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And what do we have here?

We have a metric learning algorithm fhat uses
composite mirror descent (COMID):

* Unifying framework for metric learning.

— Different algorithms from various Bregman and loss
functions.

« Sparse metric.

— Uses trace-norm regularization. This ensures that
learned metric is sparse in its eigen-spectrum; only r <n
EVs used
« Scalability.

— Updates require rank-1 modification of the EVD at each
iteration; implemented efficiently and embarrassingly
parallel.

 Kernelizable.
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Problem Formulation

Learn a pseuvudo-metric
dyr(X, z)2 = (x—z)L'L(x—2)= (x—2z)'M(x — z)

from pairs of labeled data points,

(Xt 2t ‘yt)thl, where label y, denotes
similarity /dissimilarity
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Problem Formulation

* The following constraints should hold
V(x,z,y =+1) = dy(x,z)? < p—1,
V(x,z,y = —1) = dy(x,z)? > p+1,

such that similar points are fransformed

closer together, while dissimilar points
are fransformed farther apart under L:

d(x, z) = || L(x—2)]|2
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Problem Formulation

* The following constraints

V(x,z,y = +1) = dy(x, z)?
2

pn—1,
p+ 1,

AVARR VAN

V(ix,z,y = —1) = dy(x, z)
can be rewritten compactly as

y(p —du(x, 2)%) > 1

dy(x,2)? = (x—2)M(x — 2)
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Problem Formulation

* The following constraints
V(x,z,y =+1) = dy(x,z)? < p—1,

o+ 1,

AVARR VAN

V(x,z,y = —1) = dy(x, z)?

can be rewritten compactly as

2
@_ d]\/[ (XDZ ! this is the margin

function, which can

dy(x,2)? = (x —z)M(x —z) be used todefine
several different loss
functions
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Problem Formulation

* The following constraints
V(x,z2,y = +1) = dy(x,z)? < p—1,

p+ 1,

AVARR VAN

V(x,z,y = —1) = dy(x, z)?

can be rewritten compactly as

>
@_ dm (XDZ L isis the margin

function,

dyr (X, z)2 = (x—2z)M(x — z) m(M, pu; X, z,y)

For instance: the hinge loss
g(]\{[a :u') — max{ 07 1 — m(]\/fa 1y X, Z, y) }
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Mirror Descent
 Mirror descent (MD; Beck & Teboulle, 2003) IS O

proximal-gradient method for minimizing
a convex function,

wiy1 = arg min By (w, wi) + 1 Vo (wy)(w — wy)
wel?
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Mirror Descent
 Mirror descent (MD; Beck & Teboulle, 2003) IS O

proximal-gradient method for minimizing
a convex function,

Wt+1 — a.rg Il].ill @ —|— ‘]-7 w‘ — Wt)
wel?

Bregman function, to Gradient of the

measure proximity convex function
between iterates
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Mirror Descent
 Mirror descent (MD; Beck & Teboulle, 2003) IS O

proximal-gradient method for minimizing
a convex function,

wiy1 = arg min By (w, wi) + 1 Vo (wy)(w — wy)
wel?

o Composite mirror descent (comip; buchi et al, 2010)
generalizes MD 1o loss-and-regularization
composite functions ¢ = ¢+ r

wiy1 = arg min By (w, wy) + V'l (we)(w — we) + nr(w)

wels?
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Mirror Descent
 Mirror descent (MD; Beck & Teboulle, 2003) IS O

proximal-gradient method for minimizing
a convex function,

wiy1 = arg min By (w, wi) + 1 Vo (wy)(w — wy)
wel?

o Composite mirror descent (comip; buchi et al, 2010)
generalizes MD to loss-and-regularization

composite functions ¢ =4z +r
Wiyl = arg min By (w, wy) +W —wi) +nr(w)
wel?

only loss is linearized;

WISCON_SIN regularization is not linearized
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Mirror Descent For Metric Learning

« Learn pseudo-metric incrementally
from friplets, and at each iteration,
compute updates:

Mgy = arg min By(M, My) + 0 (Varle(Me,jue), M = Me) + np || M]|
M>0

[ir1 = a}rg>min By (s poe) + nV e (My, )" (10— put)-
pn>1
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Mirror Descent For Metric Learning

« Learn pseudo-metric incrementally
from friplets, and at each iteration,
compute updates:
M1 = a11 By(M, M) + n{(Vamle(Me,pe), M — M) + np ||| M|

per1 =argmn  By(p, ) + nVule(Mye, pe) (1 — pe).

p>1
meftric matrix should be margin should be at least
symmetric, positive 1 fo ensure that
semidefinite
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Mirror Descent For Metric Learning

« Learn pseudo-metric incrementally
from friplets, and at each iteration,
compute updates:

My, = arg minf. My) + n <vt.. o), M = My) + np ||| M|
M>0

[ir1 = a.1‘g>1nin By (s poe) + nV e (My, )" (10— put)-
pn>1

various loss and Bregman
functions can be used to
derive different classes of
algorithms
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Mirror Descent For Metric Learning

« Learn pseudo-metric incrementally
from friplets, and at each iteration,
compute updates:

M1 = arg min By (M, M) + n(Vale(Me, pe), M — M) + 7)
M0

[ir1 = a.1‘g>1nin By (s poe) + nV e (My, )" (10— put)-
pn>1

The trace norm is the trace-norm regularization

is used to produce a
' metric that is sparse in its
|| X || = €| Al eigenspectrum
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Loss Functions
« Some (Lipschitz) loss functions for metric

learning, where the margin function is
me(ag, ys) = ye(p — tr Mugul) and ue = X¢—2¢

Loss Ci( My, put) Vs Ce( My, pit)
Hinge (T=mt). (1= m), (yrugu})
Modified Least Sq. %(1 — mt)%r (1 —m¢)+ (yruguy)
Logistic log (1 + exp(—my)) lféii)zﬁzf,zt) (ytlltué)

(), is the max function
()« is the step function
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Loss Functions
« Behavior of various loss functions around x

=-0.5, when (left) with similar points and
pair labels: y = 1, and (right) with dissimilar
points and pair labels, y = -1

-y .
i :
C NN |.c .

....................................................................

......................................................................

.........................
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Bregman Functions

Squared Euclidean
distance is a Bregma
divergence and can
be generalized in the
matrix case to the
squared Frobenius
distance:

B¢(X Z 2||X Z”F

P(x) = 3|x|

=|3llx — 2|

\

>< NN BN BN BN BN N
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Bregman Functions

Kullback-Liebler (KL) h(x) = zlogr —, o
divergence is @ '
Bregman divergence
and can be generaliz
IN The matrix case fo t
von Neumann
divergence:

By(X,Y)=1tr(XlogX — XlogY — X +Y)
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Generalized Update Rules

M1 = al;%[g)in By (M, My) +n(Vale(Mg, pe), M — M) +np || M||

For general choice of Bregman function
and loss, update rules can be derived Iin
closed-form using the eigenvalue
thresholding (shrinkage) operator

S+(X) = Vdiag(Ar) V'
(Ar)i = (Ai —7)4

which cuts off all eigenvalues below the
specified threshold, T

WISCONSIN

IIIIIIIIIIIIIIIIIIIII -MADISON



Generalized Update Rules

Misq = ai%[;%in By (M, Mg) +n{(Vale(Mg,pe), M — M) +np || M|

Update rules can be derived in closed-form using the eigenvalue thresh-
olding/shrinkage operator: S;(X) = Vdiag(A;)V’/, where ()\;); =
sign(A;) max{|);| — 7, }. The closed-form solutions are:

vonNeumann M; 1 = exp ( Syp(log My — 0V pple (Mg, 1) )
Frobenius  M; 1 = Sy, (M —nV pple( My, pe) ) -
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Generalized Update Rules
My = arg min By, (M, M) +n (Varle(My, pe), M — My) | M|

M0

Update rules can be derived in closed-form using the eigenvalue thresh-
olding/shrinkage operator: S;(X) = Vdiag(A;)V’/, where ()\;); =
sign(A;) max{|);| — 7, }. The closed-form solutions are:

vonNeumann M;, | = exp (og My — 0V pply (M, i) )
Frobenius  Mj B, — 0V 01 0(Ms, 1) )

eigenvalues are thresholded
by learning rate () and the
regularization parameter (o)
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Generalized Update Rules

My = az%[;%in By (M, M) +n(Vle(Mi,put), M — My) +np ||| M|

Update rules can be derived in closed-form using the eigenvalue thresh-
olding/shrinkage operator: S;(X) = Vdiag(A;)V’/, where ()\;); =
sign(A;) max{|);| — 7, }. The closed-form solutions are:

vonNeumann M; Spp(log My — nV pply( My, pt) )
Frobenius  M; 1 = Sy, (M —nV pple( My, pe) ) -

For von Neumann divergence, note that exp is applied after
thresholding: smallest eigen-value is 1, not zero.

Final learned metric matrix is of full-rank. However, can sfill
perform feature selection by dropping k smallest eigen-
values similar to PCA.
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Generalized Update Rules

]V[H-l = al}\g:[;%in BU(]V[, ]V[t) +17 <V1\/I€t(ﬁ/ft’/£t), M — A/[t> +np ||| A/[m

Update rules can be derived in closed-form using the eigenvalue thresh-
olding/shrinkage operator: S;(X) = Vdiag(A;)V’/, where ()\;); =
sign(A;) max{|);| — 7, }. The closed-form solutions are:

vonNeumann M;,| = exp (Snp(log M; — Mt, 1) ) :

Frobenius M1 = Sy, (M — Mt, _—

Loss Ce( My, pt) Vo be(My, i)  gradients of the loss
Hinge (1—my), (1 —ms), (yrupu)) function are generally of
Modified Least Sq. = m,g)?F (1 —mye)+ (yrugpu) the form
Logistic log (1 + exp(—my)) lféi(pzi”;i) o)V by = apugug

@WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON



Generalized Update Rules

M1 = al;%[g)in By (M, My) +n(Vale(Mg, pe), M — M) +np || M||

Update rules can be derived in closed-form using the eigenvalue thresh-
olding/shrinkage operator: S;(X) = Vdiag(A;)V’/, where ()\;); =
sign(A;) max{|);| — 7, }. The closed-form solutions are:

vonNeumann My = exp ( Sy, (log My — My, pit) )
Frobenius M1 = Sy, (M —of |
At the t-th iteration, with M; = V;V¥(A;)V/, we have:
(Intermediate gradient) Vp(Myy 1) = ViV (A) VY
(EVD of intermediate gradient) V?/)(]WH%) = Vis1 A1 VI,
(Matrix update/thresholding) My = Vg VY1 (Sy,(Ae41) ) Vi
WISCONSIN
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Generalized Update Rules

My = arg min By, (M, M) +n(Varle(Mg,pt), M — M) +np || M|

N0

update simply requires rank-one modification of current eigen-
decomposition, followed by thresholding of eigen-values!

Update rules can be derived in closed-form using the eigenvalue thresh-
olding/shrinkage operator: S;(X) = Vdiag(A;)V’/, where ()\;); =
sign(A;) max{|);| — 7, }. The closed-form solutions are:

vonNeumann M; 1 = exp ( Syp(log My — 0V pple (Mg, 1) )
Frobenius  M; 1 = Sy, (M —nV pple( My, pe) ) -
At the t-th iteration, with M; = V;V¥(A;)V/, we have:
(Intermediate gradient)  |Vih(M, 1) = ViV(A:)V) — oy
(EVD of intermediate gradient)|Vih(M; 1) = Vigq A1 Vi,
(Matrix update/thresholding) M1 = Vipq VY= (Sp,(Aet1) ) Vi
Wwisconsin
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Efficient Implementation of
Rank-One EVD Updates

A general update
Myt = ViVip(Ay) V] — auguj,

updated eigen-values

O . e . e - -

101
8
6
involves a rank-one af
modification of the EVD at the 2
current iteration 0
It is known that the eigen- -4t
values of the two matrices -5t
interlace i
-10
Each new eigen-value can be
computed independently, as it  Figure: Plot of the secular equation
is bounded between tw e of the rank-one perturbation

eigen-values WISCONSIN
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Efficient Implementation of
Rank-One EVD Upda’res

* In general, any root-finding w'[

technique (eg., Newton-
Raphson) can be used to
compute eigen-values
iIndependently from the
secular equation

10° 0

107" 3

Time to compute EVD, log(seconds)

« May result in non-orthogonal
eigen-vectors. Instead, we _ ,

. o === gig (QR + Householder)
Implement rational - Lanczos

Rank-1 Perturbation
inferpolation approachof Gu ' —r—— 00—
q nd Eisens.l.q.l. ( 'l 994) Fraction of zero eigenvalues in spectrum (36)

Figure: Comparing various eigen-value

. Effici f n decomposition algorithms with the
iclency ot approdc rank-one perturbation approach

increases as multiplicity
repeated EVs increases WISCONSIN
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Mirror Descent for Metric
Learning

input: data (xy, z, yt)?zl, parameters p, n > (
choose: Bregman functions (M ); ¥ (), loss (M, p)
initialize: My =1, o =1
for (x', z¢, y) do
letug = x; —z¢, nr =n/Vt
compute gradients of loss V /{; = atutu; and V(; = —ay
write Vo (My) = ViV (A4)V/
rank-one update V; 1 Avyq V)| = ViVi(A)V/] — augu;
shrink the eigenvalues M1 = Vi1 V1 (1S),(Ar41)) Vi
margin update j;; 1 = max (V"l;'b_l (Vap(pg) —n Vb ( My, pg)), 1)
end for
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Benchmark Data Sets
 We consider two algorithms
— MDML: Frobenius div. and hinge loss mome H+r)
— MDML: von Neumann div. and log. loss (vpme L+v)

« We compare these approaches to four well-
known batch and online metric learning
approaches
— large-margin nearest neighbor (weinberger et al, 200¢)

— information-theoretic metric learning (avis et a1, 2007
— BoostMetric (shen et al, 2009)
— pseuvdo-metric online learning (shalev-shwartz et al, 2004)
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Benchmark Data Sets

 Triplets for learning generated using the same
strategy as Weinberger et al (2006)

— For each fraining point k=3 similarly labeled
(targets) and k=3 differently labeled (impostors)
are selected

— Test data classified using 3-NN classification

Data set #train #test #dim #trn pairs # classes
iris 105 45 4 630
wine 123 55 13 738
scale 436 189 4 2616

segment 147 63 19 882
breast 397 172 30 2382
ionosphere 245 106 34 1470

oo~ W W W
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Test Error on Benchmark Data

20 . -I_hANN R N
I I T™ML
POLA
o § BoostMetric |
3 MDML H+F
s I MDML L+V
W o],
)
V)
—

iris wine breast ionosphere segment scale
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Run Times on Benchmark Data

| LMNN

63 s ' NN " MBlescssiisssi issssiissesl i s el ieeEsltEeEsl IS
B ITML
POLA I

’(-6)\ 53 . BoostMetriC .........................................
c MDML H+F
% 8 . . -MDML L+V .......................................
Py _
'g .................
|_
c
= Abl.....ccciiee e dl oGV B B e e e,
oc

iris wine breast ionosphere segment scale
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Feature Selection for MDML H+F

=0 = S

| == ===wine

segment

i breast
==v== jOnosphere

N
&)

®)
o

—
(&)
|

—
o
I

Number of zero eigenvalues

o) TR T T T
PE= v—v/v_l
0.25 0.5

Regularization parameter, rho
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Feature Selection for MDML L+V

25 ......................................................................
-§_ |7 v V\
20" o W ge———. b -y orepeepap jpmpepm— R o e
3 | \v
o
3 - == |I|S
2 15 || A B R R PR
© = == \ViNE
= segment
> g
D breast
q) 10 - J N
s = v == jOnosphere
8 o o —
L0 o
E 5 I ~ \ I
-
pd
._———. .——-._—.\ \
O 1 1 1 1 N \. o
0.25 05 1 2 4 8 16 32

Regularization parameter, rho

** eigen-values that account for 90% of the
cumulative energy are kept; remaining eigen-values
are dropped (similar to PCA)



OpiDigits Data Set

« Optical Recognition of Handwritten Digits
— 64d, 10 classes
— 3823 fraining points and 1797 fest points
— 11, 469 similar pairs; 11, 469 dissimilar pairs

Data set Test Error Run Time  Non-zero Num. feats.
(%) (seconds)  features  for 90% energy

LMNN 1.669 54.213 30 20
ITML 5.509 25.745 62 43
POLA 2.282 14.607 53 40
BoostMetric 1.758 2072.427 62 19
MDML H+F 1.892 15.232 26 22
MDML L+V 1.948 13.768 62 29
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Conclusions

 Unifying framework for metric learning. Different
algorithms from various Bregman and loss functions.

« Scalability. Updates require rank-1modification of the
EVD at each iteration; implemented efficiently and
embarrassingly parallel.

« Sparse metric. Minimizing tfrace norm ensures that M is
sparse in its eigen-spectrum; only r <n EVs used

 Kernelizable.

The authors gratefully acknowledge the support of Defense Advanced Research
Projects Agency (DARPA) Machine Reading Program under Air Force Research
Laboratory (AFRL) prime contract no. FA8750-09-C-0181, and the National
Institutes of Health under the National Library of Medicine grant no. NLM ROT1-
LMO087%6. The authors would also like to acknowledge anonymous reviewers for
their invaluable comments.

Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the view of the DARPA, AFRL, or the US government.

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON



