transfer in inductive learning works by allowing source-task knowledge to
affect the target task’s inductive bias. It is usually concerned with improving
the speed with which a model is learned, or with improving its generalization
capability. The next subsection discusses inductive transfer, and the following
ones elaborate on three specific settings for inductive transfer.

There is some related work that is not discussed here because it specifically
addresses multi-task learning. For example, Niculescu-Mizil and Caruana [29]
learn Bayesian networks simultaneously for multiple related tasks by biasing
learning toward similar structures for each task. While this is clearly related to
transfer learning, it is not directly applicable to the scenario in which a target
task is encountered after one or more source tasks have already been learned.

Inductive Transfer

In inductive transfer methods, the target-task inductive bias is chosen or adjusted
based on the source-task knowledge (see Figure 4). The way this is done varies
depending on which inductive learning algorithm is used to learn the source
and target tasks. Some transfer methods narrow the hypothesis space, limiting
the possible models, or remove search steps from consideration. Other methods
broaden the space, allowing the search to discover more complex models, or add
new search steps.

Baxter [2] frames the transfer problem as that of choosing one hypothesis
space from a family of spaces. By solving a set of related source tasks in each
hypothesis space of the family and determining which one produces the best
overall generalization error, he selects the most promising space in the family for
a target task. Baxter’s work, unlike most in transfer learning, includes theoreti-
cal as well as experimental results. He derives bounds on the number of source
tasks and examples needed to learn an inductive bias, and on the generaliza-
tion capability of a target-task solution given the number of source tasks and
examples in each task.

All Hypotheses

Allowed Hypotheses

Inductive Learning

Search

Inductive Transfer

All Hypotheses

Allowed Hypotheses

Search

Fig. 4. Inductive learning can be viewed as a directed search through a specified hy-
pothesis space [28]. Inductive transfer uses source-task knowledge to adjust the induc-
tive bias, which could involve changing the hypothesis space or the search steps.

4

Thrun and Mitchell [55] look at solving Boolean classification tasks in a
lifelong-learning framework, where an agent encounters a collection of related
problems over its lifetime. They learn each new task with a neural network, but
they enhance the standard gradient-descent algorithm with slope information
acquired from previous tasks. This speeds up the search for network parameters
in a target task and biases it towards the parameters for previous tasks.

Mihalkova and Mooney [27] perform transfer between Markov Logic Net-
works. Given a learned MLN for a source task, they learn an MLN for a related
target task by starting with the source-task one and diagnosing each formula,
adjusting ones that are too general or too specific in the target domain. The
hypothesis space for the target task is therefore defined in relation to the source-
task MLN by the operators that generalize or specify formulas.

Hlynsson [17] phrases transfer learning in classification as a minimum descrip-
tion length problem given source-task hypotheses and target-task data. That is,
the chosen hypothesis for a new task can use hypotheses for old tasks but stip-
ulate exceptions for some data points in the new task. This method aims for a
tradeoff between accuracy and compactness in the new hypothesis.

Ben-David and Schuller [3] propose a transformation framework to determine
how related two Boolean classification tasks are. They define two tasks as related
with respect to a class of transformations if they are equivalent under that class;
that is, if a series of transformations can make one task look exactly like the
other. They provide conditions under which learning related tasks concurrently
requires fewer examples than single-task learning.

Bayesian Transfer

One area of inductive transfer applies specifically to Bayesian learning meth-
ods. Bayesian learning involves modeling probability distributions and taking
advantage of conditional independence among variables to simplify the model.
An additional aspect that Bayesian models often have is a prior distribution,
which describes the assumptions one can make about a domain before seeing
any training data. Given the data, a Bayesian model makes predictions by com-
bining it with the prior distribution to produce a posterior distribution. A strong
prior can significantly affect these results (see Figure 5). This serves as a natural
way for Bayesian learning methods to incorporate prior knowledge – in the case
of transfer learning, source-task knowledge.

Marx et al. [24] use a Bayesian transfer method for tasks solved by a logistic
regression classifier. The usual prior for this classifier is a Gaussian distribution
with a mean and variance set through cross-validation. To perform transfer, they
instead estimate the mean and variance by averaging over several source tasks.
Raina et al. [33] use a similar approach for multi-class classification by learning
a multivariate Gaussian prior from several source tasks.

Dai et al. [7] apply a Bayesian transfer method to a Naive Bayes classifier.
They set the initial probability parameters based on a single source task, and
revise them using target-task data. They also provide some theoretical bounds
on the prediction error and convergence rate of their algorithm.

5

Bayesian Learning Bayesian Transfer

Prior
distribution

+

Data

=

Posterior
Distribution

Fig. 5. Bayesian learning uses a prior distribution to smooth the estimates from train-
ing data. Bayesian transfer may provide a more informative prior from source-task
knowledge.

Hierarchical Transfer

Another setting for transfer in inductive learning is hierarchical transfer. In this
setting, solutions to simple tasks are combined or provided as tools to produce a
solution to a more complex task (see Figure 6). This can involve many tasks of
varying complexity, rather than just a single source and target. The target task
might use entire source-task solutions as parts of its own, or it might use them
in a more subtle way to improve learning.

Sutton and McCallum [43] begin with a sequential approach where the pre-
diction for each task is used as a feature when learning the next task. They then
proceed to turn the problem into a multi-task learning problem by combining
all the models and applying them jointly, which brings their method outside our
definition of transfer learning, but the initial sequential approach is an example
of hierarchical transfer.

Line Curve

Surface Circle

Pipe

Fig. 6. An example of a concept hierarchy that could be used for hierarchical transfer,
in which solutions from simple tasks are used to help learn a solution to a more complex
task. Here the simple tasks involve recognizing lines and curves in images, and the more
complex tasks involve recognizing surfaces, circles, and finally pipe shapes.

6

Stracuzzi [42] looks at the problem of choosing relevant source-task Boolean
concepts from a knowledge base to use while learning more complex concepts.
He learns rules to express concepts from a stream of examples, allowing existing
concepts to be used if they help to classify the examples, and adds and removes
dependencies between concepts in the knowledge base.

Taylor et al. [49] propose a transfer hierarchy that orders tasks by difficulty,
so that an agent can learn them in sequence via inductive transfer. By putting
tasks in order of increasing difficulty, they aim to make transfer more effective.
This approach may be more applicable to the multi-task learning scenario, since
by our definition of transfer learning the agent may not be able to choose the
order in which it learns tasks, but it could be applied to help choose from an
existing set of source tasks.

Transfer with Missing Data or Class Labels

Inductive transfer can be viewed not only as a way to improve learning in a
standard supervised-learning task, but also as a way to offset the difficulties
posed by tasks that involve unsupervised learning, semi-supervised learning, or
small datasets. That is, if there are small amounts of data or class labels for
a task, treating it as a target task and performing inductive transfer from a
related source task can lead to more accurate models. These approaches therefore
use source-task data to enhance target-task data, despite the fact that the two
datasets are assumed to come from different probability distributions.

The Bayesian transfer methods of Dai et al. [7] and Raina et al. [33] are
intended to compensate for small amounts of target-task data. One of the benefits
of Bayesian learning is the stability that a prior distribution can provide in the
absence of large datasets. By estimating a prior from related source tasks, these
approaches prevent the overfitting that would tend to occur with limited data.

Dai et al. [8] address transfer learning in a boosting algorithm using large
amounts of data from a previous task to supplement small amounts of new data.
Boosting is a technique for learning several weak classifiers and combining them
to form a stronger classifier [16]. After each classifier is learned, the examples
are reweighted so that later classifiers focus more on examples the previous
ones misclassified. Dai et al. extend this principle by also weighting source-task
examples according to their similarity to target-task examples. This allows the
algorithm to leverage source-task data that is applicable to the target task while
paying less attention to data that appears less useful.

Shi et al. [39] look at transfer learning in unsupervised and semi-supervised
settings. They assume that a reasonably sized dataset exists in the target task,
but it is largely unlabeled due to the expense of having an expert assign labels.
To address this problem they propose an active learning approach, in which
the target-task learner requests labels for examples only when necessary. They
construct a classifier with labeled examples, including mostly source-task ones,
and estimate the confidence with which this classifer can label the unknown
examples. When the confidence is too low, they request an expert label.

7

TRANSFER IN REINFORCEMENT LEARNING

A reinforcement learning (RL) agent operates in a sequential-control environ-
ment called a Markov decision process (MDP) [45]. It senses the state of the en-
vironment and performs actions that change the state and also trigger rewards.
Its objective is to learn a policy for acting in order to maximize its cumulative
reward. This involves solving a temporal credit-assignment problem, since an
entire sequence of actions may be responsible for a single immediate reward.

A typical RL agent behaves according to the diagram in Figure 7. At time step
t, it observes the current state st and consults its current policy π to choose an
action, π(st) = at. After taking the action, it receives a reward rt and observes
the new state st+1, and it uses that information to update its policy before
repeating the cycle. Often RL consists of a sequence of episodes, which end
whenever the agent reaches one of a set of ending states.

During learning, the agent must balance between exploiting the current policy
(acting in areas that it knows to have high rewards) and exploring new areas to
find potentially higher rewards. A common solution is the ǫ-greedy method, in
which the agent takes random exploratory actions a small fraction of the time
(ǫ << 1), but usually takes the action recommended by the current policy.

There are several categories of RL algorithms. Some types of methods are only
applicable when the agent knows its environment model (the reward function
and the state transition function). In this case dynamic programming can solve
directly for the optimal policy without requiring any interaction with the envi-
ronment. In most RL problems, however, the model is unknown. Model-learning

approaches use interaction with the environment to build an approximation of
the true model. Model-free approaches learn to act without ever explicitly mod-
eling the environment.

Temporal-difference methods [44] operate by maintaining and iteratively up-
dating value functions to predict the rewards earned by actions. They begin
with an inaccurate function and update it based on interaction with the en-
vironment, propagating reward information back along action sequences. One
popular method is Q-learning [62], which involves learning a function Q(s, a)
that estimates the cumulative reward starting in state s and taking action a

and following the current policy thereafter. Given the optimal Q-function, the

Environment

Agent

s0 a0 r0 s1 a1 r1… … time

Fig. 7. A reinforcement learning agent interacts with its environment: it receives in-
formation about its state (s), chooses an action to take (a), receives a reward (r), and
then repeats.

8

optimal policy is to take the action corresponding to argmaxaQ(st, a). When
there are small finite numbers of states and actions, the Q-function can be repre-
sented explicitly as a table. In domains that have large or infinite state spaces, a
function approximator such as a neural network or support-vector machine can
be used to represent the Q-function.

Policy-search methods, instead of maintaining a function upon which a policy
is based, maintain and update a policy directly. They begin with an inaccurate
policy and update it based on interaction with the environment. Heuristic search
and optimization through gradient descent are among the approaches that can
be used in policy search.

Transfer in RL is concerned with speeding up the learning process, since RL
agents can spend many episodes doing random exploration before acquiring a
reasonable Q-function. We divide RL transfer into five categories that represent
progressively larger changes to existing RL algorithms. The subsections below
describe those categories and present examples from published research.

Starting-Point Methods

Since all RL methods begin with an initial solution and then update it through
experience, one straightforward type of transfer in RL is to set the initial solution
in a target task based on knowledge from a source task (see Figure 8). Compared
to the random or zero setting that RL algorithms usually use at first, these
starting-point methods can begin the RL process at a point much closer to a
good target-task solution. There are variations on how to use the source-task
knowledge to set the initial solution, but in general the RL algorithm in the
target task is unchanged.

Taylor et al. [53] use a starting-point method for transfer in temporal-difference
RL. To perform transfer, they copy the final value function of the source task
and use it as the initial one for the target task. As many transfer approaches
do, this requires a mapping of features and actions between the tasks, and they
provide a mapping based on their domain knowledge.

0000

0000

0000

target-task training

4195

2719

8452

Initial Q-table
transfer

no transfersource
task

Fig. 8. Starting-point methods for RL transfer set the initial solution based on the
source task in the hope of starting at a higher performance level than the typical
initial solution would. In this example, a Q-function table is initialized to a source-task
table, and the target-task performance begins at a level that is only reached after some
training when beginning with a typical all-zero table.

9

Tanaka and Yamamura [47] use a similar approach in temporal-difference
learning without function approximation, where value functions are simply rep-
resented by tables. This greater simplicity allows them to combine knowledge
from several source tasks: they initialize the value table of the target task to the
average of tables from several prior tasks. Furthermore, they use the standard
deviations from prior tasks to determine priorities between temporal-difference
backups.

Approaching temporal-difference RL as a batch problem instead of an in-
cremental one allows for different kinds of starting-point transfer methods. In
batch RL, the agent interacts with the environment for more than one step or
episode at a time before updating its solution. Lazaric et al. [21] perform trans-
fer in this setting by finding source-task samples that are similar to the target
task and adding them to the normal target-task samples in each batch, thus
increasing the available data early on. The early solutions are almost entirely
based on source-task knowledge, but the impact decreases in later batches as
more target-task data becomes available.

Moving away from temporal-difference RL, starting-point methods can take
even more forms. In a model-learning Bayesian RL algorithm, Wilson et al. [63]
perform transfer by treating the distribution of previous MDPs as a prior for the
current MDP. In a policy-search genetic algorithm, Taylor et al. [54] transfer a
population of policies from a source task to serve as the initial population for a
target task.

Imitation Methods

Another class of RL transfer methods involves applying the source-task policy
to choose some actions while learning the target task (see Figure 9). While they
make no direct changes to the target-task solution the way that starting-point
methods do, these imitation methods affect the developing solution by producing
different function or policy updates. Compared to the random exploration that
RL algorithms typically do, decisions based on a source-task policy can lead the
agent more quickly to promising areas of the environment.

One method is to follow a source-task policy only during exploration steps
of the target task, when the agent would otherwise be taking a random action.
Madden and Howley [23] use this approach in tabular Q-learning. They represent
a source-task policy as a set of rules in propositional logic and choose actions
based on those rules during exploration steps.

Fernandez and Veloso [15] instead give the agent a three-way choice between
exploiting the current target-task policy, exploiting a past policy, and exploring
randomly. They introduce a second parameter, in addition to the ǫ of ǫ-greedy
exploration, to determine the probability of making each choice.

Another imitation method called demonstration involves following a source-
task policy for a fixed number of episodes at the beginning of the target task
and then reverting to normal RL. In the early steps of the target task, the cur-
rent policy can be so ill-formed that exploiting it is no different than exploring
randomly. This approach aims to avoid that initial uncertainty and to generate

10

(a) (b)

source

target

training time training time

policy
used

source

target
policy
used

Fig. 9. Imitation methods for RL transfer follow the source-task policy during some
steps of the target task. The imitation steps may all occur at the beginning of the
target task, as in (a) above, or they may be interspersed with steps that follow the
developing target-task policy, as in (b) above.

enough data to create a reasonable target-task policy by the time the demon-
stration period ends. Torrey et al. [58] and Torrey et al. [56] perform transfer
via demonstration, representing the source-task policy as a relational finite-state
machine and a Markov Logic Network respectively.

Hierarchical Methods

A third class of RL transfer includes hierarchical methods. These view the source
as a subtask of the target, and use the solution to the source as a building block
for learning the target. Methods in this class have strong connections to the area
of hierarchical RL, in which a complex task is learned in pieces through division
into a hierarchy of subtasks (see Figure 10).

An early approach of this type is to compose several source-task solutions
to form a target-task solution, as is done by Singh [40]. He addresses a scenario
in which complex tasks are temporal concatenations of simple ones, so that a
target task can be solved by a composition of several smaller solutions.

Mehta et al. [25] have a transfer method that works directly within the hi-
erarchical RL framework. They learn a task hierarchy by observing successful
behavior in a source task, and then use it to apply the MaxQ hierarchical RL
algorithm [10] in the target task. This removes the burden of designing a task
hierarchy through transfer.

Other approaches operate within the framework of options, which is a term
for temporally-extended actions in RL [31]. An option typically consists of a
starting condition, an ending condition, and an internal policy for choosing lower-
level actions. An RL agent treats each option as an additional action along with
the original lower-level ones (see Figure 10).

In some scenarios it may be useful to have the entire source-task policy as an
option in the target task, as Croonenborghs et al. [6] do. They learn a relational
decision tree to represent the source-task policy and allow the target-task learner
to execute it as an option. Another possibility is to learn smaller options, either
during or after the process of learning the source task, and offer them to the
target. Asadi and Huber [1] do this by finding frequently-visited states in the
source task to serve as ending conditions for options.

11

Run Kick

Pass Shoot

Soccer
Run

Kick

Run Kick

Pass

Kick

Shoot

(a) (b)

Fig. 10. (a) An example of a task hierarchy that could be used to train agents to
play soccer via hierarchical RL. Lower-level abilities like kicking a ball and running
are needed for higher-level abilities like passing and shooting, which could then be
combined to learn to play soccer. (b) The mid-level abilities represented as options
alongside the low-level actions.

Alteration Methods

The next class of RL transfer methods involves altering the state space, action
space, or reward function of the target task based on source-task knowledge.
These alteration methods have some overlap with option-based transfer, which
also changes the action space in the target task, but they include a wide range
of other approaches as well.

One way to alter the target-task state space is to simplify it through state
abstraction. Walsh et al. [60] do this by aggregating over comparable source-task
states. They then use the aggregate states to learn the target task, which reduces
the complexity significantly.

There are also approaches that expand the target-task state space instead of
reducing it. Taylor and Stone [51] do this by adding a new state variable in the
target task. They learn a decision list that represents the source-task policy and
use its output as the new state variable.

While option-based transfer methods add to the target-task action space,
there is also some work in decreasing the action space. Sherstov and Stone [38]
do this by evaluating in the source task which of a large set of actions are most
useful. They then consider only a smaller action set in the target task, which
decreases the complexity of the value function significantly and also decreases
the amount of exploration needed.

Reward shaping is a design technique in RL that aims to speed up learning
by providing immediate rewards that are more indicative of cumulative rewards.
Usually it requires human effort, as many aspects of RL task design do. Konidaris
and Barto [19] do reward shaping automatically through transfer. They learn to
predict rewards in the source task and use this information to create a shaped
reward function in the target task.

12

New RL Algorithms

A final class of RL transfer methods consists of entirely new RL algorithms.
Rather than making small additions to an existing algorithm or making changes
to the target task, these approaches address transfer as an inherent part of RL.
They incorporate prior knowledge as an intrinsic part of the algorithm.

Price and Boutilier [32] propose a temporal-difference algorithm in which
value functions are influenced by observations of expert agents. They use a vari-
ant of the usual value-function update calculation that includes an expert’s ex-
perience, weighted by the agent’s confidence in itself and in the expert. They
also perform extra backups at states the expert visits to focus attention on those
areas of the state space.

There are several algorithms for case-based RL that accomodate transfer.
Sharma et al. [37] propose one in which Q-functions are estimated using a Gaus-
sian kernel over stored cases in a library. Cases are added to the library from
both the source and target tasks when their distance to their nearest neighbor
is above a threshold. Taylor et al. [48] use source-task examples more selectively
in their case-based RL algorithm. They use target-task cases to make decisions
when there are enough, and only use source-task examples when insufficient
target examples exist.

Torrey et al. [57, 59] use an RL algorithm called Knowledge-Based Kernel
Regression (KBKR) that allows transfer via advice-taking. Advice in this algo-
rithm is a rule telling the agent which action to prefer in a set of states described
by a conjunct of predicates. KBKR approximates the Q-function with a support-
vector machine and includes advice as a soft constraint. The Q-function, which
is relearned in batches using temporal-difference updates, trades off between
matching the agent’s experience and matching the advice. Torrey et al. gener-
ate advice through automated analysis of the source-task solution; in [59] they
construct advice directly from the source-task Q-function, and in [57] they learn
rules in first-order logic by observing the source-task agent as it follows its policy.

AVOIDING NEGATIVE TRANSFER

Given a target task, the effectiveness of any transfer method depends on the
source task and how it is related to the target. If the relationship is strong and
the transfer method can take advantage of it, the performance in the target task
can significantly improve through transfer. However, if the source task is not
sufficiently related or if the relationship is not well leveraged by the transfer
method, the performance with many approaches may not only fail to improve
– it may actually decrease. This section examines work on preventing transfer
from negatively affecting performance.

Ideally, a transfer method would produce positive transfer between appro-
priately related tasks while avoiding negative transfer when the tasks are not a
good match. In practice, these goals are difficult to achieve simultaneously. Ap-
proaches that have safeguards to avoid negative transfer often produce a smaller

13

transfer
performance

task
relatedness

aggressive

safe

Fig. 11. A representation of how the degree of relatedness between the source and
target tasks translates to target-task performance when conducting transfer from the
source task. With aggressive approaches, there can be higher benefits at high degrees
of relatedness, but there can also be negative transfer at low levels. Safer approaches
may limit negative transfer at the lower end, but may also have fewer benefits at the
higher end.

effect from positive transfer due to their caution. Conversely, approaches that
transfer aggressively and produce large positive-transfer effects often have no
protection against negative transfer (see Figure 11).

For example, consider the imitation methods for RL transfer. On one end
of the range an agent imitates a source-task policy only during infrequent ex-
ploration steps, and on the other end it demonstrates the source-task policy
for a fixed number of initial episodes. The exploration method is very cautious
and therefore unlikely to produce negative transfer, but it is also unlikely to
produce large initial performance increases. The demonstration method is very
aggressive; if the source-task policy is a poor one for the target task, following it
blindly will produce negative transfer. However, when the source-task solution
is a decent one for the target task, it can produce some of the largest initial
performance improvements of any method.

Rejecting Bad Information

One way of approaching negative transfer is to attempt to recognize and reject
harmful source-task knowledge while learning the target task. The goal in this
approach is to minimize the impact of bad information, so that the transfer per-
formance is at least no worse than learning the target task without transfer. At
the extreme end, an agent might disregard the transferred knowledge completely,
but some methods also allow it to selectively reject parts and keep other parts.

Option-based transfer in reinforcement learning (e.g. Croonenborghs et al. [6])
is an example of an approach that naturally incorporates the ability to reject
bad information. Since options are treated as additional actions, the agent can
choose to use them or not to use them; in Q-learning, for example, agents learn
Q-values for options just as for native actions. If an option regularly produces
poor performance, its Q-values will degrade and the agent will choose it less fre-
quently. However, if an option regularly leads to good results, its Q-values will

14

grow and the agent will choose it more often. Option-based transfer can there-
fore provide a good balance between achieving positive transfer and avoiding
negative transfer.

A specific approach that incorporates the ability to reject bad information is
the KBKR advice-taking algorithm for transfer in reinforcement learning [57, 59].
Recall that KBKR approximates the Q-function with a support-vector machine
and includes advice from the source task as a soft constraint. Since the Q-function
trades off between matching the agent’s experience and matching the advice, the
agent can learn to disregard advice that disagrees with its experience.

Rosenstein et al. [35] present an approach for detecting negative transfer in
naive Bayes classification tasks. They learn a hyperprior for both the source and
target tasks, and the variance of this hyperprior is proportional to the dissimi-
larity between the tasks. It may be possible to use a method like this to decide
whether to transfer at all, by setting an acceptable threshold of similarity.

Choosing a Source Task

There are more possibilities for avoiding negative transfer if there exists not just
one source task, but a set of candidate source tasks. In this case the problem
becomes choosing the best source task (see Figure 12). Transfer methods without
much protection against negative transfer may still be effective in this scenario,
as long as the best source task is at least a decent match.

An example of this approach is the previously-mentioned transfer hierarchy
of Taylor et al. [49], who order tasks by difficulty. Appropriate source tasks are
usually less difficult than the target task, but not so much simpler that they
contain little information. Given a task ordering, it may be possible to locate
the position of the target task in the hierarchy and select a source task that is
only moderately less difficult.

Talvitie and Singh [46] use a straightforward method of selecting a previous
Markov decision process to transfer. They run each candidate MDP in the target
task for a fixed length of time and order them by their performance. Then they
select the best one and continue with it, only proceeding down the list if the
current MDP begins performing significantly worse than it originally appeared.
This trial-and-error approach, though it may be costly in the aggregate number
of training episodes needed, is simple and widely applicable.

Kuhlmann and Stone [20] look at finding similar tasks when each task is
specified in a formal language. They construct a graph to represent the elements
and rules of a task. This allows them to find identical tasks by checking for
graph isomorphism, and by creating minor variants of a target-task graph, they
can also search for similar tasks. If they find an isomorphic match, they conduct
value-function transfer.

Eaton and DesJardins [12] propose choosing from among candidate solutions
to a source task rather than from among candidate source tasks. Their setting
is multi-resolution learning, where a classification task is solved by an ensemble
of models that vary in complexity. Low-resolution models are simple and coarse,
while higher-resolution models are more complex and detailed. They reason that

15

Task 1

Target
Task

Task 2

Task N

…

SelectTask 3

Task 1

Task 2

Task 4

Task 3

Target
Task

(a) (b)

dist1

dist2

dist3

dist4

Fig. 12. (a) One way to avoid negative transfer is to choose a good source task from
which to transfer. In this example, Task 2 is selected as being the most related. (b)
Another way to avoid negative transfer is to model the way source tasks are related to
the target task and combine knowledge from them with those relationships in mind.

high-resolution models are less transferrable between tasks, and select a resolu-
tion below which to share models with a target task.

Modeling Task Similarity

Given multiple candidate source tasks, it may be beneficial to use several or all of
them rather than to choose just one (see Figure 12). Some approaches discussed
in this chapter do this naively, without evaluating how the source tasks are
related to the target. However, there are some approaches that explicitly model
relationships between tasks and include this information in the transfer method.
This can lead to better use of source-task knowledge and decrease the risk of
negative transfer.

Carroll and Seppi [4] develop several similarity measures for reinforcement
learning tasks, comparing policies, value functions, and rewards. These are only
measurable while the target task is being learned, so their practical use in transfer
scenarios is limited. However, they make the relevant point that task similarity
is intimately linked with a particular transfer method, and cannot be evaluated
independently.

Eaton et al. [13] construct a graph in which nodes represent source tasks and
distances represent a transferability metric. Given a new inductive learning task,
they estimate parameters by fitting the task into the graph and learning a func-
tion that translates graph locations to task parameters. This method not only
models the relationships between tasks explicitly, but also gives an algorithm for
the informed use of several source tasks in transfer learning.

Ruckert and Kramer [36] look at inductive transfer via kernel methods. They
learn a meta-kernel that serves as a similarity function between tasks. Given this
and a set of kernels that perform well in source tasks, they perform numerical
optimization to construct a kernel for a target task. This approach determines
the inductive bias in the target task (the kernel) by combining information from
several source tasks whose relationships to the target are known.

16

AUTOMATICALLY MAPPING TASKS

An inherent aspect of transfer learning is recognizing the correspondences be-
tween tasks. Knowledge from one task can only be applied to another if it is
expressed in a way that the target-task agent understands. In some cases, the
representations of the tasks are assumed to be identical, or at least one is a
subset of the other. Otherwise, a mapping is needed to translate between task
representations (see Figure 13).

Many transfer approaches do not address the mapping problem directly and
require that a human provide this information. However, there are some transfer
approaches that do address the mapping problem. This section discusses some
of this work.

Equalizing Task Representations

For some transfer scenarios, it may be possible to avoid the mapping problem
altogether by ensuring that the source and target tasks have the same represen-
tation. If the language of the source-task knowledge is identical to or a subset
of the language of the target task, it can be applied directly with no transla-
tion. Sometimes a domain can be constructed so that this occurs naturally, or a
common representation that equalizes the tasks can be found.

Relational learning is useful for creating domains that naturally produce com-
mon task representations. First-order logic represents objects in a domain with
symbolic variables, which can allow abstraction that the more typical proposi-
tional feature vector cannot. Driessens et al. [11] show how relational reinforce-
ment learning can simplify transfer in RL.

Another framework for constructing a domain relationally is that of Konidaris
and Barto [19], who express knowledge in two different spaces. In agent space

the representation is constant across tasks, while in problem space it is task-
dependent. They transfer agent-space knowledge only because its common rep-
resentation makes it straightforward to transfer.

Property 1

…

Property 2

Property N

Source Task Target Task

Property 1

…

Property 2

Property 3

Property M

Fig. 13. A mapping generally translates source-task properties into target-task prop-
erties. The numbers of properties may not be equal in the two tasks, and the mapping
may not be one-to-one. Properties may include entries in a feature vector, objects in a
relational world, RL actions, etc.

17

Pan et al. [30] take a mathematical approach to finding a common repre-
sentation for two separate classification tasks. They use kernel methods to find
a low-dimensional feature space where the distributions of source and target
data are similar, and transfer a source-task model for this smaller space. This
approach stretches our strict definition of transfer learning, which assumes the
target task is unknown when the source task is learned, but in some scenarios it
may be practical to adjust the source-task solution to a different feature space
after gaining some knowledge about the target task.

Trying Multiple Mappings

One straightforward way of solving the mapping problem is to generate several
possible mappings and allow the target-task agent to try them all. The candidate
mappings can be an exhaustive set, or they can be limited by constraints on
what elements are permissible matches for other elements. Exhaustive sets may
be computationally infeasible for large domains.

Taylor et al. [50] perform an exhaustive search of possible mappings in RL
transfer. They evaluate each candidate using a small number of episodes in the
target task, and select the best one to continue learning. Mihalkova et al. [26]
limit their search for mappings in MLN transfer, requiring that mapped pred-
icates have matching arity and argument types. Under those constraints, they
conduct an exhaustive search to find the best mapping between networks.

Soni and Singh [41] not only limit the candidate mappings by considering
object types, but also avoid a separate evaluation of each mapping by using
options in RL transfer. They generate a set of possible mappings by connecting
target-task objects to all source-task objects of the matching type. With each
mapping, they create an option from a source MDP. The options framework
gives an inherent way to compare multiple mappings while learning a target
MDP without requiring extra trial periods.

Mapping by Analogy

If the task representations must differ, and the scenario calls for choosing one
mapping rather than trying multiple candidates, then there are some methods
that construct a mapping by analogy. These methods examine the characteristics
of the source and target tasks and find elements that correspond. For example,
in reinforcement learning, actions that correspond produce similar rewards and
state changes, and objects that correspond are affected similarly by actions.

Analogical structure mapping [14] is a generic procedure based on cognitive
theories of analogy that finds corresponding elements. It assigns scores to local
matches and searches for a global match that maximizes the scores; permissi-
ble matches and scoring functions are domain-dependent. Several transfer ap-
proaches use this framework solve the mapping problem. Klenk and Forbus [18]
apply it to solve physics problems that are written in a predicate-calculus lan-
guage by retrieving and forming analogies from worked solutions written in the

18

same language. Liu and Stone [22] apply it in reinforcement learning to find
matching features and actions between tasks.

There are also some approaches that rely more on statistical analysis than
on logical reasoning to find matching elements. Taylor and Stone [52] learn map-
pings for RL tasks by running a small number of target-task episodes and then
training classifiers to characterize actions and objects. If a classifier trained for
one action predicts the results of another action well, then those actions are
mapped; likewise, if a classifier trained for one object predicts the behavior of
another object well, those objects are mapped. Wang and Mahadevan [61] trans-
late datasets to low-dimensional feature spaces using dimensionality reduction,
and then perform a statistical shaping technique called Procrustes analysis to
align the feature spaces.

THE FUTURE OF TRANSFER LEARNING

The challenges discussed in this chapter will remain relevant in future work on
transfer learning, particularly the avoidance of negative transfer and the automa-
tion of task mapping. Humans appear to have mechanisms for deciding when to
transfer information, selecting appropriate sources of knowledge, and determin-
ing the appropriate level of abstraction. It is not always clear how to make these
decisions for a single machine learning algorithm, much less in general.

Another challenge for future work is to enable transfer between more di-
verse tasks. Davis and Domingos [9] provide a potential direction for this in
their work on MLN transfer. They perform pattern discovery in the source task
to find second-order formulas, which represent universal abstract concepts like
symmetry and transitivity. When learning an MLN for the target task, they
allow the search to use the discovered formulas in addition to the original pred-
icates in the domain. This approach is recognizeable as inductive transfer, but
the source-task knowledge is highly abstract, which allows the source and target
tasks to differ significantly.

Yet another challenge is to perform transfer in more complex testbeds. Par-
ticularly in RL transfer, it can become much more difficult to achieve transfer as
the source and target tasks become more complex. Since practical applications
of reinforcement learning are likely to be highly complex, it is important not to
limit research on RL tranfer to simple domains.

Transfer learning has become a sizeable subfield in machine learning. It has
ideological benefits, because it is seen as an important aspect of human learning,
and also practical benefits, because it can make machine learning more efficient.
As computing power increases and researchers apply machine learning to more
complex problems, knowledge transfer can only become more desirable.

ACKNOWLEDGEMENTS

This chapter was written while the authors were partially supported by DARPA
grants HR0011-07-C-0060 and FA8650-06-C-7606.

19

References

1. M. Asadi and M. Huber. Effective control knowledge transfer through learning
skill and representation hierarchies. In International Joint Conference on Artificial

Intelligence, 2007.
2. J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence

Research, 12:149–198, 2000.
3. S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learn-

ing. In Conference on Learning Theory, 2003.
4. C. Carroll and K. Seppi. Task similarity measures for transfer in reinforcement

learning task libraries. In IEEE International Joint Conference on Neural Net-

works, 2005.
5. R. Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.
6. T. Croonenborghs, K. Driessens, and M. Bruynooghe. Learning relational skills for

inductive transfer in relational reinforcement learning. In International Conference

on Inductive Logic Programming, 2007.
7. W. Dai, G. Xue, Q. Yang, and Y. Yu. Transferring Naive Bayes classifiers for text

classification. In AAAI Conference on Artificial Intelligence, 2007.
8. W. Dai, Q. Yang, G. Xue, and Y. Yu. Boosting for transfer learning. In Interna-

tional Conference on Machine Learning, 2007.
9. J. Davis and P. Domingos. Deep transfer via second-order Markov logic. In AAAI

Workshop on Transfer Learning for Complex Tasks, 2008.
10. T. Dietterich. Hierarchical reinforcement learning with the MAXQ value function

decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000.
11. K. Driessens, J. Ramon, and T. Croonenborghs. Transfer learning for reinforce-

ment learning through goal and policy parametrization. In ICML Workshop on

Structural Knowledge Transfer for Machine Learning, 2006.
12. E. Eaton and M. DesJardins. Knowledge transfer with a multiresolution ensemble

of classifiers. In ICML Workshop on Structural Knowledge Transfer for Machine

Learning, 2006.
13. E. Eaton, M. DesJardins, and T. Lane. Modeling transfer relationships between

learning tasks for improved inductive transfer. In European Conference on Machine

Learning, 2008.
14. B. Falkenhainer, K. Forbus, and D. Gentner. The structure-mapping engine: Al-

gorithm and examples. Artificial Intelligence, 41:1–63, 1989.
15. F. Fernandez and M. Veloso. Probabilistic policy reuse in a reinforcement learning

agent. In Conference on Autonomous Agents and Multi-Agent Systems, 2006.
16. Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learn-

ing and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

17. H. Hlynsson. Transfer learning using the minimum description length principle
with a decision tree application. Master’s thesis, University of Amsterdam, 2007.

18. M. Klenk and K. Forbus. Measuring the level of transfer learning by an AP physics
problem-solver. In AAAI Conference on Artificial Intelligence, 2007.

19. G. Konidaris and A. Barto. Autonomous shaping: Knowledge transfer in reinforce-
ment learning. In International Conference on Machine Learning, 2006.

20. G. Kuhlmann and P. Stone. Graph-based domain mapping for transfer learning in
general games. In European Conference on Machine Learning, 2007.

21. A. Lazaric, M. Restelli, and A. Bonarini. Transfer of samples in batch reinforcement
learning. In International Conference on Machine Learning, 2008.

20

22. Y. Liu and P. Stone. Value-function-based transfer for reinforcement learning using
structure mapping. In AAAI Conference on Artificial Intelligence, 2006.

23. M. Madden and T. Howley. Transfer of experience between reinforcement learning
environments with progressive difficulty. Artificial Intelligence Review, 21:375–398,
2004.

24. Z. Marx, M. Rosenstein, L. Kaelbling, and T. Dietterich. Transfer learning with
an ensemble of background tasks. In NIPS Workshop on Transfer Learning, 2005.

25. N. Mehta, S. Ray, P. Tadepalli, and T. Dietterich. Automatic discovery and transfer
of MAXQ hierarchies. In International Conference on Machine Learning, 2008.

26. L. Mihalkova, T. Huynh, and R. Mooney. Mapping and revising Markov Logic
Networks for transfer learning. In AAAI Conference on Artificial Intelligence,
2007.

27. L. Mihalkova and R. Mooney. Transfer learning with Markov Logic Networks. In
ICML Workshop on Structural Knowledge Transfer for Machine Learning, 2006.

28. T. Mitchell. Machine Learning. McGraw-Hill, 1997.
29. A. Niculescu-Mizil and R. Caruana. Inductive transfer for Bayesian network struc-

ture learning. In Conference on AI and Statistics, 2007.
30. S. Pan, J. Kwok, and Q. Yang. Transfer learning via dimensionality reduction. In

AAAI Conference on Artificial Intelligence, 2008.
31. T. Perkins and D. Precup. Using options for knowledge transfer in reinforce-

ment learning. Technical Report UM-CS-1999-034, University of Massachusetts,
Amherst, 1999.

32. B. Price and C. Boutilier. Implicit imitation in multiagent reinforcement learning.
In International Conference on Machine Learning, 1999.

33. R. Raina, A. Ng, and D. Koller. Constructing informative priors using transfer
learning. In International Conference on Machine Learning, 2006.

34. M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1-
2):107–136, 2006.

35. M. Rosenstein, Z. Marx, L. Kaelbling, and T. Dietterich. To transfer or not to
transfer. In NIPS Workshop on Inductive Transfer, 2005.

36. U. Ruckert and S. Kramer. Kernel-based inductive transfer. In European Confer-

ence on Machine Learning, 2008.
37. M. Sharma, M. Holmes, J. Santamaria, A. Irani, C. Isbell, and A. Ram. Transfer

learning in real-time strategy games using hybrid CBR/RL. In International Joint

Conference on Artificial Intelligence, 2007.
38. A. Sherstov and P. Stone. Action-space knowledge transfer in MDPs: Formalism,

suboptimality bounds, and algorithms. In Conference on Learning Theory, 2005.
39. X. Shi, W. Fan, and J. Ren. Actively transfer domain knowledge. In European

Conference on Machine Learning, 2008.
40. S. Singh. Transfer of learning by composing solutions of elemental sequential tasks.

Machine Learning, 8(3-4):323–339, 1992.
41. V. Soni and S. Singh. Using homomorphisms to transfer options across continuous

reinforcement learning domains. In AAAI Conference on Artificial Intelligence,
2006.

42. D. Stracuzzi. Memory organization and knowledge transfer. In ICML Workshop

on Structural Knowledge Transfer for Machine Learning, 2006.
43. C. Sutton and A. McCallum. Composition of conditional random fields for transfer

learning. In Conference on Empirical methods in Natural Language Processing,
2005.

44. R. Sutton. Learning to predict by the methods of temporal differences. Machine

Learning, 3:9–44, 1988.

21

45. R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

46. E. Talvitie and S. Singh. An experts algorithm for transfer learning. In Interna-

tional Joint Conference on Artificial Intelligence, 2007.
47. F. Tanaka and M. Yamamura. Multitask reinforcement learning on the distri-

bution of MDPs. Transactions of the Institute of Electrical Engineers of Japan,
123(5):1004–1011, 2003.

48. M. Taylor, N. Jong, and P. Stone. Transferring instances for model-based rein-
forcement learning. In European Conference on Machine Learning, 2008.

49. M. Taylor, G. Kuhlmann, and P. Stone. Accelerating search with transferred
heuristics. In ICAPS Workshop on AI Planning and Learning, 2007.

50. M. Taylor, G. Kuhlmann, and P. Stone. Autonomous transfer for reinforcement
learning. In Conference on Autonomous Agents and Multi-Agent Systems, 2008.

51. M. Taylor and P. Stone. Cross-domain transfer for reinforcement learning. In
International Conference on Machine Learning, 2007.

52. M. Taylor and P. Stone. Transfer via inter-task mappings in policy search reinforce-
ment learning. In Conference on Autonomous Agents and Multi-Agent Systems,
2007.

53. M. Taylor, P. Stone, and Y. Liu. Value functions for RL-based behavior transfer:
A comparative study. In AAAI Conference on Artificial Intelligence, 2005.

54. M. Taylor, S. Whiteson, and P. Stone. Transfer learning for policy search methods.
In ICML Workshop on Structural Knowledge Transfer for Machine Learning, 2006.

55. S. Thrun and T. Mitchell. Learning one more thing. In International Joint Con-

ference on Artificial Intelligence, 1995.
56. L. Torrey, J. Shavlik, S. Natarajan, P. Kuppili, and T. Walker. Transfer in rein-

forcement learning via Markov Logic Networks. In AAAI Workshop on Transfer

Learning for Complex Tasks, 2008.
57. L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Relational skill transfer via

advice taking. In ICML Workshop on Structural Knowledge Transfer for Machine

Learning, 2006.
58. L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Relational macros for transfer in

reinforcement learning. In International Conference on Inductive Logic Program-

ming, 2007.
59. L. Torrey, T. Walker, J. Shavlik, and R. Maclin. Using advice to transfer knowledge

acquired in one reinforcement learning task to another. In European Conference

on Machine Learning, 2005.
60. T. Walsh, L. Li, and M. Littman. Transferring state abstractions between MDPs.

In ICML Workshop on Structural Knowledge Transfer for Machine Learning, 2006.
61. C. Wang and S. Mahadevan. Manifold alignment using Procrustes analysis. In

International Conference on Machine Learning, 2008.
62. C. Watkins. Learning from delayed rewards. PhD thesis, University of Cambridge,

1989.
63. A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multi-task reinforcement learning: A

hierarchical Bayesian approach. In International Conference on Machine Learning,
2007.

22

