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ABSTRACT
Markov Logic Networks (MLNs) have emerged as a powerful
framework that combines statistical and logical reasoning;
they have been applied to many data intensive problems in-
cluding information extraction, entity resolution, and text
mining. Current implementations of MLNs do not scale to
large real-world data sets, which is preventing their wide-
spread adoption. We present Tuffy that achieves scalabil-
ity via three novel contributions: (1) a bottom-up approach
to grounding that allows us to leverage the full power of the
relational optimizer, (2) a novel hybrid architecture that al-
lows us to perform AI-style local search efficiently using an
RDBMS, and (3) a theoretical insight that shows when one
can (exponentially) improve the efficiency of stochastic local
search. We leverage (3) to build novel partitioning, loading,
and parallel algorithms. We show that our approach outper-
forms state-of-the-art implementations in both quality and
speed on several publicly available datasets.

1. INTRODUCTION
Over the past few years, Markov Logic Networks (MLNs)

have emerged as a powerful and popular framework com-
bining logical and probabilistic reasoning. MLNs have been
successfully applied to a wide variety of data management
problems, e.g., information extraction, entity resolution, and
text mining. In contrast to probability models like factor
graphs [23] that require complex distributions to be speci-
fied in tedious detail, MLNs allow us to declare a rigorous
statistical model at a much higher conceptual level using
first-order logic. For example, to classify papers by research
area, one could write a rule such as “it is likely that if one
paper cites another they are in the same research area.”
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Our interest in MLNs stems from our involvement in a
DARPA project called “Machine Reading.” The grand chal-
lenge is to build software that can read the Web, i.e., extract
and integrate structured data (e.g., entities, relationships)
from Web data, then use this structured data to answer user
queries. The current approach is to use MLNs as a lingua
franca to combine many different kinds of extractions into
one coherent picture. To accomplish this goal, it is critical
that MLNs scale to large data sets.

Unfortunately, none of the current MLN implementations
scale beyond relatively small data sets (and even on many
of these data sets, existing implementations routinely take
hours to run). The first obvious reason is that these are in-
memory implementations: when manipulating large inter-
mediate data structures that overflow main memory, they
either crash or thrash badly. Consequently, there is an
emerging effort across several research groups to scale up
MLNs. In this paper, we describe our system, Tuffy1,
that leverages an RDBMS to address the above scalability
and performance problems.

There are two aspects of MLNs: learning and inference [21].
We focus on inference, since typically a model is learned
once, and then an application may perform inference many
times using the same model; hence inference is an on-line
process, which must be fast. Moreover, MLN learning al-
gorithms typically invoke inference as a subroutine repeat-
edly. Conceptually, inference2 in MLNs has two phases: a
grounding phase, which constructs a large, weighted SAT
formula, and a search phase, which searches for a low cost
(weight) assignment (called a solution) to the SAT formula
from grounding (using WalkSAT [13], a local search proce-
dure). Grounding is a non-trivial portion of the overall in-
ference effort: on a classification benchmark (called RC) the
state-of-the-art MLN inference engine, Alchemy [7], spends
over 96% of its execution time in grounding. The state-of-
the-art strategy for the grounding phase (and the one used
by Alchemy) is a top-down procedure (similar to the proof
strategy in Prolog). In contrast, we propose a bottom-up
grounding strategy. Intuitively, bottom-up grounding allows
Tuffy to fully exploit the RDBMS optimizer, and thereby
significantly speed up the grounding phase of MLN infer-
ence. On an entity resolution task, Alchemy takes over
7 hours to complete grounding, while Tuffy’s grounding
finishes in less than 2 minutes.

1http://www.cs.wisc.edu/hazy/tuffy/
2We focus on maximum a posteriori inference which is crit-
ical for many integration tasks. We discuss marginal infer-
ence in Appendix A.5.



But not all phases are well-optimized by the RDBMS: dur-
ing the search phase, we found that the RDBMS implemen-
tation performed poorly. The underlying reason is a funda-
mental problem for pushing local search procedures into an
RDBMS: search procedures often perform inherently sequen-
tial, random data accesses. Consequently, any RDBMS-
based solution must execute a large number of disk ac-
cesses, each of which has a substantial overhead (due to the
RDBMS) versus direct main-memory access. Not surpris-
ingly, given the same amount of time, an in-memory solu-
tion can execute between three and five orders of magnitude
more search steps than an approach that uses an RDBMS.
Thus, to achieve competitive performance, we developed a
novel hybrid architecture that supports local search proce-
dures in main memory whenever possible. This is our second
technical contribution.

Our third contribution is a simple partitioning technique
that allows Tuffy to introduce parallelism and use less
memory than state-of-the-art approaches. Surprisingly, this
same technique often allows Tuffy to speed up the search
phase exponentially. The underlying idea is simple: in many
cases, a local search problem can be divided into multiple
independent subproblems. For example, the formula that
is output by the grounding phase may consist of multiple
connected components. On such datasets, we derive a suf-
ficient condition under which solving the subproblems inde-
pendently results in exponentially faster search than running
the larger global problem (Thm. 3.1). An application of our
theorem shows that on an information extraction testbed,
a system that is not aware of this phenomenon (such as
Alchemy) must take at least 2200 more steps than Tuffy
to reach a solution with the same quality. Empirically we
found that, on some real-world datasets, solutions found by
Tuffy within one minute have higher quality than those
found by non-partitioning systems (such as Alchemy) even
after running for days.

The exponential difference in running time for indepen-
dent subproblems versus the larger global problem suggests
that in some cases, further decomposing the search space
may improve the overall runtime. To implement this idea
for MLNs, we must address two difficult problems: (1) parti-
tioning the formula from grounding (and so the search space)
to minimize the number of formula that are split between
partitions, and (2) augmenting the search algorithm to be
aware of partitioning. We show that the first problem is NP-
hard (even to approximate), and design a scalable heuristic
partitioning algorithm. For the second problem, we apply
a technique from non-linear optimization to leverage the in-
sights gained from our characterization of the phenomenon
described above. The effect of such partitioning is dramatic.
As an example, on a classification benchmark (called RC),
Tuffy (using 15MB of RAM) produces much better result
quality in minutes than Alchemy (using 2.8GB of RAM)
even after days of running. In fact, Tuffy is able to an-
swer queries on a version of the RC dataset that is over two
orders of magnitude larger. (We estimate that Alchemy
would need 280GB+ of RAM to process it.)

Related Work. MLNs are an integral part of state-of-the-
art approaches in a variety of applications: natural language
processing [22], ontology matching [29], information extrac-
tion [18], entity resolution [25], etc. And so, there is an
application push to support MLNs.

Pushing statistical reasoning models inside a database sys-
tem has been a goal of many projects [5,10,11,20,27]. Most
closely related is the BayesStore project, in which the
database essentially stores Bayes Nets [17] and allows these
networks to be retrieved for inference by an external pro-
gram. In contrast, Tuffy uses an RDBMS to optimize the
inference procedure. The Monte-Carlo database [10] made
sampling a first-class citizen inside an RDBMS. In contrast,
in Tuffy our approach can be viewed as pushing classical
search inside the database engine. One way to view an MLN
is a compact specification of factor graphs [23]. Sen et al. [23]
proposed new algorithms; in contrast, we take an existing,
widely used class of algorithms (local search), and our focus
is to leverage the RDBMS to improve performance.

There has also been an extensive amount of work on prob-
abilistic databases [1, 2, 4, 19] that deal with simpler proba-
bilistic models. Finding the most likely world is trivial in
these models; in contrast, it is highly non-trivial in MLNs
(in fact, it is NP-hard [6]). Finally, none of these prior ap-
proaches deal with the core technical challenge Tuffy ad-
dresses, which is handling AI-style search inside a database.
Additional related work can be found in Appendix D.

Contributions, Validation, and Outline. To summarize,
we make the following contributions:

• In Section 3.1, we design a solution that pushes MLNs
into RDBMSes. The key idea is to use bottom-up
grounding that allows us to leverage the RDBMS opti-
mizer; this idea improves the performance of the ground-
ing phase by several orders of magnitude.

• In Section 3.2, we devise a novel hybrid architecture to
support efficient grounding and in-memory inference.
By itself, this architecture is far more scalable and,
given the same amount of time, can perform orders of
magnitude more search steps than prior art.

• In Section 3.3, we describe novel data partitioning
techniques to decrease the memory usage and to in-
crease parallelism (and so improve the scalability) of
Tuffy’s in-memory inference algorithms. Addition-
ally, we show that for any MLN with an MRF that
contains multiple components, partitioning could ex-
ponentially improve the expected (average case) search
time.

• In Section 3.4, we generalize our partitioning results
to arbitrary MLNs using our characterization of the
partitioning phenomenon. These techniques result in
our highest quality, most space-efficient solutions.

We present an extensive experimental study on a diverse set
of MLN testbeds to demonstrate that our system Tuffy is
able to get better result quality more quickly and work over
larger datasets than the state-of-the-art approaches.

2. PRELIMINARIES
We illustrate a Markov Logic Network program using the

example of classifying papers by topic area. We then define
the semantics of MLNs and the mechanics of inference.

2.1 The Syntax of MLNs
Figure 1 shows an example input MLN program for Tuffy

that is used to classify paper references by topic area, such
as databases, systems, AI, etc. In this example, a user gives



paper(PaperID, URL)
wrote(Author, Paper)
refers(Paper, Paper)
cat(Paper, Category)

weight rule
5 cat(p, c1), cat(p, c2) => c1 = c2 (F1)
1 wrote(x, p1), wrote(x, p2), cat(p1, c) => cat(p2, c) (F2)
2 cat(p1, c), refers(p1, p2) => cat(p2, c) (F3)

+∞ paper(p, u) => ∃x. wrote(x, p) (F4)
-1 cat(p, ‘Networking’) (F5)

wrote(‘Joe’, ‘P1’)
wrote(‘Joe’, ‘P2’)
wrote(‘Jake’, ‘P3’)
refers(‘P1’, ‘P3’)
cat(‘P2’, ‘DB’)
· · ·

Schema A Markov Logic Program Evidence

Figure 1: A Sample Markov Logic Program: The goal is to classify papers by area. As evidence we are given
author and citation information of all papers, as well as the labels of a subset of the papers; we want to
classify the remaining papers. Any variable not explicitly quantified is universally quantified.

Tuffy a set of relations that capture information about the
papers in her dataset: she has extracted authors and cita-
tions and stored them in the relations wrote(Author,Paper)
and refers(Paper,Paper). She may also provide evidence,
which is data that she knows to be true (or false). Here, the
evidence shows that Joe wrote papers P1 and P2 and P1
cited another paper P3. In the relation cat (for ‘category’),
she provides Tuffy with a subset of papers and the cate-
gories into which they fall. The cat relation is incomplete:
some papers are not labeled. We can think of each possi-
ble labeling of these papers as an instantiation of the cat

relation, which can be viewed as a possible world [8]. The
classification task is to find the most likely labeling of papers
by topic area, and hence the most likely possible world.

To tell the system which possible world it should produce,
the user provides (in addition to the above data) a set of
rules that incorporate her knowledge of the problem. A
simple example rule is F1:

cat(p, c1), cat(p, c2) => c1 = c2 (F1)

Intuitively, F1 says that a paper should be in one category.
In MLNs, this rule may be hard, meaning that it behaves
like a standard key constraint: in any possible world, each
paper must be in at most one category. This rule may also
be soft, meaning that it may be violated in some possible
worlds. For example, in some worlds a paper may be in two
categories. Soft rules also have weights that intuitively tell
us how likely the rule is to hold in a possible world. In this
example, F1 is a soft rule and has weight 5. Roughly, this
means that a fixed paper is at least e5 times more likely
to be in a single category compared to being in multiple
categories. MLNs can also involve data in non-trivial ways,
we refer the reader to Appendix A.1 for a more complete
exposition.

Query Model. Given the data and the rules, a user may
write arbitrary queries in terms of the relations. In Tuffy,
the system is responsible for filling in whatever missing data
is needed: in this example, the category of each unlabeled
paper is unknown, and so to answer a query the system infers
the most likely labels for each paper from the evidence.

2.2 Semantics of MLNs
We describe the semantics of MLNs. Formally, we first

fix a schema σ (as in Figure 1) and a domain D. Given as
input a set of formula F̄ = F1, . . . , FN (in clausal form3)
with weights w1, . . . , wN , they define a probability distribu-
tion over possible worlds (deterministic databases). To con-
struct this probability distribution, the first step is ground-

3Clausal form is a disjunction of positive or negative literals.
For example, the rule is R(a) => R(b) is not in clausal form,
but is equivalent to ¬R(a) ∨R(b), which is in clausal form.

ing: given a formula F with free variables x̄ = (x1, · · · , xm),
then for each d̄ ∈ Dm, we create a new formula gd̄ called
a ground clause where gd̄ denotes the result of substitut-
ing each variable xi of F with di. For example, for F3

the variables are {p1, p2, c}: one tuple of constants is d̄ =
(‘P1’, ‘P2’, ‘DB’) and the ground formula fd̄ is:

cat(‘P1’, ‘DB’), refers(‘P1’, ‘P2’) => cat(‘P2’, ‘DB’)

Each constituent in the ground formula, such as cat(‘P1’,
‘DB’) and refers(‘P1’, ‘P2’), is called a ground predicate
or atom for short. In the worst case there are D3 ground
clauses for F3. For each formula Fi (for i = 1 . . . N), we per-
form the above process. Each ground clause g of a formula
Fi is assigned the same weight, wi. So, a ground clause of
F1 has weight 5, while any ground clause of F2 has weight
1. We denote by G = (ḡ, w) the set of all ground clauses of
F̄ and a function w that maps each ground clause to its as-
signed weight. Fix an MLN F̄ , then for any possible world
(instance) I we say a ground clause g is violated if w(g) > 0
and g is false in I or if w(g) < 0 and g is true in I. We
denote the set of ground clauses violated in a world I as
V (I). The cost of the world I is

cost(I) =
∑

g∈V (I)

|w(g)| (1)

Through cost, an MLN defines a probability distribution
over all instances (denoted Inst) as:

Pr[I] = Z−1 exp {−cost(I)} where Z =
∑

J∈Inst

exp {−cost(J)}

A lowest cost world I is called a most likely world. Since
cost(I) ≥ 0, if cost(I) = 0 then I is a most likely world. On
the other hand the most likely world may have positive cost.
There are two main types of inference with MLNs: MAP
(maximum a posteriori) inference, where we want to find a
most likely world, and marginal inference, where we want to
compute marginal probabilities. Tuffy is capable of both
types of inference, but we present only MAP inference in the
body of this paper. We refer the reader to Appendix A.5 for
details of marginal inference.

2.3 Inference
We now describe the state of the art of inference for MLNs

(as in Alchemy, the reference MLN implementation).

Grounding. Conceptually, to obtain the ground clauses of
an MLN formula F , the most straightforward way is to
enumerate all possible assignments to the free variables in
F . There have been several heuristics in the literature that
improve the grounding process by pruning groundings that
have no effect on inference results; we describe the heuristics
that Tuffy (and Alchemy) implements in Appendix A.3.



The set of ground clauses corresponds to a hypergraph where
each atom is a node and each clause is a hyperedge. This
graph structure is often called a Markov Random Field (MRF).
We describe this structure formally in Appendix A.2.

Search. Finding a most likely world of an MLN is a general-
ization of the (NP-hard) MaxSAT problem. In this paper we
concentrate on one of the most popular heuristic search al-
gorithms, WalkSAT [13], which is used by Alchemy. Walk-
SAT works by repeatedly selecting a random violated clause
and “fixing” it by flipping (i.e., changing the truth value of)
an atom in it (see Appendix A.4). As with any heuristic
search, we cannot be sure that we have achieved the op-
timal, and so the goal of any system that executes such a
search procedure is: execute more search steps in the same
amount of time.

Problem Description. The primary challenge that we ad-
dress in this paper is scaling both phases of MAP inference
algorithms, grounding and search, using an RDBMS. Sec-
ond, our goal is to improve the number of (effective) steps
of the local search procedure using parallelism and partition-
ing – but only when it provably improves the search quality.
To achieve these goals, we attack three main technical chal-
lenges: (1) efficiently grounding large MLNs, (2) efficiently
performing inference (search) on large MLNs, and (3) de-
signing partitioning and partition-aware search algorithms
that preserve (or enhance) search quality and speed.

3. TUFFY SYSTEMS
In this section, we describe our technical contributions: a

bottom-up grounding approach to fully leverage the RDBMS
(Section 3.1); a hybrid main-memory RDBMS architecture
to support efficient end-to-end inference (Section 3.2); and
data partitioning which dramatically improves Tuffy’s space
and time efficiency (Section 3.3 and Section 3.4).

3.1 Grounding with a Bottom-up Approach
We describe how Tuffy performs grounding. In con-

trast to top-down approaches (similar to Prolog) that em-
ploy nested loops and that is used by prior MLN systems
such as Alchemy, Tuffy takes a bottom-up approach (sim-
ilar to Datalog) by expressing grounding as a sequence of
SQL queries. Each SQL query is optimized by the RDBMS,
which allows Tuffy to complete the grounding process or-
ders of magnitude more quickly than prior approaches.

For each predicate P (Ā) in the input MLN, Tuffy creates
a relation RP (aid, Ā, truth) where each row ap represents
an atom, aid is a globally unique identifier, Ā is the tuple
of arguments of P , and truth is a three-valued attribute
that indicates if ap is true or false (in the evidence), or not
specified in the evidence. These tables form the input to
grounding, and Tuffy constructs them using standard bulk-
loading techniques.

In Tuffy, we produce an output table C(cid, lits, weight)
where each row corresponds to a single ground clause. Here,
cid is the id of a ground clause, lits is an array that stores
the atom id of each literal in this clause (and whether or
not it is negated), and weight is the weight of this clause.
We first consider a formula without existential quantifiers.
In this case, the formula F can be written as F (x̄) = l1 ∨
· · · ∨ lN where x̄ are all variables in F . Tuffy produces a

SQL query Q for F that joins together the relations corre-
sponding to the predicates in F to produce the atom ids of
the ground clauses (and whether or not they are negated).
The join conditions in Q enforce variable equality inside
F , and incorporate the pruning strategies described in Ap-
pendix A.3. For more details on the compilation procedure
see Appendix B.1.

3.2 A Hybrid Architecture for Inference
Our initial prototype of Tuffy runs both grounding and

search in the RDBMS. While the grounding phase described
in the previous section has good performance and scalabil-
ity, we found that performing search in an RDBMS is often
a bottleneck. Thus, we design a hybrid architecture that
allows efficient in-memory search (in Java) while retaining
the performance benefits of RDBMS-based grounding. To
see why in-memory search is critical, recall that WalkSAT
works by selecting an unsatisfied clause C, selecting an atom
in C, and “flipping” that atom to satisfy C. Thus, Walk-
SAT performs a large number of random accesses to the
data representing ground clauses and atoms. Moreover, the
data that is accessed in one iteration depends on the data
that is accessed in the previous iteration. And so, this ac-
cess pattern prevents both effective caching and parallelism,
which causes a high overhead per data access. Thus, we
implement a hybrid architecture where the RDBMS per-
forms grounding and Tuffy is able to read the result of
grounding from the RDBMS into memory and perform in-
ference. If the grounding result is too large to fit in memory,
Tuffy invokes an implementation of search directly inside
the RDBMS (Appendix B.2). This approach is much less ef-
ficient than in-memory search, but it runs on datasets larger
than main memory without crashing. Appendix B.3 illus-
trates the architecture of Tuffy in more detail.

While it is clear that this hybrid approach is at least
as scalable as a direct memory implementation (such as
Alchemy), there are in fact cases where Tuffy can run
in-memory search whereas Alchemy would crash. The rea-
son is that the space requirement of a purely in-memory im-
plementation is determined by the peak memory footprint
throughout grounding and search, whereas Tuffy needs
main memory only for search. For example, on a dataset
called Relational Classification (RC), Alchemy allocated
2.8 GB of RAM only to produce 4.8 MB of ground clauses.
On RC, Tuffy uses only 19 MB of RAM.

3.3 Partitioning to Improve Performance
In the following two sections, we study how to further im-

prove Tuffy’s space and time efficiency without sacrificing
its scalability. The underlying idea is simple: we will try
to partition the data. By splitting the problem into smaller
pieces, we can reduce the memory footprint and introduce
parallelism, which conceptually breaks the sequential nature
of the search. These are expected benefits of partitioning.
An unexpected benefit is an exponentially increase of the
effective search speed, a point that we return to below.

First, observe that the logical forms of MLNs often re-
sult in an MRF with multiple disjoint components (see Ap-
pendix B.4). For example, on the RC dataset there are 489
components. LetG be an MRF with componentsG1, · · · , Gk;
let I be a truth assignment to the atoms in G and Ii its pro-



jection over Gi. Then, it’s clear that ∀I

costG(I) =
∑

1≤i≤k

costGi(Ii).

Hence, instead of minimizing costG(I) directly, it suffices
to minimize each individual costGi(Ii). The benefit is that,
even if G itself does not fit in memory, it is possible that
each Gi does. As such, we can solve each Gi with in-memory
search one by one, and finally merge the results together. 4

Component detection is done after the grounding phase
and before the search phase, as follows. We maintain an in-
memory union-find structure over the nodes, and scan the
clause table while updating this union-find structure. The
result is the set of connected components in the MRF. An
immediate issue raised by partitioning is I/O efficiency.

Efficient Data Loading. Once an MRF is split into compo-
nents, loading in and running inference on each component
sequentially one by one may incur many I/O operations,
as there may be many partitions. For example, the MRF
of the Information Extraction (IE) dataset contains thou-
sands of 2-cliques and 3-cliques. One solution is to group
the components into batches. The goal is to minimize the
total number of batches (and thereby the I/O cost of load-
ing), and the constraint is that each batch cannot exceed the
memory budget. This is essentially the bin packing problem,
and we implement the First Fit Decreasing algorithm [26].
Once the partitions are in memory, we can take advantage
of parallelism. We use a round-robin scheduling policy.

Improving Search Speed using Partitioning. Although
processing each component individually produces solutions
that are no worse than processing the whole graph at once,
we give an example to illustrate that component-aware pro-
cessing may result in exponentially faster speed of search.

Example 1 Consider an MRF consisting of N identical
connected components each containing two atoms {Xi, Yi}
and three weighted clauses

{(Xi, 1), (Yi, 1), (Xi ∨ Yi,−1)},

where i = 1 . . . N and the second component of each tuple
is the weight. Based on how WalkSAT works, it’s not hard
to show that, if N = 1, starting from a random state, the
expected hitting time5 of the optimal state, i.e. X1 = Y1 =
True, is no more than 4. Therefore, if we run WalkSAT on
each component separately, the expected runtime of reach-
ing the optimum is no more than 4N . Now consider the
case where we run WalkSAT on the whole MRF. Intuitively,
reaching the optimal state requires “fixing” suboptimal com-
ponents one by one. As the number of optimal components
increases, however, it becomes more and more likely that
one step of WalkSAT “breaks” an optimal component in-
stead of fixing a suboptimal component. Such check and
balance makes it very difficult for WalkSAT to reach the

4Alchemy exploits knowledge-based model construction
(KBMC) [28] to find the minimal subgraph of the MRF that
is needed for a given query. Alchemy, however, does not
use the fact that the MRF output by KBMC may contain
several components.
5The hitting time is a standard notion from Markov
Chains [9], it is a random variable for the number of steps
taken by WalkSAT to reach an optimum for the first time.

optimum. Indeed, Appendix B.5 shows that the expected
hitting time is at least 2N – an exponential gap!

LetG be an MRF with componentsG1, . . . , GN . Component-
aware WalkSAT runs WalkSAT except that for each Gi, it
keeps track of the lowest-cost state it has found so far on
that Gi. In contrast, regular WalkSAT simply keeps the
best overall solution it has seen so far. For i = 1, . . . , N ,
let Oi be the set of optimal states of Gi, and Si the set of
non-optimal states of Gi that differ only by one bit from
some x∗ ∈ Oi; let Pi(x→ y) be the transition probability of
WalkSAT running on Gi, i.e., the probability that one step
of WalkSAT would take Gi from x to y. Given x, a state of
Gi, denote by vi(x) the number of violated clauses in Gi at
state x; define

αi(x) =
∑

y∈Oi

Pi(x→ y), βi(x) =
∑
y∈Si

Pi(x→ y).

For any non-empty subset H ⊆ {1, . . . , N}, define

r(H) =
mini∈H minx∈Oi vi(x)βi(x)

maxi∈H maxx∈Si vi(x)αi(x)
.

Theorem 3.1. Let H be an arbitrary non-empty subset of
{1, . . . , N} s.t. |H| ≥ 2 and r = r(H) > 0. Then, in expec-

tation, WalkSAT on G takes at least 2|H|r/(2+r) more steps
to find an optimal solution than component-aware WalkSAT.

The proof is in Appendix B.5. In the worst case, there is
only one component, or r(H) = 0 for every subset of compo-
nents H (which happens only if there is a zero-cost solution),
and partitioning would become pure overhead (but negli-
gible in our experiments). On an information extraction
(IE) benchmark dataset, there is some H with |H| = 1196
and r(H) = 0.5. Thus, the gap on this dataset is at least
2200 ≈ 1060. This explains why Tuffy produces lower cost
solutions in minutes than non-partition aware approaches
such as Alchemy produce even after days.

3.4 Further Partitioning MRFs
Although our algorithms are more scalable than prior ap-

proaches, if the largest component does not fit in memory
then we are forced to run the in-RDBMS version of inference,
which is inefficient. Intuitively, if the graph is only weakly
connected, then we should still be able to get the exponential
speed up of partitioning. Consider the following example.

G1 G2 
e 

a b 

Figure 2: Ex. 2

Example 2 Consider an MRF
consisting of two equally sized
subgraphs G1 and G2, plus an
edge e = (a, b) between them
(Figure 2). Suppose that the
expected hitting time of Walk-
SAT on Gi is Hi. Since H1 and
H2 are essentially independent, the hitting time of WalkSAT
on G could be roughly H1H2. On the other hand, consider
the following scheme: enumerate all possible truth assign-
ments to one of the boundary variables {a, b}, say a – of
which there are two – and conditioning on each assignment,
run WalkSAT on G1 and G2 independently. Clearly, the
overall hitting time is no more than 2(H1 + H2), which is
a huge improvement over H1H2 since Hi is usually a high-
order polynomial or even exponential in the size of Gi.



To capitalize on this idea, we need to address two chal-
lenges: 1) designing an efficient MRF partitioning algo-
rithm; and 2) designing an effective partition-aware search
algorithm. We address each of them in turn.

MRF Partitioning. Intuitively, to maximally utilize the
memory budget, we want to partition the MRF into roughly
equal sizes; to minimize information loss, we want to min-
imize total weight of clauses that span over multiple parti-
tions, i.e., the cut size. To capture this notion, we define a
balanced bisection of a hypergraph G = (V,E) as a partition
of V = V1 ∪V2 such that |V1| = |V2|. The cost of a bisection
(V1, V2) is |{e ∈ E|e ∩ V1 6= ∅ and e ∩ V2 6= ∅}|.

Theorem 3.2. Consider the MLN Γ given by the single
rule p(x), r(x, y) → p(y) where r is an evidence predicate.
Then, the problem of finding a minimum-cost balanced bi-
section of the MRF that results from Γ is NP-hard in the
size of the evidence (data).

The proof (Appendix B.6) is by reduction to the graph min-
imum bisection problem [14], which is hard to approximate
(unless P = NP, there is no PTAS). In fact, the problem
we are facing (multi-way hypergraph partitioning) is more
challenging than graph bisection, and has been extensively
studied [12, 24]. And so, we design a simple, greedy parti-
tioning algorithm: it assigns each clause to a bin in descend-
ing order by clause weight, subject to the constraint that no
component in the resulting graph is larger than an input
parameter β. We include pseudocode in Appendix B.7.

Partition-aware Search. We need to refine the search pro-
cedure to be aware of partitions: the central challenge is
that a clause in the cut may depend on atoms in two dis-
tinct partitions. Hence, there are dependencies between the
partitions. We exploit the idea in Example 2 to design the
following partition-aware search scheme – which is an in-
stance of the Gauss-Seidel method from nonlinear optimiza-
tion [3, pg. 219]. Denote by X1, . . . , Xk the states (i.e., truth
assignments to the atoms) of the partitions. First initialize
Xi = x0

i for i = 1 . . . k. For t = 1 . . . T , for i = 1 . . . k, run
WalkSAT on xt−1

i conditioned on {xt
j |1 ≤ j < i}∪{xt−1

j |i <
j ≤ k} to obtain xt

i. Finally, return {xT
i |1 ≤ i ≤ k}.

Tradeoffs. Although fine-grained partitioning improves per-
partition search speed (Theorem 3.1) and space efficiency, it
also increases cut sizes – especially for dense graphs – which
would in turn slow down the Gauss-Seidel inference scheme.
Thus, there is an interesting tradeoff of partitioning gran-
ularity. In Section B.8, we describe a basic heuristic that
combines Theorem 3.1 and the Gauss-Seidel scheme.

4. EXPERIMENTS
In this section, we validate first that our system Tuffy is

orders of magnitude more scalable and efficient than prior
approaches. We then validate that each of our techniques
contributes to the goal.

Experimental Setup. We select Alchemy, the currently
most widely used MLN system, as our comparison point.
Alchemy and Tuffy are implemented in C++ and Java,
respectively. The RDBMS used by Tuffy is PostgreSQL
8.4. Unless specified otherwise, all experiments are run on an
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Figure 3: Time-cost plots of Alchemy vs. Tuffy; the
x axes are time (sec)

Intel Core2 at 2.4GHz with 4 GB of RAM running Red Hat
Enterprise Linux 5. For fair comparison, in all experiments
Tuffy runs a single thread unless otherwise noted.

Datasets. We run Alchemy and Tuffy on four datasets;
three of them (including their MLNs) are taken directly
from the Alchemy website [7]: Link Prediction (LP), given
an administrative database of a CS department, the goal
is to predict student-adviser relationships; Information Ex-
traction (IE), given a set of Citeseer citations, the goal is
to extract from them structured records; and Entity Resolu-
tion (ER), which is to deduplicate citation records based on
word similarity. These tasks have been extensively used in
prior work. The last task, Relational Classification (RC),
performs classification on the Cora dataset [15]; RC con-
tains all the rules in Figure 1. Table 1 contains statistics
about the data.

LP IE RC ER
#relations 22 18 4 10
#rules 94 1K 15 3.8K
#entities 302 2.6K 51K 510
#evidence tuples 731 0.25M 0.43M 676
#query atoms 4.6K 0.34M 10K 16K
#components 1 5341 489 1

Table 1: Dataset statistics

4.1 High-level Performance
We empirically demonstrate that Tuffy with all the tech-

niques we have described has faster grounding, higher search
speed, lower memory usage, and in some cases produces
much better solutions than a competitor main memory ap-
proach, Alchemy. Recall that the name of the game is
to produce low-cost solutions quickly. With this in mind,
we run Tuffy and Alchemy on each dataset for 7500 sec-
onds, and track the cost of the best solution found up to
any moment; on datasets that have multiple components,
namely IE and RC, we apply the partitioning strategy in
Section 3.3 on Tuffy. As shown in Figure 3, Tuffy of-
ten reaches a best solution within orders of magnitude less
time than Alchemy; secondly, the result quality of Tuffy
is at least as good as – sometimes substantially better (e.g.,
on IE and RC) than – Alchemy. Here, we have zoomed
the time axes into interesting areas. Since “solution cost”
is undefined during grounding, each curve begins only when
grounding is completed6. We analyze the experiment results
in more detail in the following sections.

6The L-shaped curves indicate that search converges very
quickly compared to grounding time.



LP IE RC ER
Alchemy 48 13 3,913 23,891
Tuffy 6 13 40 106

Table 2: Grounding time (sec)
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Figure 4: Time-cost plots of Alchemy vs. Tuffy-p
(i.e., Tuffy without partitioning) vs. Tuffy-mm (i.e.,
Tuffy with RDBMS-based search)

4.2 Effect of Bottom-up Grounding
We validate that the RDBMS-based grounding approach

in Tuffy allows us to complete the grounding process orders
of magnitude more efficiently than Alchemy. To make this
point, we run Tuffy and Alchemy on the four datasets,
and show their grounding time in Table 2. We can see that
Tuffy outperforms Alchemy by orders of magnitude at
run time in the grounding phase (a factor of 225 on the
ER dataset). To understand the differences, we dug deeper
with a lesion study (i.e., disabling one aspect of a system at
a time), and found that sort join and hash join algorithms
(along with predicate pushdown) are the key components of
the RDBMS that speeds up the grounding process of Tuffy
(Appendix C.2). Tuffy obviates the need for Alchemy to
reimplement the optimization techniques in an RDBMS.

4.3 Effect of Hybrid Architecture
We validate two technical claims: (1) the hybrid memory

management strategy of Tuffy (even without our parti-
tioning optimizations) has comparable search rates to exist-
ing main memory implementations (and much faster than
RDBMS-based implementation) and (2) Tuffy maintains
a much smaller memory footprint (again without partition-
ing). Thus, we compare three approaches: (1) Tuffy with-
out the partitioning optimizations, called Tuffy-p (read:
Tuffy minus p), (2) a version of Tuffy (also without parti-
tioning) that implements RDBMS-based WalkSAT (detailed
in Appendix B.2), Tuffy-mm, and (3) Alchemy.

Figure 4 illustrates the time-cost plots on LP and RC of
all three approaches. We see from RC that Tuffy-p is able
to ground much more quickly than Alchemy (40 sec com-
pared to 3913 sec). Additionally, we see that, compared to
Tuffy-mm, Tuffy-p’s in-memory search is orders of mag-
nitude faster at getting to their best reported solution (both
approaches finish grounding at the same time, and so start
search at the same time). To understand why, we measure
the flipping rate, which is the number of steps performed by
WalkSAT per second. As shown in Table 3, the reason is
that Tuffy-mm has a dramatically lower flipping rate. We
discuss the performance bound of any RDBMS-based search
implementation in Appendix C.1.

To validate our second claim, that Tuffy-p has a smaller
memory footprint, we see in Table 4, that on all datasets,
the memory footprint of Tuffy is no more than 5% of
Alchemy. Drilling down, the reason is that the interme-
diate state size of Alchemy’s grounding process may be

LP IE RC ER
Alchemy 0.20M 1M 1.9K 0.9K

Tuffy-mm 0.9 13 0.9 0.03
Tuffy-p 0.11M 0.39M 0.17M 7.9K

Table 3: Flipping rates (#flips/sec)
LP IE RC ER

clause table 5.2 MB 0.6 MB 4.8 MB 164 MB
Alchemy RAM 411 MB 206 MB 2.8 GB 3.5 GB
Tuffy-p RAM 9 MB 8 MB 19 MB 184 MB

Table 4: Space efficiency of Alchemy vs. Tuffy-p
(without partitioning)

larger than the size of grounding results. For example, on
the RC dataset, Alchemy allocated 2.8 GB of RAM only to
produce 4.8 MB of ground clauses. While Alchemy has to
hold everything in memory, Tuffy only needs to load the
grounding result from the RDBMS at the end of grounding.
It follows that, given the same resources, there are MLNs
that Tuffy can handle efficiently while Alchemy would
crash. Indeed, on a dataset called “ER+” which is twice
as large as ER, Alchemy exhausts all 4GB of RAM and
crashes soon after launching, whereas Tuffy runs normally
with peak RAM usage of roughly 2GB.

From these experiments, we conclude that the hybrid ar-
chitecture is crucial to Tuffy’s overall efficiency.

4.4 Effect of Partitioning
In this section, we validate that, when there are multi-

ple components in the data, partitioning not only improves
Tuffy’s space efficiency, but – due to Theorem 3.1 – may
actually enable Tuffy to find substantially higher quality
results. We compare Tuffy’s performance (with partition-
ing enabled) against Tuffy-p: a version of Tuffy with
partitioning disabled.

We run the search phase on each of the four datasets using
three approaches: Alchemy, Tuffy-p, and Tuffy (with
partitioning). Tuffy-p and Alchemy run WalkSAT on the
whole MRF for 107 steps. Tuffy runs WalkSAT on each
component in the MRF independently, each component Gi

receiving 107|Gi|/|G| steps, where |Gi| and |G| are the num-
bers of atoms in this component and the MRF, respectively.
This is weighted round-robin scheduling.

LP IE RC ER
#components 1 5341 489 1
Tuffy-p RAM 9MB 8MB 19MB 184MB
Tuffy RAM 9MB 8MB 15MB 184MB
Tuffy-p cost 2534 1933 1943 18717
Tuffy cost 2534 1635 1281 18717

Table 5: Performance of Tuffy vs. Tuffy-p (i.e.,
Tuffy without partitioning)

As shown in Table 5, when there are multiple compo-
nents in the MRF, partitioning allows Tuffy to use less
memory than Tuffy-p. (The IE dataset is too small to
yield notable differences). We see that Tuffy’s component-
aware inference can produce significantly better results than
Tuffy-p. We then extend the run time of all systems. As
shown in Figure 5, there continues to be a gap between
Tuffy’s component-aware search approach and the original
WalkSAT running on the whole MRF. This gap is predicted
by our theoretical analysis in Section 3.3. Thus, we have
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verified that partitioning makes Tuffy substantially more
efficient in terms of both space and search speed.

We also validate that Tuffy’s loading and parallelism
makes a substantial difference: without our batch loading
technique, Tuffy takes 448s to perform 106 search steps
per component on RC, while 117s to perform the same op-
eration with batch loading. With the addition of 8 threads
(on 8 cores), we further reduce the runtime to 28s. Addi-
tional loading and parallelism experiments in Appendix C.3
support our claim that our loading algorithm and partition-
ing algorithm contribute to improving processing speed.

4.5 Effect of Further Partitioning
To validate our claim that splitting MRF components can

further improve both space efficiency and sometimes also
search quality (Section 3.4), we run Tuffy on RC, ER, and
LP with different memory budgets – which are fed to the
partitioning algorithm as the bound of partition size. On
each dataset, we give Tuffy three memory budgets, with
the largest one corresponding to the case when no compo-
nents are split. Figure 6 shows the experiment results. On
RC, we see another improvement of the result quality (cf.
Figure 5). Similar to Example 2, we believe the reason to be
graph sparsity: “13MB” cuts only about 420 out of the to-
tal 10K clauses. In contrast, while MRF partitioning lowers
RAM usage considerably on ER, it also leads to slower con-
vergence – which correlates with poor partitioning quality:
the MRF of ER is quite dense and even 2-way partition-
ing (“100MB”) would cut over 1.4M out of the total 2M
clauses. The dataset LP illustrates the interesting tradeoff
where a coarse partition is beneficial whereas finer grained
partitions would be detrimental. We discuss this tradeoff in
Appendix B.8.

5. CONCLUSION
Motivated by a large set of data-rich applications, we

study how to push MLN inference inside an RDBMS. We
find that the grounding phase of MLN inference performs
many relational operations and that these operations are a
substantial bottleneck in state-of-the-art MLN implementa-
tions such as Alchemy. Using an RDBMS, Tuffy not only
achieves scalability, but also speeds up the grounding phase
by orders of magnitude. We then develop a hybrid solution
with RDBMS-based grounding and in-memory search. To

improve the space and time efficiency of Tuffy, we study a
partitioning approach that allows for in-memory search even
when the dataset does not fit in memory. We showed that
further partitioning allows Tuffy to produce higher quality
results in a shorter amount of time.
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APPENDIX
A. MATERIAL FOR PRELIMINARIES

A.1 More Details on the MLN Program
Rules in MLNs are expressive and may involve data in

non-trivial ways. For example, consider F2:

wrote(x, p1), wrote(x, p2), cat(p1, c) => cat(p2, c) (F2)

Intuitively, this rule says that all the papers written by
a particular person are likely to be in the same category.
Rules may also have existential quantifiers: F4 in Figure 1
says “any paper in our database must have at least one au-
thor.” It is also a hard rule, which is indicated by the infinite
weight, and so no possible world may violate this rule. The
weight of a formula may also be negative, which effectively
means that the negation of the formula is likely to hold. For
example, F5 models our belief that none or very few of the
unlabeled papers belong to ‘Networking’. Tuffy supports
all of these features. If the input MLN contains hard rules
(indicated by a weight of +∞ or −∞), then we insist that
the set of possible worlds (Inst) only contain worlds that
satisfy every hard rule with +∞ and violate every rule with
−∞.

A.2 Markov Random Field
A Boolean Markov Random Field (or Boolean Markov net-

work) is a model of the joint distribution of a set of Boolean
random variables X̄ = (X1, . . . , XN ). It is defined by a
hypergraph G = (X,E); for each hyperedge e ∈ E there
is a potential function (aka “feature”) denoted φe, which is
a function from the values of the set of variables in e to
non-negative real numbers. This defines a joint distribution
Pr(X̄ = x̄) as follows:

Pr(X̄ = x̄) =
1

Z

∏
e∈E

φe(x̄e)

where x̄ ∈ {0, 1}N , Z is a normalization constant and x̄e

denotes the values of the variables in e.
Fix a set of constants C = {c1, . . . , cM}. An MLN defines

a Boolean Markov Random Field as follows: for each possi-
ble grounding of each predicate (i.e., atom), create a node
(and so a Boolean random variable). For example, there will
be a node refers(p1, p2) for each pair of papers p1, p2. For
each formula Fi we ground it in all possible ways, then we
create a hyperedge e that contains the nodes corresponding
to all terms in the formula. For example, the key constraint
creates hyperedges for each paper and all of its potential
categories.

A.3 Optimizing MLN Grounding Process
Conceptually, we might ground an MLN formula by enu-

merating all possible assignments to its free variables. How-
ever, this is both impractical and unnecessary. For example,
if we ground F2 exhaustively this way, the result would con-
tain |D|4 ground clauses. Fortunately, in practice a vast
majority of ground clauses are satisfied by evidence regard-
less of the assignments to unknown truth values; we can
safely discard such clauses [40]. Consider the ground clause
gd̄ of F2 where d̄ =(‘Joe’, ‘P2’, ‘P3’, ‘DB’). Suppose that
wrote(‘Joe’, ‘P3’) is known to be false, then gd̄ will be satis-
fied no matter how the other atoms are set (gd̄ is an impli-
cation). Hence, we can ignore gd̄ during the search phase.

Pushing this idea further, [39] proposes a method called
“lazy inference” which is implemented by Alchemy. Specif-
ically, Alchemy works under the more aggressive hypoth-
esis that most atoms will be false in the final solution, and
in fact throughout the entire execution. To make this idea
precise, call a ground clause active if it can be violated by
flipping zero or more active atoms, where an atom is ac-
tive if its value flips at any point during execution. Observe
that in the preceding example the ground clause gd̄ is not
active. Alchemy keeps only active ground clauses in mem-
ory, which can be much smaller than the full set of ground
clauses. Furthermore, as on-the-fly incremental grounding
is more expensive than batch grounding, Alchemy uses the
following one-step look-ahead strategy: assume all atoms
are inactive and compute active clauses; activate the atoms
in the grounding result and recompute active clauses. This
“look-ahead” procedure could be repeatedly applied until
convergence, resulting in an active closure. Tuffy imple-
ments this closure algorithm.

A.4 The WalkSAT Algorithm
We list the pseudocode of WalkSAT [13] in Algorithm 1.

Algorithm 1 The WalkSAT Algorithm

Input: A: an set of atoms
Input: C: an set of weighted ground clauses
Input: MaxFlips, MaxTries
Output: σ∗: a truth assignment to A
1: lowCost← +∞
2: for try = 1 to MaxTries do
3: σ ← a random truth assignment to A
4: for flip = 1 to MaxFlips do
5: pick a random c ∈ C that is violated
6: rand← a random float between 0.0 and 1.0
7: if rand ≤ 0.5 then
8: flip a random atom in c

9: else
10: flip an atom in c s.t. the cost decreases most
11: if cost < lowCost then
12: lowCost← cost, σ∗ ← σ

A.5 Marginal Inference of MLNs
In marginal inference, we estimate the marginal proba-

bility of atoms. Since this problem is generally intractable,
we usually resort to sampling methods. The state-of-the-art
marginal inference algorithm is MC-SAT [38], which is im-
plemented in both Alchemy and Tuffy. In MC-SAT, each
sampling step consists of a call to a heuristic SAT sampler
named SampleSAT [44]. Essentially, SampleSAT is a combi-
nation of simulated annealing and WalkSAT. And so, Tuffy
is able to perform marginal inference more efficiently as well.
Alchemy also implements a lifted algorithm for marginal
inference [42]; it is future work to extend our study to lifted
approaches.

B. MATERIAL FOR SYSTEMS

B.1 A Compilation Algorithm for Grounding
Algorithm 2 is a basic algorithm of expressing the ground-

ing process of an MLN formula in SQL. To support existen-
tial quantifiers, we used PostgreSQL’s array aggregate fea-



ture. The ideas in Appendix A.3 can be easily implemented
on top of this algorithm.

Algorithm 2 MLN Grounding in SQL

Input: an MLN formula φ = ∨k
i=1li where each li is a literal

supported by predicate table r(li)
Output: a SQL query Q that grounds φ
1: FROM clause of Q includes ‘r(li) ti’ for each literal li
2: SELECT clause of Q contains ‘ti.aid’ for each literal li
3: For each positive (resp. negative) literal li, there is a

WHERE predicate ‘ti.truth 6= true’ (resp. ‘ti.truth 6=
false’)

4: For each variable x in φ, there is a WHERE predicate
that equates the corresponding columns of ti’s with li
containing x

5: For each constant argument of li, there is an equal-
constant WHERE predicate for table ti

6: Form a conjunction with the above WHERE predicates

B.2 Implementing WalkSAT in RDBMS
WalkSAT is a stochastic local search algorithm; its ran-

dom access patterns pose considerable challenges to the de-
sign of Tuffy. More specifically, the following operations
are difficult to implement efficiently with on-disk data: 1)
uniformly sample an unsatisfied clause; 2) random access
(read/write) to per-atom or per-clause data structures; and
3) traverse clauses involving a given atom. Atoms are cached
as in-memory arrays, while the per-clause data structures
are read-only. Each step of WalkSAT involves a scan over
the clauses and many random accesses to the atoms.

Although our design process iterated over numerous com-
binations of various design choices, we were still unable to
reduce the gap as reported in Section 4.2. For example, com-
pared to clause table scans, one might suspect that index-
ing could improve search speed by reading less data at each
step. However, we actually found that the cost of maintain-
ing indices often outweighs the benefit provided by indexing.
Moreover, we found it very difficult to get around RDBMS
overhead such as PostgreSQL’s mandatory MVCC.

B.3 Illustrating Tuffy’s Hybrid Architecture
Figure 7 illustrates the hybrid memory management ap-

proach of Tuffy. Alchemy is a representative of prior art
MLN systems, which uses RAM for both grounding and
search; Tuffy-mm is a version of Tuffy we developed that
uses an RDBMS for all memory management; and Tuffy
is the hybrid approach as discussed in Section 3.2.

RDBMS RAM 

RAM RDBMS RAM 

RDBMS Grounding 

Search 

Alchemy Tuffy-mm Tuffy 

Figure 7: Comparison of architectures

B.4 MLNs Causing MRF Fragmentation
MLN rules usually model the interaction of relationships

and attributes of some underlying entities. As such, one can

define entity-based transitive closures, which directly cor-
responds to components in the MRF. Since in real world
data the interactions are usually sparse, one can expect to
see multiple components in the MRF. A concrete example is
the paper classification running example, where the primary
entities are papers, and the interactions are defined by cita-
tions and common authors. Indeed, our RC dataset yields
hundreds of components in the MRF (see Table 5).

B.5 Theorem 3.1
Proof of Theorem 3.1. We follow the notations of the

theorem. Without loss of generality and for ease of notation,
suppose H = {1, . . . , N}. Denote by Ω the state space of G.
Let Qk ⊆ Ω be the set of states of G where there are exactly
k non-optimal components. For any state x ∈ Ω, define
H(x) = E[Hx(Q0)], i.e., the expected hitting time of an
optimal state from x when running WalkSAT. Define fk =
minx∈Qk H(x); in particular, f0 = 0, and f1 corresponds
to some state that differs from an optimal by only one bit.
Define gk = fk+1 − fk. For any x, y ∈ Ω, let Pr(x → y) be
the transition probability of WalkSAT, i.e., the probability
that next state will be y given current state x. Note that
Pr(x → y) > 0 only if y ∈ N(x), where N(x) is the set of
states that differ from x by at most one bit. For any A ⊆ Ω,
define Pr(x→ A) =

∑
y∈A Pr(x→ y).

For any x ∈ Qk, we have

H(x) = 1 +
∑
y∈Ω

Pr(x→ y)H(y)

= 1 +
∑

t∈{−1,0,1}

∑
y∈Qk+t

Pr(x→ y)H(y)

≥ 1 +
∑

t∈{−1,0,1}

∑
y∈Qk+t

Pr(x→ y)fk+t.

Define

P x
+ = Pr(x→ Qk+1), P x

− = Pr(x→ Qk−1),

then Pr(x→ Qk) = 1− P x
+ − P x

−, and

H(x) ≥ 1 + fk(1− P x
+ − P x

−) + fk−1P
x
− + fk+1P

x
+.

Since this inequality holds for any x ∈ Qk, we can fix it
to be some x∗ ∈ Qk s.t. H(x∗) = fk. Then gk−1P

x∗
− ≥

1 + gkP
x∗
+ , which implies gk−1 ≥ gkP

x∗
+ /P x∗

− .
Now without loss of generality assume that in x∗, G1, . . . , Gk

are non-optimal while Gk+1, . . . , GN are optimal. Let x∗i be
the projection of x∗ on Gi. Then since

P x∗
− =

∑k
1 vi(x

∗
i )αi(x

∗
i )∑N

1 vi(x∗i )
, P x∗

+ =

∑N
k+1 vj(x∗j )βj(x∗j )∑N

1 vi(x∗i )
,

we have

gk−1 ≥ gk

∑N
k+1 vj(x∗j )βj(x∗j )∑k

1 vi(x∗i )αi(x∗i )
≥ gk

r(N − k)

k
,

where the second inequality follows from the definition of r.
For all k ≤ rN/(r + 2), we have gk−1 ≥ 2gk. Since gk ≥

1 for any k, f1 = g0 ≥ 2rN/(r+2). That is, not aware of
components, WalkSAT would take an exponential number
of steps in expectation to correct the last bit to reach an
optimum.

According to this theorem, the gap on Example 1 is at least
2N/3; in fact, a more detailed analysis reveals that the gap
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Figure 8: Effect of partitioning on Example 1

is at least
(N−1

N
2

)
≈ Θ(2N/

√
N). Figure 8 shows the exper-

iment results of running Alchemy, Tuffy, and Tuffy-p
(i.e., Tuffy without partitioning) on Example 1 with 1000
components. Note that the analysis of Theorem 3.1 actually
applies to not only WalkSAT, but stochastic local search in
general. Since stochastic local search algorithms are used
in many statistical models, we believe that our observation
here and corresponding techniques have much wider impli-
cations than MLN inference.

B.6 Hardness of MRF Partitioning
A bisection of a graph G = (V,E) with an even number

of vertices is a pair of disjoint subsets V1, V2 ⊂ V of equal
size. The cost of a bisection is the number of edges adjacent
to both V1 and V2. The problem of Minimum Graph Bisec-
tion (MGB) is to find a bisection with minimum cost. This
problem admits no PTAS [14]. The hardness of MGB di-
rectly implies the hardness of partitioning MRFs. As such,
one may wonder if it still holds w.r.t. the domain size for
a given MLN program (hence of size O(1)). The following
theorem shows that the answer is yes.

Theorem B.1. MGB can be reduced to the problem of
finding a minimum bisection of the MRF generated an MLN
of size O(1).

Proof. Consider the MLN that contains a single formula
of the following form:

p(x), r(x, y)→ p(y),

where p is query and r is evidence. For any graph G =
(V,E), we can set the domain of the predicates to be V ,
and let r = E. The MRF generated by the above MLN
(using techniques in Appendix A.3) is identical to G.

B.7 MRF Partitioning Algorithm
We provide a very simple MRF partitioning algorithm

(Algorithm 3) that is inspired by Kruskal’s minimum span-
ning tree algorithm. It agglomeratively merges atoms into
partitions with one scan of the clauses sorted in the (de-
scending) absolute values of weights. The hope is to avoid
cutting high-weighted clauses, thereby (heuristically) mini-
mizing weighted cut size.

To explain the partitioning procedure, we provide the fol-
lowing definitions. Each clause c in the MRF G = (V,E) is
assigned to an atom in c. A partition of the MRF is a sub-
graph Gi = (Vi, Ei) defined by a subset of atoms Vi ⊆ V ; Ei

is the set of clauses assigned to some atom in Vi. The size of
Gi as referred to by Algorithm 3 can be any monotone func-
tion in Gi; in practice, it is defined to be the total number
of literals and atoms in Gi. Note that when the parameter
β is set to +∞, the output is the connected components of
G.

Our implementation of Algorithm 3 only uses RAM to
maintain a union-find structure of the nodes, and performs

Algorithm 3 A Simple MRF Partitioning Algorithm

Input: an MRF G = (V,E) with clause weights w : E 7→ R

Input: partition size bound β
Output: a partitioning of V s.t. the size of each partition

is no larger than β
1: Initialize hypergraph H = (V, F ) with F = ∅
2: for all e ∈ E in |w|-descending order do
3: F ← F ∪ e if afterwards no component in H is larger

than β
4: return the collection of per-component atom sets in H

all other operations in the RDBMS. For example, we use
SQL queries to “assign” clauses to atoms and to compute
the partition of clauses from a partition of atoms.

B.8 Tradeoff of MRF Partitioning
Clearly, partitioning might be detrimental to search speed

if the cut size is large. Furthermore, given multiple parti-
tioning options, how do we decide which one is better? As
a baseline, we provide the following formula to (roughly) es-
timate the benefit (if positive) or detriment (if negative) of
a partitioning:

W = 2
N
3 − T |#cut clauses||E| ,

where N is the estimated number of components with posi-
tive lowest cost, T is the total number of WalkSAT steps in
one round of Gauss-Seidel, and |E| is the total number of
clauses. The first term roughly captures the speed-up as a
result of Theorem 3.1, and the second term roughly captures
the slow-down caused by cut clauses.

Empirically however, we find this formula to be rather
conservative compared to experimental results that gener-
ally favor much more aggressive partitioning. In the techni-
cal report [16] (Section 5), we present a much more detailed
discussion. The main idea is to finely model the elements
of the tradeoff by taking into account connectivity and the
influence of individual atoms.

C. MATERIAL FOR EXPERIMENTS

C.1 Alternative Search Algorithms
As shown in Section 4.3, RDBMS-based implementation

of WalkSAT is several orders of magnitude slower than the
in-memory counter part. This gap is consistent with the
I/O performance of disk vs. main memory. One might
imagine some clever caching schemes for WalkSAT, but even
assuming that a flip incurs only one random I/O operation
(which is usually on the order of 10 ms), the flipping rate
of RDBMS-based search is still no more than 100 flips/sec.
Thus, it is highly unlikely that disk-based search implemen-
tations could catch up to their in-memory counterpart.

C.2 Lesion Study of Tuffy Grounding
To understand which part of the RDBMS contributes the

most to Tuffy’s fast grounding speed, we conduct a lesion
study by comparing the grounding time in three settings: 1)
full optimizer, where the RDBMS is free to optimize SQL
queries in all ways; 2) fixed join order, where we force
the RDBMS to use the same join order as Alchemy does;
3) fixed join algorithm, where we force the RDBMS to
use nested loop join only. The results are shown in Table 6.



LP IE RC ER
Full optimizer 6 13 40 106

Fixed join order 7 13 43 111
Fixed join algorithm 112 306 >36,000 >16,000

Table 6: Grounding time in seconds

IE RC
Tuffy-batch 448 133

Tuffy 117 77
Tuffy+parallelism 28 42

Table 7: Comparison of execution time in seconds

Clearly, being able to use various join algorithms is the key
to Tuffy’s fast grounding speed.

C.3 Data Loading and Parallelism
To validate the importance of batch data loading and

parallelism (Section 3.3), we run three versions of Tuffy
on the IE and RC datasets: 1) Tuffy, which has batch
loading but no parallelism; 2) Tuffy-batch, which loads
components one by one and does not use parallelism; and
3) Tuffy+parallelism, which has both batch loading and
parallelism. We use the same WalkSAT parameters on each
component (up to 106 flips per component) and run all three
settings on the same machine with an 8-core Xeon CPU. Ta-
ble 7 shows the end-to-end running time of each setting.

Clearly, loading the components one by one incurs signif-
icant I/O cost on both datasets. The grounding + parti-
tioning time of IE and RC are 11 seconds and 35 seconds,
respectively. Hence, Tuffy+parallelism achieved roughly 6-
time speed up on both datasets.

D. EXTENDED RELATED WORK
The idea of using the stochastic local search algorithm

WalkSAT to find the most likely world is due to Kautz et
al. [13]. Singla and Domingos [41] proposed lazy grounding
and applies it to WalkSAT, resulting in an algorithm called
LazySAT that is implemented in Alchemy. The idea of ig-
noring ground clauses that are satisfied by evidence is high-
lighted as an effective way of speeding up the MLN ground-
ing process in Shavlik and Natarajan [40], which formulates
the grounding process as nested loops and provides heuris-
tics to approximate the optimal looping order. Mihalkova
and Mooney [35] also employ a bottom-up approach, but
they address structure learning of MLNs whereas we focus
on inference. As an orthogonal approach to scaling MLN in-
ference, Mihalkova and Richardson [36] study how to avoid
redundant computation by clustering similar query literals.
It is an interesting problem to incorporate their techniques
into Tuffy. Lifted inference (e.g., [42]) involves performing
inference in MLNs without completely grounding them into
MRFs. It is interesting future work to extend Tuffy to
perform lifted inference. Knowledge-based model construc-
tion [28] is a technique that, given a query, finds the minimal
relevant portion of a graph; although the resulting subgraph
may contain multiple components, the downstream inference
algorithm may not be aware of it and thereby cannot benefit
from the speedup in Thm. 3.1.

While Tuffy employs the simple WalkSAT algorithm,
there are more advanced techniques for MAP inference [31,
33]; we plan to integrate them into upcoming versions of
Tuffy. For hypergraph partitioning, there are established
solutions such as hMETIS [12]. However, existing imple-
mentations of them are limited by memory size, and it is
future work to adapt these algorithms to on-disk data; this
motivated us to design Algorithm 3. The technique of cut-
set conditioning [17] from the SAT and probabilistic infer-
ence literature is closely related to our partitioning tech-
nique [30,37]. Cutset conditioning recursively conditions on
cutsets of graphical models, and at each step exhaustively
enumerates all configurations of the cut, which is imprac-
tical in our scenario: even for small datasets, the cut size
can easily be thousands, making exhaustive enumeration in-
feasible. Instead, we use a Gauss-Seidel strategy, which we
show is efficient and effective. Additionally, our conceptual
goals are different: our goal is to find an analytic formula
that quantifies the effect of partitioning and then, we use
this formula to optimize the IO and scheduling behavior of
a class of local search algorithms; in contrast, prior work
focuses on designing new inference algorithms.

There are statistical-logical frameworks similar to MLNs,
such as Probabilistic Relational Models [32] and Relational
Markov Models [43]. Inference on those models also requires
grounding and search, and we are optimistic that the lessons
we learned with MLNs carry over to these models.
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