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Abstract 

One of the most time-consuming steps in determining a protein's structure via x-ray crystallography is 
interpretation of the electron density map.  This can be viewed as a computer-vision problem, since a 
density map is simply a three-dimensional image of a protein.  However, due to the intractably large space 
of conformations the protein can adopt, building a protein model to match in the density map is extremely 
difficult.  This paper describes the use of pictorial structures to build a flexible protein model from the 
protein's amino acid sequence.  A pictorial structure is a way of representing an object as a collection of 
parts connected, pairwise, by deformable springs.  Model parameters are learned from training data.  Using 
an efficient algorithm to match the model to the density map, the most probable arrangement of the 
protein's atoms can be found in a reasonable running time.  We test the algorithm is on two different tasks.  
The first is an amino-acid sidechain-refinement task, in which the location of the protein's backbone is 
approximately known.  The algorithm places the remaining atoms into the region of density quite 
accurately, placing 72% of atoms within 1.0 Å of their actual location (as determined by a 
crystallographer).  In the second task, a classification task, the algorithm is used to predict the type of 
amino acid contained in an unknown region of density.  In this task, the algorithm is 61% accurate in 
discriminating between four different amino acids. 

Introduction and Background 

A fundamental problem in molecular biology involves the determination of a protein’s shape.  
Known as the protein’s folding, the protein sequence alone usually determines its shape.  The 
issue is important because knowing a protein’s structure provides great insight into the 
mechanisms in which that protein is involved.  Knowledge of these mechanisms is needed for 
disease treatment or drug development.  Additionally, knowing the structure of a protein allows 
biologists to get one step closer to the "holy grail" – a direct mapping from sequence to structure.  
In the current state of structural biology, no algorithm exists that accurately maps sequence to 
structure, and one is forced to use “wet” laboratory methods to elucidate the structure of proteins. 
The most common technique in use today for determining the structure of proteins is x-ray 
crystallography, a complex experimental technique that allows molecular-scale visualization.  
The process is quite time-consuming, and requires a number of steps before a protein’s structure 
can be determined.  With the large research effort recently put into high-throughput structural 
genomics [1], speeding up this tedious process is increasingly important.  Our work looks to 
speed up the process of x-ray crystallography by automating interpretation of the electron density 
map, that is, taking the three-dimensional image of the protein and finding the corresponding 
atomic coordinates. 



The process by which x-ray crystallography is used to determine a protein’s structure is very 
complex.  First, the protein needs to be produced in significant quantities, purified, and 
crystallized.  The crystal must then be placed in an x-ray beam.  The diffraction pattern of x-rays 
through the crystal is collected and processed, producing the protein’s electron density map.  
This map is nothing more than a three-dimensional snapshot of the protein.  This map details the 
actual structure of the protein.  However, it is in such a large, unwieldy format, that it is all but 
useless.  To make this data usable by biologists, some core information – the protein's atomic 
coordinates – needs to be extracted. 

Thus, the final step in the crystallographic process is interpreting this map and building a 
molecular model of the protein.  Once the crystals have been prepared, map interpretation is the 
most time-consuming step in the subsequent analysis.  For most proteins this interpretation is 
performed manually, although a number of attempts have been made at automated density map 
interpretation [2,3,4,5,6].  The amino-acid sequence of the protein is known in advance.  This 
gives the complete topology of the protein for which we are searching.  The main difficulty in 
interpretation is the large number of possible conformations a protein can adopt, and the 
similarity of "features" in the map, where each atom appears as a Gaussian blob, with little 
distinction between atoms of different elements [7].   The fact that the protein's conformation 
may involve free rotation about any single bond leads to an extremely large conformation space.  
This makes building a model of the protein to match to the density map extremely difficult. 

We describe a computational framework for building a flexible model of a protein, given the 
protein's sequence, and the electron density map.  An overview of our algorithm is shown in 
Table 1.  Pictorial structures [8] allow the representation of an object as a collection of parts, 
which are linked, pairwise, by deformable spring-like connections.  Each connection defines the 
relationship between the two parts it connects.  When building an atomic model, the connections 
correspond to covalent bonds.  The relationships they define maintain the "bond invariants" (e.g., 
interatomic distance, bond angles), while allowing the "bond variable" (torsion angle) to freely 
vary.  This model allows one to model arbitrary-sized protein fragments.  A recent dynamic 
programming-based matching algorithm of Felzenszwalb and Huttenlocher (hereafter referred to 
as Felz-Hut) [9] allows pictorial structures to be quickly matched into a two-dimensional image.  
Their matching algorithm finds the globally optimal position and orientation of each part in the 
pictorial structure, by making some simplifying assumptions concerning independence of parts 
and connections.  A simple "face" pictorial structure is shown in Figure 1. 

In the pictorial structure model, the parts and (pairwise) connections form a graph , ),( EVG =
where vvv ,,, K=V  is the set of parts, and an edge { } E∈ijen21  connects neighboring parts vi and 

Given:  Amino-acid sequence of protein seq, electron density map densityMap 
Predict:  Atomic coordinates of the protein in the density map 
 
Algorithm: 

PS ← build pictorial structure from sequence seq 
bestMatch ← run Felz-Hut algo to find match for PS in densityMap 
 
while illegal_structure(bestMatch) 

bestMatch ← run soft-max algo to heuristically find non-optimal match
 

return (bestMatch) 

Table 1: A high level outline of our algorithm. 
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elz-Hut matching algorithm places several additional limitations on the topology of the 
v Random Field, and on the form that the deformation cost function dij must take.  First, 

RF defined by the pictorial structure must be tree structured; cyclic constraints are not 
d.  Secondly, the deformation cost function must take the following form, since the Felz-

uickly computes the minimization step in the DP algorithm as a distance transform in 
ace: 

)()(),( llll TTd −= . jiji jiijij

 preceding, Tij and Tji are some arbitrary functions and ⋅  is some norm (i.e., distance 
).  Under these conditions, the Felz-Hut matching algorithm can find the globally optimal 
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res.  They have been used in recognizing faces [8,10], general scenes, such as a waterfalls 
 

uration of parts in linear time (with respect to the numb  of configurations considered

ber of different objects have been located into two-dimensional images using pictorial 

untains [11], cars, and bodies [9].  Felzenszwalb and Huttenlocher's paper also discusses
oad classes of connections: flexible revolute joints and prismatic joints.  They provide 
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definitions for both classes of connection functions dij (and Tij).  In building a general-purpose 
molecule recognition framework, we construct another class of connection, the screw-joint.  
Unlike previous work, this type of connection relates two objects in three-dimensional space.  
The screw-joint, based upon the rotation about a covalent bond, allows free rotation only arou
a single axis. 

Building a F

nd 

lexible Atomic Model 

 vision; given a three-dimensional image of a large 
molecule and the topology (i.e. amino-acid sequence) of that molecule, find a molecular model 
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seeing a certain configuration of that molecule.  Ideally, our deformation cost function would be 

o do so 
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interactions.  We can then build a pictorial structure model such that each part in the model 

er to 

 allow low-cost rotation about (most) bonds, while steeply 
penalizing any other rotation or translation.  In order to do this, we introduce another broad class 

 

cted 
version of the MRF.  Since the MRF is constrained by the fast matching algorithm to take a tree 

Our task is basically a problem in computer

of the protein.  That is, for each atom within the protein, determine the (Cartesian) coordinates o
the center of that atom.  The method we describe attempts to find these atomic coordinates by 
building a pictorial structure corresponding to the protein, then uses the Felz-Hut matching 
algorithm to find the most probable location of the atoms of the protein.   

We first focus our efforts on the deformation cost of the molecule, that is, 

the inverse of the atomic potential function, since molecule configurations with lower potential 
energy are more probable.  However, the atomic potential function is a very complicated 
expression that takes into account both bonded and non-bonded interactions.  Although this 
expression can be roughly approximated as a sum of pairwise potentials, it is impossible t
in a manner that maintains the tree-structured MRF that the fast matching algorithm requires

Alternatively, what we have done is to create a simplified atomic model by ignoring non-bonde

corresponds to an atom in the protein.  Each connection, then, corresponds to a covalent bond.  
Knowing the protein's sequence in advance makes construction of the model trivial.  When 
matching this model, the configuration we assign to each part consists of six parameters: three 
translational, and three rotational.  The rotational parameters are Euler angles, which we ref
as (α, β, γ ), where α is a rotation about the z-axis, β is a rotation about the x-axis, and γ  is 
(another) rotation about the z-axis. 

In this simplified model, we want to

of connection, the screw-joint.  Much like a rotating screw, the screw joint only allows rotation 
about a single axis.  In order to simplify the cost function specification, we always consider this 
axis of rotation to be the z-axis.  Since our matching algorithm considers all possible orientations
of each part, this does not limit the model; instead, it requires all parts in the model to first be 
rotated into a canonic orientation in which the corresponding axis of rotation is the z-axis.   

In the atomic model, defining the relationship between parts involves first considering a dire

structure, an arbitrary root can be chosen.  Then a directed graph corresponding to the MRF can 
be constructed such that every edge points up the tree, toward the root node.  Each edge now 
concerns the relationship of a parent and a child.  The deformation cost of each edge can be 
defined in terms of three parameters stored at each edge, T),,( ijijij zyx=ijxv .  These three 
parameters define the optimal translation between parent and child, in the coordinate system of 
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the parent.  The model learns these parameters using a tec be discussed la
Since the z-axis is axis of free rotation, we rotate the child such that its +z axis is coincident with

ijxv  in the parent's coordinate frame.  Figure 2 presents this graphically. 
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In the preceding,  is the rotation of the bond parameters  to world 
coordinates, i.e.,  

e rotation matrix corresponding to Euler angles 
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There are several important things to note about the previous expre stssion.  Fir , the complicated 
expressions in the β and γ  terms are trigonometric relationships defining the optimal orientation 

 

are wi

nfiguration cost of the model is specified, the match function needs to be 
constructed.  This match function provides the probability of seeing a certain part at a specified 

 image 

of each child: pointing up the parent’s bond.  Second, in the above equation,  rotate
ijw  is the cost of

rotating about a bond, orient
ijw  is the cost of rotating around any other axis, and translate

ijw  is the cost 
of translating in x, y or z.  For the screw-joint model, we set the weights such t rotate

ij  is low, 
while orient

ijw  and transla
ijw  high.  This gives a high cost to any configuration ovements 

other than bond rotations.  The definitions of )( ilijT  and )( jljiT  follow straightforwardly from 
this de n. 

Now that the co

hat w
te  th m

finitio

location in the image.  Empirical evidence suggests setting the cost of placing a part in the
to the Euclidean distance between a local neighborhood in the image and a 3x3x3 template.  We 
learn the template during a model-training process (described later). 

vi 

vj
(x',y',z')

,γi)

(β

(βi

j,γj) (xi,yi,zi) 

(xj,yj,zj)

αj

αFigure 2: Showing the screw-joint 
connection between two parts in the 

i 

 

's ideal 

model. In the directed version of the
MRF, vi is the parent of vj.  By 
definition, vj is  oriented such that its 
local z-axis is coincident with it
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Once we construct the model, the parameters for the model – including the optimal orientation 
ijxv  corresponding to each edge, and the template for each part – are learned by training the 

model on a crystallographer-determined structure.  Learning the orientation parameters is fairly 
simple: we rotate each atom into a canonic orientation.  In this orientation, the parent bond is in 
the +z direction.  For template averaging, to avoid averaging out useful features, we also require 
that the first child bond be pointed in the +x direction in the x-y plane.  If there is no child of this 
atom, we don't worry about the second rotation.  For the root, we specify a child that is rotated 
into the +z direction instead; the other child (if one exists) becomes the +x direction.  Then, for 
each child of this atom, we record the distance r and orientation (θ,φ) in the canonic orientation.  
We average over all atoms of a given type in our training set – e.g., we average over all lysine 
Cβ’s – to determine average parameters ravg, θavg, and φavg.  Converting these averages from 
spherical to Cartesian coordinates gives precisely the ideal orientation parameters ij .  A similar 
rotation into canonic orientation is employed when learning the model templates; in this case, the 
algorithm simply samples a 3x3x3 neighborhood around the atom and averages each of the 27 
points over all atoms of a given type in out training set.  It is important to note that the 
supervised learning algorithm should train on data with a similar resolution to the test data!  
Figure 3 shows an overview of the learning process. 

xv

For each part in the model, the matching algorithm searches through a six-dimensional 
conformation space ),,,,,( γβαzyx .  We consider breaking each dimension into a number of 
discrete bins.  The translational parameters x, y, and z are allowed to range over a region in the 
unit cell, the rotational parameters range such that )2,0[ πα ∈ , ],0[ πβ ∈ , and )2,0[ πγ ∈ . 

One issue that arose in our implementation involved matching amino acids with rings.  Several 
amino-acid topologies include cycles.  This presents a problem for our fast matching algorithm, 
which requires an acyclic graph.  However, this is not really a problem as all the rings can be 
treated as rigid objects.  While not entirely true (proline's ring has a somewhat variable "pucker" 
to it), this approximation is close enough for this application.  By disallowing rotation about ring 
bonds, we can ignore one bond in the ring without letting the split ring freely flop around. 

A much more difficult issue that arose involved collisions.  Occasionally, the matching algorithm 
would return a structure with overlapping atoms, or atoms so close together, the structure could 
not have possibly occurred physically.  Since such a structure corresponds to the global optimal 
configuration of parts in this simplified model, it is not clear how to handle this case.  What we 
have opted to do is to explore the space of non-optimal solutions via "soft maximums".  In the 
Felz-Hut dynamic program, when considering all possible child locations, instead of taking the 
maximal scoring (minimal cost) location, we take a location that scores x, with probability 

∑ −
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i

x

x

i
xP 22
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e
e)(

σ

σ

 (where the denominator sums over all possible choices). 

The parameter σ controls the softness of the maximum, i.e., the likelihood of a non-optimal 
solution.  Our algorithm repeats the soft-maximum process with softer and softer maximum until 
a legal structure is found.  The legal structure may not be the correct structure, though, it only 
means that it is physically possible.  Additionally, using soft maxima leads to quadratic running 
time rather than the original DP algorithm's linear runtime.  However, by "pruning" candidate 
locations that are clearly impossible, the actual performance degradation is acceptable. 
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Experimental Studies 

We built pictorial-structure models for 4 of the 20 amino acids (alanine, valine, tyrosine, and 
lysine), and learned the parameters using a single 1.7 Å resolution protein as our training set.  A 
single 1.9 Å resolution protein served as our test set.  Both proteins structures had already been 
elucidated by crystallographers, allowing us to compare our results to the "correct" mapping.  As 
a simple experiment, we tried locating a single amino acid within a 10 Å diameter sphere of 
density.  We chose these spheres such that they completely contained the entire amino acid for 
which we were searching.  To avoid (possibly correctly) matching the wrong region in the 
density map, we assumed that we are given a 2.0 Å sphere in which each alpha carbon (one of 
the backbone atoms) is known to exist.  

Within this 10 Å sphere, we considered a 0.5 Å grid on which each atom must be centered.  
While fairly crude, refinement techniques could later be used to fine tune the coarsely solved 
structure.  We considered 12 bins in α, 7 bins in β, and 12 bins in γ.  Running time varies based 
on the size of the amino acid for which we are looking, but on a 2.25 GHz Pentium IV, it took 
about 30 seconds to find the globally optimal location.  Using soft maximums took about 90 
seconds for each additional non-optimal solution. 

Our first task looked at, given a region of density and the type of amino acid contained within, 
how closely could we place the atoms to the actual atom locations.  We ran the pictorial-structure 
matching algorithm on every instance of each of the four amino acids for which we had models.  
We then compared, among the 599 atoms placed, the distance between the predicted and actual 
distance.  Figure 4 shows the accuracy with which atoms were placed.  The curve in this figure 

Figure 2: An overview of the parameter-learning process.  For each atom of a given type – in this 
case alanine Cα – we rotate the atom into a canonic orientation, where the parent bond is located 
in the +z direction, and the first child is in the +x direction in the x-y plane.  We then average over 
every atom of that type to get an average template and average bond geometry. 

O 

N N 

O 

C

Cα

N

Cβ
N 

C-1 Cα 

C Cβ 

O N+1

Averaged 3D Template

Averaged Bond Geometry

Canonic Orientation

Alanine Cα C

N

Cα Cβ 

r  = 1.51 
θ  = 118.4°
φ  = -19.7°r  = 1.53 

θ  = 0.0° 
φ  = -19.3°

 7



0

0.2

0.4

0.6

0.8

1

0 2 4 6 8
placement accuracy (Angstroms)

fra
ct

io
n 

of
 a

to
m

s

Figure 3: Amino 
acid placement 
accuracy.  This plot 
shows the fraction 
(y-axis) of atoms 
that were placed 
with the specified 
accuracy (x-axis) or 
better. 

shows the fraction of atoms that were placed with at least the corresponding accuracy.  As the 
plot shows, 30% of atoms were placed within 0.5 Å, 72% within 1.0 Å, and 93% within 2.0 Å. 

While this result seems quite good, it does not allow for a very meaningful comparison to other 
methods.  Hence, we also used the pictorial-structure model for an artificial discrimination task.  
Given the same spheres of density as before, we did not provide the matching algorithm the 
amino acid type contained within.  Instead, the algorithm matched each of the four pictorial 
structures into the image, normalized the score, and returned the type of the highest-scoring 
model.  Table 2 shows a confusion matrix for this prediction task. 

As Table 1 shows, the algorithm does not do a particularly good job on the discrimination task, 
scoring 61% accuracy.  These four amino acids vary quite wildly, however, and with quite good 
1.9 Å data, the predictive accuracy should be somewhat better.  This task is an artificial one, 
though; the algorithm is designed to place a known molecule into a region rather than predict the 
contents of a region. 

Finally, Figures 5 and 6 show our algorithm's output for several good (Figure 5) and bad (Figure 
6) matches.  In cases where the match the pictorial structure matching algorithm found was poor, 
usually the quality of the density map was poor as well.  In some cases the correctness of the 
crystallographer's solution is uncertain. 

Related Work 

A number of attempts have been made in the past several decades to automate the interpretation 
of electron density maps.  By far the most successful is ARP/wARP [4,5].  The rather proprietary 
technique involves placing and moving atoms in the density map randomly, until they do a 
sufficiently good job of explaining the density observed.  By using this Monte Carlo approach 
multiple times, and averaging the output, the results are quite good.  This method has been used  

         
     actual   

    ala lys tyr val  
   ala 7 0 0 2 
 lys 1 6 1 3 
 predicted 

tyr 2 7 8 2 
   val 0 1 0 9 
 

Table 2:  
Confusion 
matrix showing 
accuracy for 
the predictive 
benchmark. 
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TYROSINE

VALINE LYSINE

LYSINE LYSINE

TYROSINE 

VALINE 

Figure 4:  Some examples of good matches.  The crystallographer-determined structures are 
shown in a lighter shade, while the algorithm-determined structures are shown in a darker 
shade.  The light and dark clouds show two different contours of density.  Note that the actual 
structure shows additional atoms not in the pictorial structure. 

ALANINE 

Figure 5: Some samples of poor matches.  In all of these cases, the density map itself is of 
poor quality, bringing into question the crytallographer's interpretation. 



successfully a number of times in the past, but it has one fairly significant drawback: the density 
map must be of a fairly high resolution, about 2.5 Å or better. 
 
Two other attempts that have been made are MAID and Textal.  In MAID [6], the computer 
approaches interpretation "as a human would" – by first finding the major secondary structures, 
alpha helices and beta sheets, and then filling in the remaining regions.  Textal [7], on the other 
hand, takes a pattern-recognition approach to solving the problem.  It uses a set of fifteen 
rotation-invariant features at each of four resolutions to try to determine the type of amino acid 
contained in a certain region.  The features used are mostly statistical, looking at the deviation 
and skew, for example, of the contained densities.  Once the amino acid type is known, a 
database lookup attempts to place the atoms within the density map.  The technique was shown 
to have good results on moderate resolution (3.0 Å) data, provided it was given the locations of 
every alpha carbon, in advance.  Both of these techniques, unlike our approach, make use of a 
hierarchy of routines in order to construct a protein model. 

Finally, a fourth attempt, fffear [8] uses Fast Fourier Transforms to find secondary structures in 
poor-quality density maps.  For example, it can find alpha helices in maps with as poor as 5.0 Å 
resolution; beta sheets can be located in maps with resolutions of 4.0 Å or better.  Unlike our 
algorithm, fffear is constrained to the use of rigid templates.  None of the four approaches 
constructs a flexible atomic model in order to interpret the electron density map. 

Conclusions and Future Work 

Pictorial structures seem to be a powerful tool for building a flexible molecular model, and the 
fast matching algorithm seems to be useful at placing these models into a region of unknown 
density.  This paper extends the work of Felzenszwalb and Huttenlocher by extending the 
pictorial-structure framework to three dimensions.  It uses this framework to build a flexible 
atomic model.  However, the amount of information we assume is available – a precise 10 Å 
sphere containing the entire amino acid and knowledge of the approximate alpha-carbon 
locations – makes this method currently impractical for automated map interpretation.  
Furthermore, while the matching algorithm is quite efficient, it will not scale to an entire protein, 
which would require a pictorial structure with thousands of parts. 

We next plan to use our current approach as the refinement phase that complements a coarser 
method.  Rather than model the configuration of each individual atom, as in our current method, 
a coarser model would treat each amino acid as a single (rigid) feature, and only concern itself 
with rotations along the backbone.  This model could place large pieces of the protein at once 
into the density map on a much coarser grid.  Then, with approximate amino-acid locations and 
alpha-carbon locations, our current finer-grained algorithm could place each individual atom. 

There is also room in our current method for improvement within the matchi function.  
Algorithms like fffear [8] have had much success finding rigid templates in poor-quality maps.  
The modular nature of the matchi function in the pictorial-structure matching algorithm makes 
taking advantage of another, more powerful matching algorithm quite easy.  These 
improvements would prove an important step in development of an accurate, automated density 
map interpretation tool.
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