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Abstract tiated sets of parents that influence a single ground target
variable. Also, the number of these parent variables might
Languages that combine predicate logic with proba- change from one instance to the other.

many real-world domains. We consider a formalism based . . o . .
on universally quantified conditional influence statements &€ interested in predicting the satisfaction of a student

that capture local interactions between object attributes N @ particular year. One might consider two rules to
The effects of different conditional influence statemesuts ¢ predict the satisfaction. The first rule says that the sttislen
be combined using rules such Bisy-OR. To combine satisfaction is influenced by the grades obtained in the
multiple instantiations of the same rule we need other -gyrses for the given year. The second rule says that

gﬂ??rmi)rllgn:gﬁsa?éo%i:ﬁmgrt!g\égb g]ntgi%gi%%?_rd‘gsecgﬁ{i\éﬁdgatisfaction is influenced by the quality of papers publishe

EM for learning the parameters of these multi-level com- in the year. The students could take multiple courses in a
bining rules. We compare our approaches to learning in year and/or publish multiple papers in a year. Moreover,
Markov Logic Networks and show superior performance the number of courses/papers for every student need not
in multiple domains. Keywords-Relational Learning; be the same. We model this situation by having a single
parameterized conditional distribution for each rule. Whe
. the rule is instantiated with a specific instance, e.g., glsin
. Introduction course, its influents, e.g., grade, determine the condition
Complex real world domains, such as citation anal- probability of the target attribute, i.e., satisfaction.
ysis and social network analysis, motivate the need for A common problem in these models is accounting for
rich, knowledge-representationist languages that coenbin the impact of multiple rules and multiple instantiations of
predicate logic with probabilities. There have been sev- the same rule on the target attribute. One possible solution
eral first-order probabilistic languages developed inmece is the use of aggregators [1], which operate on the values
years including probabilistic relational models (PRM9) [1  of the influents. In this work, we use combining rules that
Markov Logic Networks (MLNs) [2], and many others. operate on the distributions; this has been proposed earlie
The important underlying similarity between all these and used in [3], [4], [5]. In this approach we assume
approaches is that they define a probabilistic model overICl, where multiple causes on a target variable can be
the attributes and relationships between the objects in adecomposed into several independent causes whose effects
domain. The principle attraction of these relational lan- are combined to yield a final value. In other words, each
guages is that they are much more succinct than theirparent or set of related parents produces a different value
propositional counterparts leading to easier specifinatfio ~ for the child variable, all of which are combined using
their structure by the domain experts, and faster learninga deterministic or stochastic function. Depending on how
of their parameters. the causes are decomposed and the effects are combined,
The underlying semantics of almost all the languageswe can express the conditional distribution of the target
based on directed graphical models can be captured bwariable given all the causes as a function of the conditiona
a set of universally quantified influence statements which distributions of the target variable given each indepehden
hold under some conditions. Since, in general, multiple cause using a “decomposable combining rule.”
rules (that predict the same target variable) might apply, We make three contributions in this paper. First, we ex-
to keep these models succinct, each such rule is consideretend the work above by deriving the EM algorithm for the
independent of others; this is called the assumption of setting where different influence statements are combined
“independence of causal influences” (ICI). In many cases, by Noisy-OR at the rule level and biean at the instance
a single parameterized rule can result in multiple instan- level. Second, we derive and implement two versions of
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the gradient-descent algorithm, one to minimize the mean-different paper qualities) are combined using tflean
squared error (MSE) and the other to maximize the log- combining rule and the distributions due to different rules
likelihood. Third, we perform experiments on two real- usingNoisy-OR combining rule.
world data sets: the UW data set [2] and thiet eseer .
data set [6] and a synthetic data set[ a]nd compare our resuItL”' Learning Parameters
against the models of [5] and MLNSs [2]. Consider, if(conditior) then X}, ..., X* Qinf Y. For

The rest of the papéis organized as follows: in Section notational simplicity, we assume that th& influence
I, we present the required background. We then derive thestatement, ‘rulei’ for short, hask influents, X} through
algorithms for learning the parameters in the presence of X* (which we jointly denote asX;). When this rule
Noisy-OR combining rule in Section Ill. We present the is instantiated or “grounded” on a database, it generates
experimental results in the Section IV and conclude the multiple, say m;, sets of influent instances, which we
paper with some directions for future research. denote asX} ... X[":. The role of the combining rule is
Il. Back q to express the probabilit®; (Y'|X} ... X["") as a function

- packgroun of the probabilitiesP; (Y|X?/), one for eacly, whereP; is

Our learning algorithm does not assume any representhe CPT associated with rute Since these instance tuples
tation for the rules. It merely uses an abstract similar to are unordered and can be arbitrary in number, combining
the one provided in [5]. Each statement has the form:  rule should be symmetric, i.e., its value should not depend

If {condition) then (qualitative influence on the order of the arguments.
O S

where condition is a set of literals, each literal being

a predicate symbol applied to the appropriate number
of variables. The set of literals is treated as a conjunc-
tion. Such abstract statements are called as First-Order
Conditional Influence (FOCI) statements. (Qualitative
influence is of the form X4, ..., X Qinf Y, where the

X, andY are of the formV.a, andV is a variable that

occurs in condition and « is an object attribute. This
expresses a directional dependence of thsultant Y
on theinfluents X;. Associated with each statement is a @

conditional probability functiorthat specifies a probability
distribution of the resultant conditioned on the influents,  Figyre 1. value based Bayesian Network for thévisy-OR

e.g. P(Y|Xy,...,Xy) for the above Statem?gh We will combining rule. The nodeg;...Z, are distributed according to
). il i ; the mean of their parent distribution®(Y; = 1|1Z; = 1) = q;
usep; to denote_the probability function of t FOCI and P(Y; — 1|7, = 0) = 0. Y is a deterministic OR function
statement. Consider the statement, of Y1,...,¥r.
I'f {student(S), course(C), takes(T, S O} We write 27',...,z7"" = xJ to denote the values of
then T.grade Qnf S satisfaction, X/ andy to denote the value of. We write 6, to

which indicates that a student's satisfaction depends ondenote 7 (y|x;). We omit the superscripf because the
the course grade. The conditional probability distribatio Parameters are shared across the different instantiations
P(T.grade| S.satisfaction associated with this statement ©f the same rule. We useto index an example, and use
(partially) captures the quantitative relationships ey~ ¥ andx; to denote the Y-value and the X-vector of the

the attributes. It example.

A. Combining Rules In_tuitively, Noisy-OR models_the case where there are
Noi sy- Or { multiple causes, any one of \_/vhlch can cause the targt_a; ef-
It \{student(S), course(C), takes(T,S C\} fect. However, this effect is disabled with some probapilit

then T.grade Q nf (Mean) S.satisfaction. (1 — ¢;) independently of each other (see Figure 1). Thus,
' ft}éﬁt Ef’eﬂgf .Si ' p%pﬁlz((PivE;;)} S satisfaction it is modeled by the following function, where all variables
} 4 y ’ ’ are binary. The variable&; are the parent variables and

We explained the first rule earlier. The second states that ifY 1S the child variable:
the stut_jent has authored a paper, the_n |ts_quaI|t3_/ mfluences PY=1|Z4,....7,)=1— H(l — g%
the satisfaction of the student. Multiple instantiatiorfs o Hereg; is defined as?(Y = 1|Z; = 1,5j # i, Z; = 0). If

the respective rules (the different course grades or thea" 7Z's are0, Y is zero. Otherwisey is 0 if all its 1-inputs

1 . . are disabled, and otherwise.Noisy-OR is equivalent to
We extend a journal version of the paper (to appear) by edaingr .
and performing experiments in real-world data sets for caspn with a network where the inputg, ..., Z, are transformed to
the weighted mean combining rule and MLNSs. Yi,...,Y,,suchthatt(V; =1|Z,=1)=¢;, P(Y; =1 |



Z; =0) =0, andY is a deterministic OR function df;'s.
The distribution of the value at eadf is the mean of the
distributions of the values of its parent nod&g, . .., Y;*.

A. Gradient for Mean Squared Error

We now derive the gradient equations for the mean-
squared error function for the prediction of the target
variable, when multiple FOCI-statements are combined
by the Noisy-OR combining rule. Let thel*” training
examplee; be denoted b)((xll,... zb x> y1). Recall

mi,ry k
that :c{ 7 is the pt" input value of thej*" instance of the
it rule of e;. Here we exploit the Independence of Causal
Influence (ICI) ofNoisy-OR. Since the output variablg

is 0 only when all its immediate inpufg;, ..., Y, areQ’s,
and their influences oW are independent of each other, the
predicted probability of clasg on e¢; can be decomposed
as follows:

Py = 1|€l)

_1_H
mu
—1—Hml Z[l—qz+qz y—lelz)}

r; is the number of rules the example satisfigs,an index
of the applicable rule, anth; ; is the number of instances
of rule i on thel" example. The squared error is given

by
ZZ

;Z [y = 0) — P(y = 0le))?

"Ll i

=0 +(1—q)Pi(y=1|x,
s [y Ix} )+ (1—q)Piy le,l)}

(y1,9) — P(ylen)®

=1 l

l + (I(y,y =1) — P(y = 1le1))? | @)
= %Z [(I(yz,y =0) — P(y = 0ler))?

- + Iy =1) — (1= Py =0ler)))?]

Here y is a class label, ang, is the true label ofi*”
example(y;, y) is an indicator variable that isif y; = y
and0 otherwise. Taking the derivative of negative squared

error with respect ta°(y|x;) = 0,x,, we get

%‘f=Z[1+I(yz,y:0)71(yz,y=1)
s =1
—2P(y = 0Oler) ] - 6(ex)
@
o) = ml|zel I_Imzz/z:l_ql—’—qZ y_0|x )}
R @

B. Gradient for Log-Likelihood

We now give the derivation of the gradient for log-
likelihood with Noisy-OR as the combining rule. The log-

likelihood LL is given by,

LL = ZlogP(yl|el) @)
l
P(y= 1|61) .
_1_Hml ZP y—0|x“ +(1—a)P (y_1|x“)
Z ©)

"Ll i

Zl — ¢+ qP (y—0|xlz)

_1_H

Taking the denvatlve of the likelihood with respect to

myq

P(ylx;) = 0,x, we get,
8L - 1 8P yl|el)
69y‘xi N Z P yl|el 69y‘xi
1
= ——(=1)¥6(e 6
;{P(yllel)( ) ( l) ( )

whered(e;) is as defined in (3). The gradient in the above
equation will have different signs corresponding to whethe
the final value ofy is a0 or anl.

C. Expectation Maximization for Noisy-OR

In their work, Natarajan et al. [5], developed an EM-
algorithm that uses the notion of responsibilities to com-
pute the parameters of the CPTs and the weights of
the weighted mean combining rule. Sinbiwisy-OR is
asymmetric with respect to its values, and all its inputs
are responsible for the output, we directly estimate the
expectations of values of random variables of interest
without using auxiliary random variables such as responsi-
bilities. Previous work on implementing EM fd\oisy-OR
models includes [7] for propositional networks and [8] for
PRMs. Since our formulation involves multiple levels of
combining rules, our approach is different from the prior
work and is derived from first principles using the value-
based network of Figure 1.

We now describe the EM procedure to learn the CPTs
for Y;'s. In the E-step of EM, we seek to estimate the
value of Y/ for eachi, j pair and each value of the target
variableY . First, let us consider the easy caseYof= 0.
SinceY is a result of OR'’ing its parents, each &f's
parents including; must be0.

PY/=1|Y=0,x)=P(Y/ =1]Y; =0,x)
=aP(Y] =1[x)P(Y;i=0|Y/ =1,x)
=aP(Y/ =1|x)-

(PYi=0]Z=0)P(Z =0|Y =1,%)
+P(Y;=0|Zi=1)P(Z=1]Y] =1,x)) (7)
=oc~P(Y,7:1|x)~1’
(““ZP —olx+ 1—qi>P<Y3/=1|x>>
1<j’#j

The last line follows from expanding thdean combining
rule, notingthatP(Y; =0 Z; =0)=1,P(Y; =0| Z;, =



IV. Experimental Results
In this section, we present the results on two real-world
data sets and one synthetic data set.

1) =(1-q), andYZ_j = 1, and simplifying. Similarly, for
Y/ =0, we have:

PY/=0|Y =0,x)=a- P(Y/ =0|x) —-

m; A. Synthetic Data set forNoisy-OR
i y y 8)
(1+ Z P/} =0[x)+(1-g¢)PY/ =1 |X)) 03 —— WS
1<5'#) —
We can determine by normalizing Equations (7) and (8). 025 -

Now we proceed td” = 1, which is only slightly more
complicated and obtain
P(Y/ =1|x,Y =1)=aP(Y/ =1,Y =1 x)
=aP(Y/ =1|x)P(Y =1]Y/ =1,x)
=aP(Y/ =1|x)(1-P(Y =0|Y/ =1,x))

. 1 0 20 40 60 80 100 120 140 160 180 200
— aP(Y] =1 | X) 1-—. (1 _ qz)+ (9) Number of examples
m

Figure 2. Learning curves. EM: Expectation Maximization;
MS: Gradient descent for mean squared error; LL: Gradient
descent for log-likelihood

Noisy-OR, we constructed a synthetic data set. The data
are generated using a synthetic target as defined by two
The last but one step follows from the fact that the only FOCI statements, each of which has two influents and the
way Y = 0 is if all its parents arés, and that they are all same target attribute. The different instances of the same
independent of each other givén, Y//). The last step then  rule are combined usinilean and the different rules are
expandsP(Y; =0 | Yf = 1,x) by marginalizing overZ;, combined using théloisy-OR combining rule. The two
expanding the Mean combining rule, and using the fact influents in each rule have a range 4 and 2 values
thatY;. is independent oYij for all 7/ # i. Similarly, respectively. The target attribute can takevalues. The
probability values in the distribution of the syntheticgar

are randomly generated to be either betwédnand 1.0

] To estimate the accuracy of the learned model using

1<il #i

POY? =0|xY =1)=a- P/ =0]x) - {1L_

. i or between0.0 and 0.1. This is to make sure that the
{1 Py =0 1 g P(Y? =1 probabilities are hard to predict and not too close to the
< +1<Z; ; )+ (1 =) PIY | X)) (10) default probability of% each. Each example matches a rule
p 07 with probability 0.5, and when it does match, it generates
. H P(yy =0| x)} a number of instances randomly chosen betwand10.
1</ #i This makes it imperative that the learning algorithm does

a good job of inferring the hidden distributions both at the
) . . instance level and the rule level.
~We determinea by normalizing, as usual. Given the The goal is to evaluate the different versions of the
distributions of all P(Y;" | x,Y), for all 4,j over all  Nqisy-OR learning algorithms on this data set to de-
examples, the M-step is straightforward. We treat theseigrmine the accuracy of the learned distributions. We
probabilities as fractional counts and estimate the expect rained the learning algorithms dis sets 0f2000 training
number of groundingg of rule i in which X] = v gyamples and tested them on a set @f0 test examples.
over all examples and out of these the number in which The average absolute difference between corresponding
Y/ = L In other words, we estimate(Y;’ = 1,x; =  entries in the true distribution of the test examples and
V) = 22 = P(Y? = 1| xi,u1). Here, the first  the predicted distribution was averaged over all the test
index [ is over the examples, and the second index examples. Since the gradient-descent methods optimize the
is over different instances of rule whose influents are  MSE and the log-likelihood while the EM optimizes the
grounded to the values. x; andy; respectively denote log-likelihood, there is a need for comparing the different
the input vector and the output label of thé example. algorithms using the same performance metric. We choose
Similarly, n(x! =v) =3, > jx —y 1. We can estimate  the average absolute error for this purpose.
v The results are presented in Figure 2. Thaxis has the
number of examples angtaxis has the average absolute

P(Yij =1] x;'. =v) as% for any instance.
=



error for the examples. As can be seen, all the algorithmsof the target predicate across all the test folds. Note that
eventually converge to almost the same error rate (andthere are 4 independent parameters for each rule.

there is no statistically significant difference). Iniljal The results are presented in Table I. The results of
EM seems to perform worse, but, with more training the algorithms that uséloisy-OR are marginally better
data, achieves comparable performance to the gradientthan the algorithms that use weighted mean. This is due
descent methods. We flattened the data set by using théo the fact that when one of the two rules is fired,
counts of the instances of the parents as features and useNoisy-OR would yield a higher probability of the student
Weka? to run Naive Bayes on this modified data set. The being advised by the professor. Recall thdbisy-OR
Naive Bayes algorithm performed poorly and had a high predicts that the possibility of a student being advised by a
error rate of close t®.42, even with abouR000 training professor is falsé and only if both the rules return false
examples. Since the performance is poor, we omit thewith high probability.

propositional classifier from the learning curves. We used Alchemy systetrto compare against MLNs.
B. Real-World Data Sets Markov Logic Networks (MLNs in short)[2], consider
first-order clauses and softens them by learning their
Algorithm | UW | Citeseer vv_eights. The weight of a clause can be understood as the
VT ght ed EM 072931 0.701 difference in log probability between a world that satisfies

the clause and one that doesnt. While using MLNs, we

\ean OOMS 0.756 | 0.705 use the following clausesstudent (S) A prof essor (P)
GDLL 0.7406| 0.664 N couree(®) N toughiBa(P OO A La(S oG ]
Noi sy EM 0.7907| 0.686 ght By(P, C, .CQ :

advi sedBy(S, P).

GDMS 0.7962| 0.678 student (S) A professor(P) A publication(P,W A

R GDLL | 0.7669| 0.6544 publication(S, W :- advisedBy(S, P).
Al chenmry | MLN-2 0.5 0.34 where : - denotes implication. The last two rows of
MLN-N 0.52 0.40 the table present our results with MLNMLN-2 is the

result using the above 2 rules, aMLN-N is the result
of using all possible combinations of the truth value of
the predicates§( weights overall). As can be seen, the
We compared our relational algorithms against the onesperformance of MLNs is not comparable to that of the
developed by Natarajan et al. [5] and Markov Logic directed models. We included more rules provided in
Networks [2] on two real-world data sets - UW data set the UW dataset that used thaelvisedBypredicate and the
and theci t eseer data set. Since these are real-world performance improved (the average likelihood was close to
data sets, it is not clear which combining rule can best fit 0.57). We also evaluated using most of the clauses (about

Table |. Results. GD-MS: Gradient descent for Mean Square
error; GD-LL: Gradient descent for log-likelihood

the data without an empirical comparison. 55 of them) in the UW-dataset where we excluded the
1) UW Dataset: One test-bed was the UW-CSE do- clauses that used existential quantifiers and the ones that
main, where the goal is to predict tlaelvi sedBy rela-  ysed the predicates such smmePersonsameCourseetc.

tionship between a professor and a student. This databasgyr efficiency. This resulted in a much better performance
consists 0f278 faculty members and students. We uged  \yhere the average likelihood wass7. This suggests that
rules to predicadvi sedBy. The rules are as follows: the performance of MLNs is highly sensitive to the number

R and form of the rules.
' st {Jgﬁgf]t( SQPP{:?E;?SSQ Qe g“rse(q} 2) Citeseer Data SetThe other testbed we used is
Q nf (Mean) advi sedBy(S, P). the ci t eseer domain, where the goal is to predict if
'Ih{ers]t ugglnitgzii’oﬁzgf\e/\;sorfjgl)i}cati on(S, W 2 citations refer to the same work. The data consisted
Qi nf p( Mean) advi sédB;,(gy P). ’ of 4300 pairs of similar publications. We selectéd0 of
} them at random. Each pair was assigned as positive with

The first rule states that being a TA for a course that the a probability of0.7. This is to say that we mad#% of

professor offers influences thedvi sedBy relationship.  them negatives (in order to introduce noise). We then used
The second rule states that being a co-author for a papetwo rules - first rule states that if the papers have similar
with a professor influences tredvi sedBy relationship ~ title and same venue, they are likely to be similar. The
with the professor.CR in the above rule denotes the second rule is a transitive rule on the target. The goal of

combining rule and is eitheWeighted-Mean or Noisy- this experiment was to verify if the algorithms can retrieve
OR in our experiments. We predict the likelihood of the the true likelihood of the data.
target predicate using-fold cross validation. We learn the As can be seen from the last column of the Table |,

parameters using folds and predict the probability of the the different learning algorithms are capable of learning
target predicate in the other fold and average the likelihoo the true likelihood of the data(70. In this domain, the

2http: // ww. cs. wai kat 0. ac. nz/ m / weka/ Swww. al cheny. c¢s. washi ngt on. edu/



weighted mean has a marginally better performance (al-of the first-order clauses in the presence of combining
though a very negligible one) compared to that of the rules. More recently, Jaeger [4] considered a weighted
Noisy-OR models. In this domain, both the rules are very combination or a nested combination of the combining
informative and hence weighted mean has a good perfor-rules and used a gradient-ascent algorithm to optimize the
mance. There was no statistical significance in the likeli- objective function. This technique has been applied to his
hood between the two combining rules. This strengthensformalism of Relational Bayesian Networks(RBNS).
our hypothesis that we ultimately need a set of algorithms  This work can be naturally extended to more general
that can search over the space of combining rules to findclasses of combining rules and aggregators including tree-
the best one that fits the data. We ran Alchemy in this datastructured CPTs and noisy versions of other symmetric
set with the above clauses. As with the previous domains, functions. The relationship between the aggregators and
MLNs does not seem to capture the true model. Thesecombining rules must be better understood and formalized.
results inspire a new research direction of understandingEfficient inference algorithms must be developed that take
the equivalence between MLNs and directed models thatadvantage of the decomposability of the combining rules
capture conditional distributions and use combining rules as well as the flexibility of the first-order notation. Finall
We speculate a few reasons - First, it appears thatit is important to develop more compelling applications
MLNs do not perform very well in the presence of a small in knowledge-rich and structured domains that can benefit
number of rules and that their performance improve in from the richness of the first-order probabilistic language
the presence of a large number of weakly predictive rules. Extending the SRL languages to dynamic domains with
Secondly, we observe that Alchemy drives the weights of actions and utility makes them much more appropriate for
most clauses towards zero[2]. This is a very good solution compelling real-world applications.
when the clauses are being automatically learned from dat
(a.k.a. structure learning). But when provided with minima %/I' Acknowledgements
number of rules from a domain expert, the weights should The authors gratefully acknowledge support of the De-
not be driven to zero. Another reason is that while our fense Advanced Research Projects Agency under DARPA
model can learn a set of locally predictive rules, MLNs grants FA8650-06-C-7606 and FA8750-09-C-0181. Views
are not currently capable of learning local models. Finally and conclusions contained in this document are those of
the problem of representing arbitrary distributions using the authors and do not necessarily represent the official
minimal MLN remains an open problem. opinion or policies, either expressed or implied of the US
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