
UNIVERSITY OF WISCONSIN, MACHINE LEARNING RESEARCH GROUP WORKING PAPER 06-1, SEPTEMBER 2006

Improving the Efficiency of Belief Propagation
in Large, Highly Connected Graphs

Frank DiMaio and Jude Shavlik
Computer Sciences Dept.

University of Wisconsin–Madison
Madison, WI 53706

{dimaio,shavlik}@cs.wisc.edu

Abstract

We describe a part-based object-recognition framework,
specialized to mining complex 3D objects from detailed 3D
images. Objects are modeled as a collection of parts to-
gether with a pairwise potential function. The algorithm’s
key component is an efficient inference algorithm, based on
belief propagation, that finds the optimal layout of parts,
given some input image. Belief Propagation (BP) – a mes-
sage passing method for approximate inference in graphi-
cal models – is well suited to this task. However, for large
objects with many parts, even BP may be intractable. We
present AggBP, a message aggregation scheme for BP, in
which groups of messages are approximated as a single
message, producing a message update analogous to that of
mean-field methods. For objects consisting of N parts, we
reduce CPU time and memory requirements from O(N2) to
O(N ). We apply AggBP to both real-world and synthetic
tasks. First, we use our framework to recognize protein
fragments in three-dimensional images. Scaling BP to this
task for even average-sized proteins is infeasible without
our enhancements. We then use a synthetic “object genera-
tor” to test our algorithm’s ability to locate a wide variety
of part-based objects. These experiments show that our im-
provements result in minimal loss of accuracy, and in some
cases produce a more accurate solution than standard BP.

1 Introduction

Several recent publications have explored the use of part-
based models for recognizing generic objects in images
[4, 19, 9]. These models represent physical objects as a
graph: a collection of vertices (“parts”) connected by edges
enforcing pairwise constraints. An inference algorithm de-
termines the most probable location of each part in the

model given the image. However, this previous work has
only considered simple objects with relatively few parts, of-
ten only using two-dimensional image data. We present a
part-based object recognition algorithm specialized to ob-
jects with hundreds of parts in detailed, three-dimensional
images.

Rich, three-dimensional data commonly arises in bio-
logical datasets, especially with recent advancements in bi-
ological imaging techniques. For example, fMRI scans
produce detailed 3D images of the brain. Confocal mi-
croscopy constructs high-quality 3D images of tissues. X-
ray crystallography yields a 3D electron density map, a
three-dimensional “image” of a macromolecule. This three-
dimensional data often contains objects comprised of many
parts, connected with some complex topology. As detailed
biological imagery becomes easier to acquire, techniques to
accurately interpret such images are needed. For example, a
vascular biologist may want to automatically locate all the
blood vessels in a kidney section; a crystallographer may
want to trace a piece of RNA in an electron density map.
Even rich two-dimensional data, such as detailed satellite
imagery, may contain complex objects that cannot be inter-
preted using current methods.

To effectively mine complex 3D objects, our algorithm
includes an efficient message-passing inference algorithm
based on belief propagation [15]. Message-passing al-
gorithms are an extremely powerful tool for inference in
graphical models (that is, probabilistic models defined on
a graph). Belief propagation (BP) – also known as the
sum-product algorithm – is a message-passing method for
exactly computing marginal distributions in tree-structured
graphs. In graphs with arbitrary topologies, no such opti-
mality is guaranteed. Empirically, however, “loopy BP” of-
ten provides extremely accurate approximations, when ex-
act inference methods are intractable [6, 13, 21].

For very large, highly-connected graphs, with large in-

1



put images, even loopy BP may not offer enough efficiency.
In near-fully connected graphs, with hundreds or thousands
of vertices, approximations to BP’s messages may be nec-
essary to compute marginal distributions in a reasonable
amount of time. We describe AggBP (for aggregate BP),
a technique for approximating groups of BP messages with
a single message. This composite message turns out to be
quite similar to the message update for mean-field methods.
We illustrate that, for certain types of graphs, AggBP may
reduce running time in a (near-fully connected) graph with
N nodes from O(N2) to O(N ).

Additionally, we provide a method for dealing with
continuously-valued variables that is efficient and does not
require accurate initialization. Recently, an extension to BP,
nonparametric belief propagation (NBP), was introduced
[18]. NBP represents variables that have continuous non-
Gaussian distributions as a mixture of Gaussians. We intro-
duce an efficient variant which alternately represents prob-
ability distributions over a continuous three-dimensional
space as a set of Fourier-series coefficients. We describe ef-
ficient message passing and update algorithms in this frame-
work.

Finally, we test our approximation techniques using both
real-world and synthetic data. Our first testbed is on a real-
world computer-vision task, identifying protein fragments
in three-dimensional images. Interpreting these protein im-
ages is a very important step in determining protein struc-
tures using x-ray crystallography. AggBP lets us scale inter-
pretation to large proteins in large 3D images. Our second
testbed uses a synthetic object generator to test AggBP’s
performance locating a wide variety of objects with various
part topologies.

2 Modeling 3D Objects

Following others [4], we describe a class of objects us-
ing a graphical model. Graphical models, such as Bayesian
networks and Markov fields, represent the joint probabil-
ity distribution over a set of variables as a function defined
over some graph. A pairwise undirected graphical model
(or pairwise Markov field) represents this joint distribution
as a product of potential functions defined on each edge and
vertex in the graph. To represent an object as a graph, then,
vertices correspond to parts in the object, while edges cor-
respond to constraints between pairs of parts.

Formally, the graph G = (V, E) consists of a set of nodes
s ∈ V connected by edges (s, t) ∈ E . Each node in the
graph is associated with a (hidden) random variable xs ∈ x,
and the graph is conditioned on a set of observation vari-
ables y. For object recognition, these xs’s are the 3D po-
sition of part s. Each vertex has a corresponding observa-
tion potential ψs(xs, y), and each edge is associated with
an structural potential ψst(xs, xt). Then, we can represent

the full joint probability as

p(x|y) ∝
∏

(s,t)∈E

ψst(xs, xt)×
∏
s∈V

ψs(xs|y) (1)

In many applications, this paper included, we are most con-
cerned with finding the maximum marginal assignment, that
is, the labels xs ∈ x that maximize this joint probability for
some value of y.

To describe an object using a graphical model, one must
provide three pieces of data: a part graph, each node’s ob-
servation potential, and each edge’s structural potential.
Given a graph describing an object, these potential func-
tions are learned from a set of previously solved problem
instances.

For 3D object recognition, the part graph is fully con-
nected; most edges are associated with identical, weak (dif-
fuse) potentials, while a sparse subset of the graph (the
“skeleton”) connects very highly correlated variables. As
an illustration, consider using a graphical model for recog-
nizing people in images, as in Figure 1. In this model,
a sparsely connected skeleton connects highly correlated
nodes. For example, the head and body are connected in
this skeletal structure, because the position of the head is
highly correlated with the position of the body.

However, many other pairs of nodes – such as the left leg
and the left arm – are not connected in the skeletal structure,
yet their labels are not completely (conditionally) indepen-
dent. There is a weak correlation: the two parts may not
occupy the same location in space. As this constraint is
not implicitly modeled by the chain that connects them in
the skeletal structure, an edge between them is necessary.
These occupancy edges only serve to ensure that two parts
in the model do not overlap in 3D space. For example, when
modeling a hand [19], occupancy edges are required to en-
sure two fingers do not occupy the same space. The po-
tential associated with these edges is typically very diffuse;
it is non-zero everywhere except in a small neighborhood
around the origin (in the node’s local coordinates).

Each part’s observation potential is usually based on the
application of a simple classifier. At each location in 3D
space, it returns the probability that a particular part is at
that location. Individual part potential functions may use
template matching, color matching, edge detection, or any
other method. Observation potentials need not be particu-
larly accurate, as belief propagation is able to infer the true
location using the combined power of many weak detectors.

As illustrated in the person-detector example, structural
potentials are broken into two types: skeletal potentials (or
sequential potentials) model the relationship between parts
connected in an object’s skeleton, while occupancy poten-
tials model the weakly correlated relationship between all
other pairs of nodes. Skeletal potentials may take an ar-
bitrary form, learned from a set of allowable object con-

2



Figure 1. A sample graphical model for
recognizing a person in an image. Thicker
dark edges illustrate the highly-correlated
“skeleton” of the model, while thinner
light edges are weakly-correlated occupancy
edges, which ensure two parts do not occupy
the same 3D space.

formations. They may be a function of position as well as
orientation of the 3D object. Occupancy potentials take the
form of a step function (using a “hard collision” model) or
a sigmoidal function (using a “soft collision” model). Oc-
cupancy potentials only depend on the position of the con-
nected objects, and is only nonzero if the connected objects
are sufficiently far apart.

3 Inference: Locating 3D Objects

Given an image and some object’s graphical model, in-
ference attempts to find the most-probable location of each
of the object’s parts in the image. Because our object graph
is fully connected, with a number of loops, exact infer-
ence methods either will not work (e.g., tree-based meth-
ods) or are intractable (e.g., exhaustive methods). Instead,
we are forced to rely on approximate inference methods.
Our object-recognition framework uses belief propagation,
a message-passing approximate inference algorithm.

3.1 Belief propagation

Belief propagation – based on Pearl’s polytree algo-
rithm [15] – computes the marginal probability over each
xs (the location of each part) by passing a series of local
messages. The marginal probability refers to the joint prob-
ability, where all but one variable is summed out, that is:

bs(xs|y) =
∑
x1

. . .
∑
xs−1

∑
xs+1

. . .
∑
xN

P (x|y) (2)

This marginal distribution is important because it provides
information about the distribution of some variable (xs

Algorithm 1: Belief propagation

input : Observational potentials ψs(xs|y) and
structural potentials ψst(xs, xy)

output: An approximation to the marginal
b̂s(xs|y) ≈

∑
x1

. . .
∑
xs−1

∑
xs+1

. . .
∑
xN

P (x|y)

initialize accumulator, messages to 1
while b̂’s have not converged do

foreach part s = 1 . . . N do
b̂s(xs|y)← ψs(xs|y)
foreach part t = 1 . . . N do

if t 6= s and b̂t has been updated then
mn

t→s(xs)←
∫

xt
ψst × b̂n

t

mn−1
s→t

dxt

end
b̂s(xs|y)← b̂s(xs|y)×mn

t→s(xs)
end

end
end

above) in the full joint distribution, without requiring one to
explicitly compute the (possibly intractable) full joint dis-
tribution.

Pseudocode appears in Algorithm 1. At each iteration, a
part in the model computes the product of all incoming mes-
sages, then passes a convolution of this product to its neigh-
bors (for clarity, the message’s dependence on y is usually
dropped):

mn
t→s(xs) ∝

∫
xt

ψst(xs, xt)× ψt(xt|y)

×
∏

u∈Γ(t)\s

mn−1
u→t(xt) dxt (3)

In the above, Γ(t)\s denotes all neighbors of t in the graph
excluding s. Typically, these messages are normalized so
that the probabilities sum to unity. Following Koller et al.
[11], we assign some order to the nodes, and update the be-
lief at each node sequentially, alternating between forward
and backward passes through our ordering. At any iteration,
the algorithm computes an approximation to the marginal as
the product of incoming messages and the node’s observa-
tion potential ψs,

b̂ns (xs|y) ∝ ψs(xs|y)×
∏

u∈Γ(t)

mn
u→t(xt) (4)

In tree-structured graphs (graphs without cycles), this al-
gorithm is exact. Unfortunately, for many tasks, this limi-
tation is overly restrictive. In graphs with arbitrary topolo-
gies, however, there are no guarantees to the convergence of

3



this algorithm – and convergence may not be to the correct
solution – but empirical results show that “loopy BP” often
produces good estimates in practice [14].

Several papers have explored circumstances under which
loopy BP’s convergence or optimality can be guaranteed.
Weiss has shown a category of graphical models with a sin-
gle loops in which optimality is guaranteed [22]. More re-
cent work [24] has shown the existence of fixed-points in
loopy BP, but they are neither unique or optimal. Heskes
[7] has developed sufficient conditions for the uniqueness
of BP’s fixed-points. Others have characterized the fixed-
points in loopy BP [20].

Others have explored message approximation in loopy
BP. When exact message computation is intractable, sto-
chastic approximation of messages [11] as well as mes-
sage simplification [1] have been investigated. Additionally,
when dealing with continuous-valued variables, some sort
of approximation or simplifying assumptions must be made
[9, 18]. Ihler et al. [8] have explored the consequences of
approximating messages in BP, placing bounds on accumu-
lated message errors as BP progresses.

A recent paper [18] investigates the special case where
the labels xt are continuously valued. Using ideas from
particle filtering [3], these authors use weighted-Gaussian
probability density estimates. That is, given a set of weights
wi

s, i = 1 . . . N , a set of Gaussian centers µi
s and a covari-

ance matrix Λs, an estimate of the belief is given by

b̂ns (xs|y) =
∑

w(i)
s ×N (xs;µ(i)

s ,Λs) (5)

Message computation is implemented using an efficient
Gibbs sampling routine. The Gibbs sampler [8] approxi-
mates the product of k Gaussian mixtures – each with M
components – as an M -component mixture. This sampling
is used to compute BP message products. For the BP con-
volution operation, forward sampling is employed. Their
inference algorithm was applied to several vision tasks. Is-
ard [9] makes use of a similar technique, with a sampling
routine specialized to mixture-of-Gaussian edge potentials.

In the next sections, we provide several techniques to
scale belief propagation for 3D part-based object recogni-
tion. One of these techniques is a message aggregation to
handle large, highly connected graphs that arise in mining
complex, 3D images. We also include an alternate represen-
tation for continuously-valued beliefs and potentials, which
allows for efficient message computation and products.

4 Scaling Belief Propagation

Belief propagation was originally intended for small,
sparsely connected graphs. In large, highly-connected
graphs, the number of messages quickly becomes over-
whelming. To make BP tractable in these types of graphs,

we propose AggBP, which approximates some subset of
outgoing messages at a single node with a single message,
replacing many message computations with relatively few.

4.1 BP Message Aggregation

In the undirected graphical models used for 3D object
recognition, pairs of nodes along skeleton edges are highly
correlated. Consequently, messages along these edges have
a high information content. It is important to exactly com-
pute messages along these edges. Coarse approximations –
like those used in mean field methods [10] – introduce too
much error.

However, in these graphs, the majority of edges are oc-
cupancy edges, which enforce the constraint that two parts
cannot occupy the same 3D space. The potential functions
associated with these edges are weak – that is, nearly uni-
form – and messages along these edges carry little infor-
mation. Along these edges, we can make some approxima-
tions; a full BP message update may be overkill.

Formally, BP’s message update, given by Equation 4,
can be alternately written as (again, the explicit dependence
of the message on y is dropped for clarity):

mn
t→s(xs)← α1

∫
xt

ψst(xs, xt)×
b̂nt (xt|y)
mn−1

s→t(xt)
dxt (6)

The denominator in the above, mn−1
s→t(xt) is a term that

serves to avoid double-counting or “feedback”, making the
method exact in tree-structured graphs. In loopy graphs,
such feedback – through the graph’s loops – in unavoidable.
For messages along occupancy edges this denominator car-
ries little information, and AggBP drops it with little loss of
accuracy. This gives an update equation more like the naı̈ve
mean-field theory update :

mn
t→s(xs)← α2

∫
xt

ψst(xs, xt)× b̂nt (xt|y) dxt (7)

The key advantage of doing this is – assuming that the struc-
tural potential ψst is identical along all occupancy edges –
is all occupancy messages outgoing from a single node are
identical. For the remainder of this section, we will refer to
these approximate messages as mt→∗(x∗).

Assuming identical ψst’s, AggBP reduces the number of
occupancy messages computed from O(N2) to O(N ) in a
model with N parts. However, updating the belief for some
part still requires multiplying all the incoming occupancy
messages times all the incoming skeletal message; for an
N -part model, this is still O(N2). To reduce this complex-
ity, we utilize the fact that each node receives this broadcast
message from all but a few nodes in the graph: its neighbors
(in the skeleton graph) and itself. We consider, then, send-

4



(a)

(b)

Figure 2. Our message aggregation approxi-
mates (a) all the outgoing messages at node
3, with (b) a single message sent to all non-
adjacent nodes. Caching these aggregate
message products results in significant run-
time savings.

ing all these aggregate messages to a central accumulator:

ACC(x∗)←
N∏

t=1

mt→∗(x∗) (8)

This accumulator is then used to efficiently update a node’s
belief, by sending – in a single message – the product of all
occupancy messages.

Figure 2 illustrates AggBP when the graph is a chain.
For a chain, we compute the product of incoming messages,
using this accumulator, as:

b̂1 ← ψ1 ×ACC ×
m2→1

m1→∗ ×m2→∗

b̂2 ← ψ2 ×ACC ×
m1→2 ×m3→2

m1→∗ ×m2→∗ ×m3→∗
...

b̂k ← ψk ×ACC ×
mk−1→k ×mk+1→k

mk−1→∗ ×mk→∗ ×mk+1→∗
...

The numerators of these message updates contain skele-
tal messages, while the denominators contain the approx-
imated occupancy messages. AggBP reduces the runtime
and memory requirements from O(N2) to O(N ) in a model
with N parts. The storage benefit is especially appealing
when the 3D space for each part is large, and storing o(N2)
messages is space-prohibitive. Section 5.1 provides a closer
look at one such application where this is the case.

Algorithm 2: Aggregate belief propagation (same I/O
as Algorithm 1).

initialize accumulator ACC, messages m to 1
while b̂’s have not converged do

foreach part s = 1 . . . N do
ACC ← ACC/mn−1

s→∗
b̂s(xs|y)← ψs ×ACC
foreach part t = 1 . . . N do

if s is skeleton neighbor of t then
if b̂t has been updated then

mn
t→s(xs)←

∫
xt
ψst × b̂n

t

mn−1
s→t

dxt

end
b̂s(xs|y)← b̂s(xs|y)× (mn

t→s/m
n
t→∗)

end
end
// compute composite message
mn

s→∗(xs)←
∫

xt
ψ∗s × b̂ns (xs|y)

// update accumulator
ACC ← ACC ×mn

s→∗
end

end

Algorithm 2 gives a pseudocode overview of AggBP
(notice the arguments xs and xt have been dropped for clar-
ity). As we progress from node to node, instead of com-
puting each outgoing message at a single node, we instead
compute significantly fewer composite messages. The key
difference from Algorithm 1 is in the inner loop, “if s is
a skeleton neighbor of t.” For graphs used in part-based
object recognition, this loop is rarely entered, requiring sig-
nificantly fewer message calculations.

Finally, when the occupancy edges all have a different
potential function (e.g., when parts in the model are of a
different size), then AggBP can still take advantage of this
approximation, with additional approximation error. In this
case, AggBP simply computes the broadcast message from
a part t using the average potential function outgoing from
t:

mn
t→∗(x∗)← α

∫
x∗

∑N
u=1 ψtu(xt, x∗)

N
× b̂nt (xt)dxt (9)

Section 5.2 explores how well AggBP handles varying oc-
cupancy potentials.

4.2 Belief representation

Section 3 describes an approach to belief propagation
with continuous-valued labels based on particle filtering.

5



However, there may be cases where these models are in-
sufficient. In general, when using particle filtering-based
methods, reasonably accurate initialization of the Gaussian
centers representing the probability distribution is necessary
for accurate inference [19]. In this section, we describe an
alternative belief representation that uses a Fourier-series
probability density estimate [17] to represent probabilities
and messages. While particle-filtering-based methods tend
to concentrate on high-probability space, our approach ac-
curately represents the probability distribution over the en-
tire space of each random variable. Efficient message pass-
ing and message computation make this representation ideal
for large, highly-connected graphs.

Formally, we represent marginal distributions b̂ns as a set
of 3-dimensional Fourier coefficients fk, where, given an
upper-frequency limit, K

b̂ns (xs|y) ≈
K∑

k=0

fk × e−2πi(xs�k) (10)

Messages are represented using the same type of probability
density estimate.

4.2.1 Message convolution

Recall from Eq. (3) that computing mt→s requires integrat-
ing the product of the edge potential ψst(xs, xt), the obser-
vation potential ψs(xs, y), and the incoming message prod-
uct

∏
ms→t(xt) over all xt. While this computation is dif-

ficult in general for Fourier-based density estimates, if our
edge potential can be represented as a function of the differ-
ence between the labels of the two connected nodes, that is,
ψst(xs, xt) = f(||xs − xt||), then mt→s is just a convolu-
tion:

mn
t→s(xs) =

(
ψst ∗

∏
mn−1

s→t

)
(xs) (11)

This is easily computed as the product of Fourier coeffi-
cients:

F
[
mn

t→s(xs)
]

= F
[
ψst(xs, xt)

]
×F

[( ∏
mn−1

s→t(xt)
)]
. (12)

For object recognition, all of our occlusion potentials may
be represented in this manner. That is, the potential here
only depends upon the difference between labels.

This computational shortcut was originally proposed by
Felzenswalb for belief propagation in low-level vision [5].
Computing these message products is efficient, with run-
ning time O(K), where K is the high-frequency limit of
the density estimate.

4.2.2 Message products

As shown in Eq. (4), computing the current belief b̂ns at a
given node requires taking the product of all incoming mes-

sages mt→s(xs), and multiplying it by the observation po-
tential ψs(xs, y). Given the Fourier coefficients of all mes-
sages, we compute this multiplication in real space:

b̂ns (xs|y) = ψs(xs, y)×
∏
F−1

[
F

[
mn

t→s(xs)
]]

(13)

As with the message convolution, this operation is fairly
efficient. Each transform and inverse transform runs in time
O(K log K).

5 Experiments

In this section, we compare the standard “full” belief
propagation algorithm with AggBP, using both real-world
and synthetic datasets. The real-world task is based upon lo-
cating protein fragments in 3D images; these objects consist
of a chain of “parts” (amino acids). The synthetic dataset
looks at our algorithm’s performance recognizing objects
containing more complex part topologies.

5.1 Protein fragment identification

One application for object recognition arises from x-ray
crystallography. our approach is building a graphical model
for a protein, in order to identify it in a three-dimensional
image. These three-dimensional images, or electron density
maps, are produced when determining protein structures us-
ing x-ray crystallography. Interpreting this map – illustrated
in Figure 3 – is the final step of x-ray crystallography [16].
Interpretation produces the Cartesian coordinates of every
atom in the protein. It is often quite difficult and time-
consuming to interpret electron-density maps: it make take
weeks to months of a crystallographer’s time to find every
atom in the protein. Alternatively, a backbone trace focuses
instead on predicting the location of a key carbon atom – the
alpha carbon, or Cα – contained in each amino acid. We use
AggBP to automatically determine a 3D backbone structure
given an electron density map and a protein sequence.

5.1.1 Task overview

A protein is constructed as a linear chain of amino acids.
Each of the 20 different naturally-occurring amino acids
consists of a constant four-atom motif (the backbone) and
a variable sidechain. Figure 4 illustrates a protein struc-
ture, highlighting the backbone and sidechains. Protein
recognition is difficult for several reasons. The electron-
density maps are experimentally determined and are often
very noisy. Additionally, the protein chain is extremely
flexible: proteins are typically tightly coiled together, and
amino acids distant on the linear chain are often very close
in three-dimensional space. A protein chain typically has

6



 

(a) (b) (c) 

Figure 3. An overview of electron density map interpretation. Given the amino acid sequence of the
protein and (a) a density map, the crystallographer’s goal is to find (b) the positions of all the proteins
atoms. Alternatively, (c) a backbone trace, provides the location of a key carbon atom called Cα that
is in each amino acid.

 

 

H N 

H 

C  

H 

C  

O 

CH 2 

OH  

N 

H 

C  

H 

C  

O 

CH  

H3C  

N 

H 

C  

H 

C  

O 

CH 2 

S H C H3 

OH 

Amino end 
(N -terminus) 

Carboxyl end 
(C -terminus) 

Peptide  
bond 

Sidechains 

Backbone 

Alpha  
carbon 

Amino acid residue 

Figure 4. Proteins are constructed by amino
acids condensing into a polypeptide chain. A
chain of three amino acids is illustrated.

hundreds to thousands of amino acids, and the density map
“image” usually contains more than one copy of the protein.

Figure 5 shows our encoding of a protein as a Markov
field model. Each node s represents an amino-acid in the
protein. The label ws = {xs, qs} for each amino-acid con-
sists of seven terms: the 3D Cartesian coordinates xs of the
amino acid’s Cα, and four internal parameters qs. These
four internal parameters are an alternate parameterization
of: (a) three 3D rotational parameters plus (b) the bend an-
gle formed by three consecutive Cαs. Probability distrib-
utions over Cartesian space make use of the Fourier-series
based parameterization outlined in Section 4.2. The inter-
nal parameters qs are modeled as constant-width Gaussians
conditioned on the Cartesian coordinates, that is, b̂s(qs) =
N (qs|µi

s(xs),Λ), i = 1 . . . 4.
A recent paper by this paper’s authors [2] describes how

protein-specific structural and observation potential func-
tions are learned; it also compares this method to other algo-

ALA GLY LYS LEU ... ... 

Figure 5. Our protein part graph. The proba-
bility of some conformation is the product of
an observation potential, a sequential poten-
tial (dark lines), and an occupancy potential
(light lines).

rithms for map interpretation. However, this previous work
did not present the results shown here; nor did it describe
our message approximations and aggregation. Before de-
scribing our new contributions, we briefly review the poten-
tial functions for electron density map interpretation that we
introduced in our prior article, and use in our experiments
in this paper.

Each node’s potential function ψs(ws, y) is computed by
matching a learned set of small-protein-fragment templates
to the electron density map. Details of this potential func-
tion are beyond the scope of this paper, but appear else-
where [2]. Edge potential functions are of two basic types.
Sequential edges connect adjacent amino acids; the corre-
sponding potential ψseq

st (ws, wt) ensures that these adjacent
amino acids are the proper distance apart and in the proper
orientation with respect to each others. This proper dis-
tance and orientation is learned from a set of previously-
solved protein structures. Occupancy edges connect all
other pairs of amino acids, and the corresponding poten-
tial ψocc

st (xs, xt) ensures two amino acids do not occupy the
same space.

As the graph is fully connected, and the messages are

7



0

5

10

15

20

25

30

15 25 35 45 55 65 75 85 95

protein fragment length

N
o

rm
al

iz
ed

 C
PU

 t
im

e

0

10

20

30

40

N
o

rm
al

iz
ed

  M
em

o
ry

BP CPU time
AggBP CPU time
BP memory
AggBP memory

Figure 6. A comparison of memory and CPU
time usage between our approximate-BP and
standard BP.

continuous three-dimensional probability distributions over
the entire unit cell, storage and run-time requirements are
considerable. We use the AggBP’s message aggregation
and approximation outlined in Section 4.1. Without these
shortcuts, inference in even medium-sized proteins would
be computationally intractable.

5.1.2 Results

This section details some experiments locating protein frag-
ments in electron density maps. These maps were provided
to us by crystallographer George Phillips, at UW-Madison.
We convoluted the maps with a Gaussian to simulate a poor-
quality (3Å resolution) density map: a resolution at which
other automated interpretation methods fail. The maps had
been previously solved by a crystallographer, giving us the
“true” solution with which to compare our predictions. For
a given protein, we were provided the sequence, and we
constructed a Markov field based on this sequence.

We compare standard BP inference (exact-BP) to AggBP
on this Markov field model. Exact-BP was unable to scale
to the entire protein (as many as 500 amino acids in our
testset), so to compare these two methods we consider pro-
tein fragments of between 15 and 65 amino acids. CPU
time per iteration and memory usage of the two techniques
are illustrated in Figure 6. Because the actual running-time
and memory usage is dependant upon the size of the density
map, we normalize these values, so that exact-BP’s time and
memory usage at 15 amino-acids is 1.0 (in an average-sized
protein, these values are 200 MB and 120 sec, respectively).
We increase fragment length until our 6 GB machine began
paging; Figure 6 does not include time swapping to disk;
however, in larger fragments this is a serious issue.

At each of six fragment lengths, we searched for 15 dif-
ferent fragments of that length from 5 different proteins (in
5 different electron-density maps), for a total of 90 different
target fragments. Fragments were chosen that roughly cor-
responded with the beginning, middle, and end of each pro-
tein chain. We ran BP and AggBP until convergence or 20
iterations (where one iteration is a single forward or back-
ward pass through the protein). In each map, we reduced
the electron density map to a small neighborhood around
each fragment, then searched for that fragment. Using this
reduced density map is a more-realistic model of searching
for a complete protein.

Results from this experiment appear in Figure 7. We plot
three different metrics – RMS deviation and log-likelihood
of the maximum-marginal interpretation (i.e. the predicted
backbone trace), as well as average KL-divergence [12] be-
tween the marginal distributions – as a function of itera-
tion. As these plots show, the solutions found by these
two methods differ somewhat, however, in terms of error
versus the true trace, both produce equally accurate traces.
More interestingly, Figure 7b shows the log-likelihood of
the maximum-marginal interpretation. Under this met-
ric, AggBP produces a better solution; perhaps because
AggBP’s approximation avoids overfitting the data. Fig-
ure 7d shows the RMS error as a function of protein-
fragment length. Not surprisingly, both methods seem to
perform slightly worse when searching for longer frag-
ments; still, the predicted structure is fairly accurate – con-
sidering the quality of the maps – with an RMS error of
under 4Å.

Finally, a scatterplot of log-likelihoods, where each of
the 90 fragments is represented as a point, is illustrated in
Figure 8. In this figure, points below the diagonal corre-
spond to fragments on which our AggBP produced a more-
likely interpretation. For almost every fragment, AggBP
produces a solution with a greater log-likelihood than does
standard BP. This difference is statistically significant; a
two-tailed, paired t test gives a p value of 0.014.

5.2 Synthetic object recognition

While the protein fragment identification testbed shows
the CPU and memory savings achievable by our algorithm,
it uses a rather limited part topology: the skeletal structure
is just a linear chain, and each part is a constant distance
apart. In this section, we construct a synthetic object gener-
ator, that builds “part graphs” with varying branching fac-
tors, object sizes, and object “softness.” We also explore
approximation performance under various part-finder accu-
racies.

8



-1200

-1100

-1000

-900

-800

-700

-600

0 5 10 15 20

BP iteration

AggBP
BP 

0

2

4

6

8

10

0 5 10 15 20

BP iteration

C
-a

lp
h

a 
RM

S 
d

ev
ia

ti
o

n

true vs. AggBP

BP vs. AggBP

0

2

4

6

8

10 20 30 40 50 60 70

protein fragment length

C
-a

lp
h

a 
RM

S 

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20

BP iteration

B
P 

vs
. A

g
g

B
P 

K
L-

d
iv

er
g

en
ce

(a) (b)

(c) (d)

true vs. BP

true vs. AggBP

BP vs. AggBP

true vs. BP

lo
g

 li
ke

lih
o

o
d

Figure 7. A comparison of our BP approximation with standard BP as the algorithm progresses,
using (a) RMS deviation, (b) average KL-divergence of the predicted marginals, and (c) log-likelihood
of the maximum-marginal interpretation. Additionally, (d) shows RMS error as a function of protein
fragment size (at iteration 20).

5.2.1 Object generator

We have developed a synthetic object generator to better
understand how well AggBP works over the range of pos-
sible tasks locating 3D objects composed of interconnected
parts. This object generator lets us vary the graph topol-
ogy and individual part parameters, as in Figure 9. The
generator constructs objects with a predefined number of
parts, arranged in a tree-structured skeleton. Given some
branching factor, the skeleton is randomly assembled from
the parts. As before, all pairs of nodes not connected in
this skeleton are connected with edges enforcing occupancy
potentials, which ensure two parts do not occupy the same
three-dimensional space.

Each part in the model is given a radius ri ∈ r and a soft-
ness si ∈ s, from which the structural potential functions
are derived. Pairs of parts directly connected in the skeleton
maintain a distance equal to the sum of their radii. Other
pairs may not occupy the same 3D space: they should be
at least as far apart as the sum of their radii, although they

may get closer than this distance as softness increases. This
softness parameter allows these part pairs to get slightly
closer than the sum of their radii with some low probability.
Specifically, the softness parameter replaces the occupancy
potential’s step function with a sigmoid. For non-zero soft-
ness, then, the probability distribution of the distance d be-
tween two parts i and j, with radii ri and rj , and softness si

and sj , is given by:

pij(d) =
1

1 + exp
(
−(d−(ri+rj))

si·ri+sj ·rj

) (14)

Our testbed generator also generates observation poten-
tials ψobs, that is, the probability distribution of each part’s
location in 3D space. These would normally be generated
by some type of pattern matcher in a 2D or 3D image. Our
algorithm’s generator assumes we have a classifier that –
given a location in 3D space – returns a score. Shown
in Figure 10, scores are drawn from one of two distribu-
tions: at the true location of a part, the score for that part is

9



-2000

-1500

-1000

-500

0

-2000 -1500 -1000 -500 0

AggBP log-likelihood

B
P 

lo
g

 li
ke

lih
o

o
d

15-mers
25-mers
35-mers
45-mers
55-mers
65-mers

Figure 8. A scatterplot showing – for each of
the 90 target fragments – the log likelihood
of AggBP’s trace versus the standard BP’s
trace. Points below the diagonal correspond
to fragments where AggBP returned a more
likely solution.

vary radii

increase
branching factor

allow spatial 
overlap

Figure 9. An illustration of the three graph
topology parameters we vary using our graph
generator.

drawn from one distribution, at any other location the score
is drawn from another distribution.

For simplification, we assume both distributions are
fixed-width Gaussians with different means. Varying the
difference in means results in classifiers with varying accu-
racy. Given this difference in means, then, we generate each
part’s observation potential by drawing scores at random
from these two distribution. Assuming the distributions are
known, scores are converted into probabilities using Bayes’
rule.

A specific width µ corresponds to a single part classi-
fier, with some accuracy. In the remainder of this section,
we report not this value for µ, but rather the area under the
precision-recall curve (AUPRC) which it – along with the

µ

positive score
distribution

negative score
distribution

score

P

Figure 10. Observation potentials are gener-
ated by drawing scores from two distribu-
tions. The parameter µ is directly related to
each part-classifier’s accuracy.

number of positive and negative examples – induces. For
example, in a 40x40x40 grid, µ = 3.85 corresponds to an
AUPRC of 0.3.

5.2.2 Results

We used our generator to vary four different parameters in
the model (default values are shown in parentheses):

• branching-factor: the average branching factor in the
skeleton graph (default = 2)

• softness: each part’s softness (default = 0.0)

• σ(radius): the standard deviation of radii in the graph
(default = 0)

• µ: the difference in means between the positive score
distribution and negative score distribution. We report
this value as the area under the associated classifier’s
precision-recall curve. (default area = 0.3)

In every graph, the average part radius was fixed (at 1 grid
point), and each model was constructed of 100 parts.

We used our object recognition framework to search for
the optimal layout of parts, given some generated object
and observation potentials. As in the previous section, we
used both standard belief propagation as well as AggBP,
and compared the results. We assumed that part parame-
ters – radius and softness – were known (or learned) by the
algorithm. For both AggBP and standard BP, we ran until
convergence or 20 iterations. Standard BP occasionally did
not converge; in these cases, we took the highest-likelihood
solution at any iteration. At each parameter setting, we
compute the average error using 20 randomly generated part
graphs.

Results from this experiment appear in Figure 11. For
each of the four varied parameters we plot the RMS error (a)
between standard BP and ground truth, (b) between AggBP
and truth, and (c) between AggBP’s solution and standard

10



0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5

branching factor

RM
S 

Er
ro

r

true vs. BP
true vs. AggBP
BP vs. AggBP

0.0

0.5

1.0

1.5

2.0

2.5

0 0.2 0.4 0.6 0.8

softness

RM
S 

Er
ro

r
0

1

2

3

4

5

0 1 2 3 4

standard-deviation(radius)

RM
S 

Er
ro

r

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4

classifier AUPRC

RM
S 

Er
ro

r

(a) (b)

(c) (d)

Figure 11. A comparison of our BP approximation with standard BP using the synthetic object
generator. While holding other parameters fixed, we vary (a) skeleton branching factor, (b) part
softness, (c) radius standard deviation, and (d) classifier AUPRC. We report the RMS error of our
algorithm (AggBP) and standard BP (BP) against each other as well as ground truth.

BP’s. Runtime and memory usage is almost identical to the
previous experiment.

For two of the varied parameters – graph branching fac-
tor and classifier AUPRC (Figures 11a and 11d) – the so-
lutions returned by the two methods are of comparable ac-
curacy. Even though the solutions themselves may be quite
different, they are both equally close to ground truth. Fig-
ure 11c shows that our algorithm performs reasonably well
as the radii of the model’s parts are varied more and more.
The performance of the two algorithms is similar until the
standard deviation of part radii is increased to three times
the radius. Larger variations could be handled by clustering
objects into multiple groups based on radius, approximating
messages to each group.

The most interesting result, however, is that in Fig-
ure 11c, where the object softness is varied. Increasing ob-
ject softness allows two objects to move closer than would
normally be allowed with some low probability. Here, for
any non-zero softness, AggBP finds a more accurate solu-
tion than standard BP. The reason for this in unclear, how-
ever, it may be due to feedback introduced by this softness,

that is dampened by our approximation. When running with
a non-zero softness, standard BP fails to converge quite of-
ten, giving some support to the idea that our approximation
is dampening some feedback loops.

Log likelihood plots, not shown for our synthetic experi-
ments, are very similar to the error plots. These experiments
show that our method is clearly valid for a wide variety of
model parameters and part topologies. In a large majority
of the synthetic experiments, AggBP produced an interpre-
tation that was as good or better than standard BP, in a small
fraction of the time.

6 Conclusions and Future Work

We describe a part-based, 3D object recognition frame-
work, well suited to mining detailed 3D image data. We in-
troduce AggBP, a message approximation and aggregation
scheme that makes belief propagation tractable in large and
highly connected graphs. Using a message-approximation
similar to that of mean-field methods, we reduce the num-
ber of message computations at a single node from many

11



to just a few. In the fully connected graphs used by our
object-recognition framework, we reduce the running time
and memory requirements for an object with N parts from
O(N2) to O(N ). Additionally, we describe an efficient
probability representation based on Fourier series. Exper-
iments on a 3D vision task arising from x-ray crystallogra-
phy shows that using these improvements produce solutions
as good or better then standard BP. Synthetic tests show that
AggBP is accurate under a variety of object types with var-
ious part topologies, almost always producing a solution as
good or better than standard BP.

It is unclear why AggBP should sometimes produce
more-accurate results than standard BP. Our approximate-
message computation ignores a term that serves to avoid
feedback, and makes the method exact in tree-structured
graphs. However, in graphs with loops, such feedback is un-
avoidable (through the loops of the graph). For some types
of edge potentials, ignoring this term produces a more-
accurate approximation, perhaps by dampening some of
these feedback loops inherent in loopy belief propagation.
Further investigation into this is needed.

In the future, we would like to take a more dynamic ap-
proach to message aggregation. For example, in the pro-
tein backbone-tracing task, AggBP’s approximation error is
highest along edges connecting amino acids that are nearby
in space. If we could accurately predict which amino acids
are close (in space) as BP iterates, we could precisely com-
pute messages between these pairs of nodes, and approxi-
mately compute messages along other edges.

The results using AggBP illustrate our techniques are
useful in the automatic interpretation of complex 3D im-
age data. The shortcuts we introduce drastically increase
the size of problems on which BP is tractable. In one real
and one synthetic dataset, we produces accurate results with
significant CPU and storage savings over standard BP. Our
algorithm appears to be a powerful tool for mining large
images.

Acknowledgements

This work is supported by NLM grant 1R01 LM008796 and
NLM Grant 1T15 LM007359.

References

[1] J. Coughlan and S. Ferreira. Finding deformable
shapes using loopy belief propagation. Proc. ECCV.

[2] F. DiMaio, J. Shavlik and G. Phillips (2006). A prob-
abilistic approach to protein backbone tracing in elec-
tron density maps. Proc. ISMB.

[3] A. Doucet, S. Godsill and C. Andrieu (2000). On se-
quential Monte Carlo sampling methods for Bayesian
filtering. Statistics and Computing.

[4] P. Felzenszwalb and D. Huttenlocher (2000). Efficient
matching of pictorial structures. Proc. CVPR

[5] P. Felzenszwalb and D. Huttenlocher (2004), Efficient
belief propagation for early vision. Proc. CVPR.

[6] B. Frey (1998). Graphical Models for Machine Learn-
ing and Digital Communication. MIT Press.

[7] T. Heskes (2004). On the uniqueness of loopy belief
propagation fixed points. Neural Comp., 16.

[8] A. Ihler, E. Sudderth, W. Freeman, and A. Willsky
(2004). Efficient multiscale sampling from products of
gaussian mixtures. Proc. NIPS.

[9] M. Isard (2003). PAMPAS: Real–valued graphical
models for computer vision. Proc. CVPR.

[10] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul
(1999). An introduction to variational methods for
graphical models. Machine Learning.

[11] D. Koller, U. Lerner, and D. Angelov (1999). A gen-
eral algorithm for approximate inference and its appli-
cation to hybrid Bayes nets. Proc. UAI.

[12] S. Kullback and R. Leibler. On information and suffi-
ciency. Annals of Mathematical Statistics.

[13] D. MacKay and R. Neal (1995). Good codes based on
very sparse matrices. Cryptography and Coding: 5th
IMA Conference.

[14] K. Murphy, Y. Weiss, and M. Jordan (1999). Loopy
belief propagation for approximate inference: An em-
pirical study. Proc. UAI.

[15] J. Pearl (1988). Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufman, San Mateo.

[16] G. Rhodes (2000). Crystallography Made Crystal
Clear. Academic Press.

[17] B. W. Silverman (1986). Density Estimation for Sta-
tistics and Data Analysis. Chapman & Hall.

[18] E. Sudderth, A. Ihler, W. Freeman, and A. Will-
sky (2003). Nonparametric belief propagation.
Proc. CVPR.

[19] E. Sudderth, M. Mandel, W. Freeman, and A. Will-
sky (2004). Visual hand tracking using nonparametric
belief propagation. MIT LIDS Technical Report 2603.

[20] S. Tatikonda and M. Jordan (2002). Loopy belief prop-
agation and Gibbs measures. Proc. UAI.

[21] Y. Weiss (1996). Interpreting images by propagating
Bayesian beliefs. Proc. NIPS.

[22] Y. Weiss (2000). Correctness of local probability prop-
agation in graphical models with loops. Neural Comp.,
12.

[23] Y. Weiss and W. T. Freeman (2001). Correctness of
belief propagation in Gaussian graphical models of ar-
bitrary topology. Neural Comp., 13.

[24] J. Yedidia, W. Freeman and Y. Weiss (2005). Con-
structing free-energy approximations and generalized
belief propagation algorithms. IEEE Trans. on Infor-
mation Theory.

12


