
Learning to Extract Genic Interactions Using Gleaner

Mark Goadrich richm@cs.wisc.edu

Louis Oliphant oliphant@cs.wisc.edu

Jude Shavlik shavlik@cs.wisc.edu

Department of Biostatistics and Medical Informatics and Department of Computer Sciences, University of
Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706 USA

Abstract

We explore here the application of Gleaner,
an Inductive Logic Programming approach
to learning in highly-skewed domains, to the
Learning Language in Logic 2005 biomedical
information-extraction challenge task. We
create and describe a large number of back-
ground knowledge predicates suited for this
task. We find that Gleaner outperforms stan-
dard Aleph theories with respect to recall and
that additional linguistic background knowl-
edge improves recall.

1. Introduction

Information Extraction (IE) is the process of scan-
ning unstructured text for objects of interest and facts
about these objects. Recently, biomedical journal arti-
cles have been a major source of interest in the IE com-
munity for a number of reasons: the amount of data
available is enormous; the objects, proteins and genes,
do not have standard naming conventions; and there is
interest from biomedical practitioners to quickly find
relevant information (Blaschke et al., 2002, Shatkay &
Feldman, 2003, Eliassi-Rad & Shavlik, 2001, Ray &
Craven, 2001, Bunescu et al., 2004).

IE can be framed as a machine learning task: given
information in unstructured text documents, extract
the relevant objects and relationships between them.
We believe that Inductive Logic Programming (ILP)
is well-suited for IE in biomedical domains. ILP of-
fers the advantages of (1) a straight-forward way to
incorporate domain knowledge and expert advice and
(2) produces logical clauses suitable for analysis and
revision by humans to improve performance.

Appearing in Proceedings of the 4 th Learning Language in
Logic Workshop (LLL05), Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

In this article, we report both the data-preparation
techniques and the results of applying Gleaner (Goad-
rich et al., 2004) to the Learning Language in Logic
2005 biomedical information extraction task of learn-
ing genic interactions. Gleaner is a two-stage ILP algo-
rithm that (1) learns a broad spectrum of clauses and
(2) then combines them into a thresholded disjunctive
clause aimed at maximizing precision for a particular
choice of recall. We compare our results to standard
Aleph (Srinivasan, 2003) using recall and precision,
and discuss areas open to future research.

2. Data Preparation

Our dataset for this article is the Learning Language
in Logic challenge task1, where the goal is to learn
to recognize the interaction in English sentences be-
tween protein agents and their gene targets in Bacil-
lus subtilis. Sentences in the training set contained
either a direct reference between an agent and a tar-
get, such as “GerE stimulates cotD transcription,” or
an indirect reference, such as “GerE binds to a site
on one of these promoters, cotX [...],” where the rela-
tion between GerE and cotX is mediated by the phrase
“these promoters.” The organizers call these two sub-
tasks without co-reference and with co-reference and we
chose to learn on them separately, first learning only
relationships without co-reference, and second learn-
ing only relationships with co-reference.

The training data consist of 80 sentences found in the
Medline2 database, and contain 106 relations without
co-reference and 59 relations with co-reference. For
each subtask, we used the other trainset as our tune-
set to find an appropriate threshold for making testset
predictions. While they are slightly different tasks, we
found that the benefit of more examples outweighed
dividing the training sets into subfolds.

1http://genome.jouy.inra.fr/texte/LLLchallenge/
2http://www.ncbi.nlm.nih.gov/pubmed



Learning to Extract Genic Interactions Using Gleaner

2.1. Example Filtering

Positive examples for this dataset, consisting of
word/word pairings, have been labeled by the
challenge-task committee, while negative examples
were left up to the participants. We define negative
examples on a per-sentence basis by first finding all
words which participate in a positive relationship. The
pairings among these words which are not labeled as
positives are used as negatives for training and tun-
ing. This produced 414 without co-reference negative
examples and 261 with co-reference negative examples.

The testset was provided to us unlabeled, and con-
tained sentences for both the task with co-reference
and the task without co-reference. Unlike the train-
ing data, the testset also contained sentences which
did not contain any relations. For the testset, we cre-
ated examples from the pairing of all possible protein
and gene names found in a provided dictionary. This
produced 936 total testset examples. In subsequent
experiments, we reduced this to 618 examples by re-
moving testset examples where the agent and target of
the relation were identical (since this never happened
in the trainset). Ultimately there were 54 positive and
410 negative test examples for the without co-reference
task and 29 positive and 384 negative test examples for
the with co-reference task.

2.2. Background Knowledge

To prepare the data for learning via Inductive Logic
Programming, we constructed a variety of background
knowledge from sentence structure, statistical word
frequencies, lexical properties, and biomedical dictio-
naries, examples of which can be seen in Table 1.

Our first set of relations comes from the sentence struc-
ture. We use the Brill tagger (1995) retrained on the
GENIA dataset (Kim et al., 2003) to predict the part
of speech for each word. Then we employ a shallow
parser created by Burr Settles that uses Conditional
Random Fields (Lafferty et al., 2001) trained on a
standard corpus (Sang, 2001) to derive a flat parse
tree, such that there are no nested phrases, for all sen-
tences in our dataset. All phrases have the sentence
as the root, and therefore all words are only members
of one phrase. Figure 1 shows a sample sentence parse
divided into one level of phrases.

Each word, phrase, and sentence is given a unique
identifier based on its ordering within the given ab-
stract, such as ab11011148 sen1 ph2 w1. This al-
lows us to create relations between sentences, phrases
and words based not on the actual text of the doc-
ument but on its structure, such as sentence child,

Figure 1. Sample Sentence Parse (N=noun, V=verb,
P=preposition, NP=noun phrase, VP=verb phrase,
PP=prepositional phrase)

phrase previous and word next about the tree struc-
ture and sequence of words, and predicates like
nounPhrase, article, and verb to describe the part
of speech structure. To include the actual text of
the sentence in our background knowledge, the predi-
cate word ID to string maps these identifiers to the
words. In addition, the words of the sentence are
stemmed using the Porter stemmer (Porter, 1980), and
currently we only use the stemmed version of words.

General sentence-structure predicates like
word before and phrase after are added, al-
lowing navigation around the parse tree. Phrases are
also tagged as being the first or last phrase in the
sentence, likewise for words. The length of phrases is
calculated and explicitly turned into a predicate, as
well as the length (by words and phrases) of sentences.
Also, phrases are classified as short, medium or long.
An additional piece of useful information is the
predicate different phrases, which is true when its
two arguments are distinct phrases.

Another group of background relations comes from
looking at the frequency of words appearing in the
target phrases in the training set. We believe these
frequently occurring words could be indicators of some
underlying semantic class and will be helpful for iden-
tifying correct phrases in the testset. We created
Boolean predicates for several ratios - 2 times, 5 times
and 10 times the general word frequency across all sen-
tences in a given training set - using the following for-
mula to determine which words matched which ratios:

P (wi = word|wi ∈ Target Phrase)

P (wi = word|wi 6∈ Target Phrase)

For example, the words “depend,” “bind,” and “pro-
tein” are at least 5 times more likely to appear in pro-
tein phrases than in phrases in general in the without
co-reference training set. These gradations are cal-
culated for both target arguments, protein and gene.
We automatically create semantic classes consisting of
these high frequency words. These semantic classes are
then used to mark up all occurrences of these words in
a given training and testing set.

A third source of background knowledge is de-



Learning to Extract Genic Interactions Using Gleaner

Table 1. Translation from Sample Sentence “ykuD was transcribed by SigK RNA polymerase from T4 of sporulation,” to
Prolog. This sentence is from the abstract whose PubMed ID is 11011148. Not all predicates created are listed.

Background Some of the Prolog Predicates Created
Knowledge

Sentence sentence(ab11011148 sen4).

Structure phrase(ab11011148 sen4 ph0).

phrase(ab11011148 sen4 ph1).

word(ab11011148 sen4 ph0 w0).

word(ab11011148 sen4 ph1 w1).

word(ab11011148 sen4 ph1 w2).

phrase child(ab11011148 sen4 ph0, ab11011148 sen4 ph0 w0).

word next(ab11011148 sen4 ph0 w0, ab11011148 sen4 ph0 w1).

word ID to string(ab11011148 sen4 ph1 w1, ‘ykuD’).

target arg2 before target arg1(ab11011148 sen4).

Part Of Speech np segment(ab11011148 sen4 ph0).

vp segment(ab11011148 sen4 ph1).

n(ab11011148 sen4 ph0 w0).

v(ab11011148 sen4 ph1 w1).

prep(ab11011148 sen4 ph1 w3).

Medical Ontologies phrase contains mesh term(ab11011148 sen4 ph3, ‘RNA’).

Lexical Properties phrase contains alphanumeric word(ab11011148 sen4 ph5).

phrase contains specific word(ab11011148 sen4 ph1, ‘transcribed’).

phrase contains originally leading cap(ab11011148 sen4 ph3).

Word Frequency phrase contains some arg 2x word(ab11011148 sen4 ph3).

rived from the lexical properties of each word.
Alphanumericwords contain both numbers and alpha-
betic characters, (such as “sigma 32” and “Spo0A˜P”)
whereas alphabetic words have only alphabetic char-
acters. Other lexical and morphological features in-
clude singleChar (“a”), hyphenated (“membrane-
bound”) and capitalized (“RNA”). Also, words are
classified as novelWord (“sporulation”) if they do not
appear in the standard /usr/dict/words dictionary
in UNIX. Lexical predicates are then augmented to
make them more applicable to the phrase level and
therefore more general. These predicates are also cre-
ated for pairs and triplets of words, so we can assert
that a phrase has the word “bind” tagged as a verb all
in one step when we search the hypothesis space.

For our fourth source, we incorporate semantic knowl-
edge about biology and medicine into our back-
ground relations by using the Medical Subject Head-
ings (MeSH)3. As we did for the sentence struc-
ture, we have simplified this hierarchy to only be
one level. Phrases are labeled with the predicate
phrase contains mesh term if any of the words in the
given phrase match any words in MeSH.

3http://www.nlm.nih.gov/mesh/meshhome.html

Additionally, predicates are added to de-
note the ordering between the phrases.
Target arg1 before target arg2 asserts that
the protein phrase occurs before the gene phrase,
similarly for target arg2 before target arg1. Also
created are identical target args (which is true
when the protein and gene phrases are the same
phrase, such as the phrase “sigmaB dependent katX
expression”) and adjacent target args (which says
the adjacent phrases contains both the gene and
protein), as well as the count of phrases before and
after the target arguments. Overall, we defined 215
predicates for use in describing the training examples.

2.3. Enriched Data

Background knowledge was also provided by the chal-
lenge task organizers. They processed the corpus with
Link Parser (Temperly et al., 1999), a tool for auto-
matically constructing a syntactic parse tree, and re-
fined the output to create two type of additional infor-
mation. First, each word was assigned its root word,
called a lemma. For instance, the word “are” would
have the lemma “be.” The second type of informa-
tion was the syntactic relations between words. This
included appositive, complement, modifier, negation,



Learning to Extract Genic Interactions Using Gleaner

Table 2. Pseudo-code for Gleaner Algorithm

Initialize Bins:

Create B recall bins, bin 1

B

, bin 2

B

, ..., bin1,

to uniformly divide the recall range [0,1]

Populate Bins:

For i = 1 to K until N clauses are generated
Pick seed example to find bottom clause
Use Rapid Random Restart to find clauses
After each generation of a new clause c

Find the recall binr for c on the trainset
If the precision × recall of c is best yet

Replace c in binr,i

Determine Bin Threshold:

For each binj

Find highest precision theory m and Lm ∈ [1, K]
on trainset such that

recall of “At least L of K clauses match
examples” ≈ recall for binj

Evaluate On Testset:

Find precision and recall of testset using each
bin’s “at least L of K” decision process

object and subject relations about the sentence gram-
mar, as well as predicted parts of speech for each word
in a relationship, for a total of 27 possible relations.
For example, in the sentence “ykuD was transcribed by
SigK RNA polymerase from T4 of sporulation,” Link
Parser reports that the noun ‘yukD’ is the subject of
the verb ‘transcribed’, ‘polymerase’ and ‘T4’ are com-
plements of ‘transcribed’, and ‘RNA’ and ‘SigK’ are
modifiers of ‘polymerase’.

We chose to ignore the lemma information, since we
previously incorporated the stem of each word, and
only focused on the 27 syntactic information predi-
cates. We compare the inclusion versus exclusion of
this enriched background information in our results.

3. Gleaner

Gleaner (Goadrich et al., 2004) is a randomized search
method which collects good clauses from a broad spec-
trum of points along the recall dimension in recall-
precision curves and employs an “at least N of these
M clauses” thresholding method to combine sets of se-
lected clauses. Pseudo-code for our algorithm appears
in Table 2.

Gleaner uses Aleph (Srinivasan, 2003) as its underlying
engine for generating clauses. As input, Aleph takes

Figure 2. A sample run of Gleaner for one seed and 20 bins,
showing each considered clause as a small circle, and the
chosen clause per bin as a large circle. This is repeated
for 100 seeds to gather 2,000 clauses (assuming a clause is
found that falls into each bin for each seed).

background information in the form of either inten-
sional or extensional predicates, a list of modes declar-
ing how these predicates can be chained together, and
a designation of one predicate as the “head” predicate
to be learned. At a high-level overview, Aleph sequen-
tially generates clauses for the positive examples by
picking a random example to be a seed. This exam-
ple is then saturated to create the bottom clause, i.e.
every relation in the background knowledge that can
be connected by relations to this example in a fixed
number of steps. The bottom clause determines the
possible search space for clauses. Aleph heuristically
searches through the space of possible clauses until the
“best” clause is found or time runs out. When enough
clauses are learned to cover (almost) all of the positive
training examples, the learned clauses are combined
to form a theory. In our experiments, we will compare
Gleaner to standard Aleph theories.

After initialization, the first stage of Gleaner learns a
wide spectrum of clauses, as illustrated in Figure 2.
We search for clauses using 100 random seed examples
to encourage diversity. In our experiments, the recall
dimension is uniformly divided into 20 equal sized bins,
[0, 0.05], [0.05, 0.10], . . . , [0.95, 1.00]. For each seed, we
consider up to 25,000 possible clauses using Rapid
Random Restart (Železný et al., 2003). As these
clauses are generated, we compute the recall of each
clause and determine into which bin the clause falls.
Each bin keeps track of the best clause appearing in its
bin for the current seed. We use the heuristic function
precision × recall to determine the best clause. At the
end of this search process, there will be 20 clauses col-
lected for each seed and 100 seed examples for a total
of 2,000 clauses (assuming a clause is found that falls



Learning to Extract Genic Interactions Using Gleaner

into each bin for each seed).

The second stage (modified slighly from (Goadrich
et al., 2004)) takes place once all our clauses have been
gathered using random search. Gleaner combines the
clauses in each bin to create one large thresholded dis-
junctive clause per bin, of the form “At least L of these
K clauses must cover an example in order to classify
it as a positive.” Each of these theories could generate
their own recall-precision curves, by exploring all pos-
sible values for L on the tuneset, starting with L = K

and incrementally lowering the threshold to increase
recall. These 20 curves will overlap in their recall and
precision results, and we choose the theory which cre-
ated the highest points along this combined curve on
the tuneset, irrespective of the bin which generated the
points. We will end up with 20 recall-precision points,
one for each bin, that span the recall-precision curve.

A unique aspect of Gleaner is that each point in the
recall-precision curve could be generated by a separate
theory, instead of the usual setup to create a curve,
where one hypothesis is transformed into many by
ranking the examples and then finding different thresh-
olds of classification. This separate-theory method is
related to using the ROC convex hull created from sep-
arate classifiers (Fawcett, 2003). We believe using sep-
arate theories is a strength of our Gleaner approach,
such that each theory, and therefore each point on our
curves, is not hindered by the mistakes of previous
points; each theory is totally independent of the oth-
ers.

An end-user of Gleaner will be able to choose their pre-
ferred operating point from this recall-precision curve.
Our algorithm will then be used to generate testset
classifications using the closest bin to their desired re-
call results by using our found threshold L.

4. Results

There were two dimensions on which to vary our train-
ing methods, learning on data containing co-references
or on data without co-references, and including the
provided linguistic information (enriched) or using
only the basic data. Tables 3 and 4 show the results of
Gleaner on the testset data for all four combinations,
using the restriction that the same word cannot be
both agent and target in a relation4. A sample clause
learned by Aleph can be found in Table 5. This clause
has focused on the common property that agents are
before targets, agents are nouns with internal capital

4For our challenge-task submission, we used all 936 pos-
sible test examples. Using the non-identical restriction re-
sulted in a small increase in our precision results.

Table 3. Results of Gleaner, Aleph theory, and baseline
all-positive prediction on LLL challenge task without co-
reference.

Alg Enriched F1 Recall Precision

Gleaner - 41.7 79.6 28.3
√

25.1 79.6 14.9

Aleph 1K - 50.0 62.9 40.6
√

31.0 59.2 21.0

Aleph 25K - 30.7 44.4 23.5
√

26.1 42.5 18.8

All Pos N/A 20.1 100.0 11.2

Table 4. Results of Gleaner, Aleph theory, and baseline
all-positive prediction on LLL challenge task with co-
reference.

Alg Enriched F1 Recall Precision

Gleaner - 17.7 79.3 10.0
√

18.5 82.7 10.4

Aleph 1K - 31.6 51.7 22.7
√

19.3 37.9 13.0

Aleph 25K - 19.9 20.6 19.3
√

19.1 24.1 15.9

All Pos N/A 12.5 100.0 6.7

letters and are complements of nouns which comple-
ment verbs, while targets are in noun phrases without
negatively correlated words in the training set.

We chose our preferred operating point by choosing
the bin with the highest F1 measure on the tuning set;
these were bin [0.55, 0.60] on the basic dataset without
co-reference, [0.65, 0.70] on the enriched dataset with-
out co-reference and bin [0.90, 0.95] on the dataset
with co-reference. With the enriched data, similar
recall points can still be achieved, however there is
a marked decrease in precision for the without co-
reference dataset. We plan to explore the use of the
enriched data from Link Parser (Temperly et al., 1999)
in our future work on this and other information-
extraction datasets.

We also show a comparison of Gleaner to two other
algorithms. First, we examine the results of a single
Aleph theory learned for each training set combina-
tion. We restrict each clause learned to have a min-



Learning to Extract Genic Interactions Using Gleaner

Table 5. Sample Clause with 20% Recall and 94% Precision on Without Co-reference Training Set

agent target(A,T,S) :-
n(A),
complement of N N(G,A),
complement by V PASS N(G, ),
word parent(A,F),
phrase contains some internal cap word(F, ,A),
word parent(T,E),
phrase contains no arg halfX word(E,arg2, ),
isa np segment(E),
target arg1 before target arg2(A,T).

where the variable A is the agent, T is the target, S is the sentence,
and ‘ ’ indicates variables that only appear once in the clause.

Figure 3. Recall-Precision Curves for Gleaner and Aleph
on the dataset without co-reference.

imum precision of 75.0 and to cover a minimum of 5
positives in the training set. We also consider a maxi-
mum of both 1,000 and 25,000 clauses for each “best”
clause in a theory. With the basic data, we see Aleph
improves in precision, however recall is much lower
that our results with Gleaner. We also notice a large
drop in precision and recall between 1,000 clauses and
25,000 clauses, which we attribute to overfitting. Sec-
ond, we compare to the algorithm of calling every ex-
ample positive, which guarantees us 100% recall, and
notice that Gleaner has an increase in precision over
this baseline in both datasets.

Figure 3 shows recall-precision curves for Gleaner and
recall-precision points for the Aleph theories on the
dataset without co-reference, while Figure 4 shows
results on the dataset with co-reference. Gleaner is
able to span the whole recall-precision dimension, al-
though with less than stellar results on the without

Figure 4. Recall-Precision Curves for Gleaner and Aleph
on the dataset with co-reference.

co-reference dataset.. Gleaner seemed to suffer by not
distinguishing well between the agent and target; when
genic interaction(A,B) was predicted, most often we
also predicted genic interaction(B,A), keeping the pre-
cision lower than 50%. Another cause of our low re-
sults could be the fact that sentences with genes and
proteins but no relationships between them were not
included in the training sets, but made up almost half
of the testing set. This lack of negative sentences in the
training sets hampered our ability to distinguish be-
tween good and bad sentences when learning clauses.
Also, the size of the LLL challenge task was small
in comparison to our previous work (Goadrich et al.,
2004), creating the possibility of overfitting. Partic-
ularly affected were the enriched linguistic predicates
and the statistical predicates, which focused on irrel-
evant words (e.g. specific gene and protein words like
“sigma A” and “gerE”). Although collecting labeled



Learning to Extract Genic Interactions Using Gleaner

data for biomedical information extraction can be ex-
pensive, we believe the benefits are worth the cost.

5. Conclusions

This paper has explored two Inductive Logic Program-
ming approaches to biomedical information extrac-
tion: Aleph, which learns many high-precision clauses
that cover the training set, and Gleaner, which learns
clauses from a wide spectrum of recall points and com-
bines them to create broad thresholded theories. We
developed a large number of background knowledge
predicates which try to capture both the structure and
semantics of biomedical text, and we evaluated these
two algorithms on the Learning Language in Logic
2005 Challenge Task.

We believe there is much work remaining in the combi-
nation of ILP and biomedical information extraction.
The logical structure of sentence parses as well as the
biological semantic class information can be readily
included in an ILP approach. This genic-interaction
dataset was particularly interesting since neither the
agent entity nor the target entity was a closed set, and
there could be crossover between them. Also worth
noting was the difference between the training set and
testing set with respect to negative examples. We plan
to further explore the issues which arose from using
this dataset and perform cross-validation experiments
to test for statistical significance of our results and to
include negative sentences in the training set.

6. Acknowledgements

We gratefully acknowledge the funding from USA
NLM Grant 5T15LM007359-02, USA NLM Grant
1R01LM07050-01, USA DARPA Grant F30602-01-2-
0571, and USA Air Force Grant F30602-01-2-0571.
Thanks to Burr Settles for help with parsing and tag-
ging the sentences.

References

Blaschke, C., Hirschman, L., & Valencia, A. (2002).
Information Extraction in Molecular Biology. Brief-
ings in Bioinformatics, 3, 154–165.

Brill, E. (1995). Transformation-Based Error-Driven
Learning and Natural Language Processing: A Case
Study in Part of Speech Tagging. Computational
Linguistics.

Bunescu, R., Ge, R., Kate, R., Marcotte, E., Mooney,
R., Ramani, A., & Wong, Y. (2004). Comparative
Experiments on Learning Information Extractors for

Proteins and their Interactions. Journal of Artificial
Intelligence in Medicine, 139–155.

Eliassi-Rad, T., & Shavlik, J. (2001). A Theory-
Refinement Approach to Information Extraction.
Proceedings of the 18th International Conference on
Machine Learning.

Fawcett, T. (2003). ROC Graphs: Notes and Practical
Considerations for Researchers (Technical Report).
HP Labs HPL-2003-4.

Goadrich, M., Oliphant, L., & Shavlik, J. (2004).
Learning Ensembles of First-Order Clauses for
Recall-Precision Curves: A Case Study in Biomedi-
cal Information Extraction. Proceedings of the 14th
International Conference on Inductive Logic Pro-
gramming (ILP). Porto, Portugal.

Kim, J.-D., Ohta, T., Teteisi, Y., & Tsujii, J. (2003).
GENIA corpus - a semantically annotated corpus for
bio-textmining. Bioinformatics, 19.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. Proc. 18th In-
ternational Conf. on Machine Learning (pp. 282–
289). Morgan Kaufmann, San Francisco, CA.

Porter, M. (1980). An Algorithm for Suffix Stripping.
Program, 14, 130–137.

Ray, S., & Craven, M. (2001). Representing Sentence
Structure in Hidden Markov Models for Information
Extraction. Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI).

Sang, E. F. T. K. (2001). Transforming a Chunker
into a Parser. Linguistics in the Netherlands.

Shatkay, H., & Feldman, R. (2003). Mining the
Biomedical Literature in the Genomic Era: An
Overview. Journal of Computational Biology, 10,
821–55.

Srinivasan, A. (2003). The Aleph Manual Version 4.
http://web.comlab.ox.ac.uk/ oucl/ research/ areas/
machlearn/ Aleph/.

Temperly, D., Sleator, D., & Lafferty, J. (1999).
An introduction to the Link Grammar Parser.
http://www.link.cs.wisc.edu/link/.

Železný, F., Srinivasan, A., & Page, D. (2003). Lattice-
Search Runtime Distributions may be Heavy-Tailed.
Proceedings of the 12th International Conference on
Inductive Logic Programming 2002 (pp. 333–345).
Springer Verlag.


