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Abstract

In this paper we study strictly positive definite functions on the unit sphere

of the m-dimensional Euclidean space. Such functions can be used for solving a

scattered data interpolation problem on spheres. Since positive definite functions

on the sphere were already characterized by Schoenberg some fifty years ago, the

issue here is to determine what kind of positive definite functions are actually

strictly positive definite. The study of this problem was initiated recently by Xu

and Cheney, [23], where certain sufficient conditions were derived. A new ap-

proach, which is based on a critical connection between this problem and that of

multivariate polynomial interpolation on spheres, is presented here. The relevant

interpolation problem is subsequently analyzed by three different complementary

methods. The first is based on the de Boor-Ron general “least solution for the

multivariate polynomial interpolation problem”. The second, which is suitable

only for m = 2, is based on the connection between bivariate harmonic polynomi-

als and univariate analytic polynomials, and reduces the problem to the structure

of the integer zeros of bounded univariate exponentials. Finally, the last method

invokes the realization of harmonic polynomials as the polynomial kernel of the

Laplacian, thereby exploiting some basic relations between homogeneous ideals

and their polynomial kernels.
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1. Introduction

Let Sm−1 denote the unit sphere in the Euclidean space IRm (m ≥ 2), and dm the
geodesic distance on Sm−1, i.e.,

dm(x, y) = Arccos(x · y), x, y ∈ Sm−1.

Here x · y denotes the usual inner product of x and y. Let g : [0, π] → IR be a continuous
function, and let Θ ⊂ Sm−1 be of cardinality n. We study in this paper the possible strict
positive definiteness of the n× n matrix

(1.1) A := AΘ := Ag,Θ
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whose rows and columns are indexed by Θ, and whose (θ, ϑ)-entry is

(1.2) g(dm(θ, ϑ));

i.e., , for any arbitrary ordering (θ1, θ2, . . .) of the points in Θ we look for conditions such
that

cTAc =
n∑

i=1

n∑

j=1

cicjg(dm(θi, θj)) > 0, ∀c = (c1, . . . , cn) ∈ IRn\0.

The matrix A of (1.1) naturally arises in the study of approximations to scattered
data on spheres. Given f : Θ ( i.e., a function f defined, at least, on the set Θ), one may
choose to interpolate f on Θ by a function gf in the linear space

GΘ := span{g(dm(·, θ)) : θ ∈ Θ},

with g : [0, π] a fixed univariate function. The existence of a unique interpolant gf ∈ GΘ

for f then amounts to the invertibility of the above matrix A. Of course, if A is also
positive definite, then the finding of gf , i.e., the inversion of A, can then be approached
by efficient and stable numerical (iterative or direct) methods.

In view of the above, the following problem becomes self-suggestive:

Problem 1.3. Determine conditions under which the interpolation matrix AΘ of (1.1) is
(a) positive definite (for Sm−1), for any Θ ⊂ Sm−1 of cardinality n, for some fixed n;
(b) positive definite (for Sm−1), for any Θ ⊂ Sm−1;

(c,d) same as (a,b), with “invertibility” replacing “positive definiteness”.

Definition 1.4. Let g be a univariate continuous function defined on [0, π]. We say that
g is (strictly) positive definite of order n for Sm−1 if for each Θ ⊂ Sm−1 of cardinality n
the corresponding matrix AΘ is (strictly) positive definite. A function g that is (strictly)
positive definite of all orders, is (strictly) positive definite.

The analogous problem in Euclidean spaces, i.e., when Θ ⊂ IRm, has been inten-
sively studied in the literature. In [17], Schoenberg had characterized the positive definite
functions of all orders for IRm, and in [8], Micchelli established the invertibility of cer-
tain interpolation matrices arising from approximating scattered data in IRm. Micchelli’s
results had led to a wealth of results (cf. e.g. [13, 14, 15, 20]), in which estimates for
various norms and corresponding condition numbers of the interpolation matrix A were
established. We refer to the review article of Dyn [6] for more information on this subject.
Schoenberg also considered the problem on the sphere. In [18] he proved the following

characterization for a function g to be positive definite of all orders. In this result, P
(λ)
k

denotes the kth-degree Gegenbauer (“ultraspherical”) polynomial associated with λ, [22,
p.81], [19, p.148].

Result 1.5. [18] A continuous function g : [0, π] → IR is positive definite on Sm−1 if and

only if it has the form

(1.6) g(t) =
∞∑

k=0

akP
(λ)
k (cos t),
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in which λ = (m− 2)/2, ak ≥ 0, and
∑
akP

(λ)
k (1) <∞.

Our interest in the problem was initiated by the paper [23] of Xu and Cheney, where
the following question is addressed: “find conditions on the coefficients (ak)k∈IN in (1.6),
under which g is strictly positive definite” (either of a specific order or of all orders).
Among various other results, it is shown in [23] that, if all the coefficients ak in (1.6) are
positive, then the function g is strictly positive definite on Sm−1. Further discussions of
this problem can be found in Cheney and Xu [5], Light and Cheney [7], and Menegatto
[11].

Our notion of “strict positive definiteness” is not the only possible one. For example,
Narcowich, in [12], employs a stronger notion of positive definiteness and strict positive
definiteness (on general compactly supported Riemannian manifolds), is able to character-
ize completely that stronger notion in terms of explicit verifiable conditions, and, in turn,
recovers (for smooth enough g) the above-mentioned Xu-Cheney result. His definition
draws attention to classical definitions of positive definiteness in terms of smooth kernels.
It is interesting to note the following: while Narcowich proves that his notion of positive
definiteness is equivalent to the seemingly weaker notion of Schoenberg (the latter is the
one that we adopt here), he does not have a similar equivalence between the notions of
strict positive definiteness; in fact, he refers to that problem as “open”. While we became
aware of [12] only after being essentially done with the present endeavor, it is worth noting
that Theorems 5.3 (m = 2) and 6.4 (any m) of the present paper provide a negative answer
to Narcowich’s open problem.

As this paper will show, a close relationship exists between the problem of determining
strict positive definiteness and that of multivariate polynomial interpolation. This connec-
tion is discussed in §3, and allows us to find an equivalent version to the original problem
in terms of polynomial interpolation on the unit sphere.

We then present three different methods for analyzing the equivalent polynomial in-
terpolation problem. The first exploits the de Boor-Ron “least solution for the polynomial
interpolation problem” (cf. [2, 3, 4]). This method yields that g is strictly positive definite
of order n if (but not only if) the corresponding coefficients a0, a1, . . . , abn/2c are positive
(cf. Theorem 4.1; for the case m = 2, this result was already proved in [23]). Another
approach takes advantage of the connection between spherical harmonics on the circle and
analytic polynomials, and allows us to characterize, for m = 2, the strict positive def-
initeness of g in terms of the positive integer zeros of univariate exponentials with real
coefficients. Among the various results there, we mention Theorem 5.3, which shows that
g is strictly positive definite of order n (on the circle) if the coefficients (ak)k in its ultra-
spherical expansion contain n consecutive positive coefficients. Finally, in §6, we choose
a different tack which is suitable for any spatial dimension, and makes use of the fact
that the harmonic polynomials are the polynomials in the kernel of the Laplacian. That
direction utilizes some of the polynomial ideal basics, and its main results are collected
in Theorems 6.3 and 6.4. These theorems imply, in particular, that g is strictly positive
definite if the set K := {k ∈ ZZ+ : ak > 0} (with (ak) as in (1.6)) contains arbitrarily long
sequences of consecutive even integers, as well as arbitrarily long sequences of consecutive
odd integers.
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We use in the paper the following notations and conventions. The symbol

Π

stands for the space of all polynomials in m variables (where the value of m should be
clear from the context). The subspace of Π that consists of the kth-degree homogeneous
polynomials is denoted by

Π0
k.

Also, given any K ⊂ ZZ+, we set

ΠK :=
∑

k∈K

Π0
k.

If K = {0, 1, 2, . . . , k}, we often use Πk := ΠK , i.e., Πk is the space of all polynomials of
degree ≤ k. A parallel set of notations is used for harmonic polynomials. Here, we set

H

for the space of all harmonic polynomials, and define

H0
k := Π0

k ∩H, HK := ΠK ∩H, Hk := Πk ∩H.

Finally, an exponential in this paper is either a function of the form

(1.7) eθ : IRm → C : x 7→ eθ·x, θ ∈ Cm,

or any finite linear combination of such functions.

2. Sets total with respect to discrete measures

Let HK be defined as at the end of the introduction. Given g, which is positive definite
on Sm−1, we associate in this section g with a certain K ⊂ ZZ+, and show that Problem
1.3 can be equivalently phrased in terms of the nonexistence of a nonzero discrete measure
µ supported on Sm−1 that is orthogonal to the entire HK .

Since we are seeking conditions that characterize the strict positive definiteness of
g, and since Schoenberg’s theorem already characterizes the positive definiteness of g, we
may assume that g has the form (1.6). In turn, that allows us to write the matrix AΘ as
the infinite sum

(2.1) AΘ =
∞∑

k=0

akAk,

with
Ak := (P

(λ)
k (θ · ϑ))θ,ϑ∈Θ.
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Since each summand Ak is positive definite (by virtue of Schoenberg’s result, but also
directly in view of the discussion below), this immediately shows that the matrix A is
more likely to be strictly positive definite, with the increase of the nonzero coefficients
(ak)k in the representation (1.6) of g. Also, since the matrix Ak is positive definite, it
can be written in the form CT

k Ck. Among such factorizations of Ak, we select below a
particular one, which is based on basic properties of spherical harmonics, and which will
allow us to draw the connection between Problem 1.3 and polynomial interpolation on the
sphere. In this course, it will be somewhat more convenient to work in a slightly more
general setup: let M be any collection of real-valued Borel measures on the sphere Sm−1,
and consider the map

(2.2) Mk : M → IR : µ 7→

∫

Sm−1×Sm−1

P
(λ)
k (x · y) dµ(x) dµ(y).

Our quadratic form
c 7→ cTAkc

can be easily seen to be a special case of the above setup, corresponding to the set M of
all finite measures supported on Θ. Thus, our original question can be viewed as a special
case of the following one: given M, what conditions on the nonnegative sequence (ak)k

guarantees that

(2.3)
∞∑

k=0

akMk(µ) > 0, ∀µ ∈ M ?

In fact, we will see in a moment that, always, Mk(µ) ≥ 0 (all µ, all k). This, in turn,
implies that the satisfaction of (2.3) depends only on the set

(2.4) Km,g := {k ∈ ZZ+ : ak > 0},

and not on the particular values the sequence (ak) assumes on Km,g: (2.3) holds if and
only if there exists no nonzero µ ∈ M whose transform µ 7→ (Mk(µ))∞k=0 is supported in
ZZ+\Km,g.

With these observations in hand, we start the actual analysis by recalling some basics
on spherical harmonics. First, a spherical harmonic of degree k, is, by definition, the re-
striction to Sm−1 of a homogeneous harmonic polynomial of that degree. Second, spherical
harmonics are connected to the ultraspherical polynomials via the following fact that can
be found, for example, in Stein and Weiss [19, Chapter IV].

Let {Y
(k)
1 , . . . , Y

(k)
hk

} be an orthonormal basis of H0
k (here, hk := dimH0

k). Then, there
is a positive constant ck,λ such that

(2.5) P
(λ)
k (x · y) = ck,λ

hk∑

j=1

Y
(k)
j (x)Y

(k)
j (y).

Here, λ = (m− 2)/2, and, as before, P
(λ)
k is the appropriate Gegenbauer polynomial.
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We borrowed the idea of exploiting this important formula, i.e., the representation of
the Gegenbauer polynomials in terms of spherical harmonics, from the paper [21] of the
second-named author. Independently, that formula was also invoked by Narcowich in [12].

Now, (2.5) allows us to separate variables in (2.2). Indeed, substituting the former
into the latter, we readily obtain

(2.6) Mk(µ) = cλ,k

hk∑

j=1

|

∫

Sm−1

Y
(k)
j dµ|2.

In words, up to a constant, the number Mk(µ) is the square of the L2(S
m−1)-norm of the

kth component in the expansion of µ into spherical harmonics.
This implies that our original Problem 1.3 is a special case of the following:

Problem 2.7. Letm be a positive integer, K ⊂ ZZ+, and M a collection of Borel measures
defined on Sm−1. Determine whether M∩H⊥

K = 0, in the sense that no nonzero µ ∈ M
satisfies ∫

Sm−1

f dµ = 0, ∀f ∈ HK .

Here, HK is defined as at the end of the introduction.

If M∩H⊥
K = 0, we say that K is total for M. The above discussion shows that the

matrix AΘ of (1.1) is strictly positive definite if and only if, with Km,g defined as in (2.4),
Km,g is total with respect to all measures M(Θ) supported on Θ.

The development up to this point puts our problem in the right mathematical per-
spective, and shows its connection to basic harmonic analysis questions, but still falls
significantly short of solving our problem: The verification whether K is total or not with
respect to the collection of discrete measures M(Θ) does not seem to be straightforward!
We mention in passing, however, that there are collections M with respect to which the
above problem of totality is transparent:

Proposition 2.8. Let M be the space of all Borel measures supported on Sm−1. Then,

the only subset of ZZ+ which is total for M is ZZ+ itself.

Proof. We choose first µ ∈ M to be a spherical harmonic of degree k. Since spherical
harmonics of other degrees are perpendicular to µ, it follows immediately that µ ∈ H⊥

K ,
unless k ∈ K. This shows that no proper subset of ZZ+ is total for M.

The fact that ZZ+ itself is total for the space of all measures follows from the facts that
(i) spherical harmonics are fundamental in C(Sm−1), and (ii) M is the dual of C(Sm−1).

We now rephrase our original problem in terms of the notion introduced in this section:

Modified Problem 2.9. Given a subset K ⊂ ZZ+, and m > 1, determine whether K
satisfies the following:
(a) K is total with respect to the collection Mn(Sm−1) of all measures on Sm−1 that are

supported on a set of cardinality ≤ n. We say then that K is total of order n (on
Sm−1).
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(b) K is total with respect to the set M0(S
m−1) of all measures supported on finite

subsets of Sm−1. We say then that K is total of all orders (on Sm−1).

In the rest of the paper, we state our results mainly in terms of totality. It is, thus,
worthwhile to summarize here the connection between this notion and the original notion
of strict positive definiteness (cf. Problem 1.3): g is strictly positive definite of order
n (respectively, of all orders) if and only if Km,g (defined in (2.4)) is total of order n
(respectively, total of all orders).

One should note that, a priori, the totality of K of all orders should be easier to
determine than the totality of a specific order: the space M0(S

m−1) is linear, and the
space Mn(Sm−1) is not.

3. The connection to polynomial interpolation

Problem 2.9 is connected to the problem of interpolating by spherical harmonics on
the sphere as follows:

Theorem 3.1. Let Θ be a finite subset of Sm−1, and M(Θ) the space of all measures

supported in Θ. Given K ⊂ ZZ+, the following conditions are equivalent:

(a) K is total for M(Θ) (i.e., H⊥
K ∩M(Θ) = 0).

(b) The restriction of HK to Θ is of full dimension #Θ, i.e., every f defined on Θ can be

interpolated by a polynomial p ∈ HK .

Proof. Let δθ be the functional of point evaluation at θ. A general measure in M(Θ)
is of the form φ :=

∑
θ∈Θ cθδθ. Therefore, M(Θ)∩H⊥

K 6= 0 if and only if there exists φ 6= 0
as above such that ∑

θ∈Θ

cθp(θ) = φ(p) = 0, ∀p ∈ HK .

This can happen if and only if not every data on Θ can be interpolated from HK .

In the rest of the paper, we exploit Theorem 3.1 in order to obtain sufficient conditions

for the totality of K ⊂ ZZ+. As we mentioned before, three different approaches are
employed, each occupying one of the remaining sections.

4. The least solution of the polynomial interpolation problem

Recall that Mn denotes the set of all discrete measures supported on an n-subset of
Sm−1 (m fixed), and that K ⊂ ZZ+ is total for Mn if Mn ∩H⊥

K = 0 (cf. Problem 2.9). In
this section, we find a minimal k(n) such thatK is total for Mn in case (0, 1, . . . , k(n)) ⊂ K.
Our main theorem of this type is the following:
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Theorem 4.1. Let K ⊂ ZZ+. Then, given any m ≥ 2, K is total of order n on Sm−1 if

{0, 1, . . . , bn/2c} ⊂ K.

Thus, our original matrix AΘ is strictly positive definite whenever the first bn/2c+ 1
coefficients in the ultraspherical expansion of g are positive. Form = 2, that result is due to
[23]. The statement of the theorem is sharp in the sense that the setK := {0, 1, . . . , bn/2c−
1} is not total for Mn. However, the measures in Mn that are perpendicular to Hbn/2c−1

are of a specific nature: essentially, they are supported on circles. The precise statement
is as follows:

Corollary 4.2. Let n be a positive integer, and let K be a subset of ZZ+ that contains

the integers {0, 1, . . . , bn/2c− 1}. Further, let Θ be a subset of Sm−1 of cardinality n, and

let µ 6= 0 be a measure supported on Θ. Then µ ∈ H⊥
K only if Θ satisfies the following:

(a) for an even n, Θ lies on a circle;

(b) for an odd n 6= 5, Θ\θ lies on a circle, for some θ ∈ Θ.

Thus, if Θ does not have the special configuration specified in the above corollary, our
matrix AΘ is strictly positive definite even when only the first bn/2c coefficients (in the
expansion of g) are positive.

The proofs of Theorem 4.1 and Corollary 4.2, together with necessary background on
polynomial interpolation, occupy the rest of this section.

Given any polynomial of degree k, we denote by p↑ the unique polynomial in Π0
k that

satisfies deg(p − p↑) < k, and refer to p↑ as the leading term of p. Also, given p ∈ Π, we
use p(D) to denote the corresponding constant-coefficient differential operator. Directional
derivatives are denoted by Dx, where x ∈ IRm is the direction.

Given any finite Θ ⊂ IRm, the paper [2] introduces a polynomial space ΠΘ that
satisfies all the following properties:
(a) For any function f defined on Θ, there exists a unique p ∈ ΠΘ that agrees with f on

Θ.
(b) ΠΘ is D-invariant, i.e., for every x ∈ IRm\0, DxΠΘ ⊂ ΠΘ (equivalently, ΠΘ is

translation-invariant).
(c) ΠΘ is homogeneous. That is,

ΠΘ =
∞∑

j=0

ΠΘ,j ,

where ΠΘ,j := ΠΘ ∩ Π0
j .

(d) If the polynomial p vanishes on Θ, then its leading term p↑ annihilates ΠΘ in the sense
that p↑(D)ΠΘ = 0.

(e) Conversely, every homogeneous polynomial that annihilates ΠΘ is the leading term of
some other polynomial that vanishes on Θ.
We refer to [2] and [4] for more details about ΠΘ. The exact definition of ΠΘ will be

given in the sequel; for the time being, though, we need only the fact that a polynomial
space that satisfies these five properties exists.

Lemma 4.3. Let k be the least integer that satisfies ΠΘ ⊂ Πk. If Θ ⊂ Sm−1, then

dimΠΘ,j ≥ 2, j = 1, 2, . . . , k − 1.
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Proof. We assume that the claim of the lemma is false, and will seek a contradiction.
Let 0 < j < k be the maximal integer that violates the lemma’s claim. If j = k − 1,
then ΠΘ,j+1 = ΠΘ,k 6= 0, by the definition of k. Otherwise, by the maximality of j,
dimΠΘ,j+1 ≥ 2. Either way, ΠΘ,j+1 contains a nonzero polynomial p. We consider the
map ψ : IRm → Π0

j defined by
ψ(x) = Dxp.

Since ΠΘ is D-invariant, ranψ ⊂ ΠΘ, hence ranψ ⊂ ΠΘ,j . Since deg p > 0, we have
ψ 6= 0. On the other hand, dim ranψ ≤ dimΠΘ,j ≤ 1. Therefore, dim ranψ = 1, hence
dimkerψ = m − 1. Since ψ is linear, its kernel, then, is a hyperplane, and p has to be a
univariate polynomial of the form

p(y) = c(ξ · y)j+1,

with ξ perpendicular to the above hyperplane.
Let Γ(D) be the m-dimensional Laplacian. We note that, since j ≥ 1, Γ(D)p =

c′
∑m

i=1 ξ
2
i (ξ · y)j−1 6= 0. On the other hand, the quadratic polynomial q := Γ− 1 vanishes

on Θ, hence by property (d) of ΠΘ, Γ(D) = q↑(D) annihilates the entire ΠΘ. In particular,
Γ(D)p = 0, which contradicts the previous conclusion.

Lemma 4.4. For any Θ ⊂ Sm−1 of cardinality n, the following is true:
(a) There exists a space ΠΘ ⊂ Hbn/2c such that interpolation from ΠΘ to any f defined

on Θ is always possible, i.e., the restriction of ΠΘ to Θ is of dimension n = #Θ.

(b) If n is even, and Θ does not lie on a circle, then ΠΘ ⊂ Hn/2−1 = Hbn/2c−1.

(c) If n > 5 is odd and no (n − 1) points of Θ lie on a circle, then ΠΘ ⊂ H(n−3)/2 =
Hbn/2c−1.

Proof. Claim (a) of Lemma 4.4 follows from Lemma 4.3. With ΠΘ the least space of
[2], the proof of Lemma 4.3 shows that ΠΘ is annihilated by the Laplacian, hence consists
of harmonic polynomials, whenever Θ ⊂ Sm−1. Then, since ΠΘ is translation-invariant, it
must contain the constants, hence dimΠΘ,0 = 1. Also, by the definition of k, dimΠΘ,k ≥ 1.
Hence, Lemma 4.3 implies that

#Θ = dimΠΘ ≥ 1 + 2(k − 1) + 1 = 2k,

with the right-most equality due to property (a) of ΠΘ.
The proof of (b) in Lemma 4.4 is also quite simple. We present, however, a slightly

longer proof, which prepares also for the proof of (c). We assume that n is even, and
that ΠΘ 6⊂ Πn/2−1, and will prove that Θ lies on a circle. First, by (a) of Lemma 4.4,
ΠΘ ⊂ Πn/2. Second, we have dimΠΘ,0 = 1, and, since we assume that dim ΠΘ,n/2 ≥ 1,
Lemma 4.3 implies that dimΠΘ,j ≥ 2, j = 1, 2, . . . , n/2 − 1. Taking into account the fact
that ΠΘ is n-dimensional, we realize that none of these inequalities can be sharp, i.e., the
homogeneous dimensions of ΠΘ are

1, 2, 2, . . . , 2, 1.
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Let q ∈ ΠΘ,j\0, 1 < j ≤ n/2, and let ψq be the corresponding map that was introduced
in the proof of Lemma 4.3. The proof of that lemma shows that ranψq ⊂ ΠΘ,j−1. Since
dimΠΘ,j−1 = 2, this implies that dimkerψq ≥ m−2, i.e., that q is a bivariate polynomial.
Further, the argument in Lemma 4.3 makes clear that q cannot be univariate. Conse-
quently, rankψq = 2, and ranψq = ΠΘ,j−1. By selecting p to be any nonzero polynomial

in ΠΘ,n/2, and choosing α ∈ ZZd
+ such that |α| = n/2−j and q := Dαp 6= 0, we obtain that

each ΠΘ,j−1, j = 2, . . . , n/2, is generated by derivatives of p. That same result is trivial
for j = n/2 + 1 (since ΠΘ,n/2 is 1-dimensional), and for j = 1. Thus,

ΠΘ = {P (D)p : P ∈ Π},

i.e., ΠΘ comprises the derivatives of the single polynomial p, hence, in particular, ΠΘ

is annihilated by the (m − 2)-dimensional space {Dx : x ∈ kerψp}. Selecting any basis
for that space, we invoke property (e) of ΠΘ to conclude that there exist m − 2 linearly
independent linear polynomials, each of which vanishes on Θ, i.e., that Θ lies on a 2-
dimensional linear manifold. Since Θ is assumed to lie also on Sm−1, we conclude that,
indeed, it lies on a circle. This completes the proof of (b).

Before we prove (c), we mention that its statement is sharp in the following sense.
First, if Θ consists of five points in S2, then, regardless of its distribution, the 5-dimensional
ΠΘ cannot lie in the 4-dimensional Π(n−3)/2 = Π1, i.e., the statement in (c) fails to hold
for n = 5. Further, if all the points of Θ except one lie on a circle, then ΠΘ 6⊂ Π(n−3)/2,
and, therefore, one cannot prove in (c) that Θ must entirely lie on a circle.

In order to prove (c), we assume that n ≥ 7 is odd, and that ΠΘ 6⊂ Π(n−3)/2. We need
to prove then that, save perhaps one point, Θ lies on a circle. Here, we need to recall from
[2] that the definition of ΠΘ is

(4.5) ΠΘ = span{f↓ : f ∈ E(Θ)},

with E(Θ) the span of the exponentials eθ, θ ∈ Θ, and with f↓ the smallest-degree nonzero
homogeneous term in the power expansion of f . It is then easy to check that, if Θ contains
four points which are not co-planar, then dim ΠΘ,1 ≥ 3. Therefore, assuming Θ not to
lie on a circle, we must have that dimΠΘ,1 ≥ 3. Repeating the same counting arguments
that we employed in the proof of (b), we conclude that the homogeneous dimensions of
ΠΘ must be

1, 3, 2, 2, . . . , 2, 1.

Selecting any p ∈ ΠΘ,(n−1)/2, and repeating the argument that was used in the proof of
(b), we conclude that p is bivariate and that the derivatives of p form a subspace in ΠΘ

of dimension n − 1 (the argument relies on the fact that dimΠΘ,(n−1)/2−1 = 2, hence
requires n ≥ 7). Let x ∈ IRm be such that Dxp = 0. Let also f ∈ E(Θ) be an exponential
that satisfies f↓ = p. Set g := Dxf , k := (n − 1)/2. In what follows, we denote by
fj the jth-degree homogeneous term in the power expansion of the exponential f . Since
fj = 0, for all j < k, we have that gj = 0 for all j < k − 1. Also, since fk = p, we have
that gk−1 = (Dxf)k−1 = Dxfk = Dxp = 0. Thus, deg(g↓) ≥ k. Since g↓ is in ΠΘ, and
ΠΘ ⊂ Πk, we must thus have deg(g↓) = k, hence that g↓ is a constant multiple cp of p

10



(since the kth-degree homogeneous component of ΠΘ is spanned by p). This implies, with
q the linear polynomial q(y) := x · y − c, that (q(D)f)j = 0, 0 ≤ j ≤ k, and thereby that,
if q(D)f 6= 0, then deg(q(D)f)↓ > k, in contradiction with the fact that ΠΘ ⊂ Πk. Thus,
q(D)f = 0.

On the other hand, as any function in E(Θ), f can be written in the form f =∑
θ∈Θ cθeθ, hence 0 = q(D)f =

∑
θ∈Θ q(θ)cθeθ. Since finitely many exponentials are always

linearly independent, we conclude that

cθ 6= 0 =⇒ q(θ) = 0.

Thus, the subset

Θ′ := {θ ∈ Θ : cθ 6= 0}

lies in the hyperplane q = 0. Ranging the directional derivative Dx over an (m − 2)-
dimensional space (which is possible since p is bivariate), we obtain, as in the proof of (b),
that Θ′ lies on a circle. It remains to show that #Θ′ ≥ n−1: since f ∈ E(Θ′), and p = f↓,
we have p ∈ ΠΘ′ , and therefore its space of derivatives D(p) lies in ΠΘ′ as well. Since
dimD(p) was shown to be n− 1, we conclude that #Θ′ = dimΠΘ′ ≥ dimD(p) = n− 1.

Theorem 4.1 and Corollary 4.2 follow now, in view of Lemma 4.4, from Theorem 3.1.

5. Sets that are total for measures on S1: an analytic approach

In the case of interpolating on the circle, dimH0
k = 2 for all k = 1, 2, . . . , and H0

k is
spanned by the two functions cos kτ and sin kτ , where (r, τ) are the polar coordinates in
IR2. These well-known facts can be nicely used in the course of study of Problem 2.9. We
will connect our problem to the distribution of zeros of bounded univariate exponentials,
and use the obtained characterization to derive separate necessary and sufficient conditions
for the totality of K for finitely supported Borel measures.

Recall that, given τ ∈ C, eτ is the exponential x 7→ eτx with frequency τ . Throughout
the section, we will make an essential use of the following univariate exponential space:

En := {
∑

τ∈T⊂[0,2π)

cτeiτ : #T ≤ n, cτ ∈ IR, ∀τ}.

Also, E := ∪n≥1En. It is important to note that we allow only real coefficients cτ in the
definition.

We first record and prove the basic observation that will be utilized throughout this
section.

Theorem 5.1. For K ⊂ ZZ+, the following conditions are equivalent:

(a) K is total of order n on S1.
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(b) K is a uniqueness set for En, i.e., only the zero function in En vanishes identically on

K.

Proof. On the circle, the homogeneous harmonic polynomial space H0
k is spanned by

sin(kτ) and cos(kτ). This means that a real-valued Borel measure µ is perpendicular to
H0

k if and only if ∫

S1

e−ikτ dµ(τ) = 0,

i.e., iff the Fourier transform µ̂ of µ vanishes at k. Consequently, for any K ⊂ ZZ+, we
have µ ∈ H⊥

K if and only if µ̂ vanishes on K.
The assertion of the theorem then follows from the observation that En is the collection

of all Fourier transforms of Mn(S1).

The next theorem is a necessary condition for the totality of K for M0(S
1), and it

is followed by another theorem which establishes a sufficient condition for the totality of
K for Mn(S1). Both results are based on Theorem 5.1. A result similar to the first one
was mentioned by Menegatto in [9], and [10]. We note that Menegatto was then primarily
interested in identifying strictly positive definite functions of all orders.

Corollary 5.2. The set K ⊂ ZZ+ is total of all orders on S1 only if it has infinite in-

tersection with any set of the form kZZ+, k ∈ IN. The same applies to sets of the form

k/2 + kZZ+, provided that k is even.

Discussion. The above result is invalid with respect to any other arithmetic progression:
one can show that the set ZZ+\(α + kZZ+) is total of all orders, whenever α 6∈ k

2ZZ+. As
an illustration, the following observations can be made with respect to the value k = 4: in
order to be total for M0(S

1), K must have infinite intersection with 4ZZ+, as well as with
2 +4ZZ+. It also must have an infinite intersection with one of the sets 1 + 4ZZ+, 3+ 4ZZ+

(since their union is 1+2ZZ+), but may have an empty intersection with the other of these
latter sets.

Proof. In order to unify the proof, we assume that the relevant arithmetic progression
is of the form Z := α + kZZ+, α < k. We will further assume that K has only finite
intersection with Z, and will use that to construct a linear combination f ∗ of exponentials
(eiτ )τ∈[0,2π) that vanishes on K. The crux in the proof is that, if α = 0 or α = k/2, the
coefficients in the representation f∗ =

∑
τ cτeiτ are real. Thus, for these cases, f∗ ∈ E ,

and the desired result is then implied by Theorem 5.1.
Set

T := {(2πl)/k : l = 0, 1, . . . , k − 1},

and define the univariate exponential

f :=
∑

τ∈T

eiτ (· − α).

Then f(l) = 0, for 0 ≤ l ≤ k − 1, l 6= α, and since f is k-periodic, we conclude that f
actually vanishes on ZZ+\Z.

12



By our assumption, the set K ∩ Z is finite. Let n denote its cardinality, and let
t0, t1, t2, . . . , t2n be chosen in a way that (a) each set tl + T is a subset of [0, 2π), and
(b) the sets tl + T, l = 0, . . . , 2n are pairwise disjoint. The restriction to K ∩ Z of the
2n + 1 exponentials {eitl

f}2n
l=0 must be linearly dependent over the reals, since the set

K ∩ Z contains no more than n points. Let f∗ be a nontrivial linear combination with
real coefficients of these functions that vanishes on K ∩ Z. Furthermore, since f vanishes
on ZZ+\Z, so does every eitl

f , and therefore f∗ vanishes on that set as well. This implies
that f∗ vanishes on K, too. Finally, since the spectra of the exponentials {eitl

f}l are
pairwise disjoint, f∗ cannot be identically 0 (since finitely many exponentials are linearly
independent).

It remains to show that f∗ ∈ E , and this is the part where we need the assumption
α = 0, k/2. Indeed, for such choice of α, we observe that the numbers eiτ (−α), τ ∈ T, are
real, hence, in these cases, f ∈ E , implying that eitl

f ∈ E , too. Since E is a linear space
over the reals, we conclude that f∗ lies in that space, too.

Consequently, we have found a nontrivial exponential f ∗ ∈ E , that vanishes on K.

Theorem 5.3. Let K ⊂ ZZ+ be given, and let n be a positive integer. Suppose that one

of the following two conditions holds:
(a) K contains n consecutive integers.

(b) K contains n arithmetic progressions, each of length n:

αj , αj + dj , . . . , αj + (n− 1)dj , j = 1, 2, . . . , n,

and the numbers (d1, . . . , dn) are pairwise relatively prime.

Then K is total of order n on S1.

Remark. The theorem lists two special cases of a slightly more general result (cf. [16]).

Proof. The proof of (a) is quite simple. We assume that there exists an exponential
f ∈ En that vanishes on K, and will reach a contradiction. Our claim would then follow
from Theorem 5.1.

Being in En, the exponential f has the form

(5.4) f =
∑

τ∈T

cτeiτ , T ⊂ [0, 2π), cτ ∈ IR\0,

with #T ≤ n. Without loss, we may assume that 0 ∈ T, and that c0 = 1 (otherwise, we
divide f by cτ0

eiτ0
, with τ0 the smallest number in T). Let p be a univariate polynomial

that vanishes on eiτ (1) = eiτ , τ ∈ T\0, and nowhere else. In particular, since T\0 ⊂ (0, 2π),
p(1) 6= 0.

With p(t) =
∑

j ajt
j , let p(∇) be the induced difference operator

p(∇) : g 7→
∑

j

ajg(· + j).
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Then, p(∇)eiτ = eiτ p(eiτ (1)) = 0, for each τ ∈ T\0. Hence p(∇)f = p(1) 6= 0, i.e., p(∇)f
is a nonzero constant. However, since we assume f to vanish at n consecutive integers, and
since p is of degree < n, it follows that p(∇)f must vanish at least at one integer point.
Contradiction. This proves (a).

The proof of (b) follows the same lines, but is more complicated. It first requires the
following simple lemma, whose proof is omitted.

Lemma 5.5. Let T be any finite subset of (0, 2π). Then the set of integer zeros of the

function F :=
∏

τ∈T(eiτ − 1) is of the form JZZ, with J a subset of IN\1 of cardinality

≤ #T.

The proof of (b) starts as in (a): we let f be an exponential as in (5.4) that vanishes
on K, and will show that this contradicts the assumption made on K. Again, we assume
without loss that 0 ∈ T, and c0 = 1. By Lemma 5.5, the positive integer zeros of the
function

F :=
∏

τ∈T\0

(eiτ − 1)

are of the form JIN, with J ⊂ IN\1 of cardinality < n. This means that F cannot vanish
at all the numbers dj , j = 1, . . . , n (the relative primality assumption implies that no kZZ+

can contain more than one dj). Without loss, we assume that F does not vanish at d := d1,
i.e., 1 6∈ {eiτ (d)}τ∈T\0.

Let p be a polynomial

p : t 7→
∑

j

ajt
j

whose zero set is {eiτ (d) : τ ∈ T\0}. Then, deg p < n, and p(1) 6= 0. Let p(∇) be the
induced difference operator

p(∇) : g 7→
∑

j

ajg(· + jd).

Then, p(∇)eiτ = eiτ p(eiτ (d)) = 0, for each τ ∈ T\0. Hence p(∇)f = p(1) 6= 0, i.e., p(∇)f
is a nonzero constant. On the other hand, since f is assumed to vanish on an arithmetic
progression of length n and stepsize d, p(∇)f must vanish at some point, and we have thus
reached the desired contradiction.

6. Sets that are total for measures on Sm−1: an algebraic approach

Here, we attack the problem from a completely different angle. While the core of the
argument used in the previous section was the connection between 2-dimensional harmonic
polynomials and their analytic completions, the course here is of algebraic nature. It is
based on the realization of harmonic polynomials as the kernel of the Laplacian and thereby
exploits the connection between a homogeneous polynomial ideal and its kernel in Π. Some
of the results in this section can be, hence are, developed in a more general (and in our
opinion more natural) setup.
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We will require here some additional notations. The first is that of exponential spaces.
These are defined in terms of some set Ω ⊂ IRm, and a positive integer n as follows:

En(Ω) := {
∑

θ∈Θ

cθeθ : Θ ⊂ Ω, #Θ ≤ n, cθ ∈ C, ∀θ}.

(Note that cθ is a constant, but eθ is a function.) Obviously, the above exponential spaces
are not linear spaces, in contrast with the larger space

E(Ω) := ∪n≥1En(Ω).

Another set of notations concerns maps defined on the algebra A of all formal power
series in m variables. Since A is the direct (infinite) sum

∑
k≥0 Π0

k of the homogeneous
polynomial spaces, there exists, for every k ≥ 0, a well-defined projector

k : A → Π0
k

that assigns to each power series f ∈ A the kth-degree homogeneous component in its
power expansion. Further, given a subset K ⊂ ZZ+, the sum

K :=
∑

k∈K

k

defines an analogous projector, this time from A onto ΠK .

Finally, we reserve a special notation Γ for the polynomial

Γ(x) := Γm(x) :=
m∑

n=1

x2
n.

Thus, ΓA is the (homogeneous principal) ideal generated by Γ. Note that the evaluation
Γ(D) of Γ at D is the Laplacian operator.

Recall that a subspace H of A or Π is homogeneous if, for each k ∈ ZZ+, the corre-
sponding projector k maps H into itself.

Definition 6.1. Let Ω be a subset of IRm, H a homogeneous subspace of Π, and n a
positive integer. We say that H is total of order n on Ω if for any Θ ⊂ Ω of cardinality n,
and any function F defined on Θ, there exists a polynomial p ∈ H that interpolates F (on
Θ).

To see the connection between the new definition and our original notion of totality,
one chooses Ω := Sm−1, and H := HK (defined as in the introduction). Then, in view
of Theorem 3.1, the totality of K of order n on Sm−1 is equivalent, in terms of the new
definition, to the totality of order n of HK on Sm−1.
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Theorem 6.2. Let H, n and Ω be as in the above definition. Then H is total of order

n on Ω if and only if for every exponential f ∈ En(Ω), there exists k ∈ ZZ+ such that the

kth-order homogeneous differential operator k(f)(D) does not annihilate H ∩ Π0
k.

Proof. For θ ∈ IRm, let δθ be the functional δθ : f 7→ f(θ), and for a finite set
Θ ⊂ IRm, let M(Θ) be span{δθ}θ∈Θ. Then H fails to be total of order n on Ω if and only
if for some Θ ⊂ Ω of cardinality n, dimH|Θ < dimM(Θ) = n. But in (and only in) such
a case, there would be λ =

∑
θ∈Θ cθδθ ∈ δΘ, which is orthogonal to H, i.e.,

∑

θ∈Θ

cθp(θ) = 0, ∀ p ∈ H.

Defining f :=
∑

θ∈Θ cθeθ, we obtain an exponential f ∈ En(Ω) such that p(D)f(0) = λp =
0, for every p ∈ H. For p ∈ H ∩ Π0

k, we have

0 = p(D)f(0) = p(D)(k(f))(0) = (k(f)(D))p(0) = (k(f)(D))p.

Therefore, the condition p(D)f(0) = 0, all p ∈ H, is equivalent to k(f)(D) annihilating
H ∩ Π0

k for every k.

The principal result of this section is as follows:

Theorem 6.3. Let K ⊂ ZZ+, and let n be a positive integer. Then K is not total of order

order n for Sm−1, if and only if there exists f ∈ En(Sm−1) for which K(f) ∈ ΓA.

In fact, the proof of Theorem 6.3 is more informative than its statement: given Θ ⊂
Sm−1, the proof shows that the matrix Ag,Θ is singular if and only if there exists an
exponential f ∈ E(Θ) that satisfies Km,g(f) ∈ ΓA.

Proof of Theorem 6.3. By Theorem 3.1 (and in view of Definitions 2.9 and 6.1) the
required property of K is equivalent to HK being total of order n for Sm−1. Therefore, in
view of Theorem 6.2, we need to prove that the condition stated in the present theorem
is equivalent to the following: “There exists f ∈ En(Sm−1) such that, for every k ∈ K,
(k(f))(D) annihilates HK ∩Π0

k = H0
k.” Since H0

k is the kernel in Π0
k of the Laplacian Γ(D),

the last condition is equivalent to the divisibility of k(f) by Γ.

The following sufficient condition is derived from the characterization in Theorem 6.3.

Theorem 6.4. Given Θ ⊂ Sm−1, define

σ(Θ) := min{#Θ′ ⊂ Θ : span(Θ\Θ′) 6= IRm}.

Let j be the minimal integer that satisfies
(
j+m−2

m−1

)
> σ(Θ). Let g be a positive defi-

nite function for Sm−1, and assume that the set {k ∈ Km,g : k ≥ (#Θ)/2} contains j
consecutive even integers as well as j consecutive odd integers. Then Ag,Θ is invertible.

We divide the proof of Theorem 6.4 into a sequence of several lemmas; some of them
might appear to be of independent interest. Note that

(
j+m−2

m−1

)
= dim Π0

j−1.
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Lemma 6.5. The operator Γ(D) induces an isomorphism between Γn+1Π and ΓnΠ, n =
0, 1, . . ..

Proof. First, we recall that Π is the direct sum of the spaces (ΓkH)k∈ZZ+
. (A quick

proof of that would go as follows. Since H is the kernel in Π of the homogeneous differential
operator Γ(D), Π is the direct sum of H and the principal ideal ΓΠ:

Π = H⊕ ΓΠ.

Multiplying the above equation by Γk, and using induction, we obtain

Π =
(k−1∑

j=0

ΓjH
)
⊕ ΓkΠ =

( k∑

j=0

ΓjH
)
⊕ Γk+1Π.)

Next, one checks directly that, for each k ∈ ZZ+, there exists a constant cn,k such that
the operator p 7→ cn,k(Γ(D)p)Γ is the identity on Γn+1H0

k. This implies that Γ(D) maps
Γn+1H one-to-one onto ΓnH.

Finally, the decomposition result asserted in the first paragraph of the proof allows us
to write

Γn+1Π = ⊕k≥n+1Γ
kH.

The desired result then follows from an application of Γ(D) to both sides of the last equal-
ity, and invoking the isomorphism assertion from the second paragraph of the proof.

Lemma 6.6. Assume that f ∈ A and satisfies Γ(D)f = f . Assume further that for some

k, n ∈ ZZ+,

(6.7) (k + 2j)(f) ∈ ΓΠ, j = 0, . . . , n.

Then,

(6.8) (k + 2n)(f) ∈ Γn+1Π.

Proof. By induction on n. If n = 0, the claim in (6.8) is assumed in equation (6.7).
Assume thus that the claim is valid for n − 1 ≥ 0. Since Γ(D)f = f , we have that
Γ(D)((k + 2n)(f)) = (k + 2n− 2)(f), hence by the induction hypothesis

Γ(D)((k + 2n)(f)) ∈ ΓnΠ.

Invoking Lemma 6.5, we conclude that

(k + 2n)(f) ∈ H + Γn+1Π.

The result then follows from the assumption that (k + 2n)(f) is divisible by Γ (and the
fact that no polynomial in H\0 is divisible by Γ).
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Proof of Theorem 6.4. Let Θ ⊂ Sm−1 of cardinality n be given, and let f ∈ E(Θ).
By Theorem 6.3 (more precisely, by the statement made in the paragraph that follows
Theorem 6.3), we need to show that K(f) is not divisible by Γ. Assume, to the contrary,
thatK(f) is divisible by Γ. We first note that, for some k ≤ n/2, say, k0, one has k0(f) 6= 0.
(Indeed, by the definition (4.5) of ΠΘ, if k(f) = 0 for all k ≤ n/2, then ΠΘ must contain a
polynomial of degree > n/2, in contradiction with Lemma 4.4). Since f , as any function in
E(Sm−1), satisfies Γ(D)f = f , one concludes from the fact that k0(f) 6= 0, that i(f) 6= 0,
for every i ∈ k0 + 2ZZ+. Because k0 ≤ n/2, our assumptions on K imply that there exist j
integers k, k− 2, k− 4, . . . , k− 2j + 2 in K, that further satisfy k− 2j + 2− k0 ∈ 2ZZ+. In
particular, each integer i in this progression satisfies the relation i(f) 6= 0. On the other
hand, each of these integers lies in K, and since K(f) ∈ ΓΠ, Lemma 6.6 implies that

k(f) ∈ ΓjΠ.

As the rest of the proof will establish, this last conclusion contradicts the fact that f ∈
E(Θ).

Since f is a linear combination of {eθ}θ∈Θ, we have that

k(f) =
∑

θ∈T

cθ(θ·)
k,

with T ⊂ Θ, and with any θ, θ′ ∈ T being linearly independent. Here,

(θ·)k : x 7→ (θ · x)k.

Let T ′ be a nonspanning set in T of maximal cardinality. Since dim Π0
j−1 > σ(Θ) ≥

#(T\T ′), there exists a nontrivial homogeneous polynomial p1 ∈ Π0
j−1 that vanishes on

T\T ′. Writing p1 in the form p1 = Γip with p 6∈ ΓΠ and i ≥ 0, we conclude that p is a
homogeneous polynomial of degree r < j which vanishes on T\T ′. An application of p(D)
to k(f) yields a linear combination of the form

q =
∑

θ∈T ′

aθ(θ·)
k−r.

Since T ′ does not span, the above polynomial is of less than m variables.

On the other hand, k(f) = ΓsP , for some P ∈ Π\(ΓΠ), s ≥ j. Therefore, for some
c 6= 0,

p(D)(k(f)) = p(D)(ΓsP ) = c pΓs−rP + Γs−r+1P1.

Since c pP is nonzero and is not divisible by Γ, we conclude that p(D)(k(f)) is a nonzero
polynomial in ΓΠ, hence, in particular, cannot be of less than m variables, and we thus
have reached the desired contradiction.
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Since σ(Θ) ≤ n −m + 1 for any Θ ⊂ IRm of cardinality n, we obtain the following
corollary:

Corollary 6.9. Let K ⊂ ZZ+, and n a positive integer. Then K is total of order n on

Sm−1, if, with j the minimal integer that satisfies
(
j+m−2

m−1

)
> n − m + 1, there are j

consecutive even integers and j consecutive odd integers in the set {k ≥ n/2} ∩K.

In particular, if K contains arbitrarily long sequences of consecutive even and of con-
secutive odd integers, then K induces strict positive definiteness (of all orders) on Sm−1,
for every m ≥ 2.

Note that, in Theorem 6.4, σ(Θ) = 1 whenever Θ does not span. Thus, the theorem
implies that, if we sum two Gegenbauer polynomials associated with Sm−1, one of even
degree and one of odd degree, we get a function g that is strictly positive definite of order n
for Sl−1, l < m, provided that the degree of the above-mentioned polynomials is ≥ n/2. In
particular, we obtain that g is strictly positive definite of all orders on S l−1, if it is positive
definite of order m > l, and Km,g contains infinitely many odd and infinitely many even
integers (compare with Corollary 4.4 of [12]). Actually, such observations already follow
from Theorem 4.1: the known interrelations among Gegenbauer polynomials of different
types (cf. [1]) imply that, if Km,g contains one odd integer ≥ k, and one even integer ≥ k,
then Kl,g contains all integers ≤ k.
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