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And what do we have here? 
We have a metric learning algorithm that uses 

composite mirror descent (COMID): 
•  Unifying framework for metric learning.  

– Different algorithms from various Bregman and loss 
functions. 

•  Sparse metric.  
– Uses trace-norm regularization. This ensures that 

learned metric is sparse in its eigen-spectrum; only r < n 
EVs used 

•  Scalability.  
– Updates require rank-1 modification of the EVD at each 

iteration; implemented efficiently and embarrassingly 
parallel. 

•  Kernelizable. 



Learn a pseudo-metric 

from pairs of labeled data points, 
                  , where label yt denotes 

similarity/dissimilarity  

Problem Formulation 



Problem Formulation 

•  The following constraints should hold 

such that similar points are transformed 
closer together, while dissimilar points 
are transformed farther apart under L: 
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this is the margin 
function, which can 
be used to define 
several different loss 
functions 



Problem Formulation 

•  The following constraints 

can be rewritten compactly as 

this is the margin 
function,  

For instance: the hinge loss 
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a convex function,    

Bregman function, to 
measure proximity 
between iterates 

Gradient of the 
convex function 
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Mirror Descent 
• Mirror descent (MD; Beck & Teboulle, 2003) is a 

proximal-gradient method for minimizing 
a convex function, 

• Composite mirror descent (COMID; Duchi et al, 2010) 
generalizes MD to loss-and-regularization 
composite functions        

only loss is linearized; 
regularization is not linearized 
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Mirror Descent For Metric Learning 
•  Learn pseudo-metric incrementally 

from triplets, and at each iteration, 
compute updates: 

metric matrix should be 
symmetric, positive 
semidefinite 

margin should be at least 
1 to ensure that learned 
distance is positive 



Mirror Descent For Metric Learning 
•  Learn pseudo-metric incrementally 

from triplets, and at each iteration, 
compute updates: 

various loss and Bregman 
functions can be used to 
derive different classes of 
algorithms 



Mirror Descent For Metric Learning 
•  Learn pseudo-metric incrementally 

from triplets, and at each iteration, 
compute updates: 

trace-norm regularization 
is used to produce a 
metric that is sparse in its 
eigenspectrum 

The trace norm is the 
sum of the singular 
values of a matrix,  



Loss Functions 
•  Some (Lipschitz) loss functions for metric 

learning, where the margin function is 
                                         and 

()+ is the max function 
()* is the step function  



Loss Functions 
•  Behavior of various loss functions around x 

= -0.5, when (left) with similar points and 
pair labels: y = 1, and (right) with dissimilar 
points and pair labels, y = -1 



Bregman Functions 

Squared Euclidean 
distance is a Bregman 
divergence and can 
be generalized in the 
matrix case to the 
squared Frobenius 
distance:  



Bregman Functions 

Kullback-Liebler (KL) 
divergence is a 
Bregman divergence 
and can be generalized 
in the matrix case to the 
von Neumann 
divergence:  



Generalized Update Rules 

For general choice of Bregman function 
and loss, update rules can be derived in 
closed-form using the eigenvalue 
thresholding (shrinkage) operator 

which cuts off all eigenvalues below the 
specified threshold, τ 
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Generalized Update Rules 

eigenvalues are thresholded 
by learning rate (η) and the 
regularization parameter (ρ)  



Generalized Update Rules 

For von Neumann divergence, note that exp is applied after 
thresholding: smallest eigen-value is 1, not zero. 

Final learned metric matrix is of full-rank. However, can still 
perform feature selection by dropping k smallest eigen-
values similar to PCA. 
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Generalized Update Rules 

gradients of the loss 
function are generally of 
the form 

update simply requires rank-one modification of current eigen-
decomposition, followed by thresholding of eigen-values!  



Efficient Implementation of 
Rank-One EVD Updates 

A general update 

involves a rank-one 
modification of the EVD at the 
current iteration 

It is known that the eigen-
values of the two matrices 
interlace 

Each new eigen-value can be 
computed independently, as it 
is bounded between two old 
eigen-values   

old eigen-values 

updated eigen-values 

Figure: Plot of the secular equation 
of the rank-one perturbation  



Efficient Implementation of 
Rank-One EVD Updates 

•  In general, any root-finding 
technique (eg., Newton-
Raphson) can be used to 
compute eigen-values 
independently from the 
secular equation 

•  May result in non-orthogonal 
eigen-vectors. Instead, we 
implement rational 
interpolation approach of Gu 
and Eisenstat (1994) 

•  Efficiency of approach 
increases as multiplicity of 
repeated EVs increases  

Figure: Comparing various eigen-value 
decomposition algorithms with the 
rank-one perturbation approach 



Mirror Descent for Metric 
Learning 
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Benchmark Data Sets 
•  We consider two algorithms 
– MDML: Frobenius div. and hinge loss (MDML H+F) 

– MDML: von Neumann div. and log. loss (MDML L+V) 

•  We compare these approaches to four well-
known batch and online metric learning 
approaches 
– large-margin nearest neighbor (Weinberger et al, 2006) 

– information-theoretic metric learning (Davis et al, 2007) 

– BoostMetric (Shen et al, 2009) 

– pseudo-metric online learning (Shalev-Shwartz et al, 2004) 



Benchmark Data Sets 
•  Triplets for learning generated using the same 

strategy as Weinberger et al (2006) 
– For each training point k=3 similarly labeled 

(targets) and k=3 differently labeled (impostors) 
are selected 

– Test data classified using 3-NN classification 



Test Error on Benchmark Data 



Run Times on Benchmark Data 



Feature Selection for MDML H+F 



Feature Selection for MDML L+V 

** eigen-values that account for 90% of the 
cumulative energy are kept; remaining eigen-values 

are dropped (similar to PCA) 



OptDigits Data Set 
•  Optical Recognition of Handwritten Digits 
– 64d, 10 classes 
– 3823 training points and 1797 test points 
– 11, 469 similar pairs; 11, 469 dissimilar pairs 
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Conclusions 
•  Unifying framework for metric learning. Different 

algorithms from various Bregman and loss functions. 
•  Scalability. Updates require rank-1modification of the 

EVD at each iteration; implemented efficiently and 
embarrassingly parallel. 

•  Sparse metric. Minimizing trace norm ensures that M is 
sparse in its eigen-spectrum; only r < n EVs used 

•  Kernelizable. 
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