Appears in the Proceedings of the Twenty-sizth Hawaii International Conference on System Sciences (1/93)

Learning to Predict Reading Frames in E. coli DNA Sequences

Mark W. Craven

craven@Qcs.wisc.edu

Jude W. Shavlik

shavlik@cs.wisc.edu

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

Abstract

Two fundamental problems in analyzing DNA se-
quences are (1) locating the regions of a DNA sequence
that encode proteins, and (2) determining the reading
frame for each region. We investigate using artificial
neural networks (ANNs) to find coding regions, de-
termine reading frames, and detect frameshift errors
in E. coli DNA sequences. We describe our adapta-
tion of the approach used by Uberbacher and Mural to
tdentify coding regions in human DNA, and we com-
pare the performance of ANNs to several conventional
methods for predicting reading frames. Qur ezxperi-
ments demonstrate that ANNs can outperform these
conventional approaches.

1 Introduction

As part of the Human Genome Initiative, a project
has been established at the University of Wisconsin
to determine the sequence of the genome of the bac-
terium E. coli [2]. The laboratory of Prof. F. Blattner
is now sequencing large stretches of anonymous DNA
- that is, DNA whose function is not known. In or-
der to understand this DNA, it is necessary to locate
the genes in it, and to determine the reading frames
of these genes. We are using artificial neural networks
(ANNs) to locate the regions of DNA sequences that
code for proteins, and to predict the reading frames of
these coding regions. These ANNs, along with a pro-
tein similarity-search program [11], are being success-
fully used by the Wisconsin E. coli Genome Project to
characterize sequenced DNA, and to detect frameshift
errors that have occurred during the sequencing pro-
cess.

In this paper we describe how we have adapted the
approach of Uberbacher and Mural [13] that identi-
fies coding regions in human DNA. Uberbacher and

Mural’s neural network is used in the Gene Recogni-
tion and Analysis Internet Link (GRAIL) system. We
have modified their approach to apply to lower organ-
isms, whose gene structure is fundamentally different
from that of humans. The experiments we report com-
pare the performance of ANNs using Uberbacher and
Mural’s approach to several other neural network ap-
proaches and to conventional reading-frame prediction
algorithms. Our experiments indicate that neural net-
works can outperform the best conventional methods.
Additionally, our experiments demonstrate the impor-
tance of choosing a good representation for the data
that is used as input to the networks.

This paper is organized as follows: we first provide
a brief description of the molecular biology underly-
ing the problem that we are addressing. We then de-
scribe conventional approaches to reading-frame pre-
diction. Section 4 describes how ANNs can be applied
to the problem of predicting reading frames. The suc-
ceeding section describes various ways of represent-
ing DNA sequences to neural networks. Section 6 de-
scribes our experimental methodology, and the next
two sections detail our experiments in applying ANNs
to the reading-frame prediction task. The final section
provides conclusions.

2 DNA and Protein Translation

This section provides a brief description of the bi-
ology that underlies reading-frame prediction; a more
thorough treatment of this material can be found else-
where [14]. A DNA strand is a linear sequence of nu-
cleotides composed from the alphabet {A, G, T, C}.
A DNA molecule comprises two strands organized as a
double helix. Certain subsequences of a DNA strand,
called genes or coding regions, encode proteins. In-
terspersed between the genes are areas, termed non-
coding regions that do not encode proteins. Proteins

translated protein for

reading frame 1 Tyr Gly Pro

DNA sequence T A T G G A C cC 71 C

translated protein for
reading frame 2 Met Glu Leu

Figure 1: The effect of reading frame on DNA trans-
lation. The amino acid sequence that results from translation
of the sequence in two different frames is depicted. The strand
could also be translated in a third reading frame which is not

shown here.

are also linear sequences; they are composed from the
20-character alphabet of amino acids. Proteins are
important because they provide much of the structure
and functionality of a cell.

Each consecutive string of three nucleotides in a
gene encodes a single amino acid. The nucleotide
triplets are called codons and the mapping from
codons to amino acids is called the genetic code. The
process of translating a gene into protein involves
grouping nucleotides into triplets.! The reading frame
refers to how the nucleotides of a DNA sequence are
grouped into triplets as a gene is translated. Hence,
each DNA strand has three possible reading frames.
Since the reading frame defines the grouping, it is ex-
tremely important to the translation process. Figure
1 depicts the amino acids that would result from trans-
lation of the given DNA strand in two of the three
possible reading frames.

There are three special codons, called stop codons,
that signal the end of a gene. There are not any uni-
versal start codons that always signal the start of a
gene, however. This means that finding genes in a
DNA sequence is not a trivial task. Moreover, even
if it is known that a particular region on a sequence
encodes a protein, the amino acid sequence, and hence
the protein, cannot be determined if the reading frame
is not known. A further complication arises because
laboratory errors often occur in the sequencing pro-
cess. A frameshift error involves the mistaken inser-
tion or deletion of a nucleotide. Because of the triplet
nature of the genetic code, a frameshift error can have
a devastating effect on the prediction of the amino
acid sequence translated from a given gene. Once the

IDNA is actually transcribed into RNA which is then trans-
lated to protein. For the purposes of this paper, however, the
transcription step can be ignored.

translation process is out of frame, the predicted pro-
tein will bear no resemblance to the actual protein.
Our research involves using neural networks to:

1. locate the coding regions in a DNA sequence,
2. determine the reading frame for coding regions,

3. detect frameshift errors in coding regions.

3 Conventional Approaches

A number of methods have been developed that
find genes and reading frames by exploiting statisti-
cal properties of coding regions [4, 5, 12]. Specifically,
amino acid, codon, and nucleotide compositions can
be measured and used to distinguish coding from non-
coding regions. There are three factors which influence
these compositions in sequences that encode a protein.
First, some amino acids are used more frequently than
others in proteins. Second, due to the degeneracy of
the genetic code, there are unequal numbers of codons
for different amino acids. Third, in any organism, for
any given amino acid, the codons will not be equally
used. This third factor is termed the codon preference
of the organism.

The approaches to reading frame prediction that we
discuss operate by generating predictions based upon
a relatively small, fixed-length “window.” By sliding
the window along a DNA sequence, the algorithms
are able to generate continuous signals that show the
prediction for each reading frame along the length of
the sequence. Figure 2 shows a set of reading frame
signals that we generated using Staden’s codon usage
method [12]. Each signal corresponds to a particular
reading frame. The presence of a coding region in
a sequence is indicated by a relatively high signal in
one of the frames. Noncoding regions are indicated by
relatively low signals in all frames. A sharp transition
in a signal may indicate the beginning of a gene, the
end of a gene, or a frameshift error.

We have found Staden’s codon usage method to
be the most effective of the conventional approaches
for finding reading frames. Given a window of nu-
cleotides, this approach uses Bayes’ formula to esti-
mate the probability that each of the three reading
frames of a strand encodes a protein. For a given se-
quence S occupying the window, the probability that
frame ¢ is coding (C;) is calculated by:

P(S]Ci) x P(Ci)

P(Ci | S) = —
2=1 P(S] Cp) x P(Cy)

(1)

Figure 2: Reading frame signals produced by the
Staden algorithm. The signals were generated on a first-pass,
unedited sequence from F. Blattner’s laboratory. The gene for
peripheral membrane protein U starts at position 61 and ends at
position 792. The sequence contains a frameshift error at posi-
tion 283, one at position 637, and four located between 740 and
774. The vertical scale of each signal is log ﬁ, where P is
the probability for a frame calculated by the Staden algorithm.

The prior probability that each frame is coding,
P(C;), is estimated as the number of triplets in frame ¢
that can be formed in the window, divided by the num-
ber of triplets that can be formed in the window in all
three frames. (As the window size is increased, P(C;)
approaches % for all three frames.) The conditional
probabilities, P(S | C;), are estimated by compiling a
table of the frequencies at which various codons occur
in known genes. In machine learning terms, this ta-
ble can be thought of as a training set for the Staden
algorithm. The frequency value for each codon is an
estimate of the conditional probability that the codon
occupies each position in a sequence S, given that S
encodes a protein. Staden makes the assumption that
the codons that compose a gene are independent of
each other, and thus makes the following estimation:

P(S|Cy) =[] PSih) |) (2)

i=1

Si(j), in this equation, is the jth triplet in frame ¢ in
sequence S.

An additional assumption made by the Staden al-
gorithm is that the given sequence encodes a protein
in one of the three reading frames on the strand under
consideration. Noncoding regions, consequently, are
indicated by roughly equal probabilities for all three
frames.

We hypothesized that an artificial neural network
would be able to outperform the Staden algorithm
because it would not be constrained by the indepen-
dence assumption of neighboring codons. An ANN
might be able to capture important information about
the joint probabilities of certain codons occurring near
each other. Section 7 addresses this hypothesis.

1 2 3
bt
‘AGTHCAGHGTC‘
T CAGTT CTCAG
bt
6 5 4

Figure 3: Nucleotide positions in a codon. The top strand
is the coding strand and the boxes show how the nucleotides are
grouped into codons. The numbers show the codon positions of
six of the nucleotides in the sequence. Networks with six output
units are trained to predict the codon position of the nucleotide

in the center of the window.

4 Using ANNs to Predict Reading
Frames

As with the reading-frame determination method
of Staden [12], we train artificial neural networks to
make predictions given a fixed-length window of the
DNA sequence of interest. Artificial neural networks
provide an approach to machine learning character-
ized by simple processing units linked to each other
by weighted connections. The state of a unit at any
given time is represented by its activation, which is
typically a real-valued number in the range [0, 1]. The
input layer of a network contains units whose activa-
tions represent feature values of the problem domain
to which the ANN is being applied. The units in the
output layer of a network represent the decisions made
by the network. Interposed between the input units
and the output units, there can be a number of hid-
den layers of units. The activations of hidden and out-
put units are computed by passing the weighted input
to each unit through an activation function which is
typically nonlinear. Comprehensive introductions to
neural networks can found elsewhere [6, 8].

There are many ways in which the nucleotides oc-
cupying the window can be represented as activations
on the input units. Section 5 describes the represen-
tations that we investigate in our experiments. The
output representation that we use for our networks
involves six output units. A network is trained to pre-
dict the position within a codon that the nucleotide
in the center of the window occupies. As shown in
Figure 3, if the part of the strand in the window is a
coding region, then the network is trained to predict
whether the nucleotide in the center of the window is
the first, second, or third nucleotide in a codon. If
the part of the strand in the window is not a coding
region, but the corresponding part of the complemen-

tary strand is in a gene, then the network is trained
to predict codon positions of four, five, or six. Thus,
the networks have three units for the possible codon
positions on the given DNA strand, and three units
for the possible codon positions on the complemen-
tary strand.

Predicting codon positions is equivalent to predict-
ing the reading frame relative to the position of the
window. Consider, for example, a window size of seven
nucleotides, where the first reading frame relative to
the window starts grouping nucleotide triplets from
the left edge of the window, the second reading frame
starts a triplet with the second nucleotide in the win-
dow, and the third reading frame starts with the third
nucleotide in the window. In this case, predicting
codon position 1 for the center nucleotide is equiva-
lent to predicting frame 1, predicting codon position
2 is equivalent to predicting frame 3, and predicting
codon position 3 is equivalent to predicting frame 2.

In order to generate reading-frame signals, as in
Figure 2, a network is scanned along a DNA sequence.
Signals are formed by concatenating activation values
from the output units. The input window is advanced
by only one nucleotide each time it is moved; thus, ac-
tivation values from three different output units must
be interleaved to form each signal.

We have also investigated output representations
using one and three output units. We have found,
however, that six-output networks produce the best
prediction accuracies. Networks with six output units
are trained to recognize coding regions in all six frames
relative to the window, whereas three-output networks
are trained to recognize only three frames, and one-
output networks learn to recognize only one frame rel-
ative to the window. For the problem of predicting
reading frames, we have found that neural networks
tend to make fewer prediction errors with increasing
numbers of output classes.

5 ANN Input Representations

A fundamental issue involved in applying artificial
neural networks to reading-frame prediction is how to
represent the DNA sequence that is in the input win-
dow. We have investigated three approaches: (1) pro-
viding the network with only the nucleotides that are
present in the window, (2) providing the network the
codons that are present in the window, and (3) provid-
ing the network with statistical features derived from
the contents of the window.

The first approach that we investigate uses a local
encoding of the nucleotides that occupy the window.

...ATCG|CTG|CCAG...

Figure 4:

cleotides using a local encoding. The nucleotides in the

Representing the input window as nu-

window determine the activations of the input units. Shaded
input units have activations of 1, the other input units have
activations of 0. In this figure, the input window is only three

nucleotides wide.

...TCG|TTG AAA TTG|CAG...

Figure 5: Representing the input window as codons.
There are sixty-four input units for each frame. The activation
of each input unit represents the number of occurrences of the
corresponding codon in a particular frame in the window. In
this figure, the input window is only nine nucleotides wide, and

the units for only one frame are shown.

—>{ frame bias matrix

—] base content

—] base—position

[
AN
\«lo“s‘«
i A“OX"A A"'v
'VOi‘Y“‘V'\QXX’A

—={ fractal dimension

S
AN
N7

2
o

p/Aq

—] coding words

—] in—-frame words

—={ word commonality

..ATCIGCTGCCAGTICGC..

Figure 6: Representing the input window as extracted
features. Statistics are derived from the nucleotides in the
input window and these statistics are used as the input values to
the ANN. The seven features in the figure are from Uberbacher
and Mural. In this figure, each extracted feature is shown as
involving only one value and hence one input unit. The actual

networks that we use have 25 input units.

In a local encoding, one input unit is used for each
possible value that a given feature can assume. As il-
lustrated in Figure 4, four input units are used to rep-
resent each position in the input window. Each of the
four input units represents one of the four nucleotides
that could occupy the position.

Another approach to representing the input se-
quence is to extract some higher-level features from
the raw sequence of nucleotides and to present these
derived features to the network as input. This is essen-
tially the approach employed by the Staden method,
where the extracted features are the frequencies of
the putative codons (nucleotide triplets) in the win-
dow. The second input representation that we inves-
tigate involves extracting the putative codons that are
present in each frame in the window and representing
the input window in terms of these codons. Thus,
when the window is positioned over a gene, and it is
positioned so that it is in-frame, the triplets in the
window will actually be codons in a gene. This ap-
proach has been used by others to find protein coding
regions in human DNA [9, 3]. As shown in Figure 5,
this representation requires sixty-four input units for

a network with one output unit. Each unit represents
a particular codon and its activation represents the
number of occurrences of that codon in the window.
For a network with six output units, it is necessary to
represent the triplets in all six frames; hence 384 input
units are used.

Another input representation approach, depicted
in Figure 6, is that of Uberbacher and Mural [13],
who have described and investigated seven feature ex-
tractors that they use to locate coding regions in hu-
man DNA. We have adapted the approach of Uber-
bacher and Mural to prokaryotes, or organisms, such
as F. coli, that lack nuclei.

In higher organisms, or eukaryotes, the DNA that
encodes a gene may contain infervening sequences, or
introns, that are spliced out before the gene is trans-
lated to a protein. In addition to discriminating genes
from intergenic regions, identifying coding sequences
in eukaryotic DNA also involves recognizing introns.
Uberbacher and Mural have developed an ANN that
distinguishes introns from the coding (ezpressed) parts
of eukaryotic genes, called ezons. We have adapted
the Uberbacher-Mural approach to finding genes in
prokaryotic DNA, which does not have introns. In-
stead of classifying exons and introns, we train net-
works to identify the strand and the reading frame
that encodes a protein.

Our feature extraction approach employs somewhat
modified versions of six of the seven features used by
Uberbacher and Mural. One of our modifications is
to use all six values for the features that calculate a
value for each frame. A second modification is to cal-
culate the Uberbacher-Mural features on both of the
DNA strands for a given window position. Briefly de-
scribed below are the features that we adapted from
Uberbacher and Mural:

1. Frame bias matriz: Each element of a 4 x 6 frame
bias matrix represents the difference in frequency,
relative to the mean, for the occurrence of A, C,
G, and T in each of the six codon positions. A
matrix is constructed for each of the six possible
reading frames in the input window, and the cor-
relation coefficients of these matrices with a ref-
erence matrix are used as input features. The ref-
erence matrix is constructed from a set of known
genes.

2. Fickett values: An algorithm developed by Fick-
ett [4] measures the A, C, G, and T-content of a
sequence, and the degree to which each nucleotide
is favored in each codon position. The Fickett al-
gorithm weights these eight values to form a sin-

gle score indicating the probability that the se-
quence encodes a protein. While Uberbacher and
Mural use the single Fickett score, we use the con-
tent and codon position values as input features
so that a network can develop its own weighting.

3. Dinucleotide fractal dimension: The transitions
in the frequencies of sequential dinucleotides can
be characterized by a fractal dimension [13, 7].
We calculate this dimension for the dinucleotides
occurring on both strands in the input window
and subtract from each value the fractal dimen-
sion of a set of noncoding reference strands.

4. Coding 6-tuple word preferences: For each six
nucleotide-long word in the input window, the
logarithmic ratio of its normalized frequency of
occurrence in coding versus noncoding strands
is calculated. For each strand, these values are
summed to form input features. Word frequencies
are compiled from a set of reference sequences.

5. Coding 6-tuple in-frame preferences: This set of
features is similar to the previous one, except that
the words considered for each score are all in the
same frame, and the frequencies considered are
tabulated only for in-frame words. These scores
are calculated for all six frames in the input win-
dow.

6. Word commonality: For each 6-tuple word in the
input window, the logarithmic ratio of its nor-
malized frequency of occurrence divided by its
expected random frequency is calculated. These
values are summed for all words in all six frames
and combined into a single score.

The Uberbacher-Mural feature that we do not use
is one that calculates similarity to certain classes of
repetitive DNA. Although this is a useful feature in an-
alyzing eukaryotic DNA it is not relevant to prokary-
otic organisms such as E. coli.

6 Experimental Methodology

The data that we use to evaluate our networks is
taken from thirty E. coli genes. The BLAST program
[10] was run on all pairs of genes in the data set to en-
sure that the presence of homologous genes would not
distort training and testing accuracies. The criterion
used to define homology is 50% identity when aligned
at the protein level. We have partitioned the set of
sequences into four sets, and all of our experiments

involve a four-fold cross-validation methodology. In
four-fold cross-validation, networks are trained using
examples from thee of the sets and tested on examples
from the fourth set. This procedure is repeated four
times so that each set is used as the testing set once.

The networks are not trained on noncoding DNA
sequences because it is problematic to isolate noncod-
ing sequences of significant length. The F. coli genome
is dense with coding regions [1], and it is difficult to
verify that what appears to be a noncoding region
does not actually contain any genes. We have exper-
imented with including some regions from the phage
A, which are believed to be noncoding, in our data
sets. We have found, however, that including these
sequences in our training sets did not significantly im-
prove the prediction accuracies on the A sequences in
the test set. The handling of noncoding sequences for
this prediction task is still an open problem.

For all of our training and testing examples we as-
sume that E. coli DNA does not contain regions where
the two complementary strands have coding regions
that overlap. In other words, there is only one correct
prediction for any given input window. We believe
that this is not a harmful assumption because known
cases of overlapping genes in E. coli are very rare.

Each network is trained using 10,000 window-sized
DNA sequences randomly selected from three of the
folds. An input window width of sixty-one nucleotides
is used for all representations. There is a trade-off in-
volved in selecting a window size for the task of pre-
dicting reading frames. Better prediction accuracies
usually result from larger windows since they provide
more information to networks. On the other hand,
large windows result in worse resolution for detecting
gene boundaries and frameshift errors. We have found
that this window size provides an adequate compro-
mise of accuracy and resolution.

The networks are trained for, at most, 100 epochs.
A tuning set consisting of ten percent of each training
set is used to determine when to stop training so that
networks do not “overfit” the training data. Members
of the tuning set are not presented to the network as
ordinary training examples, but instead are used dur-
ing learning to estimate the accuracy of the network on
unseen examples. Each network is then tested on all
of the examples in the left-out fold. The total number
of testing examples is 65,116 window-sized sequences.

We use two different measures to assess the perfor-
mance of networks on the testing data. The first mea-
sure is simply the percentage of windows for which the
network generates the correct prediction. The out-
put unit with the highest activation determines the

predicted codon position for each example. The sec-
ond measure is the run-length of the errors made by
a network as it generates predictions for continuous
sequences. The run-length of a sequence of errors is
simply the number of contiguous nucleotides for which
a network generates incorrect predictions. Run-length
provides a performance metric that is complemen-
tary to simple window correctness because it reflects
the fact that not all errors made by the network are
equally significant. Isolated errors and short stretches
of contiguous errors do not pose serious problems for
the task of predicting reading frames, whereas errors
with long run-lengths do.

7 Comparing Input Representations

The objective of our first experiment is to deter-
mine the effect of input representation on reading
frame prediction accuracy. In this experiment we as-
sess the performance of neural networks using the nu-
cleotides, codons, and Uberbacher-Mural representa-
tions described previously. We also compare the per-
formance of ANNs using these representations to two
conventional approaches to reading frame prediction:
the Staden and Gribskov algorithms.

The Gribskov [5] algorithm is similar to the Staden
approach; the primary difference is that the Gribskov
method tries to factor out the amino-acid composition
of the translated protein. As with the Uberbacher-
Mural features, we have extended the Staden and
Gribskov methods to consider both strands for a given
window position. Thus, both algorithms produce pre-
diction values for six, instead of three reading frames.
We have found that this extension results in better
prediction accuracies.

This experiment also tests a network that uses an
input representation consisting of the values generated
by the Staden and Gribskov algorithms in addition to
the Uberbacher-Mural features. All of the networks
that we use are fully-connected between layers. In or-
der to select the number of hidden units to be used for
networks with a given input representation, we tested
all representations using 40, 20, 10, 5 and no hid-
den units. We report the results for the best network
architecture for each input representation (20 hidden
units for the Uberbacher-Mural representation, 10 for
the Uberbacher-Mural-Staden representation, 20 for
the bases representation, and no hidden units for the
codons representation).

The various reference statistics used to calculate
the Uberbacher-Mural, Staden, and Gribskov features
are extracted from a separate set of thirty-eight genes

Table 1: Performance of various approaches. The cor-
rectness percentages indicate the number of window-sized se-
quences for which the correct frame is predicted. The accuracy
difference between the Uberbacher-Mural-Staden network and
the Staden algorithm is statistically significant to the 99.5%

confidence level using the Student t-distribution.

| approach | % correct |
neural nets nucleotides 59.51
Uberbacher-Mural 84.97
codons 87.45
Uberbacher-Mural-Staden 89.16
conventional | Gribskov 73.13
Staden 87.82

which are also taken from GenBank. The Staden and
Gribskov algorithms are tested in the same manner as
the neural networks. The training data for these algo-
rithms consists of a set of genes used to calculate codon
usage frequencies. As with the ANNs, the Staden and
Gribskov algorithms are run on four separate testing
sets, and in each case they used the same set of genes
for training data as the networks.

The results of the experiment are reported in Ta-
ble 1. The correctness percentages indicate the num-
ber of window-sized sequences in the test sets for
which correct predictions are made. The results pre-
sented in Table 1 show that the input representation
used by a neural network has a significant effect on
the ability of the network to learn the task. The per-
formance of the networks using the nucleotides repre-
sentation falls far short of the other networks. Appar-
ently, the hidden units used by these networks have
failed to find representations for useful higher-level
features such as codons.

The performance of the networks with the codons
representation is about the same as the performance of
Staden method. We had expected the codons networks
to outperform the Staden approach by representing
some information concerning the joint probabilities of
codons. Farber et al. [3] have found that perceptrons
are able to do this for a similar task.

Additionally, the results indicate that, for E. cols,
the Staden algorithm is a better predictor of read-
ing frames than a neural network trained using only
the Uberbacher-Mural features. The best approach,
however, is to use networks that are given the Staden
and Gribskov signals in addition to the Uberbacher-
Mural features. This result seems to indicate that
there is complementarity in the features used by the
Uberbacher-Mural and Staden methods.

220 \ ‘ ‘ ‘ ‘ ‘

Uber bacher-Mural ANN ——
codons ANN -+
200 Staden al gorithm e~ -
Y Uber bacher-Miral - Staden ANN -

180 1 |
160 \
140 1
120
100

80

nunber with run-length >= x

60

40

20

O 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50
error run-length (x)

Figure 7: Cumulative distribution of error run-lengths
for four approaches. The X-axis represents error run-length.
The Y-axis represents the number of errors whose run-length
is greater than or equal to a given point on the X-axis. Only
errors with run-length of three nucleotides or greater are shown

here.

Figure 7 shows the cumulative distributions of error
run-lengths for four of the approaches. An error, for
the purposes of this plot, is considered to be a succes-
sive sequence of incorrect predictions. The run-length
of an error is the length, in nucleotides, of the sequence
of wrong predictions. The z-axis in the plot represents
error run-length. The y-axis represents the number of
errors whose run-length is greater than or equal to a
given point on the z-axis. For example, the networks
using the Uberbacher-Mural representation made 114
errors with run-lengths of 10 nucleotides or longer.
Only run-lengths of three nucleotides or greater are
shown here.

Whereas Table 1 shows the number of incorrect
predictions made by each approach, Figure 7 shows
how these errors tend to cluster. It can be seen, for

example, that the Uberbacher-Mural networks tend
to make longer runs of incorrect predictions than the
other approaches. While only about 6% of the er-
rors made by the Staden algorithm have run lengths
of 10 or more nucleotides, nearly 13% of the errors
made by Uberbacher-Mural networks do. The net-
works using the codons representations also tend to
make longer runs of incorrect predictions than the
Staden algorithm and the Uberbacher-Mural-Staden
networks. The distributions of these latter two ap-
proaches are very similar.

Finally, it should be pointed out that the networks
with the nucleotides input representation effectively
had less training data than the other networks. In ad-
dition to training examples, the other networks ben-
efited from information present in the various refer-
ence tables provided to the feature extraction rou-
tines. In order to test whether this additional training
data explained the difference in performance between
the input representations, we constructed a learning
curve (not shown here) for the nucleotides networks.
A learning curve plots performance (the dependent
variable) against the amount of training data (the in-
dependent variable). This analysis indicated that the
performance of the nucleotides networks sharply lev-
els off at around 2000 training examples and seems to
have an asymptote around 60%. Furthermore, since
ANN training is quite slow, the feature-extraction pro-
cess is an efficient way to exploit information available
in the data.

8 Evaluating the Uberbacher-Mural
Features

The previous experiment demonstrated the value
of using an input representation of extracted statis-
tics. We conducted a second experiment to determine
how much information is contributed by each individ-
ual feature in the Uberbacher-Mural representation.
Those features that provide a value for each reading
frame can be used by themselves to classify sequences.
Similarly, those features which provide a value for each
strand of a sequence can be used to classify sequences
according to which strand is coding. In both cases,
the classification is done by choosing the frame/strand
with the greatest value. The results of applying indi-
vidual features to the classification task are shown in
Table 2. The Fickett features and the word common-
ality features are left out of this experiment. Since
there are eight Fickett values and only one word com-
monality value, we cannot use these features to classify

Table 2: Predictiveness of Uberbacher-Mural features.
These percentages indicate the ability of individual features to

identify the correct reading frame and/or the correct strand.

feature frame strand
% correct | % correct
fractal dimension - 61.42
frame bias matrix 63.10 68.40
Gribskov scores 73.13 79.00
coding word preferences - 81.43
in-frame word preferences 85.05 87.97
Staden scores 87.82 90.28

Table 3: Leaving one Uberbacher-Mural feature out.
The difference in test set correctness between networks using
the Uberbacher-Mural features and networks with one feature
left out of the input representation. Differences are reported in

percentage points.

feature left out difference in
% correct
coding word preferences -0.11
word commonality -0.24
fractal dimension -0.25
frame bias matrix -0.36
fickett values -0.62
in-frame word preferences -9.29

sequences by simply selecting the largest from a set of
values.

In addition to testing features individually, we also
performed the converse experiment: leavingindividual
features out of the input representation. As before,
networks are trained and tested using four-fold cross-
validation. In each training run, however, one of the
six Uberbacher-Mural features is left out of the input
representation. The results of this experiment are pre-
sented in Table 3. The numbers in this table represent
the percentage-point difference in test-set correctness
between networks using the Uberbacher-Mural input
representation and networks with each feature left out.

The results in Table 2 indicate that the Staden
scores and in-frame word preferences are the best
reading-frame predictors among the input features.
All of the Uberbacher-Mural features, however, seem
to provide some information useful in classifying se-
quences.

The results in Table 3 indicate that there is a fair
amount of redundancy in the Uberbacher-Mural fea-

tures. Except for in-frame word preference, leaving
any Uberbacher-Mural feature out of the input rep-
resentation does not significantly affect the prediction
accuracy of the network. Leaving the in-frame word
preference feature out, however, does have a signifi-
cant negative effect. This result, as well as the gain in
prediction accuracy resulting from including Staden
signals in the Uberbacher-Mural networks, seems to
indicate the significance of codon preference in E. coli
for the sequences that are presently in the GenBank
database.

9 Conclusions

We have applied artificial neural networks to the
task of locating coding regions in DNA sequences and
determining the reading frames for these coding re-
gions. We have extended the Uberbacher-Mural ap-
proach to apply to prokaryotic DNA and to predict
reading frames in addition to coding regions. We have
shown that the input representation used for a neural
network makes a significant difference in the perfor-
mance of the network. We have also compared the
performance of our ANNs to two commonly-used con-
ventional algorithms for reading frame prediction and
found that the networks are able to outperform both
of them.

Our ANNs are currently being used in the Uni-
versity of Wisconsin E. coli Genome Project to as-
sist in the location of genes in uncharacterized DNA
sequences, and to detect frameshift errors that have
occurred in the sequencing process. We believe that
the application of our networks in this laboratory will
provide further insight into the problem of identifying
genes in DNA.

10 Acknowledgements

This work was partially supported by Department
of Energy Grant DE-FG02-91ER61129, National Sci-
ence Foundation Grant IRI-9002413, and Office of
Naval Research Grant N00014-90-J-1941. Prof. Fred-
erick Blattner of the University of Wisconsin Genetics
Department provided many helpful comments at var-
ious stages of this research. Dr. Michael Cherry at
Massachusetts General Hospital kindly provided the
list of E. coli genes used in constructing his codon us-
age table.

References

(1]
2]

(4]

[8]

Fred Blattner, 1992. Personal communication.

Donna L. Daniels, Guy Plunkett III, Valerie D.
Burland, and Frederick R. Blattner. Analysis of
the Escherichia coli genome: DNA sequence of

the region from 84.5 to 86.5 minutes. Science,
357771778, 1992.

R. Farber, A. Lapedes, and K. Sirotkin. Determi-
nation of eucaryotic protein coding regions using
neural networks and information theory. Techni-
cal Report LA-UR-90-4014, Los Alamos National
Laboratory, Los Alamos, NM, 1990.

James W. Fickett. Recognition of protein cod-
ing regions in DNA sequences. Nucleic Acids Re-

search, 10(17):5303-5318, 1982.

M. Gribskov, J. Devereux, and R. Burgess. The
codon preference plot: Graphic analysis of pro-
tein coding sequences and prediction of gene ex-
pression. Nucleic Acids Research, 12(1):539-549,
1984.

J. Hertz, A. Krogh, and R. Palmer. Introduction
to the Theory of Neural Computation. Addison
Wesley, Redwood City, CA, 1991.

Kenneth J. Hsu and Andreas J. Hsu. Fractal
geometry of music. Proceedings of the National

Academy of Sciences, 87:938-941, February 1990.

Kevin Knight. Connectionist ideas and algo-
rithms. Communications of the ACM, 33(11):59—
74, 1990.

A. Lapedes, C. Barnes, C. Burks, R. Farber, and
K. Sirotkin. Application of neural networks and
other machine learning algorithms to DNA se-
quence analysis. In G. Bell and T. Marr, editors,
Computers and DNA, SFI Studies in the Sciences
of Complexity, vol VII pages 157-182. Addison-
Wesley, 1989.

E. W. Myers, W. Miller, S. F. Altschul, W. Gish,
and D. Lipman. Basic local alignment search tool.
Journal of Molecular Biology, 214, 1990.

J. W. Shavlik. Case-based reasoning with noisy
case boundaries: An application in molecular bi-
ology. Technical Report 988, University of Wis-
consin, Madison, WI, 1990.

10

[12]

[13]

[14]

R. Staden. Finding protein coding regions in
genomic sequences. Methods in Enzymology,
183:163-180, 1990.

Edward C. Uberbacher and Richard J. Mural. Lo-
cating protein coding regions in human DNA se-
quences by a multiple sensor — neural network

approach. Proceedings of the National Academy
of Sciences, 88:11261-11265, 1991.

James D. Watson, Nancy H. Hopkins, Jeffrey W.
Roberts, Joan Argetsinger Steitz, and Alan M.
Weiner. Molecular Biology of the Gene, volume I.
Benjamin/Cummings, Menlo Park, CA, fourth
edition, 1987.

