
Multi-Agent Inverse Reinforcement Learning

Sriraam Natarajan∗, Gautam Kunapuli∗, Kshitij Judah†, Prasad Tadepalli†,
Kristian Kersting‡ and Jude Shavlik∗

∗University of Wisconsin-Madison, †Oregon State University and ‡Fraunhofer IAIS

Abstract

Learning the reward function of an agent by observing
its behavior is termed inverse reinforcement learning and
has applications in learning from demonstration or ap-
prenticeship learning. We introduce the problem of multi-
agent inverse reinforcement learning, where reward func-
tions of multiple agents are learned by observing their un-
coordinated behavior. A centralized controller then learns
to coordinate their behavior by optimizing a weighted sum
of reward functions of all the agents. We evaluate our
approach on a traffic-routing domain, in which a controller
coordinates actions of multiple traffic signals to regulate
traffic density. We show that the learner is not only able
to match but even significantly outperform the expert.

I. Introduction

Traditional Reinforcement Learning (RL) [1] techniques
aim to optimize some notion of long-term reward. The goal
of RL is to find a policy that maps from states of the world
to the actions executed by the agent. The key assumption
for RL is that the reward function being optimized is
accessible to the agent. However, there are several cases
in which the reward might not be easily specifiable [2].
This naturally occurs in the case where an agent observes
an expert and tries to learn from the expert; this is called
apprenticeship learning, [3]. Consider, for example, expert
human operators who monitor different roads and control
signals to regulate the traffic. While humans may have
a “reward function” or optimization criterion in mind, it
may not be explicit. It would be desirable to have an
automated system that can observe the human agents, learn
their reward functions, and optimize them automatically.

Inverse reinforcement learning (IRL) [2], [3] aims to
learn precisely in such situations. The goal of IRL is to
observe an agent acting in the environment and determine
the reward function that the agent is optimizing. The
observations include the agent’s behavior over time, the
measurements of the sensory inputs to the agent, and the

model of the environment. In this setting, IRL was studied
by Ng and Russell [2], who developed algorithms based on
linear programming (LP) for finite state spaces, and Monte-
Carlo simulation for infinite state spaces. Abeel and Ng
[3] extended the framework to the task of apprenticeship
learning where the goal is to use observations of an expert’s
actions to decide the behavior of the agent. More recently
Neu and Szepesvari developed a unified framework for the
analysis and evaluation of recent IRL algorithms [4].

So far, IRL methods have been studied and employed
in the context of a single agent. The assumption is that
a single agent optimizes some criteria and the task is to
observe the actions of the agent to learn its optimization
function. Though this remains an interesting problem and
has deservedly received attention in recent times, there are
several real-world scenarios in which multiple agents will
act independently to achieve a common goal.

Consider the example presented in Figure 1. In this sce-
nario, there are 4 agents (⟨S1, S2, S3, S4⟩) that control the
signals at 4 intersections. The intersections controlled by
agents S1 and S4 are near a highway and their preferences
are different compared to those of S2 and S3. While all
agents act in a locally optimal manner (i.e., each of them
individually optimizes traffic at its own intersection), there
is a necessity for co-ordination. It is conceivable, then,
that there is a centralized controller that co-ordinates the
actions of different agents so that they optimize the traffic
over all the intersections.

S1 S4

S2 S3

HIGHWAY

A
V

E
N

U
E

 1

A
V

E
N

U
E

 2

Road 1

Road 2

S

N

EW

Figure 1. The traffic-routing domain: there are 4 agent-
controlled intersections. Agents S1 and S4 are near the highway
and have to be optimized differently compared to the other two.

Administrator
Typewriter

Administrator
Typewriter
Appears in the Proceedings of the Ninth International Conference on Machine
Learning and Applications (ICMLA 2010)

We consider learning from situations similar to the sce-
nario discussed above, which poses a significant challenge
in the IRL setting. To see this, consider first, a straightfor-
ward solution: observe each agent individually and learn
the reward functions for each independently. This is not
always a good solution as the optimal behavior of one
agent may be suboptimal for another. Yet another challenge
is that we may never be able to observe the actions of the
centralized controller directly but only the actions of the
individual agents. Finally, considering the cross-product of
the state and action spaces of the individual agents can lead
to a prohibitively large space.

The goal of this work is observe the individual agents,
learn the reward functions of all the agents, and then
control the agents’ policies in such a way as to optimize
their joint reward. We consider weighting these agents,
where some agent’s policies are better optimized than
others. For example, signals S1 and S4 are near a highway
and the traffic entering (leaving) these two signals from (to)
the highway needs to optimized, keeping into account that
traffic densities on highways are higher than surface streets.
Our framework provides a natural way of incorporating
such differences as weights of individual agents.

This paper makes two key contributions: first, we
consider the IRL problem in the presence of multiple
agents that co-ordinate to achieve a common goal. More
precisely, we assume that it is possible to observe multiple
agents for a significant period of time and that there
exists a centralized mediator who controls the policies of
the individual agents, so that the (weighted) sum of the
individual rewards are maximized. The goal is to determine
the individual reward functions of the agents thus learning
the reward function of the centralized controller.

The second contribution is the evaluation of the algo-
rithms on a transportation domain where there are multi-
ple traffic signals that co-ordinate through a centralized
mediator. Given trajectories of the policies of different
agents, we demonstrate that our algorithm learns a reward
function that can imitate and improve upon the expert
policy greatly. A minor yet novel contribution is the
consideration of average-reward setting [5] for IRL. We
formalize the derivation of IRL algorithm when the agents
aim to maximize the average reward. It has been shown
that average reward RL is more effective in many tasks
where discounting can yield to myopic policies and hence
a formal algorithm for inverse average-reward RL is crucial
in solving several problems.

II. Average-Reward RL

An MDP is described by a set of discrete states S, a
set of actions A, a reward function rs(a) that describes the
expected immediate reward of action a in state s, and a
state transition function pass′ that describes the transition

probability from state s to state s′ under action a. A policy,
π, is defined as a mapping from states to actions, and
specifies what action to execute in each state. An optimal
solution in the average reward setting is the policy that
maximizes the expected long-term average reward per step
from every state. Unlike in discounted learning, the utility
of the reward here is the same for an agent regardless of
when it is received.

The Bellman equation for average reward reinforcement
learning, for a fixed policy π : S → A is:

V π(s) = rs(π(s)) +
∑
s′

P
π(s)
ss′ V π(s′)− ρ, (1)

where ρ is the average reward per time step of the policy
π. Under reasonable conditions on the MDP structure and
the policy, ρ is constant over the entire state-space. The
value function specifies that if the agent moves from the
state s to the next state s′ by executing an action a, it
has gained an immediate reward of rs(a) instead of the
average reward ρ. The difference between rs(a) and ρ is
called the average-adjusted reward of action a in state s.
V π(s) is called the bias or the value function of state s for
policy π and represents the limit of the expected value of
the total average-adjusted reward over the infinite horizon
for starting from s and following π.

We use an average-reward version of Adaptive Real-
Time Dynamic Programming (ARTDP) [6] called H-
Learning for average-reward reinforcement learning [7].
The optimal policy chooses actions that maximize the right
hand side of (1). Hence, H-learning also chooses greedy
actions, which maximize the right hand side, substituting
the current value function for the optimal one. It then
updates the current value function as follows:

h(s)←− max
a

{
rs(a)− ρ+

n∑
s′=1

pss′(a)h(s
′)

}
. (2)

The state-transition models p and immediate rewards r are
learned by updating their running averages. The average
reward ρ is updated using the following equation over the
greedy steps, where α is a tunable parameter.

ρ←− ρ (1− α) + α (rs(a)− h(s) + h(s′)) . (3)

For the multi-agent case, we use vector-based reinforce-
ment learning [8], [9]. Each agent is assumed to be a com-
ponent and the central controller picks actions according to
a weighted sum of the individual rewards. The rewards are
divided into M types, where M is the number of agents.
We associate a weight with each type, which represents the
importance of that reward. Given a weight vector w and
the MDP defined earlier, a new “weighted MDP” can be
defined where each reward ris(a) of type i is multiplied by
the corresponding weight wi. We call the average-reward
per time step of the new weighted MDP for a policy, its
weighted gain. The goal of multi-agent RL is to find a

policy for the central controller that optimizes the weighted
gain. Since the transition probability models do not depend
on the weights, they are not vectorized in H-Learning. The
update equation for vector-based H-Learning is:

h(s)←− ra(s) +

n∑
s′=1

pss′(a)h(s
′)− ρ, (4)

where

a = arg max
a

{
w ·

(
ra(s) +

n∑
s′=1

pss′(a)h(s
′)

)}
,

(5)and ρ is updated using

ρ ←− ρ (1− α) + α (ra(a)− h(s) + h(s′)) (6)

III. Multi-Agent Inverse Average Reward RL

The goal of inverse RL is to find a reward function
that faithfully explains the observed behavior of the agent,
or more specifically by observing a few trajectories. The
inverse problem of learning from trajectories can most
typically be setup using the Bellman equation (1) to obtain
an optimization problem which can be solved for the
reward function. As observed by Neu and Szepesvari [4],
most IRL methods can be understood as minimizing a
measure of distance between the reward function and the
observed trajectories i.e., the goal is to determine a reward
function such that the trajectories generated using this new
reward function will be similar to the observed trajectories.
We derive the algorithm in a manner similar to [2], but for
the multi-agent case (vector-based inverse RL).

The Bellman equation for the value of a state, in ARL
formalism, is given by (1) and, in the multi-agent case,
becomes:

vπ
s = rπ(s) +

∑
s′

P
π(s)
ss′ vπ

s′ − ρπ, (7)

where vπ
s is the value vector of executing an action π(s)

in the current state s. The central controller chooses the
best action according to a′ = arg maxa {w · qa

s}, where
qa
s is the value vector of executing an action a in state s

and is equal to vπ
s when π(s) = a. Note that the action a

we denote here is the joint action over all the agents and is
composed of individual actions. In the rest of the paper, we
denote the action of the central controller as a and refers
to the joint action over all the agents (which can be dif-
ferent individually). Let Pa represent the transition matrix
corresponding to pass′ ∀s, s′. Let π(s) = a1. Rewriting (7)
more compactly as (I − Pa1)v

π
s = rπ(s) − ρπ , and we

have:
vπ
s = (I − Pa1)

−1 (rπ(s)− ρπ). (8)

In the equation above, I is the identity matrix. For the
expert to choose action a1 over all other actions, the value
of executing this action must be higher than the values

of executing all the other actions. Consequently, we have,
∀a ∈ A \ a1,

rπ(s) +
∑
s′

P a1

ss′ v
π
s′ − ρπ ≥ rπ(s) +

∑
s′

P a
ss′ v

π
s′ − ρπ

(9)
Rewriting (9) as Pa1v

π
s′ ≥ Pav

π
s′ ,

(Pa1 − Pa)v
π
s′ ≥ 0. (10)

Equation (10) gives the optimality conditions for the
current action a1. Combining (8) and (10) we get

(Pa1−Pa) (I−Pa1)
−1 (r−ρ) ≥ 0, ∀a ∈ A\a1, (11)

where, r − ρ is the average adjusted vector. In the case
where there are multiple agents (say M agents), we can
replace this term with a weighted sum,

θ =
M∑
i=1

(ri − ρi)wi =
M∑
i=1

θiwi = Θw, (12)

where θi denotes the average-adjusted reward due to the
agents i = 1, . . . ,M , and the matrix Θ collects all
individual agent rewards as columns. The adjusted reward
of the central controller is then, a weighted sum of the
adjusted rewards of the individual agents indicated by the
dot product. We now arrive at the following equation,

(Pa1 − Pa) (I − Pa1)
−1Θw ≥ 0 ∀a ∈ A \ a1. (13)

Equation (13) is very similar to the discounted-reward
condition derived in [2], the key differences being: first,
in the our setting, there is no notion of a discount factor
(γ), and second, the multi-agent case is vector based. We
can now formalize a theorem for the multi-agent average
reward case similar to the one presented in [2].

Theorem 3.1: Given a finite state space S, a set of
actions a1, ..., an and the transition probabilities Pa, an
action ai is optimal for the current state if and only if,
∀a ∈ A \ai, the average adjusted reward vector θ, defined
in (12), satisfies

(Pai − Pa) (I − Pai)
−1Θw ≥ 0 ∀a ∈ A \ ai. (14)

Note that we can obtain empirical estimates of Pa for every
action and ρ from observing the agent demonstrations i.e.,
the sample trajectories. From (13), it is clear that θi = 0
is a possible solution to the problem which corresponds to
estimating the reward of each agent by setting θi = ri −
ρi = 0. This trivial solution is theoretically feasible but far
from ideal as it does not allow the separation of one policy
from another; this is due to the fact that all the policies
can become optimal and all the actions in a particular state
become equally important. From a practical point of view,
the degenerate solution is not a useful solution in many
domains. We now proceed to outline the formulation.

Since we are interested in discovering the reward func-
tion corresponding to the optimal policy, it would be

reasonable to search for the reward function that satisfies
(13) and maximizes∑

s∈S

(Qπ(s, a1)−Qπ(s, a)) , ∀a ∈ A \ a1. (15)

where Qπ(s, a) is the value vector corresponding to
executing the action a in state s. The above equation seeks
to maximize the difference between the value of executing
the optimal and all the other actions over all the agents;
a better objective would be to maximize the difference
between the value of choosing the optimal and value of
choosing the second-best action:∑

s∈S

(
Qπ(s, a1)− max

a∈A\a1

Qπ(s, a)

)
. (16)

It is fairly straightforward to turn (16) into an optimization
problem constrained by the characterization of optimal
policies from Theorem 1. Like most inverse problems,
the resulting optimization might be ill-posed resulting in
many “optimal” solutions. Consequently, in addition to
maximizing (16), we also minimize a scaled regularization
term, typically some norm of the reward, λ ∥θ∥. The
resulting problem is to

max
θ, θ1,...,θM

−λ ∥θ ∥+
N∑
i=1

min
a∈A\a1

(Pa1(i)− Pa(i)) (I − Pa1)
−1 θ

s.t. (Pa1 − Pa) (I − Pa1)
−1 θ ≥ 0,∀a ∈ A \ a1,

θ =
M∑
i=1

θi wi,

|θji | < θmax,∀i = 1, . . . ,M, j = 1, . . . , N

(17)

where N is the number of states, θmax is an upper bound
on the value of the adjusted reward and P (i) is the
i-th row of the probability matrix P . In (17), we do
not specify the norm. As we show in our experiments,
various reward regularizers yield optimal rewards with
different properties. For instance, if the L1-penalty is used,
it enforces sparsity and only some of the θ components
will be non-zero resulting in the optimal reward being
expressible by a sparse set of states.

If the number of components are very large, then we
can sample a few states and ensure that the constraints
are satisfied on those states. For instance, in [2], k Monte-
Carlo trajectories under the policy π were created, and for
each trajectory, the values were the average empirical es-
timates under π; this allows us to maximize the difference
between the observed value function and the true value
function. But, in our domains, we were able to handle
large state spaces without the need for sampling.

The formulation (17) contains the quadratic term Θw,
and in its full general setting can lead to an optimization

problem with quadratic constraints that can become highly
intractable. We assume that each agent is weighted equally
(wi = 1/M) and hence (17) becomes either an linear
program (LP) or a quadratic program (QP) depending on
the regularization. Furthermore, if we assume an agent-
wise decomposition of the state-space (as is the case in
our traffic-signal control domain), with a slightly different
choice of objective, (17) decomposes into M separate
optimization programs as shown below:

max
θ

−λ ∥θ∥ +
N∑
i=1

min
a∈A\a1

(Pa1(i)− Pa(i)) (I − Pa1)
−1θ

s. t. (Pa1 − Pa)(I − Pa1)
−1θ ≥ 0, ∀ a ∈ A \ a1,

|θi| ≤ θmax, ∀ i = 1, . . . , N.
(18)

An expert reader would deduce correctly that the single
agent average reward inverse RL problem is a sub-case
of our formulation. Note that while we can decompose
the problem into several subproblems and solve them
independently, there is no inherent assumption that the
states and actions of the individual agents must be exactly
similar. The only assumption is that the central controller’s
action can be decomposed into individual agent actions.

Some of the key features of the formulation:
(1) The formulation is similar to the one derived in [2].
This is a very nice property because it provides justification
to the average reward setting by drawing similarities with
the discounted setting. As we have mentioned earlier, while
the discounted methods are widely popular due to their
strong theoretical properties, average reward models have
been shown useful in practice and reflects the fact that this
work formulates the average-reward IRL problem based on
the discounted setting.

(2) The formulation (18) is solved to obtain the adjusted
reward, θ. Given trajectories, it is possible to estimate the
average reward ρ̂ and then compute r, or just use the
adjusted rewards θ directly after learning to act optimally.
Note that the probabilities can be estimated from the
trajectories as well using maximum likelihood estimation
over state-action values.

(3) Regularization allows us to control the properties
of the learned rewards. Using an L1 regularizer allows us
to look for highly sparse rewards. L∞ on the other hand
allows for bounding the maximum adjusted rewards and
forces the learner to look for discriminating rewards. Using
both these norms in (18) leads to a LP. It is also possible
to use an L2 regularizer, which leads to a QP.

(4) For an N state problem, Pa1 is a N×N probability
matrix and each row sums to 1. Thus, the matrix I − Pa1

has rank of at most N − 1, and is never invertible.
One solution is to use unnormalized counts rather than
probabilities but the matrix may become ill-conditioned.

Thus, in practice, we consider the matrix I − (1 − ϵ)P ,
for some small ϵ to improve conditioning. Note that 1− ϵ
should not be confused with the discount parameter (γ)
used in the discounted reward setting. It is introduced
to make the ill-posed inverse problem well-posed. The
difference is further highlighted by the fact that ϵ is not
used for action selection once the rewards are learned.

IV. Experiments

We designed and implemented a simulator for a traffic
signal domain (Figure 1) in which there 4 intersections
and each is an agent. Each agent controls the signals at
that intersection. Each agent has 4 actions corresponding
to the direction of the traffic that is allowed to move (that
has the green). The possible directions are N − S (and
S −N), E −W (and W −E), and 2 kinds of left turns :
N−W and S−E turn green simultaneously while W −S
and E−N turn green together. These signals are assumed
to be mutually exclusive and the agent chooses 1 of these
4 configurations; the signal at that configuration remains
green until the agent changes its action.

Cars are generated at random at different locations
with random destinations. Each car is assumed to move
at a constant speed along the shortest possible route to
its destination. In this case, the car’s shortest path is the
one that minimizes the Manhattan distance between the
source and the destination. The agents are present at the
4 intersections and control the signals as specified above.
A centralized controller controls the actions taken by the
different agents considering their requirements. The action
of the centralized controller is observed by observing the
actions of the different agents.

The state space of each agent is the density of cars {low,
medium, high} that will be served if each of the above
configuration turns green. Hence the size of the state space
34 for each agent. The number of actions for each agent is
4 corresponding to the 4 configurations. It is clear that it is
not possible to solve a single LP for all the agents together
as the state space is exponential in the number of agents
(34

4 ≈ 4× 107). Fortunately, we can consider each agent
separately and then learn the reward function for each of
them, finally combining them in the central controller.

The expert policy is coded as a decision-list for each
agent. An example (partial) policy is:
If Config1 = H, action = 1
else if Config4 = H, action = 4
else if Config1 = M, action = 1

else if Config2 = H, action = 2...

The policies were designed based on the traffic require-
ments. As can be seen from Figure 1, it is important for
agents S1 and S4 to optimize the traffic to and from the
highway. Hence for these two signals, Config1 (which
corresponds to N −S or S−N direction) is of the utmost

priority. With such policies, we generated about 15000
state-action pairs for each agent to solve the LP.

Results. We used different regularizers to solve the
optimization problems. In addition, once the rewards were
learned, we use the Boltzmann distribution over the values
to obtain a smoother action selection function. As can
be expected, L1 regularization results in sparse reward
functions. L∞, on the other hand, tries to maximize the
rewards for highly visited states and drives the negative
weights lower. Thus, rewards computed using L∞ were
very discriminative between the states. L2 aims to derive
a smooth non-sparse function. Hence, most states end up
having non-zero values and the difference between the
rewards in different states is not as high when compared
to other regularizers. This difference in reward functions
for a few selected states are presented in Figure 2.

Figure 3 presents the fraction of states in which the
learner’s policy matches the expert’s policy as a func-
tion of the number of training examples (number of
⟨state, action, nextState⟩ tuples). As the number of ex-
amples increases, the behavior of the learner becomes
increasingly similar to the expert. But when the number
of examples increase beyond 8000, the learner deviates
away from the expert policy due to the fact that the learner
actually improves upon the expert policy.

The overall goal is to minimize the traffic at intersec-
tions. Hence, we measured the traffic densities (averaged
over 20 time-steps) and present the results in Figure 4. We
used 16000 training examples as input and used L1 regular-
ization for learning the reward functions. Once the rewards
are learned, we used H-learning [7] with Boltzmann action
selection mechanism. Initially the learner is very similar
to the expert but it quickly learns to act optimally and
minimizes the traffic congestion at the intersections. The
expert being a decision-list always aims to optimize one
intersection and hence allows the traffic to accumulate at
the other signals. The learner, on the other hand, uses a
distribution based on the values of different states and
rotates the signals. As time increases, the number of
vehicles at different signals increases drastically for the
expert while remaining nearly constant for the learner. This
experiment proves conclusively that the learner can not
only imitate the expert, but also improve upon it.

The key reason why the learner outperforms the expert
is that it explores using average reward RL to act in the
environment. This exploration makes the policy optimize
the expected returns, given the immediate rewards. Once
the rewards are learned, the learner can try to find the best
policy that the exploration allows, which can be better than
the expert.The expert on the other hand does not perform
exploration. These results clearly prove that the use of
RL makes it possible to design a learner that performs
optimally even when learning from a sub-optimal expert.

Figure 2. Rewards for different regular-
izations for a few selected states

Figure 3. Fraction of states for which
learner matches the expert vs. # examples

Figure 4. Total number of vehicles at the
intersection (averaged over 20 time steps)

V. Conclusions

Ng and Russell derived IRL algorithms in the dis-
counted setting for a single agent [2]. They derived an LP
formulation for finite state spaces and observed that the
number of constraints can become infinite in the presence
of infinite states and hence developed a Monte-Carlo based
algorithm for IRL in infinite spaces. Abeel and Ng [3]
extended [2] to imitate the expert’s behavior. The inverse
problem was posed as a quadratic program and solved
using a SVM solver. Ratliff et al. [10] used IRL for
imitation learning in robotics domain. They posed the
problem of learning from an expert as a series of planning
problems and use the max margin planning algorithm of
[11] to learn the objective function. More recently, Neu and
Szepesvari [4] considered the problem of training parsers
as IRL. They consider PCFG parsing as a sequential deci-
sion making process and compared several IRL algorithms
that learned the parsers from training data (similar to parser
training). All these methods are closely related in that they
derive linear programs or quadratic programs with linear
constraints. Our work is motivated by all these methods
but focuses on multi-agent average reward setting and the
problem of traffic signal optimization.

IRL has not been explored in the multi-agent setting and
we have derived and outlined an algorithm for multi-agent
average reward IRL. Our experiments conclusively prove
that the learner learns the correct reward function and uses
RL to improve upon the expert. One of the assumptions
was that the state space was completely observed. It is
an interesting future direction of research to consider the
problem of partial observability in IRL algorithms [12] and
extend them to the multi-agent setting. It is also important
to relax the assumption of weights being observed and
jointly determine the weights and the reward functions
that leads to a non-convex program. Yet another research
problem is to combine prior knowledge about the domain
with sample trajectories in learning the reward function.
Finally, it is interesting to combine approaches that learn

the rewards with the ones that explicitly learn the user
policy such as policy matching [4]. This will allow the
learner to imitate the expert as much as possible while
allowing for exploration of unseen states thus improving
upon the expert.

Acknowledgements: SN, GK and JS gratefully acknowledge
support of DARPA under grant HR0011-07-C-0060 . Views and
conclusions contained in this document are those of the authors
and do not necessarily represent the official opinion or policies,
either expressed or implied of the US government or of DARPA.
PT gratefully acknowledges the support of NSF under grant
IIS-0964705. KK was supported by the Fraunhofer ATTRACT
fellowship STREAM and by the European Commission under
contract number FP7-248258-First-MM.

References

[1] R. Sutton and A. Barto, Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, MA, 1998.

[2] A. Ng and S. Russell, “Algorithms for inverse reinforcement
learning,” in ICML, 2000.

[3] P. Abbeel and A. Ng, “Apprenticeship learning via inverse
reinforcement learning,” in ICML, 2004.

[4] G. Neu and C. Szepesvari, “Training parsers by inverse
reinforcement learning,” Mach. Learn., vol. 77, pp. 303–
337, 2009.

[5] S. Mahadevan and L. Kaelbling, “Average reward rein-
forcement learning: Foundations, algorithms, and empirical
results,” 1996.

[6] A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to
act using real-time dynamic programming,” Artificial Intel-
ligence, vol. 72, no. 1–2, pp. 81–138, 1995, computational
research on interaction and agency, part 1.

[7] P. Tadepalli and D. Ok, “Model-based average reward
reinforcement learning,” AI Journal, vol. 100, no. 1-2, pp.
177–223, 1998.

[8] Z. Gabor, Z. Kalmar, and C. Szepesvari, “Multi-criteria
reinforcement learning,” in ICML, 1998.

[9] S. Natarajan and P. Tadepalli, “Dynamic preferences in
multi-criteria reinforcement learning,” in ICML, 2005.

[10] N. Ratliff, J. Bagnell, and M. Zinkevich, “Maximum margin
planning,” in ICML, 2006.

[11] B. Taskar, C. Guestrin, and D. Koller, “Max-margin markov
networks,” in NIPS, 2003.

[12] J. Choi and K. Kim, “Inverse reinforcement learning in
partially observable environments,” 2009.

