Appears in Machine Learning: Proceedings of the Eleventh International Conference,
W. W. Cohen & H. Hirsh, eds., Morgan Kaufmann, San Francisco, CA, 1994

Using Sampling and Queries to Extract Rules from
Trained Neural Networks

Mark W. Craven and Jude W. Shavlik
Computer Sciences Department
University of Wisconsin
1210 West Dayton St.

Madison, WI 53706
craven@cs.wisc.edu, shavlik@cs.wisc.edu

Abstract

Concepts learned by neural networks are dif-
ficult to understand because they are repre-
sented using large assemblages of real-valued
parameters. One approach to understand-
ing trained neural networks is to extract
symbolic rules that describe their classifica-
tion behavior. There are several existing
rule-extraction approaches that operate by
searching for such rules. We present a novel
method that casts rule extraction not as a
search problem, but instead as a learning
problem. In addition to learning from train-
ing examples, our method exploits the prop-
erty that networks can be efficiently queried.
We describe algorithms for extracting both
conjunctive and M-of-N rules, and present
experiments that show that our method is
more efficient than conventional search-based
approaches.

1 INTRODUCTION

A problem that arises when neural networks are used
for supervised learning tasks is that, after training, it
is usually difficult to understand the concept repre-
sentations formed by the networks. To address this
limitation, a number of approaches have been de-
veloped for extracting symbolic representations from
trained networks (Craven & Shavlik, 1993; Fu, 1991;
Gallant, 1993; Saito & Nakano, 1988; Thrun, 1993;
Towell & Shavlik, 1993). These approaches cast the
rule-extraction task as a search problem, where the
search involves finding rules that explain the activa-
tions of output and hidden units in the network. In
this paper we present a novel approach to extracting
symbolic rules from neural networks that frames the
problem not as a search task, but instead as a su-
pervised learning task. The target concept, in this
learning task, is the function computed by the net-
work. In addition to learning from training examples,

our method exploits the property that networks can
be queried. That is, they can be used to answer ques-
tions about whether specific instances are covered by
the target concept. We present experiments that il-
lustrate that our method has a significant efficiency
advantage over search-based approaches.

A concept representation learned by a neural network
is usually difficult for humans to understand because
the representation is encoded by a large number of
real-valued parameters. It is often important, how-
ever, to be able to inspect a learned concept defini-
tion. For domains such as medical diagnosis, the users
of a learning system must understand how the sys-
tem makes its decisions in order to be confident in its
predictions (e.g., Wolberg et al., in press). Learning
systems can also play an important role in the process
of scientific discovery. A system may discover salient
features in the input data whose importance was not
previously recognized. If the representations formed
by the learner are comprehensible, then these discov-
eries can be made accessible to human review (e.g.,
Hunter & Klein, 1993).

There are several existing search-based approaches for
extracting propositional if-then rules from trained net-
works (Fu, 1991; Gallant, 1993; Saito & Nakano, 1988;
Thrun, 1993). These approaches find conjunctive rules
by searching for combinations of input values that,
when satisfied, guarantee that a given unit is active,
regardless of the state of the other inputs to the unit.
A limitation of these methods, however, is that the
computational complexity of the search is exponential
in the number of input features. Since many real-world
problems involve a large number of features (e.g., La-
pedes et al., 1989; Sejnowski & Rosenberg, 1987) this
problem is a significant one. We present experiments
that demonstrate that, in some cases, our learning-
based approach requires much less computation than
do these search-based methods to get rule sets that
model networks to same degree of accuracy. Signifi-
cantly, our method is likely to be more efficient than
search-based approaches for problems that involve a
large number of features.



In contrast to methods that extract conjunctive rules,
Towell and Shavlik (1993) developed an approach for
extracting M-of-N rules from knowledge-based neural
networks.! In later work, we generalized this approach
to ordinary neural networks by employing a special
training procedure (Craven & Shavlik, 1993). The ad-
vantages of describing networks using M-of-N rules are
that the search can be made more efficient than for
conjunctive rules, and the extracted rule sets are usu-
ally more concise. We describe how our learning-based
approach can be used to extract M-of-N rules in addi-
tion to conjunctive rules. Qur learning-based approach
offers four distinct advantages over our previously-
described method for extracting M-of-N rules from or-
dinary networks: (a) it does not require a special train-
ing regime for the network, (b) it can efficiently extract
rules which describe a network to an arbitrary degree
of accuracy, (c) it does not require that hidden units be
approximated as threshold units, and (d) it does not
require that the extracted rules use an intermediate
term to represent each hidden unit.

The next section of this paper describes how rule ex-
traction has been viewed as a search problem in pre-
vious work. Section 3 introduces our learning-based
approach to rule extraction and empirically compares
it to a search-based method. Section 4 describes how
our approach can be generalized to extract M-of-N
rules from trained networks. Section 5 discusses fu-
ture work, and Section 6 provides concluding remarks.

2 RULE EXTRACTION AS
SEARCH

In this section, we briefly define the task of rule ex-
traction and then discuss previous approaches to this
task. There are two dimensions along which we char-
acterize rule-extraction methods: the strategy used to
explore a space of possible rules, and the method used
to test hypothesized rules. The work described in this
paper investigates the former dimension. In this sec-
tion, we describe how a rule space can be explored
using top-down search, and in Section 3 we describe
our bottom-up learning approach. This section also
provides a brief description of two approaches to test-
ing hypothesized rules, either of which can be used
with our learning-based approach to rule extraction.

For the purposes of this paper, we define the rule-
extraction task as follows:

Given a trained neural network and the examples used
to trawn it, produce a concise and accurate symbolic
description of the network.

We consider only domains in which the network has

Tn a knowledge-based network (Towell & Shavlik, in
press), the topology and initial weights of the network are
specified by a domain theory consisting of symbolic infer-
ence rules.

threshold =2

extracted rules: f +—a
f+——bA —c

Figure 1: A Network and Extracted Rules. The net-
work has three Boolean inputs and one Boolean output.
The rules describe the conditions under which an instance
is predicted to be a member of class f (i.e., the output unit
is active).

discrete output classes and input features that are ei-
ther Boolean or nominal valued.

Figure 1 illustrates the task of rule extraction for a
simple network. This one-layer network (i.e., a per-
ceptron) has three Boolean input features and one
Boolean output feature. Any network, such as this,
which has discrete output classes and discrete-valued
input features can be exactly described by a set of
symbolic if-then rules. The rules specify input-feature
values that, when satisfied, guarantee a given output
state. In the example of Figure 1, the rules describe
the conditions under which the output unit has an ac-
tivation of unity. The output unit’s activation, a;, is
calculated as follows:

ai:{ 1 if ijijaj>0

0 otherwise

where a; is the activation of input unit j, w;; is the
weight from unit 7 to the output unit ¢, and 6; is the
threshold of the output unit.

Several research groups have investigated rule-
extraction methods which operate by conducting a
breadth-first search through a space of possible con-
junctive rules (Fu, 1991; Gallant, 1993; Saito &
Nakano, 1988; Thrun, 1993). Figure 2 shows such a
search space for the network in Figure 1. Each node
in the space corresponds to a possible rule, and the
arcs indicate specialization relationships (in the down-
ward direction) between nodes. The node at the top
of the graph represents the most general rule (i.e. all
instances are members of the class f), and the nodes
at the bottom level represent specific instances. Un-
like an ordinary breadth-first search which continues
until a goal node is found, a rule-extraction search con-
tinues until all (or many) goal nodes (i.e., all of the
maximally-general rules) have been found.

Visiting a node in the search space involves testing the
rule that corresponds to the node to see if it accurately
describes the network. A rule is tested by considering



Figure 2: A Rule Search Space. Each node in the space
corresponds to a possible conjunctive rule for the network
in Figure 1. The top node represents the most general rule
and the nodes at the bottom represent specific instances.
(For clarity, not all nodes are labelled.)

the constraints that it places on the network’s input
and output units. For example, the rule f +— a in
Figure 1 specifies that if a has an activation of 1, then
the output unit, f, will have an activation of 1, regard-
less of the activations of b and ¢. This rule is tested by
considering the case where the undetermined features,
b and c, take on values that least support activating
the output unit. In this example, b is minimally sup-
portive when it has an activation of 0 (i.e., it is false),
and c¢ is minimally supportive when it has an activa-
tion of 1 (i.e., it is true). The rule is determined to be
true because, even when b and ¢ take on these values,
f still has an activation of 1.

Testing hypothesized rules for multilayer networks is
somewhat problematic since the relationship between
a given input and a given output is not necessarily
monotonic, but instead, may depend on the values of
other input features. In other words, changing the
activation of an input may increase the output unit’s
activation in some cases, and decrease it in other cases.
There are two basic approaches to testing rules for
multilayer networks, which we discuss below.

One approach to testing rules for a multilayer net-
work is to treat the network as a collection of per-
ceptrons, and to extract rules for each hidden and out-
put unit separately (Craven & Shavlik, 1993; Fu, 1991;
Gallant, 1993; Saito & Nakano, 1988; Towell & Shav-
lik, 1993). We will refer to this as the decompositional
approach. In this approach, the rules for each unit
are expressed in terms of the units that feed into it.
An advantage of the decompositional approach is that
it produces “intermediate terms” which may result in
simpler descriptions. A disadvantage of this method,
however, is that it requires that the hidden units of
the network be approximated by threshold units, and
thus the extracted rules may not provide an accurate
representation of the network.

The other approach to testing rules for multilayer net-
works is a technique developed by Thrun (1993) called
validity-interval analysis (VIA). Validity-interval anal-
ysis enables the extraction of rules that directly map
inputs to outputs for a multilayer network. VIA em-
ploys linear programming to determine if a set of con-
straints on a network’s activation values is consistent.
To test a rule using VIA, the rule is first negated and
then the network’s input and output unit activations
are constrained according to the negated rule. Given
these constraints, validity-interval analysis calculates
the activation range for each unit in the network. If
an inconsistency is found, the rule is determined to be
valid, since the inconsistency indicates that there is no
way to satisfy the negation of the rule.

An advantage of validity-interval analysis over the de-
compositional approach is that it does not require
that hidden units be approximated by threshold units.
However, it suffers from the drawback that it often will
not find maximally-general rules because it makes the
(sometimes incorrect) assumption that the activations
of the hidden units are independent.

The number and structure of the search spaces used
by the decompositional and the VIA approaches also
differ. The decompositional approach requires search-
ing a separate rule space for each hidden and output
unit in the network. The VIA approach, on the other
hand, involves only searching a space for each output
class. Because the decompositional approach always
deals with a single layer of a network at a time, how-
ever, its search spaces may be smaller for some prob-
lems. To see this point, consider the network shown
in Figure 1. Because the relationship between each in-
put and the output is monotonic, it is not necessary
to consider rules that have —a, —b, or (non-negated) ¢
in them.

Search-based approaches to rule extraction are ade-
quate for problem domains that do not require ex-
ploring large search spaces. However, the number of
nodes in a rule space is exponential in the number
of input features and consequently, the search combi-
natorics are overwhelming for many real-world prob-
lems. One approach to reducing the complexity of
rule searches is to cluster the network’s weights into
equivalence classes and extract M-of-N rules (Craven
& Shavlik, 1993; Towell & Shavlik, in press). As men-
tioned in Section 1, however, this approach requires
a special training technique, may not enable a suffi-
ciently accurate description of the network to be ex-
tracted, and requires that the hidden units be approxi-
mated as threshold units. Another approach to reduc-
ing search complexity is to limit the depth to which
the search space is explored (Fu, 1991; Gallant, 1993;
Saito & Nakano, 1988). We have found that in some
domains, however, rules are found quite deep in the
search space, and hence this method is not effective.



3 RULE EXTRACTION AS
LEARNING

In this section, we introduce an approach to extracting
conjunctive rules from trained networks that does not
employ a top-down search, but instead uses a learning
process driven by sampling and queries. Our hypothe-
sis is that this method will typically require less com-
putation than search-based rule-extraction methods to
acquire rule sets that model networks to a comparable
degree of accuracy.

3.1 AN ALGORITHM

Our approach involves viewing rule extraction as a
learning task where the target concept is the func-
tion computed by the network and the input fea-
tures are simply the network’s input features. The
approach uses two different oracles that are able to
answer queries about the concept being learned. The
EXAMPLES oracle produces, on demand, training ex-
amples for the rule-learning algorithm. The SUB-
SET oracle answers restricted subset queries (Angluin,
1988). It takes two arguments: a class label and a
conjunctive rule. SUBSET returns true if all of the in-
stances that are covered by the rule are members of
the given class, and false otherwise.

Our algorithm for extracting conjunctive rules from
trained neural networks is outlined in Table 1. It is an
adaptation of the classical algorithm for PAC-learning
monotone DNF expressions (Valiant, 1984). The algo-
rithm maintains a DNF expression? for each class. The
algorithm repeatedly queries EXAMPLES, and then de-
termines the class of each returned example. If an
example is not covered by the current DNF expression
for the class then it serves as the basis for a new rule
(i.e. a new term in the DNF expression). The new
rule is initialized as the conjunction of all of the fea-
ture values of the returned example. This rule is then
generalized by repeatedly dropping an antecedent (i.e.
making one of the features undetermined) and then
calling SUBSET to ascertain if the rule still agrees with
the network. If SUBSET returns true, then the dropped
antecedent is left off of the rule (i.e. the feature is left
undetermined), otherwise it is put back on the rule.

In some cases, it may not be necessary to extract rules
for every output class. For example, in the case of
a problem that involves only two classes, say posi-
tive and negative, we can extract rules that describe
only the positive class and use the closed-world as-
sumption to identify members of the negative class.
In such cases, the EXAMPLES oracle can be instructed
to “throw away” examples that belong to the class not
being covered.

2Note that each term in a DNF expression can be triv-
ially converted into a conjunctive rule.

Table 1: Conjunctive Rule Extraction Algorithm.

/* initialize rules for each class */
for each class c

Re := 0
repeat
e := ExaMPLES()
¢ := classify(e)
if e not covered by R. then
/* learn a new rule */
r := conjunctive rule formed from e
for each antecedent 7r; of r
r’ := r but with 7; dropped
if Susset(c,r’) = true then r := ¢’
Rc := R.Vr

until stopping criterion met

We now explain how the two oracles work in practice.
Recall that the SUBSET oracle accepts a class label ¢
and a rule r, and returns true if all instances covered
by r are classified as members of class ¢ by the net-
work. This operation is equivalent to testing a rule in
a search-based rule extraction method. Consequently,
it can be implemented in the same way: we can use
either the decompositional approach where rules are
extracted for each hidden and output unit individu-
ally, or we can use Thrun’s validity-interval analysis
technique. The implementation of the SUBSET oracle
is different in each case, but the learning algorithm
remains fundamentally the same.

Recall that the function of the EXAMPLES oracle is to
provide an unlimited source of examples for the learn-
ing algorithm shown in Table 1. Initially, the Ex-
AMPLES oracle can return members of the network’s
training set. At some point, however, EXAMPLES will
exhaust the training set. After this has happened, the
EXAMPLES oracle finds examples by randomly sam-
pling the instance space.

In some cases, it may be desirable to have the Ex-
AMPLES oracle return only examples that belong to a
particular class. This can be done for the decomposi-
tional rule-extraction approach using the hill-climbing
algorithm shown in Table 2. This algorithm first ran-
domly assigns a value to each feature, and then tests
the newly-constructed example to see if it is a member
of, say, the positive class. If it is not a positive exam-
ple, then a random order is imposed on the possible
values of all the features, and these values are consid-
ered in order. A feature’s assigned value is changed to
a considered value if doing so increases the total input
to the output unit. This approach will not work for
multilayer networks when validity-interval analysis is
being used since, in this case, there is no guarantee
that hill-climbing will find a positive example. In Sec-
tion 5, however, we discuss a proposed approach to a



Table 2: An Examples oracle. This oracle operates on
a single-layer network and returns only positive examples.

/* create a random example */

for each feature e; with possible values vi1,...,%in
e; := randomly-select(v;1,...,Vin)

calculate the total input s to output unit

if $> 0 then return e

impose random order on all feature values

/* consider the values in order */

for each value v;j

if changing feature e;’s value to v;; increases s

€ = v
if s> 0 then return e

more directed EXAMPLES oracle for the general case.

Note that the algorithm shown in Table 1 employs a
stopping criterion to determine when a set of extracted
rules provides a sufficiently-good model of a network.
There are several reasonable criteria that could be used
here. For example, a tuning set might be held aside
to estimate the accuracy of the extracted rules. Alter-
natively, we could use a patience criterion (Fahlman &
Lebiere, 1989) that causes the procedure to quit after
a certain number of iterations have resulted in no new
rules. In our experiments we do not define a stopping
criterion, but instead, we show for different methods
how the accuracy of extracted rule sets changes as a
function of the amount of computation.

It is important to note that the fundamental difference
between the search-based approach to rule extraction
and our learning-based approach is the way in which
the space of rules is explored. Both approaches can
be used with either the decompositional method or
validity-interval-analysis to test hypothesized rules.

3.2 EVALUATING THE ALGORITHM

In order to evaluate our approach, we empirically com-
pare it to a search-based method similar to those
described in Section 2. Our hypothesis is that our
learning approach requires less computation than the
search-based method to get rule sets that model net-
works to a comparable degree of fidelity. We measure
fidelity by comparing the classification performance of
a rule set to the network from which it was extracted;
the fidelity of a rule set is the fraction of examples on
which it agrees with the network. We make this com-
parison using examples that the EXAMPLES oracle is
not allowed to access (i.e. test sets), so that we can
see how well our extracted rule sets (i.e. our learned
concept descriptions) generalize.

Although our method is applicable to multilayer net-
works, we use perceptrons in our experiments. Our

interest is in measuring the relative efficiency of explor-
ing a rule space using our approach versus a search-
based approach; single-layer networks provide an ade-
quate milieu for this experiment.

We evaluate the two approaches using the promoter
domain (Towell et al., 1990). Promoters are short se-
quences in DNA that occur before genes and play a
critical role during gene transcription. Each feature in
this domain represents a position in a DNA sequence;
thus each feature takes one of the values in {4, G, C,
T}. In our experiments, we do not use all 57 of the
available features, but instead we use only a subset of
8 contiguous features.® This reduced subset is small
enough that we can, in a reasonable amount of time,
run the search-based method until it has found all of
the rules in its search space. The promoter dataset we
use comprises 468 examples, half of which are positive
examples (promoters).

We train 10 perceptrons, using a different training set
(consisting of 90% of the total examples) for each. The
examples left out of each training set are used to mea-
sure the fidelity of extracted rule sets. The perceptrons
have 32 (8 features x 4 values) input units and one
output unit. We then apply both our learning-based
extraction method and the conventional search-based
method to the trained perceptrons. We extract rules
that describe the conditions under which the output
unit is active, and hence predict when the given se-
quence is a promoter.

The search method that we use conducts a breadth-
first search through a space of possible conjunctive
rules. Unlike the graph shown in Figure 2, we organize
the rule space as a tree so that each node in the search
space can not be visited more than once. In order to
ensure that the extracted rules are maximally general,
whenever a valid rule is found, it is compared to the
rules found at previous levels and retained only if it is
not more specific than any of them. Additionally, we
employ an optimization that enables some branches of
the tree to be pruned: whenever a rule is tested and
rejected during the search, we also determine if there
is any sequence of antecedents that could be added
to the rule to make it valid. If there is no such se-
quence of antecedents, then we need not explore any
descendents of this node. The computation involved
in this determination is essentially the same as that in-
volved in testing a rule: the difference is that instead
of assuming that undetermined features will take on
values that contribute minimally to activating an out-
put unit, we assume that they will take on values that
contribute maximally.

The computation required by the search algorithm can
be quantified by counting two operations:

3The features we use are nucleotides from the so-called
-35 regiom; it is these features that are thought to be among
the most important in defining the concept of a promoter.



e the number of nodes tested during the search,

e subsumption-check comparisons to previously ex-
tracted rules.

Similarly, the computation required by our learning-
based algorithm can be quantified by counting three
operations:

e calls to the EXAMPLES oracle,
e calls to the SUBSET oracle,

e subsumption-check comparisons to the individual
terms of R., the DNF expression for class c.

Except for calls to the EXAMPLES oracle, the com-
putational complexity of each of these operations is
O(f),* where f is the number of input features. The
computational complexity of calling the EXAMPLES or-
acle is O(f) when the oracle is used to produce ex-
amples of any class. We use the EXAMPLES oracle
to produce only positive examples, however, and thus
its time complexity is O(vlogwv), where v is the total
number of values for all input features. In our exper-
iments, we measure the amount of computation per-
formed by counting operations in terms of O(f) units.
Thus visiting a node in the search space or making a
subsumption check counts as 1 unit. Calling the EX-
AMPLES oracle counts as %g—” units (in our domain,

v1ogv — 90). Since these operations indicate the num-

ber of times that the non-constant-time parts of the
algorithm are executed, their total count provides a
reasonable basis for comparing our learning algorithm
against the search method.

Figure 3 shows the test-set fidelity of extracted rule
sets for the two approaches, averaged over the ten
perceptrons. This figure is analogous to a general-
ization curve for a conventional learning system. The
z-axis indicates the number of operations (EXAMPLES
calls + SUBSET calls + comparisons for the learning
method, nodes visited + comparisons for the search-
based method) for the two approaches; note that the
scale used for this axis is logarithmic. The y-axis de-
notes the averaged fidelity of the rule sets measured
on the test sets. Both methods initially have a fidelity
measure of about 50% since their empty rule sets never
predict the promoter class. While the search-based ap-
proach requires a fair amount of time before it finds
any rules, our learning method immediately begins ex-
tracting rules, and thus its fidelity quickly improves.
In fact, for most values on the y-axis, the search-
based method requires orders of magnitude more oper-
ations to achieve the same fidelity. Our learning-based
method explores many fewer nodes than the search-
based method; as its extracted rule sets grow, most
its effort is expended comparing training examples to

“The computational complexity of SUBSET calls may be
more than O(f) when validity-interval analysis is used with
multilayer networks.
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Figure 3: Conjunctive rule-set fidelity. This figure
shows the averaged fidelity of extracted conjunctive rule
sets after a given number of operations. The z-axis, which
has a logarithmic scale, shows the number of operations
(as described in the text). The y-axis reports the fidelity
(measured on test sets) of the extracted rules.

extracted rules to see if the examples are covered. The
fidelity of both approaches increases monotonically be-
cause all acquired rules are sound with respect to the
network. We have observed that, for a given level of
fidelity, the sizes of the rule sets extracted by the two
approaches are comparable.

To understand why our learning approach outperforms
the search-based extraction method in this problem
domain, it is helpful to consider the space of rules that
is being explored. Whereas the search method explores
this space from the top down, our learning approach
explores the space from the bottom up. The effec-
tiveness of the search approach is determined by the
depth to which it needs to explore the space in order
to find rules. Since the computational complexity of
this search grows exponentially in depth, it is expen-
sive for the search method to find rules that have more
than a few antecedents. Our learning method, on the
other hand, is able to efficiently find rules with many
antecedents. The positive training examples serve to
identify terminal nodes of the search space that need
to be covered by rules. Using these terminal nodes as
initial rules, our learning method uses a polynomial-
time algorithm to traverse upward in the search space
until maximally-general rules are found.

A disadvantage of our approach is that, because it
stochastically samples the instance space, it may take
a very long time to find all of the maximally-general
rules — especially rules that cover only a few instances.
The search-based approach, on the other hand, me-
thodically explores the rule space, and thus may be
more effective for networks that have only a small
number of features, or result in rules that have few
antecedents.



4 EXTRACTING M-of-N RULES

In this section we generalize the algorithm presented
in Section 3 to extract M-of-N rules from trained net-
works. M-of-N rules are better suited to describing
neural networks than are conjunctive rules (Towell &
Shavlik, 1993) because they more closely match the
inductive bias of units in a neural network. Hence,
fewer M-of-N rules than conjunctive rules are usually
required to describe a network.

The M-of- N rules that our algorithm extracts consist of
conjunctions of one or more M-of-N terms. An M-of-N
term is satisfied when at least M of its NV antecedents
are satisfied. For example, the term 2-of-{a, b, ¢} is
logically equivalent to (@ A b) V (a A ¢) V (b Ac).
An M-of-N rule is satisfied when all of its terms are
satisfied.

Table 3 outlines the algorithm we use to extract
M-of-N rules from trained networks. In the same man-
ner as the algorithm presented in Table 1, the first step
is to learn a conjunctive rule using the instance sup-
plied by the ExamMpLES oracle. The algorithm then
makes this conjunction into a trivial M-of-N rule for
which M is set to N. The next step is to generalize
this rule through the application of two operators:

e add-value: generalizes an M-of-N term by adding
to it a feature value that is not already present in
the set of antecedents.

e new-term: takes an existing M-of-N term and
splits it into two terms of the form L-of-L
and (M — L)-of-(N — L). For example, 3-of-
{a, b, ¢} = 2-of-{a, b} A I-of{c}.

The add-value operator may either add another pos-
sible value for a feature already in the antecedent set
(i.e., create an internal disjunction, Michalski, 1983),
or add a feature that is not yet represented.

The new-term operation, by itself, is not able to gener-
alize a term; therefore this operator is always used in
conjunction with the add-value operator. Additionally,
new-term may have the undesired effect of specializing
a rule unless it is applied only to terms for which M is
equal to the number of features represented in the set
of antecedents (i.e., the only disjunctions represented
by the term are internal disjunctions). Therefore, we
allow the new-term operator to be applied only when
it meets this condition. Another restriction that we
place on this operator is that it cannot arbitrarily par-
tition an M-of-N term, because there are 2V~ —1 pos-
sibilities for a term with IV antecedents. Since we are
extracting rules from perceptrons in our experiments,
we are able to order the antecedents according to the
magnitude of their weights, and require that newly-
created terms maintain the order of the antecedents.
This constraint reduces the number of possible parti-
tions to V — 1.

Table 3: M-of-N Rule Extraction Algorithm.

for each class c
R. :=0
repeat
e :
c :
if

ExamMPLES ()

classify(e)

not covered by R, then

learn conjunctive rule, r, as in Table 1
trivially convert r to a M-of-N rule

o I

where M =N
do
r’ := result of applying add-value or
new-term to r
if Sussetr(c,7’) then r := ¢
while J additional operator applications
R := RVr

until stopping criterion met

The add-value and new-term operators are used to suc-
cessively generalize a given M-of-N rule until further
generalizations result in a rule that is not consistent
with the network. On each iteration of the loop, one of
the possible operator applications is selected and ap-
plied to the given rule. The SUBSET oracle is used to
determine if a generalized rule is consistent with the
network. The loop continues until all operator appli-
cations have been tried and the rule cannot be further
generalized. The algorithm is quite naive in how it se-
lects operator applications; an area for future work is
to investigate heuristics for guiding this selection.

As with conjunctive queries, the SUBSET oracle can
be implemented in one of two ways, depending upon
whether the decompositional approach or validity-
interval analysis is being used. With the decompo-
sitional approach, in addition to calculating the mini-
mum contribution of undetermined features, the SUB-
SET oracle must determine which M antecedents mini-
mally satisfy a term. That is, since the oracle wants to
determine if a given unit will be active whenever the
terms of the rule are satisfied, it must consider the case
where each term is satisfied by those antecedents that
contribute the least to activating the unit. A SUBSET
oracle for M-of- N rules can also be implemented for the
validity-interval-analysis approach; Thrun (1993) has
described how M-of- N constraints can be incorporated
into the linear programs that test hypothesized rules.

To evaluate the M-of-N version of our algorithm, we
extract rules from the perceptrons used in the exper-
iment in Section 3. We count the number of “opera-
tions” as before, except that we adjust our account-
ing for calls to SUBSET to reflect the fact that queries
about M-of-N rules are more expensive to handle than
queries about conjunctive rules. Whereas the com-
plexity of answering a query about a conjunctive rule
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Figure 4: Rule-set sizes. This figure shows the average
number of rules and antecedents in the rule sets extracted
by our conjunctive and M-of-N learning algorithms. The
z-axis reports the fidelity of the extracted rule sets and
the y-axis indicates rule counts and the total number of
antecedents summed over all the rules in a rule set.

is O(f), where f is the number of features, the com-
plexity of answering a query about an M-of-N term is
O(f + M log f), since we have to find the M smallest-
weighted antecedents (Knuth, 1981). We therefore cal-
culate the cost of a SUBSET query in this experiment
by summing 1 + %"gf for every term in an M-of-N
rule (recall that the basic unit of our accounting is an
O(f) operation).

The primary advantage of extracting M-of-N rules is
that the rules are typically much more concise than
conjunctive rules. Figure 4 reports the average number
of rules and antecedents extracted for both conjunctive
and M-of- Nrule sets. This figure indicates that a much
smaller set of M-of- N rules is able to describe a network
at a given level of fidelity.

Figure 5 shows the fidelity of extracted M-of-N rule
sets, averaged over the ten perceptrons. The curves
for conjunctive rules from Figure 3 are also shown. As
can be seen in the figure, our algorithm for extracting
M-of-Nrules is initially not as efficient as the algorithm
for conjunctive rules, but asymptotically, their perfor-
mance is about the same. The M-of-N algorithm ex-
pends more effort in generalizing its training examples,
but it requires fewer operations than the conjunctive-
rule algorithm to test if an example is already covered,
since it typically has fewer rules to test against.

5 FUTURE WORK

There are three areas in which we plan to further de-
velop our approach: implementing a more directed
EXAMPLES oracle, finding better intermediate terms
in extracted rules, and handling real-valued features.
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Figure 5: M-of-N rule-set fidelity. This figure shows the
averaged fidelity of M-of-N rule sets after a given number
of operations. The z-axis, which has a logarithmic scale,
shows the number of operations (as described in the text).
The y-axis reports the fidelity of the extracted rule sets.
Also shown are the fidelity curves for conjunctive rules for
both the search method and our learning approach.

The EXAMPLES oracle presented in this paper selects
training examples by uniformly sampling the instance
space. This method is inefficient in that the EXAM-
PLES oracle does not direct its attention to the regions
of the instance space that have not yet been covered
by rules. We plan to develop and evaluate an Exam-
PLES oracle that uses the current set of extracted rules
to influence sampling. Our proposed approach would
use previously-extracted rules to formulate a proposi-
tional satisfiability (SAT) problem. Every solution to
such a SAT problem is an example that is not cov-
ered by any of the extracted rules. Although the gen-
eral SAT problem is NP-hard, we hypothesize that a
greedy local-search algorithm, such as GSAT (Selman
et al., 1992), will be able to efficiently find solutions in
cases where there are many uncovered examples. Only
when there are very few uncovered examples should it
be difficult to find one; an EXAMPLES oracle that ran-
domly generates training examples, however, is likely
to be ineffective in these situations as well.

A second area of planned research is to investigate al-
gorithms that search for useful intermediate terms dur-
ing the rule-extraction process. Intermediate terms
can aid rule-set comprehensibility by improving the
concision of extracted descriptions, and by better il-
lustrating the structure of learned concepts. The de-
compositional approach to rule extraction introduces
intermediate terms corresponding to each of the hid-
den units in the network. This approach, however,
involves the assumptions that each hidden unit in the
network behaves like a Boolean variable, and the indi-
vidual hidden units of the network correspond to con-
cepts that are meaningful in the context of the domain.
Neural networks, however, often learn distributed rep-



resentations (Hinton, 1986) in which each concept is
encoded by the activations of many hidden units, and
each hidden unit plays a part in representing many
different concepts. Given such representations, the
“right” intermediate terms might represent patterns
of activity across groups of hidden units, instead of
individual hidden units themselves.

Finally, in order to make our approach applicable to
more problem domains, we plan to extend it to handle
real-valued features. Other researchers have already
investigated this issue to some extent (Gallant, 1993;
Thrun, 1993); we plan to incorporate their techniques
into our algorithm.

6 CONCLUSIONS

We have described a novel approach that casts the
problem of extracting symbolic rules from trained neu-
ral networks as a learning task. Our approach exploits
both training examples and queries to learn concept
descriptions that accurately describe trained neural
networks. Our experiments demonstrate that this ap-
proach can be more efficient than conventional search-
based techniques. We have also described how our
approach can be generalized to extract M-of-N rules.
We believe that our approach provides a promising ad-
vance toward the goal of readily interpreting trained
neural networks.
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