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Abstract

An important open problem in molecular biology
is how to use computational methods to under-
stand the structure and function of proteins given
only their primary sequences. We describe and
evaluate an original machine-learning approach
to classifying protein sequences according to their
structural folding class. Our work is novel in
several respects: we use a set of protein classes
that previously have not been used for classify-
ing primary sequences, and we use a unique set of
attributes to represent protein sequences to the
learners. We evaluate our approach by measur-
ing its ability to correctly classify proteins that
were not in its training set. We compare our
input representation to a commonly used input
representation — amino acid composition — and
show that our approach more accurately classi-
fies proteins that have very limited homology to
the sequences on which the systems are trained.

Introduction

A problem of fundamental importance in molecular bi-
ology is understanding the structure and function of
the proteins found throughout nature. Currently, the
growth of protein sequence databases is greatly outpac-
ing the ability of biologists to characterize the proteins
in these databases. Efficient computational methods
for predicting protein structure and function are highly
desirable because conventional laboratory methods, X-
ray crystallography and NMR, are expensive and time-
consuming. Currently, the best method for predicting
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the structure and function of a protein is to identify
a homologous protein that has already been character-
ized. However, from current genome-sequencing efforts
it appears that as many as half of the newly discovered
proteins do not have corresponding, well-understood
homologs (Fields et al. 1994). The goal of our research
program, therefore, is to develop protein-classification
methods that are not overly reliant on sequence homol-
ogy, but instead represent the essential properties of
analogous proteins that have similar folds. In this pa-
per, we describe and evaluate a novel, machine-learning
approach for classifying protein sequences according to
their structural fold family. Our experiments indicate
that our approach provides a promising alternative to
homology-based methods for protein classification.

There is a wide variety of existing approaches for
predicting structural or functional aspects of proteins
given their primary (i.e., amino-acid) sequences. These
approaches include tertiary structure prediction (e.g.,
Kolinski & Skolnick 1992), secondary structure predic-
tion (e.g., Rost & Sander 1993), sequence homology
searching (e.g., Pearson & Lipman 1988; Altschul et
al. 1990), and classification according to folding class
(Dubchak, Holbrook, & Kim 1993; Ferran, Ferrara, &
Pflugfelder 1993; Metfessel et al. 1993; Wu et al. 1993;
Nakashima & Nishikawa 1994; Reczko & Bohr 1994).
Our approach falls into this latter category — protein
classification — which itself encompasses a wide vari-
ety of methods. Existing protein classification meth-
ods vary on a number of dimensions including: the in-
tended purposes of the systems; the level of abstraction
of the protein classes; and whether or not the systems
are able to discover their own classes. The approach we
describe is novel in at least two respects: we use a set of
protein classes that previously have not been used for
classifying primary sequences, and we use a physical



set of attributes to represent protein sequences.

Our approach uses machine-learning methods to in-
duce descriptions of sixteen protein-folding classes.
The folding classes that we use were devised by Orengo
et al. (1993) in a large-scale computational effort to
cluster proteins according to their structural similarity.
These classes comprise analogous, as well as homolo-
gous proteins. Whereas Orengo et al. used structural
information to classify proteins, we are interested in
classifying proteins when only their primary sequences
are available. Thus, the role of the machine-learning
algorithms in our approach is to induce mappings from
primary sequences to folding classes. A key aspect
of our method is the way in which we represent pri-
mary sequences to the learner. Unlike most protein-
classification approaches, which represent proteins by
their amino-acid composition, our method represents
proteins using attributes that better capture the com-
monalities of analogous proteins. We empirically com-
pare learning systems that use our input representation
to learning systems that use amino-acid composition as
their input representation. We show that our approach
more accurately classifies proteins that have very lim-
ited homology to the sequences on which the systems
are trained.

Problem Representation

The task that we address is defined as follows: given
the amino-acid sequence of a protein, assign the pro-
tein to one of a number of folding classes. This problem
definition indicates that there are two fundamental is-
sues in implementing a classification method for the
task: determining the attributes that are to be used to
represent protein sequences, and defining the classes
that are to be predicted. The remainder of this section
discusses how we address these two issues.

Class Representation

The classes that we use in our approach are the fold
groups defined by Orengo et al. (1993) in their effort to
identify protein-fold families. These classes represent
proteins that have highly conserved structures, but of-
ten low sequence similarity. Thus, the classes represent
analogous, as well as homologous, proteins. Table 1
lists the fold groups that we use as our classes, as well
as the number of examples in each class that we use in
our experiments, and whether each class falls into the
a (primarily alpha), 8 ( primarily beta), a/8 (alter-
nating « and ), or a + (8 (non-alternating o and f3)
family (Levitt & Chothia 1976).

The method that Orengo et al. used to define their
fold groups involved four primary steps.

1. A set of proteins with known folds was assembled
from the Brookhaven Protein Data Bank (Bernstein
et al. 1977).

2. The proteins in this set were clustered according to
sequence similarity. Using the Needleman-Wunsch

Table 1: Protein class representation. The mid-
dle column lists the classes we use in our classification
method. The left column indicates class families, and
the right column lists, for each class, the number of
examples we use in our experiments.

| family | class (fold group) | # examples

Qa Globin 27
Orthogonal 14
EF Hand 5
Up/Down 7
Metal Rich 16
8 Orthogonal Barrel ]
Greek Key 24
Jelly Roll 5
Complex Sandwich 7
Trefoil 7
Disulphide Rich 11
a/B TIM Barrel 15
Doubly Wound 26
a+p Mainly Alpha 9
Sandwich 20
Beta Open Sheet 14
total examples 212

algorithm (Needleman & Wunsch 1970), they per-
formed pairwise comparisons on 1410 protein se-
quences selected in the previous step. They then
used single-linkage cluster analysis to form clusters
of related sequences. In single-linkage cluster analy-
sis, two proteins, a and b, are assigned to the same
cluster if there exists a chain of proteins linking a
and b, such that each adjacent pair in the chain sat-
isfies a defined measure of relatedness. Two proteins
were deemed related, in this case, if their sequence
identity was > 35%. For small proteins, this thresh-
old was adjusted using the equation of Sander and
Schneider (Sander & Schneider 1991). Also, for pro-
teins with 25-35% sequence identity, a significance
test was used to determine if the proteins were to be
considered related.

3. A representative protein was selected from each of

the clusters formed in the previous step, and the
resulting set of proteins was clustered according to
structural similarity. Pairwise comparisons of pro-
teins in this set were done using a variant of the
Needleman-Wunsch algorithm that compared struc-
tural environments rather than primary sequences.

4. Multidimensional scaling was applied to the result-

ing structural homology matrix to form clusters of
proteins with similar folds. The final fold groups
were defined from this clustering by human inter-
pretation, with the aid of schematic representations
and topology diagrams.

In summary, Orengo et al. organized proteins
with known structures into classes representing simi-



lar folds, but not necessarily similar primary sequences.
Whereas, Orengo et al. developed their classes by clus-
tering proteins according to structural similarity, we
are interested in classifying protein sequences whose
structures have not been determined. Obviously, their
method is not applicable in such cases since it takes
structural information as input. Our approach there-
fore uses machine-learning methods to induce map-
pings from primary sequences to folding classes.

Our data set is formed in the following manner: For
each of the fold groups listed in Table 1, we select
between one and five of the examples that are rep-
resentatives (as listed by Orengo et al.) of the clusters
formed in step 2. above. Note that this set contains
sequences with only very limited homology. We then
use each of these proteins as a query sequence to search
the SWiss-PROT database (Bairoch & Boeckman 1992)
for similar sequences. We use both BLAST (Altschul et
al. 1990) and FasTA (Pearson & Lipman 1988) for se-
quence comparisons. As many as nine examples are
extracted from each search and added to our data set
to increase the number of examples for each fold.

Input Representation

In order to employ a machine-learning method in this
task, it is necessary to define an input representation;
that is, a scheme for representing the proteins that are
given to the system. The input representation that we
use for our protein classification approach involves a
small number of attributes that can be readily com-
puted from the primary sequence of a given protein.
The attributes that we use are the following;:

e Average residue volume: Using values that rep-
resent the volume of each amino acid’s side group
(Dickerson & Geis 1969), we calculate the average
residue volume for a given sequence.

e Charge composition: We use three attributes to
represent the fraction of residues in a given sequence
that have positive charge, negative charge, and neu-
tral charge (Lehninger, Nelson, & Cox 1993).

e Polarity composition: We use three attributes to
represent the fraction of residues in a given sequence
that are polar, apolar, and neutral (Lehninger, Nel-
son, & Cox 1993).

e Predicted a-helix/(-sheet composition: One of
these attributes represents the fraction of the pro-
tein’s residues that are predicted to occur in a-
helices, the other represents the fraction that are
predicted to occur in (-sheets. Note that both of
these values are merely predictions, since the prob-
lem of calculating secondary structure from primary
structure is exceptionally difficult itself. Our pre-
dictions are generated by a neural network that we
trained using the data set of Qian and Sejnowski
(1988). The trained network is scanned along the
protein sequence, generating a prediction of a, 3 or

coil for each residue. The number of a and g predic-
tions are summed and then divided by the sequence
length.

e Isoelectric point: Using the Wisconsin Sequence
Analysis Package (version 6.0) (Devereux, Haeberli,
& Smithies 1984), we calculate the isoelectric point
of the given sequence.

e Fourier transform of hydrophobicity function:
Using hydrophobicity values for each amino acid, we
convert a given sequence into a one-dimensional hy-
drophobicity function, H. We calculate the modulus
of the Fourier transform of this function as follows
(Eisenberg, Weiss, & Terwilliger 1984):

N N 2
[Z H, sin(én) Z H, cos(én)]

=1
where p(9) is the value for the periodicity with fre-
quency 6, and n ranges over the residues in the
sequence. We calculate this function at 1° inter-
vals from 0° (corresponding to a period of infinity)
to 180° (corresponding to a period of 2 residues).
Finally, the six hydrophobicity attributes we use
are computed by averaging values over each non-
overlapping 30° interval in [0°, 180°].

2 1/2

pd) = +

We normalize the values for the volume, isoelectric, and
hydrophobicity attributes so that they fall in the range
[0, 1]. Values for the other attributes naturally lie in
this range.

Empirical Evaluation
The underlying hypotheses of our approach are:

o The folding class of a protein can be accurately pre-
dicted, given only its primary sequence.

e The best representation for this classification task is
one that attempts to capture the commonalities of
analogous proteins that are in the same folding class.

Many protein-classification studies have represented
proteins by their amino-acid composition (Klein &
Delisi 1986; Nakashima, Nishikawa, & Ooi 1986;
Dubchak, Holbrook, & Kim 1993; Metfessel et al.
1993), or by some description of the amino-acid n-mers
that occur in sequences (Ferran, Ferrara, & Pflugfelder
1993; Nakashima & Nishikawa 1994; Reczko & Bohr
1994). Our hypothesis is that this type of representa-
tion is not well suited to the classification of proteins
that have no close relatives in existing databases, or
that have no close relatives whose structure has been
determined. We conjecture that methods trained using
such a representation will perform poorly when asked
to classify proteins that do not have homologs in the
training set. Our view is that protein-classification
methods should be aimed at characterizing proteins
that do not have well-understood homologs.

In order to test our hypotheses, we present a number
of experiments that evaluate our approach. First, we



measure how well several machine-learning algorithms
generalize! to unseen examples after learning to clas-
sify proteins using our problem representation. As a
baseline for comparison, we also measure generaliza-
tion for the same learning algorithms when amino-acid
composition is used as the input representation. Our
second experiment evaluates the relative contributions
of the various attributes that comprise our input rep-
resentation. Our third experiment tests the ability of
systems trained using our representation to generalize
to test cases for which there are no close relatives in
the training set. This is a key experiment because our
approach is motivated by the need to characterize pro-
teins for which there are not any well-understood ho-
mologs. Finally, we demonstrate that the accuracy of
our approach can be improved by having trained classi-
fiers classify only examples for which they are confident
in their predictions.

Measuring Generalization

The first task that we address in our experiments is to
measure the accuracy of learners trained using our in-
put and output representations. As a baseline for com-
parison, we also evaluate learners trained using amino-
acid composition as their input representation. This
representation has twenty attributes, each of which
represents the fraction of a protein sequence that is
composed of a particular amino acid.

We use several different learning algorithms to eval-
uate these two representations, since we do not know
a priori which algorithm has the most appropriate
inductive bias for each representation. We evaluate
three inductive learning algorithms: C4.5 (Quinlan
1993), feed-forward neural networks (Rumelhart, Hin-
ton, & Williams 1986), and k-nearest-neighbor classi-
fiers (Cover & Hart 1967). We evaluate the suitability
of these algorithms for the protein-classification task
by estimating their generalization ability. In order to
estimate generalization for each learning method, we
conduct leave-one-out cross-validation runs.2

C4.5 is an algorithm for learning decision trees. The
complexity of the trees induced by C4.5 can be con-
trolled by pruning trees after learning. In our exper-
iments, we run C4.5 both without pruning, and with
pruning confidence levels ranging from 10% to 90%.

The neural networks that we use in our experiments
are fully connected between layers, and have 3, 5, 10,
20 or no hidden units. We use the logistic activation
function for hidden units, and the “softmax” activation
function (Bridle 1989) for output units. The softmax

! Generalization refers to how accurately a system clas-
sifies examples that are not in its training set.

2In leave-one-out cross-validation, classifiers are trained
on n—1 of the n available examples and then tested on the
example left out. This process is repeated n times, so that
each example is used as the testing example exactly once.

Table 2: Test-set accuracy using leave-one-out
cross validation. For each algorithm listed in the left
column, the middle column lists the resulting test-set
accuracy when our input representation is used. The
right column lists test-set accuracy when amino-acid
composition is used as the input representation.

test-set accuracy
learning our amino-acid
method representation | representation
C4.5 60.8% 49.1%
nearest-neighbor 80.7 76.9
neural networks 83.0 70.8

function defines the activation of unit ¢ as:
i
e

Zn eén

where ; is the net input to unit ¢, and n ranges over
all of the output units. The networks are trained
using the cross-entropy error function (Hinton 1989),
and a conjugate-gradient learning method (Kramer &
Sangiovanni-Vincentelli 1989), which obviates the need
for learning-rate and momentum parameters. Net-
works are trained until either (1) they correctly classify
all of the training-set examples, (2) they converge to
a minimum, or (3) 1000 search directions have been
tried. The networks have one output unit per class;
the class associated with the most active unit is taken
as the network’s prediction for a given test exam-
ple. Since the solution learned by a neural network
is dependent upon its initial weight values, for all of
our neural-network experiments we perform four cross-
validation runs, using different initial weight settings
each time.

For k-nearest-neighbor classifiers, we use a Euclidean
distance metric to measure proximity. We construct
classifiers that use values of k ranging from 1 to 10.
The class predicted by a nearest-neighbor classifier is
the plurality class of the k training examples that are
nearest to a given test example. Ties are broken in
favor of the nearest neighbor.

Table 2 reports leave-one-out accuracy for the best
parameter settings for each learning method. The mid-
dle column lists the measured accuracy values for clas-
sifiers trained using our input representation. The
right column list accuracy values for classifiers trained
using amino-acid composition as their input represen-
tation. For both input representations, we found that
pruning did not improve C4.5’s generalization on this
task, thus we report the accuracy of unpruned trees.
For neural networks, the best results were obtained us-
ing 20 hidden units for our input representation, and
no hidden units for the amino-acid representation. For
the nearest-neighbor method, the best results were ob-
tained by using k=3 for our input representation, and
k=1 for the amino-acid representation.

a; =



The accuracy values we list for the neural networks
are averages over four cross-validation runs. The stan-
dard deviations for these averages are less than 0.1%,
and thus we do not list them in the table. We omit
standard deviations from the other tables in the paper
for the same reason.

We draw two conclusions from this experiment. The
first is that it is possible to classify protein primary
sequences into Orengo et al.’s folding groups with high
accuracy; the neural networks using our input repre-
sentation were 83.0% accurate on test cases. The sec-
ond conclusion we make is that our input representa-
tion is a better representation than amino-acid com-
position for this task. For all three learning methods,
our representation resulted in superior generalization.

Evaluating The Input Representation

In our second experiment, we seek to understand how
much the individual attributes that comprise our input
representation contribute to the overall performance of
the classifiers. To measure this, we conduct a series
of leave-one-out cross-validation runs using nearest-
neighbor classifiers (with k=3, the best value of k in the
previous experiment), and input representations that
contain only subsets of the attributes defined in the
Input Representation section of this paper. First, we
conduct leave-one-out runs in which the input repre-
sentations consists only of individual attribute groups.
For example, in one run we classify instances using
only the charge composition attributes as our input
representation. We also conduct leave-one-out runs in
which we use all of the attributes except for a selected
group. For example, in one run we classify examples
using an input representation that consists of all of the
attributes except for the charge composition attributes.

Table 3 reports the results of this experiment. The
left column in the table lists the attribute groups. The
middle column reports test-set accuracy for runs in
which we use only a single attribute group. The right
column reports test-set accuracy for cross-validation
runs in which we use all of the attributes except for the
indicated group. Note that the last row in the table
lists the cross-validation accuracy that we measured
for nearest-neighbor classifiers using our original input
representation.

As the values in the middle column indicate, none
of the attribute groups alone are as predictive as the
entire attribute set. The values in the right column
indicate that every attribute group contributes to the
predictiveness of the original input representation. Al-
though most of the accuracy values in this column are
close to the accuracy of the entire attribute set, none
of them equals or exceeds it. From these results we
conclude that all of the attributes in our input repre-
sentation make some contribution to the predictiveness
of our classifiers.

Table 3: Evaluating attribute predictiveness.
The table lists accuracy results for leave-one-out cross-
validation runs with nearest-neighbor classifiers using
selected attribute subsets. The middle column reports
accuracy for input representations that use only the
indicated attributes. The right column reports accu-
racy for input representations that omit the indicated
attributes.

using leaving
attributes only out
average residue volume 189% | 78.3%
charge composition 21.7 78.8
polarity composition 31.6 79.2
a-helix/3-sheet composition 29.7 77.8
isoelectric point 15.1 76.9
FT of hydrophobicity 48.6 59.9
all attributes 80.7 —

Estimating the Role of Homology

Although the results presented in the first experiment
indicate that we are able to classify proteins with high
accuracy, they do not really address our primary con-
cern; namely, that we want to accurately classify pro-
teins when the classifier’s training set does not contain
sequences that are homologous to the test sequences.
In this section, we present an experiment in which each
test set has very limited homology to its corresponding
training set.

As in previous experiments, we use cross-validation
to estimate the accuracy of our classifiers. Unlike the
previous experiments, however, the training and test
sets in this experiment vary in size. The training and
test sets for this experiment are formed by first par-
titioning the set of examples for each class into sepa-
rate subsets, such that homologous proteins fall into
a single subset. Recall that we formed our data set
in the following manner: First, non-homologous se-
quences were selected from Orengo et al.’s data set.
Sequences with 35% or greater sequence identity were
considered homologous. For sequences with 25-35%
sequence identity, a significance test was used to de-
cide if the sequences were considered homologous. We
then expanded our data set by using each of these se-
quences as a query sequence to find close relatives in
the Swiss-PROT database. The resulting groups of
homologous sequences correspond to the partitions we
use in this experiment.

This partitioning of the examples allows us to do
cross-validation runs in which we ensure that for every
member of the test set there is not a close relative in
the classifier’s training set. A cross-validation run, in
this experiment, involves using each of the subsets as
the test set exactly once. The examples for four of the
classes, a: EF Hand, a:Up/down, 5:Complex Sandwich,
and (: Trefoil, are not used in this experiment since all



Table 4: Test-set accuracy factoring out the role
of homology. The training sets in this experiment do
not contain sequences that are homologous to the test
sequences.

test-set accuracy
learning our amino-acid
method representation | representation
C4.5 32.5% 25.5%
nearest-neighbor 36.6 30.6
neural networks 40.1 23.1

members of these classes share high sequence identity.

As in the first experiment, we run each algorithm
several times using a range of parameter settings. C4.5
is run with pruning confidence levels ranging from 10%
to 90%, and without pruning. We train neural net-
works with 3, 5, 10, 20 and no hidden units. Nearest-
neighbor classifiers use values of k£ from 1 to 10.

Table 4 shows the results of this experiment for the
best parameter settings for each learning method. As
in our first experiment, we found that the best decision-
tree generalization was achieved without pruning, As
before, we also found that the best neural-network
generalization was with networks that had 20 hidden
units for our input representation, and no hidden units
for the amino-acid representation. For the nearest-
neighbor method, the best results were obtained by
using k=4 for our input representation, and k=3 for
the amino-acid representation.

The classification accuracy values reported for this
experiment are all significantly worse than their coun-
terparts in the first experiment. For the best classifier
— a neural network trained using our input represen-
tation — generalization dropped from 83.0% to 40.1%.
There are several reasons for this decrease in accuracy.
One factor is that, due to our partitioning of the data,
the training sets used in the second experiment are
smaller than those used in the first. Some of the train-
ing sets had only one or two examples for some classes.
The more important factor, however, is that homology
plays a large role in the predictive ability of the classi-
fiers described in our first experiment.

Although the results of this experiment are some-
what disappointing, they also lend support to our hy-
pothesis that our input representation is better than
one based on amino-acid composition. For all three
learning algorithms, the classifiers trained using our in-
put representation generalized significantly better than
the classifiers using the amino-acid input representa-
tion. This result confirms that our representation em-
bodies more of the commonalities of analogous proteins
than does the amino-acid representation.

Table 5 shows per-class sensitivity values for our neu-
ral networks’ predictions. The sensitivity of a set of
predictions for class ¢ is defined as the percentage of

Table 5: Neural-network sensitivity measure-
ments by class. The middle column shows per-class
sensitivity values for the first experiment (leave-one-
out cross validation). The right column shows sensi-
tivity values for the third experiment (no test-set ex-
ample has a homolog in the training set). Sensitivity
is defined as the percentage of examples in a class that
are correctly predicted.

leave-one-out | no-homologs
class sensitivity sensitivity
Globin 96.3% 96.3%
Orthogonal 71.4 7.1
EF Hand 80.0 —
Up/Down 85.7 —
Metal Rich 93.8 75.0
Orthog. Barrel 60.0 0.0
Greek Key 79.2 39.6
Jelly Roll 80.0 10.0
Complex Sand. 71.4 —
Trefoil 85.7 —
Disulphide Rich 72.7 0.0
TIM Barrel 80.0 43.3
Doubly Wound 92.3 53.8
Mainly Alpha 88.9 16.7
Sandwich 65.0 15.0
Beta Open Sheet 92.9 3.6

members of class ¢ that are correctly identified as be-
longing to ¢. The table displays sensitivity values for
both the first experiment (leave-one-out) and this one
(no homologs). This table indicates that the accuracy
of our predictions is not uniform across the classes,
especially in the no-homologs experiment. As previ-
ously mentioned, poor performance for some classes is
at least partly explained by sparse training sets. The
poor predictability of some classes may also be due to
the classes themselves being artificial constructs. It is
important to keep in mind that the class structure it-
self was devised through a combination of automated
clustering and human interpretation. Many of these
classes encompass diverse groups of proteins, and in
some cases, the class boundaries are rather arbitrary.

Improving Accuracy by Rejecting
Examples

Although the classification accuracy values reported in
the previous experiment are rather low, we have found
that the accuracy of our classifiers can be improved by
taking into account the confidence of their predictions.
In this section, we describe an experiment in which we
employ a strategy that is commonly used in the do-
main of handwritten character recognition: classifiers
“reject” (i.e., do not classify) examples for which they
cannot confidently predict a class (Le Cun et al. 1989).

In our fourth experiment, we evaluate neural net-



works and nearest neighbor classifiers using the same
training and test sets as in the previous experiment
(i-e., no test-set example has a homolog in the train-
ing set). We use single-nearest-neighbor classifiers and
neural networks with 20 hidden units. For every test-
set example, a confidence value is output along with
the predicted class.

There are various algorithm-specific heuristics that
can be used to estimate a classifier’s confidence in a
given prediction. For nearest-neighbor algorithms, we
measure a prediction’s confidence as how large we can
make k while ensuring that the k nearest neighbors
are unanimous in the class they predict. For neural
networks, we measure confidence as the fraction:

a;
Zn £%)

where a; is the activation of the unit corresponding to
the predicted class, and n ranges over all of the output
units (actually the normalization is superfluous when
the softmax activation function is used).

By establishing a threshold on the confidence values,
we are able to have classifiers reject examples for which
they are uncertain. Figure 1 displays generalization as
a function of the percentage of examples rejected, for
both neural networks and nearest-neighbor classifiers.
The left edge of the graph represents the case where
no examples are rejected. The right edge of the graph
represents the case where 80% of the examples are re-
jected. For both methods, the curves climb steadily,
meaning that the classifiers improve their accuracy as
they throw out more examples.

The results of this experiment are interesting be-
cause they suggest that even if we cannot develop a
classifier that is highly accurate for a wide range of
proteins, we can perhaps develop a classifier that is
highly accurate for certain classes of proteins, and is
able to determine when test cases fall into these classes.

Future Work and Conclusions

There are several open issues that we plan to explore
in future research. These include: investigating al-
ternative input representations, developing an alterna-
tive class structure, predicting folding classes for multi-
domain proteins, and using distributed output repre-
sentations. We discuss each of these in turn.

Although experiments presented in Section indicate
that our input representation is superior to the com-
monly used amino-acid representation, we believe that
our representation can be improved by incorporating
additional attributes. For example, we plan to investi-
gate attributes based on the Fourier transform of sig-
nals formed by residue volumes and charges.

Defining a set of protein-folding classes is a difficult
problem in itself. To date we have used the folding
groups identified by Orengo et al. as our classes. Some
of these classes are rather arbitrarily defined, however,
and hence difficult to predict. We plan to re-evaluate
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Figure 1: Rejection curves. The z-axis indicates the
fraction of examples rejected. The y-axis indicates the
corresponding accuracy.

our current class structure to determine if some of the
classes should be redefined, aggregated or discarded.

Another important and difficult issue to be ad-
dressed in our future research is how to predict the
folding class of multi-domain proteins which do not
fall completely into one of our existing classes. An
accurate prediction for such a protein might involve
labeling different domains of the protein with different
classes. Since our approach enables subsequences of
proteins to be represented and classified, the key prob-
lem to be solved in this task is how to parse protein
sequences into subsequences. One possible approach is
to generate secondary-structure predictions for a given
protein, and then to use the predicted a-helix/3-sheet
boundaries to suggest alternative parses.

Finally, we plan to investigate the utility of using
a distributed output representation during learning.
In a distributed representation, each of the problem
classes is represented using a bit-string in which more
than one bit is “on”. A carefully engineered encoding
scheme can result in significantly better generalization
(Dietterich & Bakiri 1995).

We have presented a novel machine-learning ap-
proach to classifying proteins into folding groups. Our
method uses attributes that can be easily computed
from the primary sequence of a given protein. We have
presented experiments that show that our approach is
able to classify proteins with relatively high accuracy.
We have also demonstrated that our input representa-
tion is superior to a representation based on amino-acid
composition, especially when classifying proteins which
have no homologs in the training set. The goal of our
research program is to develop computational methods
that are able to accurately classify proteins that have
no well-understood homologs. We believe that the re-
search presented herein represents a promising start
towards this goal.
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