Appears in Machine Learning: Proceedings of the Tenth International Conference,
P. E. Utgoff (editor), Morgan Kaufmann, San Mateo, CA, 1993

Learning Symbolic Rules Using Artificial Neural Networks

Mark W. Craven and Jude W. Shavlik
Computer Sciences Department
University of Wisconsin
1210 West Dayton St.

Madison, WI 53706
email: {craven, shavlik}@cs.wisc.edu

Abstract

A distinct advantage of symbolic learning
algorithms over artificial neural networks is
that typically the concept representations
they form are more easily understood by hu-
mans. One approach to understanding the
representations formed by neural networks is
to extract symbolic rules from trained net-
works. In this paper we describe and investi-
gate an approach for extracting rules from
networks that uses (1) the NOFM extrac-
tion algorithm, and (2) the network training
method of soft weight-sharing. Previously,
the NOFM algorithm had been successfully
applied only to knowledge-based neural net-
works. Our experiments demonstrate that
our extracted rules generalize better than
rules learned using the C4.5 system. In ad-
dition to being accurate, our extracted rules
are also reasonably comprehensible.

1 INTRODUCTION

Artificial neural networks (ANNSs) have been success-
fully applied to real-world problems as varied as steer-
ing a motor vehicle (Pomerleau, 1991) and learn-
ing to pronounce English text (Sejnowski & Rosen-
berg, 1987). In addition to these practical successes,
several empirical studies have concluded that neural
networks provide performance comparable to, and in
some cases, better than common symbolic learning al-
gorithms (Atlas et al., 1989; Fisher & McKusick, 1989;
Mooney et al., 1989). A distinct advantage of sym-
bolic learning algorithms, however, is that the con-
cept representations they form are usually more eas-
ily understood by humans than the representations
formed by neural networks. In this paper we describe
and investigate an approach for extracting symbolic
rules from trained neural networks. Our approach uses
the NorM algorithm (Towell & Shavlik, 1991) to ex-
tract rules from networks that have been trained using

Nowlan and Hinton’s (1992) method of soft weight-
sharing. Although soft weight-sharing was designed
as a technique for improving generalization in neural
networks, we explore it here as a means for facilitating
rule extraction. We present experiments that demon-
strate, for two difficult learning tasks, our method
learns rules that are more accurate than rules induced
by Quinlan’s (1993) C4.5 system. Furthermore, the
rules that are extracted from our trained networks are
comparable to rules induced by C4.5 in terms of com-
plexity and understandability.

Towell and Shavlik (1991) demonstrated that concise
and accurate symbolic rules can be extracted in the
restricted case of knowledge-based neural networks. In
a knowledge-based network, the topology and initial
weights of the network are specified by a domain the-
ory consisting of symbolic inference rules. Since these
networks initially encode symbolic rules, training is
more a process of rule refinement than of tabula rasa
learning. This paper describes work that involves us-
ing Towell and Shavlik’s NoFM algorithm to extract
rules from ANNs which have not been initialized by a
domain theory. Because the NOFM algorithm assumes
that the weights in a trained network are clustered, we
modify the training process to encourage such a net-
work state after training. Previously, Towell (1991)
reported that the NOFM algorithm failed to extract
accurate rules from conventional networks.

We use two problem domains to investigate the effec-
tiveness of our approach. The first domain involves
recognizing promoters in DNA (Towell et al., 1990).
Promoters are short nucleotide sequences that occur
before genes and serve as binding sites for the protein
RNA polymerase during gene transcription. Identify-
ing promoters is an important step in locating genes
in DNA sequences. The second problem domain that
we investigate is a simplified version of the NETTALK
task of mapping English text to its pronunciation (Se-
jnowski & Rosenberg, 1987). Our scaled-down version
of this domain involves learning only the stresses (but
not the phonemes) from a corpus of the 1000 most
common English words.

2 EXTRACTING RULES FROM
NEURAL NETWORKS

An important criterion by which a machine learning
algorithm should be judged is the comprehensibility
of the representations formed by the algorithm. That
is, does the algorithm encode the information it learns
in such a way that it may be inspected and understood
by humans? There are at least five reasons why this
is an important criterion.

o Validation. If the designers and end-users of a
learning system are to be confident in the perfor-
mance of the system, then they must understand
how it arrives at its decisions.

e Discovery. Learning algorithms may discover
salient features in the input data whose impor-
tance was not previously recognized. If the repre-
sentations formed by the learner are comprehensi-
ble, then these discoveries can be made accessible
to human review.

e FEzplanation. If the representations are under-
standable, then an explanation of the classifica-
tion made on a particular case can be garnered.

o Improving generalization. The feature represen-
tation used for an inductive learning task can
have a significant impact on generalization per-
formance. Understanding learned concept repre-
sentations may facilitate the design of a better
feature representation for a given problem.

o Refinement. Some researchers use inductive learn-
ing systems to refine approximately-correct do-
main theories (Ourston & Mooney, 1990; Pazzani
& Kibler, 1992; Towell et al., 1990). When a
learning system is used in this way, it is impor-
tant to understand the changes to the knowledge
base that have been imparted during the training
process.

2.1 RULE EXTRACTION METHODS

A significant limitation of artificial neural networks
is that the concepts they learn are usually impene-
trable to human understanding because concepts are
represented by a large number of real-valued param-
eters: the weights and biases of the network. One
approach toward understanding the representations
formed by a neural network is to extract symbolic rules
from the network (Fu, 1991; McMillan et al., 1991;
Saito & Nakano, 1988).

The underlying premise of these rule-extraction meth-
ods is that each hidden and output unit in the net-
work can be thought of as implementing a symbolic
rule. The concept associated with each unit is the con-
sequent of the rule, and certain subsets of the units
that feed into this unit represent the antecedents of

Figure 1: Extracting Rules from a Unit in a Neural
Network. The extracted rules show the combinations of
antecedent units which must be active for the consequent
unit’s bias to be exceeded.

the rule. As shown in Figure 1, the process of rule ex-
traction involves finding the sufficient conditions for
each consequent. In order to find such sets of suffi-
cient conditions, rule-extraction methods assume that,
after training, hidden and output units tend to be ei-
ther maximally active (i.e., have activation near one),
or inactive (i.e., have activation near zero). Given this
assumption, a rule-extraction algorithm can search for
minimal sets of antecedent units that, when maximally
active, cause the consequent unit to become maximally
active. The process of searching for rules is problem-
atic because of the combinatorics involved. The com-
plexity of this search is O(2™) where n is the number of
connections impinging on the consequent unit. More-
over, these algorithms tend to extract a large number
of rules, even for networks of moderate complexity.

2.2 THE NofM ALGORITHM

Towell and Shavlik previously described an algorithm,
called NorM, that avoids the combinatoric and rule-
set size problems of other rule-extraction algorithms
by clustering weights into equivalence classes. They
have demonstrated that their NOFM algorithm is able
to extract accurate and concise rules from trained
knowledge-based neural networks; that is, networks
for which the topology and initial weights have been
specified by an approximately-correct domain theory.
The algorithm is called NOFM because it explicitly
searches for rules of the form:

If (N of the M antecedents are true) then ...
The NOFM algorithm comprises six steps:

1. Clustering. The weights impinging on each hid-
den and output unit of the trained network are

grouped into clusters. Initially, each weight is
treated as a cluster. The two nearest clusters
are successively merged until no pair of clusters is
closer than a preselected distance. The distance
metric used for clustering is the difference in the
means of the weight magnitudes for two clusters.
Additionally, weights with small magnitudes are
pruned from the network at this step.

2. Averaging. The magnitude of each weight is set
to the average value of the weights in its cluster.

3. Eliminating. Weight clusters that are not
needed in order to correctly activate a unit are
eliminated. Two elimination procedures are ap-
plied: one algorithmic and one heuristic. The al-
gorithmic elimination procedure identifies clusters
that cannot have an effect on whether or not a
unit’s bias is exceeded. The heuristic elimination
step eliminates clusters that do not have such an
effect for any of the training examples.

4. Optimizing. The unit biases are retrained to
adapt the network to the changes that been im-
parted by the previous steps.

5. Extracting. Each hidden and output unit is
translated into a rule with weighted antecedents
such that the consequent is true if the sum of the
weighted antecedents exceeds the bias.

6. Simplifying. Weights and thresholds are elimi-
nated and rules are expressed in the NOFM for-
mat.

Figure 2 illustrates the application of the NOFM to
the unit shown in Figure 1. The weights have been
grouped into two clusters, and each weight has been set
to the average value of its cluster. One of the extracted
rules is expressed in the NOFM format; the other two
rules are trivial NOFM cases (1 of 1). The eliminating
and optimizing steps are not depicted in this example.

3 EXTENDING NofM WITH SOFT
WEIGHT-SHARING

An underlying assumption of the NOFM method is
that the distribution of weights in the network will be
conducive to forming a small number of clusters for
each hidden and output unit. For knowledge-based
neural networks, this is a reasonable assumption since
the weights are clustered before training. For exam-
ple, using the KBANN algorithm (Towell et al., 1990)
to map a set of symbolic rules into a knowledge-based
network, the weights that are specified by the domain
theory have values of approximately 4 and -4, whereas
the rest of the weights have values near 0. Experimen-
tal evidence indicates that the weights tend to be fairly
well clustered after training as well (Towell, 1991).

The applicability of the NOFM method might seem to
be limited to knowledge-based networks, since in con-

|
| ¢ :— ab. |
|

Figure 2: Extracting Rules using the NoFM Method.
The dotted ovals illustrate how the weights have been
grouped into clusters. Each weight has been set to the
average value of its cluster.

ventional neural networks there is usually not a bias
that leads weight values to be clustered after training.
In fact, Towell (1991) reported that NorM did not
extract small sets of accurate rules from conventional
networks. However, the approach that we explore in
this paper does not rely on the network weights being
initially clustered, but instead encourages clustering
during network training. We use a method developed
by Nowlan and Hinton (1992), termed soft weight-
sharing, that encourages weights to form clusters dur-
ing the training process. Although their method was
motivated by the desire for better generalization, we
explore it here as a means for facilitating rule extrac-
tion.

In the spirit of the minimum-description-length prin-
ciple (Rissanen, 1978), soft weight-sharing uses a cost
function that penalizes network complexity. Thus,
during training the network tries to find an optimal
tradeoff between data-misfit (i.e., the error rate on
the training examples) and complexity. The complex-
ity term in soft weight-sharing models the distribu-
tion of weights in the network as a mixture of multiple
Gaussians. A set of weights is considered to be simple
if the weights have high probability densities under the
mixture model. Specifically, the cost function in soft
weight sharing is the following:

> mop(w)

je€Gauss

C=XE—) log

1€Ewgts

where F is the data-misfit term, A is a parameter used
to balance the tradeoff between data misfit and com-
plexity, w; is a weight in the network, p;(w;) is the
density value of w; under the jth Gaussian, and ; is
the mixing proportion of the jth Gaussian. A mixing
proportion is a weight that determines the influence

of a particular Gaussian. The mixing proportions are
constrained to sum to 1.

Neural learning algorithms perform gradient descent
to locally minimize this cost function. The partial
derivative of the cost function with respect to each
weight is the sum of the usual error derivative plus a
term due to the complexity cost of the weight:

0C _ oE oy —w)
ow; Aawi 4 Z s (w:) o2
j€Gauss J

Here p; and 032- are the mean and variance, respec-
tively, of the jth Gaussian, and r;(w;) is the condi-
tional probability that w; is being modelled by the jth

Gaussian:
m; pj(wi)

Z T Pr(w;)

keGauss

ri(w;) =

Thus, the effect of each Gaussian is to pull each weight
toward the mean of the Gaussian with a force propor-
tional to the density of the Gaussian at the value of the
weight. When weights are pulled tightly around the
means of the Gaussians, the network is similar to one
that has fewer free parameters than connections (i.e.,
ordinary weight sharing). The parameter settings of
each Gaussian — the mean p;, standard deviation o;,
and mixing proportion 7; — are learned simultaneously
with the weights during training.

Our approach to rule extraction involves training net-
works using a variant of soft weight-sharing and then
applying the NOFM algorithm to the trained net-
works. Although the NOFM method was designed
for knowledge-based neural networks, we hypothesized
that it could be successfully applied to conventional
networks, provided that the weights of the networks
were grouped into clusters during training.

Whereas the NOFM algorithm works best when the
weights impinging on each unit form clusters, standard
soft weight-sharing tends to globally cluster network
weights. Our implementation of soft weight-sharing
hence assigns a local set of Gaussians to each unit.
The complexity cost of a given weight is calculated
with respect to only the Gaussians associated with the
unit to which the weight connects.

4 DATA SETS

Our experiments address the hypothesis that soft
weight-sharing is able to cluster the network weights
during training such that NOFM is able to extract a
small set of accurate rules. In order to evaluate the
effectiveness of our approach, we use two problem do-
mains to compare the accuracy and succinctness of our
extracted rules against rules induced by the C4.5 sys-
tem. Both problem domains involve predicting a class

given a fixed-length “window” onto a string of inter-
est. In the case of the promoter domain, the string
is a DNA sequence, and in the NETTALK domain, the
string is an English word (or part of one).

The promoter data set comprises 468 examples,! half
of which are positive examples (i.e., promoters). Each
example has 57 features which represent the DNA se-
quence. A single strand of DNA is a linear chain com-
posed from the four nucleotides represented by the let-
ters {A, G, C, T}. Thus all of the features for this
problem are nominal features that can take on the val-
ues A, G, C, T, or unknown. Each example is a mem-
ber of one of two classes: promoter or non-promoter.
The positive examples for this data set are aligned
such that the gene following each promoter begins in
the seventh position from the right end of the window.
Thus the leftmost 50 window positions are labelled =50
to -1, and the rightmost seven are labelled 1 to 7.

For the neural networks, a local representation is used
for the promoter features. For each feature there are
four input units — one corresponding to each of the
nucleotides. When the value of a feature is known,
the input unit corresponding to the value is given an
activation of 1, and the other three units for the feature
are given activations of 0. When a feature value is
unknown, all four input units are given activations of
0.25.

Our simplified NETTALK data set consists of 5438 ex-
amples taken from the 1000 most common English
words. Each example has seven features which rep-
resent the letters in the input window. Each feature
can take on one of 27 values. There is a value corre-
sponding to each letter of the alphabet, and a value to
represent the absence of a letter. Since each example
is formed from only a single word, when the window
overhangs a word, the overhanging window positions
are set to the “space” value. In the original NETTALK
domain, the task involved predicting both a phoneme
and a stress for each window position. In our experi-
ments we have simplified the problem so that the clas-
sifiers are trained only to predict a stress (from five
disjoint classes).

5 EXPERIMENTAL RESULTS

In this section we evaluate our approach to rule extrac-
tion by comparing the accuracy and comprehensibility
of (1) rules extracted from neural networks, and (2)
rules learned using the C4.5 system. The comprehen-
sibility of a set of rules is difficult to measure. We
measure the syntactic complexity of the rule sets and

Note that this data set is larger and more biologically
complicated than the one that was used by Towell et al.
(1990). The latter data set is available by anonymous
ftp from the UC-Irvine Repository of Machine Learning
Databases and Domain Theories (ftp.ics.uci.edu).

use this as a crude proxy for comprehensibility. Specif-
ically, we consider the number of rules and antecedents
as measures of syntactic complexity.

5.1 THE PROMOTER DATA SET

For the promoter problem, we use a ten-fold cross-
validation methodology? to assess the ability of our ap-
proach to extract accurate, comprehensible rules from
trained networks. Our reported results represent av-
eraged values for the ten runs.

The neural networks used for the promoter domain
have fully-connected hidden units in a single layer.
The number of hidden units used in each network is
determined by cross-validation within the training set.
That is, for each training set, networks with 20, 15,
10, 5, and no hidden units are trained, and cross-
validation is used to pick the network that is to be
trained on all of the data in the training set. After
the number of hidden units is selected for each net-
work, a similar cross-validation procedure is used to
determine the A parameter for soft weight-sharing. We
use a conjugate-gradient learning algorithm (Kramer
& Sangiovanni-Vincentelli, 1989) to train the weights
and the Gaussian parameters of the networks. Each
hidden and output unit has five local Gaussians which
act on the weights feeding into the unit.

Decision trees are induced, and rules extracted from
them, using Quinlan’s (1993) C4.5 system. Cross-
validation within each training set is used to determine
the confidence levels for both tree pruning and rule
pruning. The confidence level selected for tree prun-
ing does not affect the rule-extraction results since the
C4.5 rule-induction program operates on unpruned
trees and performs its own pruning independently.
Thus, the confidence level for tree pruning affects the
generalization only of the decision trees. For each
training set, we test confidence levels ranging from 5%
to 95% and separately select tree-pruning and rule-
pruning levels.

Table 1 shows the test set error rates on the promoter
data set for the decision trees, rules extracted from the
trees, neural networks, and rules extracted from the
networks. As can be seen in the table, neural networks
perform significantly better on this task than decision
trees or the rules extracted from them. Additionally,
the performance of the symbolic rules extracted from
the neural networks is fairly close to the performance
of the networks themselves, and better than the rules
extracted from the decision trees. The difference in
error rates between the rules extracted from networks
and the C4.5 rules is significant at the 0.05 level using

2In ten-fold cross-validation, the available data is parti-
tioned into ten sets. Classifiers are trained using examples
from nine of the sets and tested on examples from the tenth
set. This procedure is repeated ten times so that each set
is used as the testing set once.

Table 1: Generalization on the Promoter Data.

| approach | % test set error
C4.5 decision trees 16.9
extracted rules 13.5
ANNs | networks 7.9
extracted rules 11.1

Table 2: Rule-set Sizes for the Promoter Data.

| approach | 7t rules | # antecedents |

C4.5 23.2 47.3
ANNSs 8.2 119.6

a paired, 1-tailed t-test.

Table 2 shows the average number of rules and an-
tecedents for the rules extracted from our networks
and the rules induced by C4.5. The values for an-
tecedents indicate the total number in a rule set. The
rules extracted by the C4.5 algorithm are purely-
conjunctive rules that tend to have few antecedents.
Thus, the sets extracted from the decision trees con-
tain more rules but fewer antecedents than those ex-
tracted from networks. The additional complexity of
the rules extracted from networks, however, results in
a significant gain in accuracy. Moreover, the rules
extracted from networks have only 14.6 antecedents
per rule on average, and these antecedents often refer
to localized, contiguous parts of the DNA sequence.
We feel, therefore, that their complexity is within the
bounds of what biologists can readily understand.

Table 3 shows a set of rules extracted from one of the
promoter networks. In addition to the NOFM-style
rules, this rule set has been expressed using a new
predicate we call more_than. The more_than predicate
has the following form:

N more_than(Pos_Set, Neg Set)

where Nis an integer, and Pos_Set and Neg_Set are sets
of positive and negated antecedents, respectively. The
predicate returns true if the number of satisfied an-
tecedents in Pos_Set minus the number of satisfied an-
tecedents in Neg_Set is greater than N. This predicate
provides a succinct way of expressing rules that have
many negated antecedents. Without such a predicate,
negated antecedents tend to result in a large number
of mostly-redundant rules. Since the knowledge-based
networks to which the NOFrM algorithm was previ-
ously applied had very few negated antecedents, this
predicate was not previously necessary.

The rule set shown in Table 3 exhibits several inter-
esting characteristics. First, the rules abstract away

Table 3: Rules Extracted from a Promoter Network.
The predicate more_than returns true if the number of sat-
isfied antecedents in the first set minus the number of sat-
isfied antecedents in the second set is greater than the sup-
plied threshold. The notation @-36 indicates the starting
position of a given sequence; in this case the position is
36 nucleotides before the start of a putative gene. Dashes
represent placeholders, so {€-36 ‘--AG----A’} has only
three antecedents. The letter S is an ambiguity code that
biologists use to represent (C V G).

promoter :-
hidden2, not (hiddenl), not (hidden4).

promoter :-
hidden3, not (hiddenl), not (hidden4).

promoter :-
hidden2, hidden3,
not 2 of {hiddenl, hidden4}.

hiddenl :-
5 more_than({@-40 ‘C----C-G-C-G’,
@-13 ‘-SG---’, @-1‘G’},
{@-40 ‘A---T--A----"°,
@-13 ‘-T---T’}).

hiddenl :-
not ({@-40 ¢----- T--———- '},
3 more_than({@-40 ‘C----C-G-C-G’,
@-13 ‘-SG---’, @-1°‘G’},
{@-40 ‘A---T--A--—-7,
@-13 ‘-T-—-T’}).

hidden2 :-
5 more_than({@-40 ‘A---T-GA-A’, @-13 “-T-’},
{@-40 ‘C----C-G--’, @-13 “-SG’}).
hidden2 :-
{@-40 ¢----- T---=},
3 more_than({@-40 ‘A---T-GA-A’, @-13 ‘-T-’},

{@-40 ‘C----C-G--’, @-13 “-SG°’}).
hidden3 :-
4 more_than({@-40 ‘A---T-GA-AT’,
@-13 ‘-T-A-T’},
{@-40 ‘-----C-G-C-’, @-20 ‘G--G’,
@-13 ‘GSGG’}).

hidden3 :-
{@-40 ¢----- T--——- ’},
2 more_than({@-40 ‘A---T-GA-AT’,
@-13 ‘-T-A-T’},
{@-40 ‘-----C-G-C-’, ©-20 ‘G--G’,
@-13 ‘GSGG’}).

hiddend :-
4 of {@-44 ‘G’, @-40 ‘----AC-G-C’,
@-24 ‘A--G’, @-13 “-SG’}.

a significant amount of the complexity of the network
from which they are extracted. There are only ten
rules and a total of 106 antecedents. Six of the hid-
den units and more than 2400 of the weights that were
present in the neural network are not represented in
the rules. A second observation is that the rules fo-
cus on what are known by biologists to be the most
significant regions of the DNA sequence. In particu-
lar, a domain theory developed by Michiel Noordewier
(Towell et al., 1990) identifies the -14 to -7 and the
-37 to -31 regions as containing the most important
features of a promoter. These are termed the contact
regions. The rules extracted from all of the hidden
units specify antecedents primarily in these areas.

Although we have used the number of rules and an-
tecedents as a basis for comparing the comprehensi-
bility of extracted rule sets, it is important to note
that this comparison does not take into account the
semantic differences between the two types of rules.
Whereas we have employed the N-of-M and more_than
constructs in the network-extracted rules, C4.5 rules
are purely conjunctive. A second difference is that
the rules extracted from networks identify intermedi-
ate concepts between the input features and the output
classes; these are the rules whose consequents corre-
spond to hidden units. Although it is difficult to at-
tach meaningful labels to the concepts represented by
hidden units, we believe that in some cases, these in-
termediate terms might lead to rule sets that are more
comprehensible than those which simply include the
input and output terms. A third difference is that the
network-extracted rules define only the positive (pro-
moter) class, and employ the closed-world assumption
to classify examples as negative.

5.2 THE NETTALK DATA SET

For the NETTALK domain, classifiers are trained on
half of the example set and tested on the other half.
Ten runs of this procedure are performed, and the re-
ported results represent averaged values. As with the
promoter domain, cross validation is used to determine
the A parameter and the number of hidden units for the
networks, and the confidence levels for pruning C4.5
trees and rules. Five local Gaussians are used for each
hidden and output unit, and a conjugate-gradient al-
gorithm is used to learn all of the network parameters.

Since the NETTALK domain involves five classes, the
rules extracted from trained networks are not necessar-
ily mutually exclusive and exhaustive. In other words,
a given input sequence may satisfy more than one of
the class rules, or alternatively, it may satisfy none
of the class rules. The C4.5 rule-extraction method
also faces this complication when it prunes antecedents
and rules from its rule set. C4.5 handles this prob-
lem in two ways: (1) rules are ordered by class, and
the first rule to match a given instance determines the
predicted class; (2) a default rule is used to classify in-

Table 4: Generalization on the NETTALK Data.

| approach | % test set error
C4.5 decision trees 19.1
rules 20.1
ANNSs | networks 13.0
rules 17.0

Table 5: Rule-set Sizes for the NETTALK Data.

| approach | # rules | # antecedents |

C4.5 233.5 466.5
ANNs 17.5 661.9

stances that do not satisfy any of the other rules. We
employ the same policy in classifying instances using
our network-extracted rules. The rules are ordered to
minimize false-positive errors on the training set, and
the default rule predicts the class which has the most
training examples not covered by any rule.

Table 4 shows the test set error rates on the NETTALK
data set for the decision trees, rules extracted from
the trees, neural networks, and rules extracted from
the networks. The results in this table indicate that
the neural networks and the rules extracted from them
outperform C4.5 decision trees and rules. The differ-
ence in error rates between the rules extracted from
networks and the decision trees is significant at the
0.005 level using a paired, 1-tailed t-test.

Table 5 shows the average number of rules and an-
tecedents in the extracted rule sets. The rule sets
extracted from the neural networks contain far fewer
rules than the rules generated from the decision trees,
although the network rules have far more antecedents.
This result points out an interesting tradeoff regard-
ing comprehensibility: is it easier to understand a large
body of simple rules or a small collection of complex
rules?

5.3 THE EFFECT OF SOFT
WEIGHT-SHARING

In order to evaluate the contribution of soft weight-
sharing to the results presented in this section, we
trained promoter and NETTALK networks using the
same methodology as the previous experiments, ex-
cept that soft weight-sharing was not employed. Sur-
prisingly, the results we obtained for the promoter
domain, in terms of rule generalization and compre-
hensibility, were essentially the same. The results for
the NETTALK domain are presented in Table 6. Al-
though soft weight-sharing does not seem to affect the
generalization ability of the extracted rules, it has a

Table 6: The Effect of Soft Weight-Sharing (SWS)
for the NETTALK Domain.

| approach | % error | # rules | # antes |
ANNs w/ SWS 17.0 17.5 616.1
ordinary ANNs 16.9 16.0 724.5

significant impact on the concision of the rules. The
rules extracted from the networks that employed soft
weight-sharing had, on average, 108 fewer antecedents.
This difference is significant at the 0.05 level using a
paired, 1-tailed t-test.

In our experiments, we have evaluated our rule-
extraction approach along two dimensions: general-
ization and comprehensibility. For neural networks, it
is clearly more difficult to control the performance of
a rule-extraction method along the dimension of com-
prehensibility. A rule set that generalizes as well as
the network from which it was extracted can be ob-
tained by simply replicating the network as a large
set of rules. The results presented in Table 6 indicate
that soft weight-sharing can act to significantly im-
prove the performance of the NOFM algorithm along
this dimension — comprehensibility — which is the most
formidable dimension.

We are currently conducting experiments to evaluate
the effectiveness of soft weight-sharing as we vary such
parameters as network size, training-set size, number
of Gaussians, output representation, etc.

6 CONCLUSIONS

We have demonstrated that small sets of accurate, rea-
sonably concise symbolic rules can be extracted from
ordinary artificial neural networks. Our approach to
this problem involves exploiting the effectiveness of
the NorM algorithm by encouraging weight cluster-
ing during training. For two difficult problem domains,
recognizing promoters in DNA,| and mapping English
text to stress patterns, our approach was able to in-
duce rules that resulted in better generalization than
rules learned using C4.5.

There are a number of issues regarding our approach
that we plan to pursue in further research. One such
issue is adapting the method so that it can extract
concise rule sets from networks that have learned dis-
tributed representations. In a distributed represen-
tation, each concept at the hidden-unit level may be
encoded by the activations of many hidden units, and
each unit may play a part in representing many dif-
ferent concepts. Distributed representations tend to
result in rule sets that are verbose and difficult to un-
derstand. The NOFM algorithm makes the assump-
tion that each hidden unit corresponds to a meaning-

ful concept, and thus it searches for rules by consider-
ing each hidden unit independently. Our proposed ap-
proach involves partitioning the space of hidden unit
activations and then searching for rules that explain
particular regions of this space.

A second area that we plan to investigate in future
research is to employ a weight-pruning method, such
as Optimal Brain Damage (LeCun et al., 1990), during
learning. The effectiveness of the NOrM algorithm
is partly due to the weight pruning that it performs
during its clustering step. The expected advantage
of pruning weights during the learning process is that
the remaining weights are able to adapt to the changes
imparted by the pruning operation.

A third issue to be investigated is rule-pruning strate-
gies. The C4.5 system, for example, incorporates
clever techniques for pruning antecedents and for drop-
ping entire rules. These methods improve both the
generalization ability and the comprehensibility of the
extracted rules. We plan to investigate the use of these
methods in our system.

Extracting accurate, comprehensible rules from neural
networks is an important problem in machine learn-
ing. We have described an approach that employs the
NorM algorithm and soft weight-sharing, and demon-
strated that it is able to extract accurate, comprehen-
sible rules from networks trained on a difficult real-
world problem. These promising results indicate that
the problem of understanding representations learned
by artificial neural networks may be tractable.

Acknowledgements

This work was partially supported by Department of
Energy Grant DE-FG02-91ER61129 and National Sci-
ence Foundation Grant IRI-9002413. Rich Maclin pro-
vided helpful comments on an earlier version of this
paper.

References

Atlas, L., Cole, R., Connor, J., El-Sharkawi, M.,
Marks II, R. J., Muthusamy, Y., & Barnard, E.
(1989). Performance comparisons between backprop-
agation networks and classification trees on three
real-world applications. In Touretzky, D., editor,
Advances in Neural Information Processing Systems
(volume 2). Morgan Kaufmann, San Mateo, CA.

Fisher, D. H. & McKusick, K. B. (1989). An empirical
comparison of ID3 and back-propagation. In Proc. of
the 11th IJCAI (pp. 788-793), Detroit, MI.

Fu, L. M. (1991). Rule learning by searching on
adapted nets. In Proc. of the 9th Nat. Conf. on Ar-
tificial Intelligence, (pp. 590-595), Anaheim, CA.

Kramer, A. H. & Sangiovanni-Vincentelli, A. (1989).

Efficient parallel learning algorithms for neural net-
works. In Touretzky, D., editor, Advances in Neural

Information Processing Systems (volume 1). Morgan
Kaufmann, San Mateo, CA.

LeCun, Y., Denker, J. S., & Solla, S. A. (1990). Opti-
mal brain damage. In Touretzky, D., editor, Advances
in Neural Information Processing Systems (volume
2). Morgan Kaufmann, San Mateo, CA.

McMillan, C., Mozer, M., & Smolensky, P. (1991).
The connectionist scientist game: Rule extraction
and refinement in a neural network. In Proc. of the
13th Conf. of the Cognitive Science Society, Chicago,
IL. Erlbaum.

Mooney, R., Shavlik, J., Towell, G., & Gove, A.
(1989). An experimental comparison of symbolic and
connectionist learning algorithms. In Proc. of the
11th IJCAI, (pp. 775-780), Detroit, MI. (A longer
version appears in Machine Learning, 6).

Nowlan, S. J. & Hinton, G. E. (1992). Simplifying
neural networks by soft weight-sharing. Neural Com-
putation, 4:473-493.

Ourston, D. & Mooney, R. J. (1990). Changing the
rules: A comprehensive approach to theory refine-
ment. In Proc. of the 8th Nat. Conf. on Artificial
Intelligence, (pp. 815-820), Boston, MA.

Pazzani, M. & Kibler, D. (1992). The utility of knowl-
edge in inductive learning. Machine Learning, 9:57—
94.

Pomerleau, D. A. (1991). Efficient training of ar-
tificial neural networks for autonomous navigation.
Neural Computation, 3:88-97.

Quinlan, J. R. (1993). C4.5: Programs for Machine
Learning. Morgan Kaufmann, San Mateo, CA.

Rissanen, J. (1978). Modeling by shortest data de-
scription. Automatica, 14:465-471.

Saito, K. & Nakano, R. (1988). Medical diagnostic
expert system based on PDP model. In Proc. of the
IEEE International Conf. on Neural Networks, (pp.
255-262), San Diego, CA. IEEE.

Sejnowski, T. & Rosenberg, C. (1987). Parallel net-
works that learn to pronounce English text. Complex
Systems, 1:145-168.

Towell, G. G. (1991). Symbolic Knowledge and Neu-
ral Networks: Insertion, Refinement and Eztraction.
PhD thesis, University of Wisconsin — Madison.

Towell, G. G. & Shavlik, J. W. (1991). Interpretation
of artificial neural networks: Mapping knowledge-
based neural networks into rules. In Moody J., Han-
son S. and Lippman, R., editors, Advances in Neural
Information Processing Systems (volume 4). Mor-
gan Kaufmann, San Mateo, CA. (A longer version
will appear in Machine Learning).

Towell, G. G., Shavlik, J. W., & Noordewier, M. O.
(1990). Refinement of approximately correct domain
theories by knowledge-based neural networks. In
Proc. of the 8th Nat. Conf. on Artificial Intelligence,
(pp. 861-866), Boston, MA. MIT Press.

