»l

Efficient Computer Manipulation
of Tensor Products

CARL DE BOOR
University of Wisconsin-Madison

It 1s shown how to construct a modified version SUB,’ of a (presumably efficient) subroutine SUB, for
solving the hinear system Ax = b,1 =1, |k, so that the linear system

(A|® LR} ®A;,)x=b
can be solved by just one call to each of the routines SUB,’,1 =1, , k Polynomal interpolation and
spline nterpolation 1n several variables are given as examples,

Key Words and Phrases: tensor product, multivanate, mterpolation, approximation, polynomial,
sphne, osculatory
CR Categories. 5.13

In [3], Pereyra and Scherer discuss the numerical solution of a linear system of
the form

A®---.QAYXx =D (1)

with A, an invertible matrix of order n,, i = 1, ..., %, and, correspondingly, both
x and b k-dimensional arrays, of size n; X ny X ... X nlzk. Such systems arise
naturally when forming tensor products of univariate interpolation schemes.

Pereyra and Scherer propose to store arrays such as x and b with the last
index running fastest and then have a scheme of applying A;:™", Az}i and so on
down to and including A, ", appropriately restoring the intermediate information
so that application of A,”! involves only repeated ordinary matrix multiplication
to a vector stored in consecutive locations in memory. When, as is more reason-
able, application of U,”',"! rather than of A,”! is wanted, with L,U, a triangular
factorization for A,, a further complication arises and is dealt with.

It is the purpose of this paper to describe a different procedure which I have
used for some time and which is more direct and simpler than the Pereyra-
Scherer procedure appears to be.

We assume that, for each i, we have available a Fortran subroutine SUB.,b, n,
x) which solves the ith linear system A,.x = b (of order n = n,) for x, given b.
Presumably, the routine does this in an efficient way, taking advantage of any
special structure A, might have such as bandedness, positive definiteness, etc.

Permission to copy without fee all or part of this material 1s granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and 1ts date appear, and notice 1s given that copymg is by permission of the Association
for Computing Machmnery. To copy otherwise, or to republish, requwres a fee and/or specific
permission

This work supported by the United States Army under Contract DAAG29-75-C-0024.

Author’s address' Mathematics Research Center, University of Wisconsin-Madison, 610 Walnut St ,
Madison, WI 53706

© 1979 ACM 0098-3500/79/0600-0173$00.75
ACM Transactions on Mathematical Software, Vol 5, No. 2, June 1979, Pages 173-182

carl de boor
Sticky Note
the corrigenda, ACM Math Software, 5(2), 1979, p.525, acknowledges that the final production process of this paper introduced various misprints. These are pointed out below

carl de boor
Highlight
nlzk --> n_k

carl de boor
Highlight
l --> L

carl de boor
Highlight
SUB_i --> SUB_i(

174 . Carl de Boor

We further assume that the k-dimensional arrays x and b are (to be) stored in
Fortran fashion, i.e.,

x(l, gy ...,) =Xl +mEG—1+n(ia—1+ - + (@ —1) -++)))

if we refer to x also as an equivalent one-dimensional array.

The following simple procedure will then lead to an efficient way for solving
eq. (1). For each i, enlarge the subroutine SUB, to a subroutine SUB,’(b, n, m, x)
which solves simultaneously A.x = b for m given right sides b(-, 1), b(-,2),..., b
(-, m), each of length n = n,, and stores the corresponding solutions in x(1, -), x(2,
), ..., x(m,). Thus the dimension statement for the arguments b and x in SUB,’
reads

DIMENSION b(n, m), x(m, n)

and the change otherwise consists in putting every statement involving b or x
appropriately into a DO loop. In this, care should be taken to leave statements
which do not depend on the particular right side outside such loops.

Many library routines for specific linear problems already provide this facility
for dealing with several right sides in one call, since the work in solving Ax = b
for an additional right side b is usually much less than the work for solving such
a system the first time. But such routines return the solution corresponding to
the jth column b(-, j) of the input array customarily in the jth column of the
output array x and not, as I propose here, in the jth row.

LEMMA. Fori =1, ..., k, let SUB/ be an expanded version, as described, of
the routine SUB, for solving Ax = b, and set N := ni*nq*- - -*n,. Then, the
following statements

bo =b
CALL Sub/'(bo, n1, N/ni, by)
CALL SUBy (by, nz, N/ns, by)

CALL SUB; (bg-1, nx, N/n, by)
x := b,

will produce the solution x of eq. (1).
Proor. Let x, be the k-dimensional array x, '= (4,7’ ® ... ®A,'®1Q ...
®1)b,i=0,..., k Then

xl(jls ---;jt—l, ',jH»l, --"jk) =Al_lxt-1(j1, ---,]L 3 1,',jt+1, ,Jk) (2)

and our assertion is proved if we can establish that b, = x;. We prove this by
showing that, for all i, b, as generated by the succession of calls above is related
to X, in the following way: If b, is interpreted as a k-dimensional Fortran array,
of dimension (41, ..., Ne, N, ..., 1), then

b.(jirss ooy diy iy oo J) =X, s k), @l §, (3)

fori=0,..., k Fori =k, eq. (3) is indeed the desired statement that b; = x,.
Now, eq. (3) holds for ¢ = 0 because of the initial assignment b, := b. Assuming

eq. (3) to hold for { < v, we consider the action of the

ACM Transactions on Mathematical Software, Vol 5, No. 2, June 1979

carl de boor
Highlight
\sl --> \rm [also in next line]

carl de boor
Highlight

carl de boor
Highlight
\sl Sub --> \rm SUB

carl de boor
Highlight

carl de boor
Highlight

carl de boor
Highlight
\sl --> \rm

carl de boor
Highlight
\sl b --> \bf b

carl de boor
Highlight
j_i -1 --> j_{i-1}

Efficient Computer Manipulation of Tensor Products . 175

CALL SUB/(b,_y, n,, N/ n., b).

SUB.’ considers b.-; to be a two-dimensional array, b say, of dimension (n,, N/
n.). Thus with

S:=j0+1 +nu+l(jv+2 -1+ ... +nk(jl 14 ...+ nv-Z(ju—l -— 1).-.)...),
we have

b(+, 8) = buile, Jorty oo vy Jus Jis oo v s Jo-1)
' (4)

= xv—l(jly .. -,jv—l, °’j0+1’ .. ‘,ﬁ?)

by induction hypothesis. SUB,’ then applies A,”' to each of these m = N/n,
n,-vectors b(., s), thus obtaining the corresponding n,-vector

xu(jl, . ~-,jv~1, ',jv+17 .. "J}Z)ﬂ

by egs. (2) and (4), and stores this vector in

x(s, -) =bus + (N/n)(- — 1))
= bu(jv-H + nv+1[jv+2 -1+ ... 4 nv-—Z(jv-—l - 1)- - -] + (N/nv)(' - 1))
= Do(Jors, oo Jos iy oo o5 Jom1,)

which proves eq. (3) for { = v and so advances the induction hypothesis. Q.E.D.

We introduced the axuiliary arrays only for argument’s sake. In calculations,
two arrays, say b; and by, are sufficient, with b, serving in place of all b, with ¢
odd, and b, serving for all the others.

Also, in typical situations, the various subroutines SUB,, ..., SUB; are, in fact,
just one routine called with additional arguments which differ with i. In such a
case, only one extended version has to be written.

Finally, we put the above discussion in terms of solving a linear system, i.e., in
terms of premultiplying a given vector by the inverse of a given matrix. We did
this in order to make the point that we do not require the matrix by which we
wish to premultiply to be present explicitly. Any Fortran subprogram SUB.(b, x)
which has the effect of forming x = B,b for given b can serve as a basis for an
extended version SUB, (b, n, m, x) suitable for the calculation of (B, ® --- ®
B:)b, and the matrices B, need not be square. We state this slight extension of
the lemmma as a corollary for the record.

COROLLARY. Fori =1, ..., k, let B, be a (n,, r)-matrix, and let SUB,/(b, n,, m,
x,) be a subroutine which, for j = 1, ..., m, forms the r-vector Bb(-, j) (in
some manner) from the n,-vector b(., j), and stores it in x(j, -). Then, the
following statements

bo = b

m:=n2*) *nk

CALL SUBy (bg, n, m, by, ry)
m .= m*r,/n,

ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979

carl de boor
Highlight
xu --> ux

carl de boor
Highlight

carl de boor
Sticky Note
\ls CALL SUB --> \rm CALL SUB

176 . Carl de Boor

CALL SUB;/ (b1, na, m, be, rs)

m = m ry/n;

CALL SUBY (bs-,, Ny, m, bk, rx)
X = bk

form the k-dimensional array x = (B; ® ... @ B,)b.

It is not even necessary that B, be a matrix, i.e., a two-dimensional array. The
more general situation in which B, is a linear map which associates s,-dimensional
arrays with ¢,-dimensional arrays is covered by the corollary as well since we can
always interpret such s,-dimensional and ¢.-dimensional arrays Fortran fashion as
equivalent one-dimensional arrays.

We give some simple examples in the next section.

TENSOR PRODUCTS OF UNIVARIATE INTERPOLATION SCHEMES

The following material concerning tensor products of univariate interpolation
schemes is well known and is mentioned here only in order to illustrate the use
and usefulness of the simple idea expounded earlier. (A simple account giving
proofs and details can be found, e.g., in [1].)

The construction of a (univariate) linear interpolant g to some function
f usually involves the calculation of the coefficients a = (a,) in a representation

g=72 ay

for the interpolant from certain information (A,f) about f. Here, each A, is a linear
functional, e.g., \.f = f(x,) or M,f = f (x) or \.f = [¢u(x) f(x)dx, etc., and g is so
constructed that A,g = A.f, all i.

At the level of the present discussion, there is no reason to require the
representation for g to be irredundant, i.e., to require the sequence (¢, to be
linearly independent. All that is necessary is the assumption that a = B()\,f) for
some matrix B. The matrix B is commonly not known explicitly (although it
could, of course, be determined). Rather, some procedure or subprogram SUB is
available which transforms the vector (A.f) of data appropriately into the vector
a of coefficients.

For example, consider the construction of the polynomial p = p, of degree less

than n which agrees with f at the n distinct points xy, ..., x,. In its Newton form,
Drlooks like
prx) =3 [x, ..., %]f- [(x=x) (5)
=1 J=1+1

with the coefficient [x,, ..., x.] f the so-called divided difference for f at the points
Xy .o X, l=1,...,n,ie,

[, i=J
L. w17 {([xm,...,x,]f—[x.,...,x,-df)/(x,—x,>, i<z ©

These coefficients can therefore be determined as final entires in a so-called
ACM Transactions on Mathematical Software, Vol 5, No 2, June 1979

carl de boor
Highlight

carl de boor
Highlight

carl de boor
Highlight
\bf x --> \sl x

carl de boor
Highlight
f\cdot --> f\ \cdot

carl de boor
Highlight
ir --> ri

Efficient Computer Manipulation of Tensor Products . 177

divided difference table, for instance, as in the following subprogram:

SUBROUTINE POLINT (X, F, N)
DIMENSION X(N), F(N)

NMl=N-1
IF (NM1 .LE. 0) RETURN
DO 10K =1, NM1
NMK=N-K
DO 101 =1, NMK
10 FI) = (FI+1) - FD)/(X{I + K) — X(1I))
RETURN
END

Here, the array F contains F(i) = f(x,), i =1, ..., n, on input and F(i) = [x,, ...,
x.]f, 1 =1, ..., n, on output. (For details concerning divided differences and the
Newton form (5), see, e.g., [2].)

Once the coefficient vector a in the representation Y,a.. for the interpolant g
has been determined, one may evaluate g in various ways. Typically, one then
wants to find A g for various linear functionals A such as Ag = g(x), some x, or Ag
= g"(x), or A\g = [yg for some Y, etc. All of these values can be obtained from the
vector a = (a,) by applying to it a matrix consisting of just one row, viz., the
matrix [Ag;, Ags, ...]. Thus evaluation of the interpolant at some linear functional
A is just another linear procedure or subprogram which applied some matrix B to
the vector a.

For example, the evaluation of the interpolating polynomial (5) at some point
x = ARG proceeds customarily by nested multiplication, as in the following
function subprogram.:

FUNCTION POLVAL (X, F, N, ARG)
DIMENSION X(N), F(N)
POLVAL = F(1)

IF (N.LE. 1) RETURN
DO10K=1N
10 POLVAL = POLVAL*(ARG — X(K)) + F(K)
RETURN
END

Note that, once again, the matrix B to be applied to the coefficient vector a of
coefficients (in the array F) is not formed explicitly.

Suppose now that we have, for each of the & independent variables ¢y, ..., f, a
linear interpolation scheme. This means that, for r = 1, ..., 2, we have a matrix
B, which associates with each data vector (A,”f) a coefficient vector (a,”) = B,(A,"f),
giving the interpolant g. = Y.a. ., for f = f(¢,). Further, for all appropriate integer
vectors i = (i1, ..., iz), let A, be a linear functional on some appropriate class of
functions f of & variables for which

Af= N AFALR)x - x (L)

whenever f(t,, ..., &) = filti) fo(t2) ... fulte), all &5, .. ., tz. For example, if £ = 3 and
M= fla), N f=f"(Br), and A" f = [& f(¢) dt, then

ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979

carl de boor
Highlight
d --> s

178 . Carl de Boor
Aainf = f(au, az, a3)

by
Aazaf = J (3/3t2)*f (e, B, t3) dts

Aeznf = (8*/at%0t:2) f (B, B2, as)

would serve. Also, let gi(ty, ..., &) == @ 1(l)Pu2(t2 ... @i 2(tr).

Then we can construct an interpolant g = Y.a.p. for a function f of the &
variables &, ..., & as follows: Calculate the k-dimensional array a = (a,) as a =
(B1® ..+ @ By)(\.f) from the k-dimensional array (A.f) of data. This function g
is then indeed an interpolant to fin the sense that A,g = A.f, all i. The calculation
of the coefficient array a is, of course, easily effected as described in the corollary
above.

To follow up on the example of polynomial interpolation, an appropriately
extended version POLNTE of the subprogram POLINT would require a separate
output array, D say, for the calculated divided differences. Otherwise, only the
statement labeled 10,

10 FI) = (Fd + 1) - FA)/(XIPK) - X(1))

needs to be put into an additional loop over the data sets, with the difference
X(IPK) — X(I) calculated outside that loop, of course. We get

SUBROUTINE POLNTE (X, F, N, M, D)
DIMENSION X(N), F(N, M), D(M, N)
DO5I=1,N
DO5J=1,M
5 D(J,I) = F({, J)
NMl1=N-1
IF (NM1 .LE. 0) RETURN
DO 10K =1, NM1
NMK =N - K
DO 10I=1, NMK
DIFF = X{I + K) - X{I)
DO10J=1M
10 D, 1) = (DY, 1+ 1) - D, I))/DIFF
RETURN
END

Note that this routine functions appropriately even for M = 1, the only difference
compared to POLINT being that the output is now to be found in D and not in
F. Note further that it takes N (N — 1)/2 adds and dividés per data set to form
B(\.f). Since the matrix B! is upper triangular in this case, explicit application
of B by backsubstitution would take no fewer operations and would require the
generation and storage of B (or its inverse).

Now, to illustrate the lemma and its corollary, suppose that we require the
polynomial interpolant p = p(x, y, z) todata f(x.,y,, 2z), i=1,..,n:;)=1,...,
ny;k=1,...,n.. Weload f(x., 5, 2») into F (i, j, k), x. into X (2), y,into Y (7), and
zx into Z (&), for all appropriate i, j, k. Then
ACM Transactions on Mathematical Software, Vol. 5, No 2, June 1979.

carl de boor
Highlight
t_2 --> t_2)

carl de boor
Sticky Note
[all subscripted i should be \bf]

carl de boor
Highlight
N\ (--> N(

Efficient Computer Manipulation of Tensor Products . 179

N = n.*ny*n,

CALL POLNTE (X, F, n., N/n., D)
CALL POLNTE (Y, D, n,, N/n,, F)
CALL POLNTE (Z, F, n., N/n., D)

to get the appropriate polynomial coefficients of the polynomial interpolant p
into the three-dimensional array D.

If we wish to evaluate this interpolant at some point (£, y, £), we have to
procure an extended version of the function routine POLVAL. The output for
such a routine will consist now of more than one number; we must therefore give
up on having a function. Otherwise, it is again only the assignment statement
POLVAL = F(1) and statement 10 which need to be put into a loop over the data
sets. Here is an extended version POLVLE of POLVAL.

SUBROUTINE POLVLE (X, D, N, M, ARG, VALUE)
DIMENSION X(N), D(N, M), VALUE(M)

DO5J=1M
5 VALUEQ@) = D(1, J)
IF (N.LE.1) RETURN
DO10K=2N
FACTOR = ARG - X(K)
DO10J=1,M
10 VALUE(J) = VALUE(J)*FACTOR + D(K, J)
RETURN
END

Now, to find p (%, ¥, 2),

CALL POLVE (X, D, n., N/n,, %, TEMP1)
CALL POLVE (Y, TEMP], n,, ., y, TEMP2)
CALL POLVE (Z, TEMP2, n_, 1, 2, ANSWER)

to get p (%, y, 2) = ANSWER. Note that TEMP1 must be of size n,*n, and
contains the necessary information to evaluate the bivariate polynomial p (%, y,
z) for any choice of y and z. Again, TEMP2 is of size n. and contains the
appropriate coefficients of the polynomial p (£, ¥, z) in the single variable z. In
particular, if p is to be evaluated at all the points of a regular grid, it is most
efficient to evaluate p along lines parallel to the z-axis.

As an example of some of the difficulties one might encounter, we now discuss
briefly osculatory polynomial interpolation. Here, the interpolant is again of the
form of eq. (5), but now some of the interpolation points x, . .., x, might coincide.
This requires an extension of eq. (6) which reads as follows:

[x, .., 5} = fU 2 x)/(G=0), ifx,=..- =x,. (6a)
By insisting that, for given data points x4, ..., x., we have x, = x, implies x, =
X,41=...=X,, egs. (6} and (6a) cover all eventualities. The point of this extension

is that now p agrees with f in the sense that p'”(2)= f"(2) in case the number z
appears (at least) r + 1 times in the sequence x,, ..., x». This explains the term
osculatory.

ACM Transactions on Mathematical Software, Vol. 5, No 2, June 1979

carl de boor
Sticky Note
POLVE --> POLVLE [three times]

180 . Carl de Boor

The following program for the construction of the coefficients in eq. (5) is based
on egs. (6) and (6a) and can be found, in somewhat different notation, in [2].

SUBROUTINE POLOSC (X, F, N)

C INPUT MUST SATISFY THE FOLLOWING.
C IFX({I-1) NE X({) = X1+ J) NE. X1+ J + 1), THEN
C X{I+L)=X({IANDF(I+L) = ODO==L)FXI),L=0,...,J.
C (HERE, X(0), X(N + 1) .NE. X(I),I=1,..., N, BY DEFINITION.)
DIMENSION X(N), F(N)
NM1=N-1
IF (NM1 .LE. 0) RETURN
DO10K =1, NM1
FLOATK = K
NMK=N-K
FLAST = F(1)

DO91I=1 NMK
DX = X + K) — X(I)
IF (DX .EQ. 0.) GOTO7
F@) = (FA + 1) — FLAST)/DX
FLAST=FI+1)

GO TO9
7 F1) = F(1 + 1)/FLOATK
9 CONTINUE
10 F(NMK + 1) = FLAST
RETURN

END

The construction of an efficient extension of POLOSC is made difficult by the
fact that the local variable FLAST depends on the data F but is active through
various statements which are independent of the data F and should therefore not
be put inside a loop over the various data sets. One way out is to make FLAST
an array of length M, either local or as an argument, which then requires the four
groups of statements

FLAST = F(1)

F(I) = (F0+ 1) - F1))/DX; FLAST = F(I + 1)
F(@) = F{d + 1)/FLOATK

F(NMK + 1) = FLAST

each be put into a loop over the different data sets.

An alternative way consists in a reorganization of the entire calculation which
avoids the temporary saving of terms which depend on F, possibly at the cost of
a slight increase in F-independent work. For the record, here is such a subprogram.
Note that the input information in F is to be arranged differently, too.

SUBROUTINE POLSCN (X, F, N)

C INPUT MUST SATISFY THE FOLLOWING.
C IFX{I-1).NE.X(I)=X(I+J).NE. X(I+J + 1), THEN
C XA+L)=XO ANDFI+L)=(D*»J -L)FXD),L=0,...,4d.
C (HERE, BY DEFINITION, X(0), X(N + 1) .NE. X(I),I=1,...,N)
DIMENSION X(N), F(N)
NM1=N-1
IF (NM1 .LE. 0) RETURN

ACM Transactions on Mathematical Software, Vol 5, No 2, June 1979

Efficient Computer Manipulation of Tensor Products ’ 181

DO 3 NEXTP1 =2, N
IF (X(NEXTP1) .NE. X(1) GOTO4
3 CONTINUE
NEXTP1=N+1
4 DO10K =1, NM1
NEXT = NEXTP1 =1
FLOATK = FLOAT(K)

NMK =N - K
DO 91 =1, NMK
IF (NEXT .EQ.) GOTO5
F(I) = F(I)/FLOATK
GOTO9
5 NEXT = NEXT + 1
IF (NEXT .GT. NMK) GOTO7
IF (X(NEXT + K) .EQ. X(NEXT)) GOTO5
7 F(I) = (F(NEXT) — F()/(X{I + K) — X(I)
9 CONTINUE
10 NEXTP1 = MAX0(2, NEXTP1 — 1)
RETURN

END

We do not bother to carry out here the extension of this routine because it is
straightforward. Aside from an initial transfer of F(z,) to D(j,), all i, j, only two
statements,

F(I) = FI)/FLOATK
F(I) = (F(NEXT) - F(})/(X(1 + K) — X(D))

need to be put into a loop over the data sets, with the difference X(I + K) — X(I)
formed outside such a loop (and, of course, F replaced by D(J, -)).

We close with an example in which the “matrix” B is three dimensional, taking
vectors to matrices, viz., complete cubic spline interpolation. A typical implemen-
tation of this scheme (see, e.g., [2] starts off with an array, C, of dimension
(4, n + 1), which contains the following information initially:

Cl,d)=f(x), i=1,...,.n+1
C(2, 1) = f'(x4), C(2,n+1) = f"(xn+1).

This says that the data (A.f) about f in this scheme consist of the vector (f(x1),
ooy flxna), f(x1), f'{xns1)). After passing through a subroutine SPLINE(X, C,
N), the array C contains the coefficients of the polynomial pieces which make up
the interpolating cubic spline, i.e., C(j, i) = gV (x)/(j—-1)!,j=1,...,4and i
=1,...,n

For an extended version, it would seem reasonable to introduce a separate
input array, F say, with

(F(1)1 ey F(n + 3)) = (f(xl)) ey f(xn-f-l), fl(xl)a f,(x'l+1))‘

The calling statement of the extended version then might be SPLNEE(X, F,
ACM Transactions on Mathematical Software, Vol. 5, No. 2, June 1979

carl de boor
Highlight
[2] --> [2])

182 . Carl de Boor

N + 3, M, C, N) with F and C dimensioned internally as F(N + 3, M), C(M, 4, N).
Thus if SPLNEE is used as SUB,’ in the corollary above, thenn, =N + 3, r, =
4*N. Consequently, bicubic spline interpolation, on a mesh (x,),"*! by (y,)\™*},
would be carried out by

CALL SPLNEE (X,F,n+3,m+3,C, n)
CALL SPLNEE (Y, C, m + 3, 4*n, F, m)

with F initially of dimension (n + 3, m + 3) and containing the data

(3 o FEL Y BGELY) S,)]
f(xn+1 » _}'l) v f(xn+1 s Yms) fv(xnﬂ y M) fy(xn+l s Ym+1)
fx(x1, y1) cor felXn, Yma) folx,y) fo(X, Ymer)
fx(xn+ly y) e f&ner, Ymer) ﬂy(xnﬂ ») ﬂy(xnﬂ , ym+1)

After the two calls, F contains the polynomial coefficients of the interpolating
bicubic spline,

F@+1,rj+ 1,5 = (3/ax)(8/3y)'g(xs, ys),
,j=0,...,3;r=1,..,n;s=1,...,m. (7)

Note the difference between this way of storing the coefficients and the customary
way followed by the various available routines which return the coefficients in
some array COEF containing COEF(i, j, r, s) = F(i, r, J, s). The coefficient array
F, organized as in eq. (7), lends itself easily to evaluation by extended univariate
evaluation routines.

In summary, the approach to tensor products advocated here allows one to do
the detailed programming work in the univariate context. The resulting programs
are then strung together to give or evaluate a tensor product interpolant (or,
effect multiplication by a tensor or Kronecker product of matrices) with an ease
which mirrors the ease of the mathematical construction of tensor products.

REFERENCES
1. pE Boor, C. Appendix to “Sphnes and histograms” by LJ. Schoenberg Rep. MRC TSR 1273,
Oct 1972, in Spline Functions and Approximation Theory, A Merr and A Sharma, Eds.,
Birkhauser Verlag, Basel, Switzerland, 1973, pp. 329-358.

2 CONTE, S., AND DE BOOR, C Elementary Numerical Analysts. McGraw-Hill, New York, second
ed., 1972,

3 PEREYRA, V., AND SCHERER, G. Efficient computer manipulation of tensor products with appli-
cations to multidimensional approximation Math. Comput 27 (1973), 595~605.

Received October 1977

ACM Transactions on Mathematical Software, Vol. 5, No 2, June 1979

