
Learning Parameters for Relational Probabilistic Models with Noisy-Or
Combining Rule

Sriraam Natarajan, Prasad Tadepalli*, Gautam Kunapuli, Jude Shavlik
University of Wisconsin, Madison * Oregon State UniversityUSA
{natarasr,kunpag,shavlik}@biostat.wisc.edu, *tadepall@cs.orst.edu

Abstract

Languages that combine predicate logic with proba-
bilities are needed to succinctly represent knowledge in
many real-world domains. We consider a formalism based
on universally quantified conditional influence statements
that capture local interactions between object attributes.
The effects of different conditional influence statements can
be combined using rules such asNoisy-OR. To combine
multiple instantiations of the same rule we need other
combining rules at a lower level. In this paper we derive
and implement algorithms based on gradient-descent and
EM for learning the parameters of these multi-level com-
bining rules. We compare our approaches to learning in
Markov Logic Networks and show superior performance
in multiple domains. Keywords-Relational Learning;

I. Introduction
Complex real world domains, such as citation anal-

ysis and social network analysis, motivate the need for
rich, knowledge-representationist languages that combine
predicate logic with probabilities. There have been sev-
eral first-order probabilistic languages developed in recent
years including probabilistic relational models (PRMs) [1],
Markov Logic Networks (MLNs) [2], and many others.
The important underlying similarity between all these
approaches is that they define a probabilistic model over
the attributes and relationships between the objects in a
domain. The principle attraction of these relational lan-
guages is that they are much more succinct than their
propositional counterparts leading to easier specification of
their structure by the domain experts, and faster learning
of their parameters.

The underlying semantics of almost all the languages
based on directed graphical models can be captured by
a set of universally quantified influence statements which
hold under some conditions. Since, in general, multiple
rules (that predict the same target variable) might apply,
to keep these models succinct, each such rule is considered
independent of others; this is called the assumption of
“independence of causal influences” (ICI). In many cases,
a single parameterized rule can result in multiple instan-

tiated sets of parents that influence a single ground target
variable. Also, the number of these parent variables might
change from one instance to the other.

Consider for example, a university domain where we
are interested in predicting the satisfaction of a student
in a particular year. One might consider two rules to
predict the satisfaction. The first rule says that the student’s
satisfaction is influenced by the grades obtained in the
courses for the given year. The second rule says that
satisfaction is influenced by the quality of papers published
in the year. The students could take multiple courses in a
year and/or publish multiple papers in a year. Moreover,
the number of courses/papers for every student need not
be the same. We model this situation by having a single
parameterized conditional distribution for each rule. When
the rule is instantiated with a specific instance, e.g., a single
course, its influents, e.g., grade, determine the conditional
probability of the target attribute, i.e., satisfaction.

A common problem in these models is accounting for
the impact of multiple rules and multiple instantiations of
the same rule on the target attribute. One possible solution
is the use of aggregators [1], which operate on the values
of the influents. In this work, we use combining rules that
operate on the distributions; this has been proposed earlier
and used in [3], [4], [5]. In this approach we assume
ICI, where multiple causes on a target variable can be
decomposed into several independent causes whose effects
are combined to yield a final value. In other words, each
parent or set of related parents produces a different value
for the child variable, all of which are combined using
a deterministic or stochastic function. Depending on how
the causes are decomposed and the effects are combined,
we can express the conditional distribution of the target
variable given all the causes as a function of the conditional
distributions of the target variable given each independent
cause using a “decomposable combining rule.”

We make three contributions in this paper. First, we ex-
tend the work above by deriving the EM algorithm for the
setting where different influence statements are combined
by Noisy-OR at the rule level and byMean at the instance
level. Second, we derive and implement two versions of

natarasr
Text Box
Appearing in the proceedings of International Conference on Machine Learning And Applications 2009

the gradient-descent algorithm, one to minimize the mean-
squared error (MSE) and the other to maximize the log-
likelihood. Third, we perform experiments on two real-
world data sets: the UW data set [2] and theciteseer
data set [6] and a synthetic data set and compare our results
against the models of [5] and MLNs [2].

The rest of the paper1 is organized as follows: in Section
II, we present the required background. We then derive the
algorithms for learning the parameters in the presence of
Noisy-OR combining rule in Section III. We present the
experimental results in the Section IV and conclude the
paper with some directions for future research.

II. Background
Our learning algorithm does not assume any represen-

tation for the rules. It merely uses an abstract similar to
the one provided in [5]. Each statement has the form:

If 〈condition〉 then 〈qualitative influence〉

where condition is a set of literals, each literal being
a predicate symbol applied to the appropriate number
of variables. The set of literals is treated as a conjunc-
tion. Such abstract statements are called as First-Order
Conditional Influence (FOCI) statements. A〈qualitative

influence〉 is of the formX1, . . . , Xk Qinf Y , where the
Xi and Y are of the formV.a, andV is a variable that
occurs in condition and a is an object attribute. This
expresses a directional dependence of theresultant Y
on the influentsXi. Associated with each statement is a
conditional probability functionthat specifies a probability
distribution of the resultant conditioned on the influents,
e.g. P (Y |X1, . . . , Xk) for the above statement. We will
usePi to denote the probability function of theith FOCI
statement. Consider the statement,

If {student(S), course(C), takes(T,S,C)}
then T.grade Qinf S.satisfaction,

which indicates that a student’s satisfaction depends on
the course grade. The conditional probability distribution
P (T.grade| S.satisfaction) associated with this statement
(partially) captures the quantitative relationships between
the attributes.

A. Combining Rules
Noisy-Or{
If \{student(S), course(C), takes(T,S,C)\}

then T.grade Qinf (Mean) S.satisfaction.
If \{student(S),paper(P,S)\}

then P.quality Qinf (Mean) S.satisfaction.
}

We explained the first rule earlier. The second states that if
the student has authored a paper, then its quality influences
the satisfaction of the student. Multiple instantiations of
the respective rules (the different course grades or the

1We extend a journal version of the paper (to appear) by elaborating
and performing experiments in real-world data sets for comparison with
the weighted mean combining rule and MLNs.

different paper qualities) are combined using theMean
combining rule and the distributions due to different rules
usingNoisy-OR combining rule.

III. Learning Parameters
Consider, if〈condition〉 thenX1

i , . . . , Xk
i Qinf Y . For

notational simplicity, we assume that theith influence
statement, ‘rulei’ for short, hask influents,X1

i through
Xk

i (which we jointly denote asXi). When this rule
is instantiated or “grounded” on a database, it generates
multiple, say mi, sets of influent instances, which we
denote asX1

i . . .Xmi

i . The role of the combining rule is
to express the probabilityPi(Y |X1

i . . .Xmi

i) as a function
of the probabilitiesPi(Y |Xj

i), one for eachj, wherePi is
the CPT associated with rulei. Since these instance tuples
are unordered and can be arbitrary in number, combining
rule should be symmetric, i.e., its value should not depend
on the order of the arguments.

x11

1

...
x1k
1

x
m11

1

...
x

m1k

1
x11

r

...
x1k

r x
mr1

r

...
x

mrk
r

Y 1

1

. . .
Y

m1

1 Y 1

r

. . .
Y mr

r

Z1

. . .
Zr

Y1

. . .
Yr

Y

Figure 1. Value based Bayesian Network for theNoisy-OR
combining rule. The nodesZ1...Zr are distributed according to
the mean of their parent distributions.P (Yi = 1|Zi = 1) = qi

and P (Yi = 1|Zi = 0) = 0. Y is a deterministic OR function
of Y1, ..., Yr .

We write x
j,1
i , . . . , x

j,k
i ≡ x

j
i to denote the values of

X
j
i and y to denote the value ofY . We write θy|x

i
to

denotePi(y|xi). We omit the superscriptj because the
parametersθ are shared across the different instantiations
of the same rule. We usel to index an example, and use
yl and xl to denote the Y-value and the X-vector of the
lth example.

Intuitively, Noisy-OR models the case where there are
multiple causes, any one of which can cause the target ef-
fect. However, this effect is disabled with some probability
(1− qi) independently of each other (see Figure 1). Thus,
it is modeled by the following function, where all variables
are binary. The variablesZi are the parent variables and
Y is the child variable:

P (Y = 1 | Z1, . . . , Zn) = 1 −
∏

i

(1 − qi)
Zi

Hereqi is defined asP (Y = 1|Zi = 1, ∀j 6= i, Zj = 0). If
all Zi’s are0, Y is zero. Otherwise,Y is 0 if all its 1-inputs
are disabled, and1 otherwise.Noisy-OR is equivalent to
a network where the inputsZ1, . . . , Zr are transformed to
Y1, . . . , Yr, such thatP (Yi = 1 | Zi = 1) = qi, P (Yi = 1 |

Zi = 0) = 0, andY is a deterministic OR function ofYi’s.
The distribution of the value at eachZi is the mean of the
distributions of the values of its parent nodes,Y 1

i , . . . , Y k
i .

A. Gradient for Mean Squared Error

We now derive the gradient equations for the mean-
squared error function for the prediction of the target
variable, when multiple FOCI-statements are combined
by the Noisy-OR combining rule. Let thelth training
exampleel be denoted by(〈x1,1

l,1 , . . . , x
l,rl

ml,rl
,k〉, yl). Recall

that xj,p
l,i is the pth input value of thejth instance of the

ith rule of el. Here we exploit the Independence of Causal
Influence (ICI) ofNoisy-OR. Since the output variableY
is 0 only when all its immediate inputsY1, . . . , Yr are0’s,
and their influences onY are independent of each other, the
predicted probability of classy on el can be decomposed
as follows:

P (y = 1|el)

= 1 −

rl
∏

i

1

ml,i

ml,i
∑

j

[

Pi(y = 0|xj

l,i) + (1 − qi)Pi(y = 1|xj

l,i)

]

= 1 −

rl
∏

i

1

ml,i

ml,i
∑

j

[

1 − qi + qiPi(y = 0|xj

l,i)

]

rl is the number of rules the example satisfies,i is an index
of the applicable rule, andml,i is the number of instances
of rule i on the lth example. The squared error is given
by

E = 1

2

n
∑

l=1

∑

y

(I(yl, y) − P (y|el))
2

= 1

2

n
∑

l=1

[

(I(yl, y = 0) − P (y = 0|el))
2

+ (I(yl, y = 1) − P (y = 1|el))
2
]

= 1

2

n
∑

l=1

[

(I(yl, y = 0) − P (y = 0|el))
2

+ (I(yl, y = 1) − (1 − P (y = 0|el)))
2
]

(1)

Here y is a class label, andyl is the true label oflth

example.I(yl, y) is an indicator variable that is1 if yl = y

and0 otherwise. Taking the derivative of negative squared
error with respect toP (y|xi) = θy|x

i
, we get

−∂E

∂θy|x
i

=

n
∑

l=1

[

1 + I(yl, y = 0) − I(yl, y = 1)

−2P (y = 0|el)] · δ(el)
(2)

δ(el) = qi

#(xi|el)

ml,i

∏

i′ 6=i

1

ml,i′

∑

j

[

1 − qi + qiPi′(y = 0 | xj

l,i′
)
]

(3)

B. Gradient for Log-Likelihood
We now give the derivation of the gradient for log-

likelihood with Noisy-OR as the combining rule. The log-

likelihood LL is given by,

LL =
∑

l

log P (yl|el) (4)

P (y = 1|el)

= 1 −

rl
∏

i

1

ml,i

ml,i
∑

j

Pi(y = 0|xj

l,i) + (1 − qi)Pi(y = 1|xj

l,i)

= 1 −

rl
∏

i

1

ml,i

ml,i
∑

j

1 − qi + qiPi(y = 0|xj

l,i).

(5)

Taking the derivative of the likelihood with respect to
P (y|xi) = θy|x

i
we get,

∂L

∂θy|x
i

=
∑

l

1

P (yl|el)

∂P (yl|el)

∂θy|x
i

=
∑

l

[

1

P (yl|el)
(−1)yδ(el)

]

(6)

whereδ(el) is as defined in (3). The gradient in the above
equation will have different signs corresponding to whether
the final value ofy is a 0 or an1.

C. Expectation Maximization for Noisy-OR

In their work, Natarajan et al. [5], developed an EM-
algorithm that uses the notion of responsibilities to com-
pute the parameters of the CPTs and the weights of
the weighted mean combining rule. SinceNoisy-OR is
asymmetric with respect to its values, and all its inputs
are responsible for the output, we directly estimate the
expectations of values of random variables of interest
without using auxiliary random variables such as responsi-
bilities. Previous work on implementing EM forNoisy-OR
models includes [7] for propositional networks and [8] for
PRMs. Since our formulation involves multiple levels of
combining rules, our approach is different from the prior
work and is derived from first principles using the value-
based network of Figure 1.

We now describe the EM procedure to learn the CPTs
for Y

j
i ’s. In the E-step of EM, we seek to estimate the

value ofY j
i for eachi, j pair and each value of the target

variableY . First, let us consider the easy case ofY = 0.
Since Y is a result of OR’ing its parents, each ofY ’s
parents includingYi must be0.

P (Y j

i = 1 | Y = 0,x) = P (Y j

i = 1 | Yi = 0, x)
= αP (Y j

i = 1 | x)P (Yi = 0 | Y
j

i = 1, x)
= αP (Y j

i = 1 | x) ·
(

P (Yi = 0 | Zi = 0)P (Zi = 0 | Y
j

i = 1,x)

+ P (Yi = 0 | Zi = 1)P (Zi = 1 | Y
j

i = 1,x)
)

= α · P (Y j

i = 1 | x) ·
1

mi

·
(

1 − qi +

mi
∑

1≤j′ 6=j

P (Y j′

i = 0 | x) + (1 − qi)P (Y j′

i = 1 | x)

)

(7)

The last line follows from expanding theMean combining
rule, noting thatP (Yi = 0 | Zi = 0) = 1, P (Yi = 0 | Zi =

1) = (1− qi), andY
j
i = 1, and simplifying. Similarly, for

Y
j
i = 0, we have:

P (Y j

i = 0 | Y = 0, x) = α · P (Y j

i = 0 | x) ·
1

mi

·
(

1 +

mi
∑

1≤j′ 6=j

P (Y j′

i = 0 | x) + (1 − qi)P (Y j′

i = 1 | x)

)

(8)

We can determineα by normalizing Equations (7) and (8).
Now we proceed toY = 1, which is only slightly more
complicated and obtain

P (Y j

i = 1 | x, Y = 1) = αP (Y j

i = 1, Y = 1 | x)
= αP (Y j

i = 1 | x)P (Y = 1 | Y
j

i = 1, x)
= αP (Y j

i = 1 | x)
(

1 − P (Y = 0 | Y
j

i = 1,x)
)

= αP (Y j

i = 1 | x)

(

1 −

r
∏

1≤i′

P (Yi′ = 0 | Y
j

i = 1,x)

)

= αP (Y j

i = 1 | x)

[

1 −
1

mi

·

(

(1 − qi)+

mi
∑

1≤j′ 6=j

P (Y j′

i = 0 | x) + (1 − qi)P (Y j′

i = 1 | x)

)

·

r
∏

1≤i′ 6=i

P (Yi′ = 0 | x)

]

(9)

The last but one step follows from the fact that the only
way Y = 0 is if all its parents are0s, and that they are all
independent of each other given〈x, Y

j
i 〉. The last step then

expandsP (Yi = 0 | Y
j
i = 1,x) by marginalizing overZi,

expanding the Mean combining rule, and using the fact
that Yi′ is independent ofY j

i for all i′ 6= i. Similarly,

P (Y j

i = 0 | x, Y = 1) = α · P (Y j

i = 0 | x) ·

[

1 −
1

mi

·

(

1 +

mi
∑

1≤j′ 6=j

P (Y j′

i = 0 | x) + (1 − qi)P (Y j′

i = 1 | x)

)

·

r
∏

1≤i′ 6=i

P (yi′ = 0 | x)

]

(10)

We determineα by normalizing, as usual. Given the
distributions of all P (Y j

i | x, Y), for all i, j over all
examples, the M-step is straightforward. We treat these
probabilities as fractional counts and estimate the expected
number of groundingsj of rule i in which X

j
i = v

over all examples and out of these the number in which
Y

j
i = 1. In other words, we estimaten(Y j

i = 1,x
j
i =

v) =
∑

l

∑

j:xj

l,i
=v

P (Y j
i = 1 | xl, yl). Here, the first

index l is over the examples, and the second indexj
is over different instances of rulei whose influents are
grounded to the valuesv. xl and yl respectively denote
the input vector and the output label of thelth example.
Similarly, n(xj

i = v) =
∑

l

∑

j:xj

l,i
=v

1. We can estimate

P (Y j
i = 1 | xi

j = v) as
n(Y j

i
=1,xi

j=v)

n(xi
j
=v)

for any instancej.

IV. Experimental Results
In this section, we present the results on two real-world
data sets and one synthetic data set.

A. Synthetic Data set forNoisy-OR

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120 140 160 180 200

Number of examples

E
rr

o
r

MS

LL

EM

Figure 2. Learning curves. EM: Expectation Maximization;
MS: Gradient descent for mean squared error; LL: Gradient
descent for log-likelihood

To estimate the accuracy of the learned model using
Noisy-OR, we constructed a synthetic data set. The data
are generated using a synthetic target as defined by two
FOCI statements, each of which has two influents and the
same target attribute. The different instances of the same
rule are combined usingMean and the different rules are
combined using theNoisy-OR combining rule. The two
influents in each rule have a range of10 and 2 values
respectively. The target attribute can take2 values. The
probability values in the distribution of the synthetic target
are randomly generated to be either between0.9 and 1.0
or between0.0 and 0.1. This is to make sure that the
probabilities are hard to predict and not too close to the
default probability of12 each. Each example matches a rule
with probability 0.5, and when it does match, it generates
a number of instances randomly chosen between3 and10.
This makes it imperative that the learning algorithm does
a good job of inferring the hidden distributions both at the
instance level and the rule level.

The goal is to evaluate the different versions of the
Noisy-OR learning algorithms on this data set to de-
termine the accuracy of the learned distributions. We
trained the learning algorithms on15 sets of2000 training
examples and tested them on a set of1000 test examples.
The average absolute difference between corresponding
entries in the true distribution of the test examples and
the predicted distribution was averaged over all the test
examples. Since the gradient-descent methods optimize the
MSE and the log-likelihood while the EM optimizes the
log-likelihood, there is a need for comparing the different
algorithms using the same performance metric. We choose
the average absolute error for this purpose.

The results are presented in Figure 2. Thex-axis has the
number of examples andy-axis has the average absolute

error for the examples. As can be seen, all the algorithms
eventually converge to almost the same error rate (and
there is no statistically significant difference). Initially,
EM seems to perform worse, but, with more training
data, achieves comparable performance to the gradient-
descent methods. We flattened the data set by using the
counts of the instances of the parents as features and used
Weka2 to run Naive Bayes on this modified data set. The
Naive Bayes algorithm performed poorly and had a high
error rate of close to0.42, even with about2000 training
examples. Since the performance is poor, we omit the
propositional classifier from the learning curves.

B. Real-World Data Sets

Algorithm UW Citeseer
Weighted EM 0.7293 0.701

Mean GDMS 0.756 0.705
GDLL 0.7406 0.664

Noisy EM 0.7907 0.686
GDMS 0.7962 0.678

OR GDLL 0.7669 0.6544
Alchemy MLN-2 0.5 0.34

MLN-N 0.52 0.40

Table I. Results. GD-MS: Gradient descent for Mean Square
error; GD-LL: Gradient descent for log-likelihood

We compared our relational algorithms against the ones
developed by Natarajan et al. [5] and Markov Logic
Networks [2] on two real-world data sets - UW data set
and theciteseer data set. Since these are real-world
data sets, it is not clear which combining rule can best fit
the data without an empirical comparison.

1) UW Dataset: One test-bed was the UW-CSE do-
main, where the goal is to predict theadvisedBy rela-
tionship between a professor and a student. This database
consists of278 faculty members and students. We used2
rules to predictadvisedBy. The rules are as follows:
CR{
If {student(S), professor(P), course(C)}
then taughtBy(P,C,Q), ta(S,C,Q)
Qinf (Mean) advisedBy(S,P).

If {student(S), professor(P)}
then publication(P,W), publication(S,W)
Qinf (Mean) advisedBy(S,P).

}

The first rule states that being a TA for a course that the
professor offers influences theadvisedBy relationship.
The second rule states that being a co-author for a paper
with a professor influences theadvisedBy relationship
with the professor.CR in the above rule denotes the
combining rule and is eitherWeighted-Mean or Noisy-
OR in our experiments. We predict the likelihood of the
target predicate using5-fold cross validation. We learn the
parameters using4 folds and predict the probability of the
target predicate in the other fold and average the likelihood

2http://www.cs.waikato.ac.nz/ml/weka/

of the target predicate across all the test folds. Note that
there are 4 independent parameters for each rule.

The results are presented in Table I. The results of
the algorithms that useNoisy-OR are marginally better
than the algorithms that use weighted mean. This is due
to the fact that when one of the two rules is fired,
Noisy-OR would yield a higher probability of the student
being advised by the professor. Recall thatNoisy-OR
predicts that the possibility of a student being advised by a
professor is falseif and only if both the rules return false
with high probability.

We used Alchemy system3 to compare against MLNs.
Markov Logic Networks (MLNs in short)[2], consider
first-order clauses and softens them by learning their
weights. The weight of a clause can be understood as the
difference in log probability between a world that satisfies
the clause and one that doesnt. While using MLNs, we
use the following clauses:student(S) ∧ professor(P)

∧ course(C) ∧ taughtBy(P,C,Q) ∧ ta(S,C,Q) :-

advisedBy(S,P).

student(S) ∧ professor(P) ∧ publication(P,W) ∧

publication(S,W) :- advisedBy(S,P).

where :- denotes implication. The last two rows of
the table present our results with MLNs.MLN-2 is the
result using the above 2 rules, andMLN-N is the result
of using all possible combinations of the truth value of
the predicates (8 weights overall). As can be seen, the
performance of MLNs is not comparable to that of the
directed models. We included7 more rules provided in
the UW dataset that used theadvisedBypredicate and the
performance improved (the average likelihood was close to
0.57). We also evaluated using most of the clauses (about
55 of them) in the UW-dataset where we excluded the
clauses that used existential quantifiers and the ones that
used the predicates such assamePerson, sameCourse, etc.
for efficiency. This resulted in a much better performance
where the average likelihood was0.67. This suggests that
the performance of MLNs is highly sensitive to the number
and form of the rules.

2) Citeseer Data Set:The other testbed we used is
the citeseer domain, where the goal is to predict if
2 citations refer to the same work. The data consisted
of 4300 pairs of similar publications. We selected500 of
them at random. Each pair was assigned as positive with
a probability of0.7. This is to say that we made30% of
them negatives (in order to introduce noise). We then used
two rules - first rule states that if the papers have similar
title and same venue, they are likely to be similar. The
second rule is a transitive rule on the target. The goal of
this experiment was to verify if the algorithms can retrieve
the true likelihood of the data.

As can be seen from the last column of the Table I,
the different learning algorithms are capable of learning
the true likelihood of the data(0.70. In this domain, the

3www.alchemy.cs.washington.edu/

weighted mean has a marginally better performance (al-
though a very negligible one) compared to that of the
Noisy-OR models. In this domain, both the rules are very
informative and hence weighted mean has a good perfor-
mance. There was no statistical significance in the likeli-
hood between the two combining rules. This strengthens
our hypothesis that we ultimately need a set of algorithms
that can search over the space of combining rules to find
the best one that fits the data. We ran Alchemy in this data
set with the above2 clauses. As with the previous domains,
MLNs does not seem to capture the true model. These
results inspire a new research direction of understanding
the equivalence between MLNs and directed models that
capture conditional distributions and use combining rules.

We speculate a few reasons - First, it appears that
MLNs do not perform very well in the presence of a small
number of rules and that their performance improve in
the presence of a large number of weakly predictive rules.
Secondly, we observe that Alchemy drives the weights of
most clauses towards zero[2]. This is a very good solution
when the clauses are being automatically learned from data
(a.k.a. structure learning). But when provided with minimal
number of rules from a domain expert, the weights should
not be driven to zero. Another reason is that while our
model can learn a set of locally predictive rules, MLNs
are not currently capable of learning local models. Finally,
the problem of representing arbitrary distributions usinga
minimal MLN remains an open problem.

V. Discussion
Rather than thinking of combining rules as an alter-

native to aggregators, one could think of decomposable
combining rules as a way of adding special structure
to the aggregation problem. This allows us to develop
methods that exploit the structure. While our gradient-
descent algorithms are derived directly from the combining
rules perspective, our approach to the EM algorithm can be
understood as aggregation-based, and is explained in terms
of the value-based network, where the aggregator function
is deterministic, e.g., OR, or stochastic, e.g., random. Thus,
decomposable combining rules allow us to view the target
distribution, both as a function of the input conditional
distributions, and also as a consequence of decomposable
causal structure in the corresponding value network. It
is our hope that a wide variety of practical real world
problems can be captured by a small number of simple
decomposable combining rules, thus making arbitrarily
complex aggregators unnecessary.

Prior work exists on developing an EM-based learning
algorithm forNoisy-OR in the propositional case, notably
[7]. Diez and Galan provided a factorization for the more
generalizedNoisy-MAX function and developed learning
algorithms based on the factorization [9]. Learning the
parameters of the first-order clauses has also been explored
by previous researchers: Koller and Pfeffer (1997) [8] in-
vestigated the use of EM algorithm to learn the parameters

of the first-order clauses in the presence of combining
rules. More recently, Jaeger [4] considered a weighted
combination or a nested combination of the combining
rules and used a gradient-ascent algorithm to optimize the
objective function. This technique has been applied to his
formalism of Relational Bayesian Networks(RBNs).

This work can be naturally extended to more general
classes of combining rules and aggregators including tree-
structured CPTs and noisy versions of other symmetric
functions. The relationship between the aggregators and
combining rules must be better understood and formalized.
Efficient inference algorithms must be developed that take
advantage of the decomposability of the combining rules
as well as the flexibility of the first-order notation. Finally,
it is important to develop more compelling applications
in knowledge-rich and structured domains that can benefit
from the richness of the first-order probabilistic languages.
Extending the SRL languages to dynamic domains with
actions and utility makes them much more appropriate for
compelling real-world applications.

VI. Acknowledgements
The authors gratefully acknowledge support of the De-

fense Advanced Research Projects Agency under DARPA
grants FA8650-06-C-7606 and FA8750-09-C-0181. Views
and conclusions contained in this document are those of
the authors and do not necessarily represent the official
opinion or policies, either expressed or implied of the US
government or of DARPA.

References

[1] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer, “Learning
probabilistic relational models,”Relational Data Mining,
2001.

[2] P. Domingos and D. Lowd,Markov Logic: An Interface
Layer for AI. Morgan and Claypool, 2008.

[3] K. Kersting and L. De Raedt, “Bayesian logic programs,” in
Proc ILP, 2000.

[4] M. Jaeger, “Parameter learning for relational bayesiannet-
works,” in Proceedings of ICML, 2007.

[5] S. Natarajan, P. Tadepalli, E. Altendorf, T. G. Dietterich,
A. Fern, and A. Restificar, “Learning first-order probabilistic
models with combining rules,” inProceedings of ICML,
2005.

[6] S. Lawrence, C. Giles, and K. Bollacker, “Autonomous
citation matching,” inICAA, 1999.

[7] J. Vomlel, “Noisy-or classifier: Research articles,”Int. J.
Intell. Syst., vol. 21, no. 3, pp. 381–398, 2006.

[8] D. Koller and A. Pfeffer, “Learning probabilities for noisy
first-order rules,” inIJCAI, 1997, pp. 1316–1323.

[9] F. J. Dı́ez and S. F. Galán, “Efficient computation for the
noisy MAX,” International Journal of Approximate Reason-
ing, vol. 18, pp. 165–177, 2003.

