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Abstract

The problem of fitting a nice curve or surface to scattered, possibly noisy, data arises in
many applications in science and engineering. In this paper, we solve the problem, using a
standard regularized least square framework, in an approximation space spanned by the shifts
and dilates of a single compactly supported function φ. We first provide an error analysis to our
approach which, roughly speaking, states that the error between the exact (probably unknown)
data function and the obtained fitting function is small whenever the scattered samples have
a high sampling density and a low noise level. We then give a computational formulation
in the univariate case when φ is a uniform B-spline and in the bivariate case when φ is the
tensor product of uniform B-splines. Though sparse, the arising system of linear equations is
ill-conditioned; however, when written in terms of a short support wavelet basis with a well-
chosen normalization, the resulting system, which is symmetric positive definite, appears to
be well-conditioned, as evidenced by the fast convergence of the conjugate gradient iteration.
Finally, our method is compared with the classical cubic/thin-plate smoothing spline methods
via numerical experiments, where it is seen that the quality of the obtained fitting function is
very much equivalent to that of the classical methods, but our method offers advantages in terms
of numerical efficiency. We expect that our method remains numerically feasible even when the
number of samples in the given data is very large.
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1 Introduction

The concern of this paper is the reconstruction of a curve or surface from given scattered data
via a principal shift invariant system and its dilations. Scattered data reconstruction (also known
as scattered data fitting) problems arise in many fields and applications, such as signal processing,
computer graphics and neural networks. In a typical scattered data reconstruction problem, we
are given a set of scattered data sites Ξ = {x1, x2, · · · , xn} ⊂ Rd and associated function values
f |Ξ = {f1, f2, · · · , fn}, and we seek a function g, belonging to a prescribed function space H (e.g.
C2 or the Sobolev space Wm

2 ), which fits the given data {(xi, fi)}n
i=1 well. In contrast to gridded

data, whose data sites are regularly spaced or latticed, scattered data makes no assumptions on the
locations of the data sites, and this is what makes scattered data reconstruction a difficult problem.

The two basic approaches to scattered data reconstruction are interpolation and approximation:
Interpolation requires the fitting function g to exactly reconstruct (or interpolate) the given data
(i.e. g(xi) = fi), while approximation (i.e. g(xi) ≈ fi) allows g to deviate from the given data.
Interpolation is usually applied to noise-free data, while approximation is suitable when the given
data is contaminated by noise or contains more detail than actually required by the application.

A classical approach to scattered data approximation is the cubic smoothing spline (for 1D
data), or the surface smoothing spline (for multi-dimensional data), which is posed as the solution
of the following regularized least square problem:

minimize
n∑

i=1

(g(xi)− fi)2 + α|g|2Hm , (1.1)

where the minimization is taken over all functions g belonging to the Beppo-Levi space Hm (de-
fined in section 2). Minimization problem (1.1) is a standard regularization problem — the first
least square term measures the fitting error, while the second (regularization) term measures the
roughness of g. The parameter α > 0 is called the regularization (or smoothing) parameter, which
serves as a weight to adjust the balance between the two terms. Large values of α will lead to a very
smooth function g, at the cost of a potentially large fitting error, while small values of α will lead
to a small fitting error, but with a potentially rough fitting function g (i.e. one with |g|Hm large).
When d = 1 and m = 2, the solution to (1.1) is the cubic smoothing spline (see e.g. [24]), while if
2m > d ≥ 2, and under a mild condition on the location of the data sites, the solution to (1.1) is a
surface spline (called a thin-plate spline when m = d = 2) of order m (see [18, 37]). The smoothing
spline is a popular method for scattered data approximation in a wide range of applications (see
e.g. [10, 42]). However, in the multivariate setting (d ≥ 2) the method becomes computationally
expensive as the number of data sites n grows large. One reason for this is the lack of a compactly
supported basis for the finite dimensional space in which g is found. Representing the solution g
in terms of a globally supported basis causes expensive evaluations of g, full n× n matrices to be
stored and inverted, and on top of all that, these full matrices tend to be seriously ill-conditioned
(see e.g. [20, 40]). Although significant progress has been made in the direction of reducing these
computational difficulties (see [2] and the references therein), we believe alternative approaches to
the problem are worth pursuing, not only for the sake of more efficient methods, but also for the
insight they may provide in constructing a preconditioner for smoothing splines.

Our approach is to solve minimization problem (1.1), not over the Beppo-Levi space, but rather,
over the principal shift invariant (PSI) space generated by a single, carefully chosen, compactly
supported function φ. Denoting this subspace by Sh(φ), where h is the scale parameter that
controls refinement of the subspace, we thus arrive at the following minimization problem:

minimize
n∑

i=1

(g(xi)− fi)2 + α|g|2Hm(Ω), g ∈ Sh(φ), (1.2)
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where Ω is a domain of interest which contains Ξ. Here we choose a proper PSI space as the
approximation space since it enjoys several desirable properties for data fitting. It has a simple
structure and provides good approximation to smooth functions, which leads to simple and accurate
algorithms. Furthermore, the PSI space can be associated to a wavelet system and one can then
solve the data fitting problem in the wavelet domain with an efficient algorithm as well as a sparse
approximation to the data function.

The solution of (1.2) can be viewed as an approximation to the solution of (1.1), since Sh(φ)
will be a subspace of Hm. This, of course, raises the issue as to whether the solution of (1.2)
will be as useful, in applications, as the solution of (1.1). We address this issue in two ways.
First, we provide an error analysis for our approach, in section 2, which estimates the Lp(Ω)-norm
of the error f − g in terms of the data site density in Ω and the noise level in the given data.
We then implement an algorithm to solve (1.2), by choosing φ as a uniform B-spline or its 2D
tensor product, and apply it to a few examples of curve/surface fitting. The numerical experiments
demonstrate that the solutions to (1.1) and (1.2) are very close. Moreover, the computation can
be very efficiently performed if one solves the problem in the wavelet domain, as evidenced by the
numerical experiments in section 4. Compared to the surface smoothing spline, we expect that our
approach will remain feasible on larger data sets and hence will extend the scope of applications.

For scattered data fitting, there are a lot of existing methods and algorithms in the literature;
a survey on scattered data interpolation, in which various methods are extensively tested and
compared can be found in [22]. An error analysis for an interpolation method in PSI spaces which
inspired us to consider the approximation approach in this paper is given in [34]. For approximation
methods, as we discussed above, cubic and surface smoothing splines have a solid mathematical
foundation and have been found to be effective in practice (see e.g. [24, 44]). These are special
cases of a more general class of interpolation techniques, called radial basis function interpolation,
for which a rich theory on its approximation power is available (see e.g. [9]), and on which many
successful applications are built, e.g., neural network [21] and 3D object reconstruction [10]. Several
approximation methods employ a multilevel structure to approximate data efficiently. In particular,
a multilevel scheme based on B-splines is proposed in [35] to approximate scattered data; a wavelet-
based smoothing method which operates in a coarse-to-fine manner to get the fitting function
efficiently is suggested in [12]. We mention that the use of uniform B-splines as basis functions for
scattered data approximation is not new. The approaches taken in [1, 29, 41, 43] are examples of
such approaches; however, in the present contribution, we provide an analysis of the approximation
power and conduct numerical experiments in both B-spline and wavelet domains.

The remainder of this paper is organized as follows. In section 2, a brief introduction to PSI
spaces is given and is followed by an error analysis for the solution of (1.2). In section 3, we consider
computational formulations in one dimensional and two dimensional settings, where φ is chosen to
be a uniform B-spline in 1D and a tensor product of uniform B-splines (or a particular box spline)
in 2D. We briefly review the basics of B-spline (box spline) and wavelets, and then present the
computational procedures in both B-spline (box spline) and wavelet domain. Finally, in section 4,
several examples from curve/surface fitting are used to examine the effectiveness of the proposed
method, and numerical experiments are used to demonstrate the computational efficiency of solving
data fitting problems in the wavelet domain.

2 PSI approach to scattered data approximation

This section is devoted to an error analysis of the solution to (1.2). We start with an introduction
to PSI spaces, and then give two problem formulations and prove corresponding error estimates.
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2.1 PSI spaces

We first introduce some notation that will be used throughout the paper. In Rd, we use the
standard multi-index notations. For multi-indices α = {α1, α2, · · · , αd}, define |α| := α1+α2+· · ·+
αd, Dα := (∂α1/∂xα1

1 )(∂α2/∂xα2
2 ) · · · (∂αd/∂xαd

d ); for x ∈ Rd, define |x| :=
√
x2

1 + x2
2 + · · ·+ x2

d; for

x, y ∈ Rd, let x · y denote the inner product between them. One often employed set in Rd is the
open unit ball B := {|x| < 1, x ∈ Rd}.

Let m be a positive integer, and let Hm denote the Beppo-Levi space of tempered distributions
f for which Dαf ∈ L2(Rd) for all |α| = m. For measurable Ω ⊂ Rd and f ∈ Hm, we define the
seminorm

|f |Hm(Ω) := (2π)d/2
√ ∑

|α|=m

τα‖Dαf‖2
L2(Ω),

where the τα’s are the positive integers determined by the equation |x|2m =
∑

|α|=m ταx
2α, x ∈ Rd.

If Ω = Rd, we write simply |f |Hm . It can be easily shown that |f |Hm has the representation in
the Fourier domain as ‖| · |mf̂‖L2(Rd\0) for all f ∈ Hm, where f̂(ξ) :=

∫
Rd f(x)e−iξ·xdx denotes the

Fourier transform of f . With this representation, it easily follows that |f(h·)|Hm = hm−d/2|f |Hm .
Let Wm

2 denote the Sobolev space of all tempered distributions f for which Dαf ∈ L2(Rd) for
all |α| ≤ m. In the Fourier domain, the Sobolev norm can be defined as follows

‖f‖W m
2

:= ‖(1 + | · |2)m/2f̂‖L2(Rd).

We now define a principal shift-invariant (PSI) space. Let φ : Rd → R be a continuous and
compactly supported function, and let c : Zd → R be a sequence. The semi-discrete convolution
between φ and c is defined by

φ ∗′ c :=
∑
j∈Zd

c(j)φ(· − j).

The principal shift-invariant space S(φ) generated by φ is the smallest closed subspace of L2(Rd)
that contains all functions φ ∗′ c, where c is a finitely supported sequence; that is,

S(φ) = closure{φ ∗′ c : c ∈ `0(Zd)},

where `0(Zd) denotes the set of all finitely supported sequences on Zd. The space S(φ) can be
refined by dilation, and we define for h > 0

Sh(φ) = {f(·/h) : f ∈ S(φ)}.

PSI spaces are particularly important in the field of approximation theory, due to the following
appealing properties. The structure of a PSI space is simple, as the space can be generated by only
one function φ (which is called the generator). A PSI space provides good approximation to Wm

2

if φ satisfies the Strang-Fix conditions. Recall that a function φ is said to satisfy the Strang-Fix
conditions of order m if

φ̂(0) 6= 0, and Dαφ̂(2πj) = 0, ∀j ∈ Zd\0, |α| < m.

It is well-known (see [7, 31]) that φ satisfies the Strang-Fix conditions of order m if and only if for
all f ∈Wm

2 ,
inf

s∈Sh(φ)
‖f − s‖L2(Rd) = O(hm) as h→ 0.

Further, PSI spaces also have an associated wavelet system, provided the generator φ satisfies some
conditions, e.g. refinability, which will be discussed in the next section. The interested reader is
referred to [5, 7] for more discussions on PSI spaces.
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In most applications, data to be processed comes from a bounded subset of Rd. For a bounded
domain Ω ⊂ Rd, we work with a space spanned by those shifts of φ whose support intersects the
interior of Ω, namely,

S(φ,Ω) := {φ ∗′ c : c(j) = 0 whenever supp φ(· − j) ∩ Ωo = ∅}.

The space S(φ,Ω) can also be refined by dilation, and so we define

Sh(φ,Ω) =
{ ∑

j∈Zd

c(j)φ(·/h− j) : c(j) = 0 whenever supp φ(·/h− j) ∩ Ωo = ∅
}
.

This space Sh(φ,Ω) is the approximation space in which we will formulate our regularized least
square schemes and look for numerical solutions.

At this stage, there is no guarantee that the above-mentioned functions φ(·/h− j), which span
Sh(φ,Ω), are linearly independent over Ω. Although that is of no concern at the theoretical level,
it is an important consideration when one begins to make numerical computations. The concept of
local linear independence is precisely the one needed: The shifts of φ are locally linearly independent
if for every bounded open set G, all shifts of φ (ie φ(· − j), j ∈ Zd) having some support in G are
linearly independent over G. For the sake of generality, we will not assume, at this early stage, that
the shifts of φ are locally linearly independent; however, we will explicitly state this assumption
later on as needed.

2.2 Approximation in PSI spaces

We shall propose two regularization schemes and then pursue an estimate on the error in terms
of data site density and noise level. Let m > d/2 be an integer, and assume that φ ∈ Wm

2 is
compactly supported and satisfies the Strang-Fix conditions of order m. Let Ω be a bounded
subset in Rd and let f ∈ Wm

2 , but assume that we are given a noisy sample f̃ |Ξ at scattered data
sites Ξ ⊂ Ω, with the noise level satisfying

‖f − f̃‖`2(Ξ) ≤ ε.

In the first scheme we seek an s ∈ Sh(φ,Ω) which nearly minimizes

eα(s, f̃ ,Ξ) := α|s|2Hm(Ω) + ‖s− f̃‖2
`2(Ξ), (2.1)

while in the second we seek an s ∈ Sh(φ,Ω) which nearly minimizes

Eα(s, f̃ ,Ξ) := α‖s‖2
W m

2 (Ω) + ‖s− f̃‖2
`2(Ξ). (2.2)

Here the phrase “nearly minimize” means to bring to within a constant of it’s minimal value. For
example, to choose g ∈ G to nearly minimize ‖g‖ means to choose g so that ‖g‖ ≤ const inf{‖g̃‖ :
g̃ ∈ G}.

We say that Ω has the cone property if there exist positive constants εΩ, rΩ such that for all
x ∈ Ω there exists y ∈ Ω such that |x− y| = εΩ and

x+ t(y − x+ rΩB) ⊂ Ω, ∀t ∈ [0, 1].

The separation distance in Ξ is defined by

sep(Ξ) := inf{|ξ − ξ′| : ξ, ξ′ ∈ Ξ, ξ 6= ξ′}.

The fill distance from Ξ to Ω is given by

δ := δ(Ξ,Ω) := sup
x∈Ω

inf
ξ∈Ξ

|x− ξ|.
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And the accumulation index of Ξ in Ω is defined by

γ := γ(Ξ,Ω) := max
x∈Ω

#{ξ ∈ Ξ : |x− ξ| ≤ δ}.

To derive error estimates, we start with some lemmas and propositions.

Lemma 2.1. Let Ξ ⊂ Ω, where Ω is a bounded subset of Rd having the cone property with param-
eters εΩ and rΩ. With δ := δ(Ξ,Ω), the following hold:

(i) There exists δ0 > 0 (depending only on εΩ and rΩ) such that if δ ≤ δ0, then there exists
Ξ0 ⊂ Ξ such that δ(Ξ0,Ω) ∼ δ and sep(Ξ0) ∼ δ, where the equivalency constants depend only
on εΩ and rΩ;

(ii) There exists a partition of Ξ, Ξ =
⋃n

i=1 Ξi, such that n ≤ const(d)γ and sep(Ξi) ≥ δ for
i = 1, 2, · · · , n.

Proof. Put δ0 := rΩ/(5
√
d+ 2) and assume δ := δ(Ξ,Ω) ≤ δ0.

(i) Define a set of lattice nodes as follows

P = {5δj ∈ Ω, j ∈ Zd}.

The cone property implies that there is a ball with radius rΩ lying inside Ω. It is easy to see, by
the choice of δ, that this ball contains at least two points of the form 5δj (j ∈ Zd). Hence P is not
empty and has at least two nodes. For any p ∈ P , by the definition of δ, infξ∈Ξ |p − ξ| ≤ δ, and
hence there exists a ξp ∈ Ξ such that |p− ξp| < 2δ. Define Ξ0 by picking one such ξp for each p ∈ P
and collecting them together, i.e.,

Ξ0 = {ξp : ξp ∈ Ξ, |p− ξp| < 2δ, p ∈ P}.

By the triangle inequality, it follows from the construction of P and Ξ0 that |ξp − ξq| ≥ δ for any
pair p, q ∈ P , and that |ξp − ξq| ≤ 9δ for any two neighboring nodes p, q ∈ P . Hence sep(Ξ0) ∼ δ.

For any x ∈ Ω, by the cone property, there exists y such that |x−y| = εΩ and x+t(y−x+rΩB) ⊂
Ω, ∀t ∈ [0, 1]. Let t = δ/δ0, the ball B1 := x + t(y − x + rΩB) ⊂ Ω, and its radius is (5

√
d + 2)δ.

By the construction of P , there exists a p ∈ P such that p + 2δB ⊂ B1. By the definition of Ξ0,
there exists a ξp ∈ Ξ0 such that ξp ∈ B1. Then the triangle inequality gives∣∣x− ξp

∣∣ ≤ ∣∣x− (x+ t(x− y))
∣∣ +

∣∣(x+ t(x− y))− ξp
∣∣ ≤ t(εΩ + rΩ),

from which we have δ(Ξ0,Ω) ≤ const(rΩ, εΩ)δ. On the other hand, δ(Ξ0,Ω) ≥ δ := δ(Ξ,Ω) since
Ξ0 ⊂ Ξ. Hence δ(Ξ0,Ω) ∼ δ.

(ii) Since Ω is bounded, there is a “bounding box” BD of the form [l1, r1]× [l2, r2] · · · × [ld, rd]
which covers Ω. Define a set of lattice nodes

Q = {3δj ∈ BD, j ∈ Zd}.

Associate each node p ∈ Q with a closed ball Bp := p + δB̄. By the definition of γ, in Bp there
are at most γ points in Ξ. A subset of Ξ can be formed by picking one point from Ξ in each ball if
it contains such a point, and grouping them together. Thus, for all the points in Ξ that lie in the
balls, we can group them into at most γ such subsets which do not intersect with each other. By
the construction of the subsets, the separation distance of each subset is not less than δ.

Let U be the union of all the balls defined above, and consider the translates of U with trans-
lation distance of a multiple of δ/

√
d on all d directions. We can easily see that a finite number

(depending only on d) of such translates cover BD (hence cover Ω). Similarly, we can group the
points of Ξ in each translate of U into at most γ subsets, each subset having separation distance no
less than δ. This grouping gives us at most const(d)γ subsets of Ξ that cover Ξ, and the separation
distance of each subset is not less than δ.
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Our proofs will draw heavily on the ideas and conclusions from [34]. The next inequality plays
an essential role in [34]. It is first proved in [18], and has been generalized recently in [39]. In the
remainder of this section, it is assumed that Ω is a compact subset of Rd having the cone property
and a Lipschitz boundary.

Lemma 2.2 (Duchon’s inequality). There exists δ∗ > 0 (depending only on εΩ and rΩ) such that
if Ξ ⊂ Ω satisfies δ := δ(Ξ,Ω) ≤ δ∗, then for all 2 ≤ p ≤ ∞

‖g‖Lp(Ω) ≤ const(m,Ω)δm−d/2+d/p|g|Hm(Ω), ∀g ∈ Hm(Ω) with g|Ξ = 0.

Duchon’s inequality is proved for the case of scattered zeros. Here we generalize this inequality as
follows to cope with scattered non-zeros for our regularization approaches.

Proposition 2.3. There exists δ0 > 0 (depending only on εΩ and rΩ) such that if Ξ ⊂ Ω satisfies
δ := δ(Ξ,Ω) ≤ δ0, then

‖g‖Lp(Ω) ≤ const(m,Ω)
(
δm−d/2+d/p|g|Hm(Ω) + δd/p‖g‖`2(Ξ)

)
, ∀g ∈ Hm, 2 ≤ p ≤ ∞.

Proof. Let σ ∈ C∞
c (Rd) be such that σ(0) = 1 and supp σ ⊂ B. Let δ0 be as in Lemma 2.1,

and assume that δ ≤ δ0. Then, by Lemma 2.1, there exists Ξ0 ⊂ Ξ such that δ1 := δ(Ξ0,Ω) ∼ δ
and sep(Ξ0) ∼ δ. There exists τ ∼ δ (e.g., τ = sep(Ξ0)/3) such that the support of the functions
{σ((· − ξ)/τ)}ξ∈Ξ0 are pairwise disjoint. It then follows that the function

g̃ := g −
∑
ξ∈Ξ0

g(ξ)σ((· − ξ)/τ).

satisfies

|g̃|Hm(Ω) ≤ |g|Hm(Ω) +
∣∣∣∣ ∑

ξ∈Ξ0

g(ξ)σ((· − ξ)/τ)
∣∣∣∣
Hm

= |g|Hm(Ω) + ‖g‖`2(Ξ0)|σ(·/τ)|Hm = |g|Hm(Ω) + τ−m+d/2|σ|Hm‖g‖`2(Ξ0).

Assume that δ1 ≤ δ∗ as required in Duchon’s inequality (otherwise, this condition can be satisfied
by scaling δ0). Noting that g̃|Ξ0 = 0 and applying Duchon’s inequality to g̃ yields

‖g̃‖Lp(Ω) ≤ const(m,Ω)δm−d/2+d/p
1

(
|g|Hm(Ω) + τ−m+d/2|σ|Hm‖g‖`2(Ξ0)

)
.

Again, by the pairwise disjoint property, we have

‖g − g̃‖Lp(Ω) =
∥∥∥∥ ∑

ξ∈Ξ0

g(ξ)σ((· − ξ)/τ)
∥∥∥∥

Lp

= ‖g‖`p(Ξ0)‖σ‖Lpτ
d/p ≤ const δd/p‖g‖`2(Ξ),

where the inequality holds since δ ∼ τ and ‖g‖`p(Ξ0) ≤ ‖g‖`p(Ξ) ≤ ‖g‖`2(Ξ) for 2 ≤ p ≤ ∞. The proof
is finally completed by the triangle inequality ‖g‖Lp(Ω) ≤ ‖g̃‖Lp(Ω) + ‖g − g̃‖Lp(Ω) in conjunction
with the equivalencies τ ∼ δ1 ∼ δ.

The generator φ ∈ Wm
2 is assumed to be compactly supported and to satisfy the Strang-Fix

conditions of order m. This assumption on φ ensures (see [32, Lemma 2.6]) that there exists a
finitely supported sequence a : Zd → R such that ψ := φ ∗′ a satisfies the Strang-Fix conditions of
order m and the condition ψ ∗′ q = q for all q ∈ πd

m−1, where πd
m−1 denotes the set of polynomials

of degree ≤ (m−1). In the following, we will make crucial use of the function s ∈ Sh(φ) defined by

s :=
∑
j∈Zd

f(hj)ψ(·/h− j).
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Proposition 2.4. For s defined above, and with h ≤ 1, the following hold:

(i) |s|Hm ≤ const(ψ,m)|f |Hm , ∀f ∈ Hm;

(ii) ‖s‖W m
2
≤ const(ψ,m)‖f‖W m

2
, ∀f ∈Wm

2 ;

(iii) ‖f − s‖`2(Ξ) ≤ const(ψ,m)hmδ−d/2√γ|f |Hm , ∀f ∈ Hm.

Proof. (i) Put sh := s(h·) and fh := f(h·) and note that sh = ψ ∗′ fh. By [34, Proposition 5.2],

|sh|Hm ≤ const(ψ,m)|fh|Hm ,

and hence (i) follows from the equalities |sh|Hm = hm−d/2|s|Hm and |fh|Hm = hm−d/2|f |Hm .
(ii) It follows from the proof of [34, Proposition 5.7] that∑

j∈Zd

‖sh − fh‖2
L∞(j+C) ≤ const(ψ,m)|fh|2Hm ,

where C := [−1/2, 1/2)d denotes the unit cube. Employing the inequality ‖sh−fh‖2
L2
≤

∑
j∈Zd ‖sh−

fh‖2
L∞(j+C) yields

‖s− f‖L2 = hd/2‖sh − fh‖L2 ≤ const(ψ,m)hd/2|fh|Hm = const(ψ,m)hm|f |Hm .

Hence
‖s‖L2 ≤ ‖s− f‖L2 + ‖f‖L2 ≤ const(ψ,m)‖f‖W m

2
,

which, in view of (i), proves (ii).
(iii) The proof of [34, Proposition 5.7] can be easily modified to show that if A ⊂ Rd satisfies

ε := sep(A) > 0, then
‖sh − fh‖2

`2(A) ≤ const(ψ,m)ε−d|fh|2Hm .

By (ii) of Lemma 2.1, it is possible to partition Ξ as Ξ =
⋃n

i=1 Ξi such that n ≤ const(d)γ and
sep(Ξi) ≥ δ. With Ξ̃i := h−1Ξi we see that

‖s− f‖2
`2(Ξ) = ‖sh − fh‖2

`2(h−1Ξ) =
n∑

i=1

‖sh − fh‖2
`2(fΞi)

≤
n∑

i=1

const(ψ,m)sep(Ξ̃i)−d|fh|2Hm

≤ γconst(ψ,m)(h−1δ)−d|fh|2Hm = γconst(ψ,m)(δ)−dh2m|f |2Hm

which proves (iii).

With Proposition 2.3 and Proposition 2.4 in hand, we are now ready to give our error estimates
for the two schemes proposed at the beginning of this subsection. We assume, without further
mention, that h ≤ 1 and δ := δ(Ξ,Ω) ≤ δ0, so that we can invoke Proposition 2.3 and Proposition
2.4 in the following.

Theorem 2.5. If f ∈ Hm and Sf ∈ Sh(φ,Ω) nearly minimizes eα(s, f̃ ,Ξ), defined in (2.1), then

‖f − Sf‖Lp(Ω) ≤ const(φ,m,Ω)
(
δm−d/2+d/p

√
α

+ δd/p

)(√
α+ h2mδ−dγ|f |Hm + ε

)
for 2 ≤ p ≤ ∞.
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Proof. For any s1 ∈ Sh(φ,Ω) and for any s2 ∈ Sh(φ) whose support lies outside of Ω, by the
definition of eα(s, f̃ ,Ξ), we have

eα(s1, f̃ ,Ξ) = eα(s1 + s2, f̃ ,Ξ).

This implies that a minimizer in Sh(φ,Ω) is also a minimizer in Sh(φ). Hence Sf nearly minimizes
eα(s, f̃ ,Ξ) over Sh(φ). In particular, for s ∈ Sh(φ) in Proposition 2.4, we have

eα(Sf , f̃ ,Ξ) ≤ const · eα(s, f̃ ,Ξ).

By Proposition 2.4 and triangle inequality, it follows that

α|Sf |2Hm(Ω) + ‖f̃ − Sf‖2
`2(Ξ) = eα(Sf , f̃ ,Ξ) ≤ const · eα(s, f̃ ,Ξ)

= const
(
α|s|2Hm(Ω) + ‖f̃ − s‖2

`2(Ξ)

)
≤ const

(
α|s|2Hm + 2‖f − s‖2

`2(Ξ) + 2‖f̃ − f‖2
`2(Ξ)

)
≤ const

(
(α+ h2mδ−dγ)|f |2Hm + ε2

)
.

Applying Proposition 2.3 to (f − Sf ), we have

‖f − Sf‖Lp(Ω) ≤ const
(
δm−d/2+d/p|f − Sf |Hm(Ω) + δd/p‖f − Sf‖`2(Ξ)

)
≤ const

(
δm−d/2+d/p

(
|f |Hm + |Sf |Hm(Ω)

)
+ δd/p

(
ε+ ‖f̃ − Sf‖`2(Ξ)

))
.

Using the above estimate on eα(Sf , f̃ ,Ξ) to bound |Sf |Hm(Ω) and ‖f̃ − Sf‖`2(Ξ) completes the
proof.

The above proof can be easily modified to prove

Theorem 2.6. If f ∈Wm
2 and Sf ∈ Sh(φ,Ω) nearly minimizes Eα(s, f̃ ,Ξ), defined in (2.2), then

‖f − Sf‖Lp(Ω) ≤ const(φ,m,Ω)
(
δm−d/2+d/p

√
α

+ δd/p

)(√
α+ h2mδ−dγ‖f‖W m

2
+ ε

)
for 2 ≤ p ≤ ∞.

When the noise level is very low but not zero, one may want to fit the data closely. In this
case, since the smoothing becomes less important, one may choose the smoothing parameter to be
small to improve the approximation. For example, if we assume that h ∼ δ and α ∼ δ2m−d, so that
δm−d/2+d/p

√
α

∼ δd/p and
√
α+ h2mδ−dγ ∼ δm−d/2, then the above error bounds can be simplified as

follows.

Corollary 2.7. Suppose h ∼ δ and α ∼ δ2m−d. If f ∈ Hm and Sf ∈ Sh(φ,Ω) nearly minimizes
eα(s, f̃ ,Ξ), then

‖f − Sf‖Lp(Ω) ≤ const(φ,m,Ω, α)δd/p(δm−d/2|f |Hm + ε).

If f ∈Wm
2 and Sf ∈ Sh(φ,Ω) nearly minimizes Eα(s, f̃ ,Ξ), then

‖f − Sf‖Lp(Ω) ≤ const(φ,m,Ω, α)δd/p(δm−d/2‖f‖W m
2

+ ε).
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3 Approximation in B-spline and wavelet domain

The purpose of this section is to formulate the computational task of solving the minimization
problem (3.3) in both the B-spline and wavelet domains, in one and two dimensions.

The first scheme (2.1) differs from the second (2.2) only in the regularization term: the first
employs the penalty | · |Hm(Ω), while the second employs ‖ · ‖W m

2 (Ω). This means that the first
scheme penalizes only function derivatives, while the second penalizes function derivatives as well
as function values, which artificially dampens function values. For this reason, we focus on the first
scheme and we are interested to find a numerical procedure to

minimize ‖s− f̃‖2
`2(Ξ) + α|s|2Hm(Ω), s ∈ S

h(φ,Ω). (3.3)

Uniform B-splines in one dimension or a tensor product of uniform B-splines in two dimensions
are good candidates for the function φ, since they have explicit form and thus one can efficiently
compute their values at scattered sites. Furthermore, they satisfy the desired Strang-Fix conditions
and they are associated with wavelets with short support.

3.1 Uniform B-splines and Wavelets

We first introduce B-splines and wavelets in the univariate setting and then extend them to
the bivariate setting by tensor product. The uniform B-spline function of order p, denoted by Bp,
can be obtained via the following recursive formula: B1 = χ[0,1], the characteristic function of the
interval [0, 1], and

Bp(x) :=
∫ 1

0
Bp−1(x− t)dt, x ∈ R, p = 2, 3, . . . .

It is well known that Bp is a compactly supported piecewise polynomial which satisfies the Strang-
Fix conditions of order p. Another property of Bp, which plays an important role in designing the
corresponding wavelet system, is refinability, i.e.,

Bp(x) =
1
2p

p∑
k=0

(
p

k

)
Bp(2x− k).

Recall that a function φ : R 7→ R is refinable if it satisfies the refinement equation

φ = 2
∑
k∈Z

a(k)φ(2 · −k), (3.4)

where a : Z 7→ R is a sequence on Z, called the refinement mask for φ.
Next we introduce a key concept in the wavelet theory, multiresolution analysis, which provides

the framework for most wavelet constructions, see e.g. [11, 14, 36]. For a compactly supported
refinable function φ ∈ L2(R), define φj,k = 2j/2φ(2j · −k), and let Vj be the PSI space generated
by φj,0:

Vj := S(φj,0), j ∈ Z.

Then the sequence of PSI spaces Vj (j ∈ Z) forms a multiresolution analysis (MRA) generated by
φ, i.e., (i)Vj ⊂ Vj+1; (ii)∪j∈ZVj = L2(R); and (iii)∩j∈ZVj = 0 (see e.g. [33]).

Based on the theory of MRA, a family of short supported wavelets are induced from uniform
B-splines in [26]. Let φ be Bp and a its refinement mask, and define

ψ(x) = 2
∑
k∈Z

(−1)k−1a(1− k)φ(2x− k). (3.5)

This function ψ is called a Riesz wavelet function, since its dyadic system

X(ψ) := {ψj,k := 2j/2ψ(2j · −k), j ∈ Z, k ∈ Z}

10



is a Riesz basis of L2(R) (see [26]), meaning there exist C1, C2 > 0 such that

C1‖{cj,k}‖`2(Z2) ≤
∥∥∥∥∑

j∈Z

∑
k∈Z

cj,kψj,k

∥∥∥∥
`2(Z2)

≤ C2‖{cj,k}‖`2(Z2) (3.6)

for all {cj,k} ∈ `2(Z2) and the span of X(ψ) is dense in L2(R).
We say that a function ψ has regularity α if ψ ∈ W β

2 for all β < α, and we say that ψ has p
vanishing moments if Djψ̂(0) = 0 for j = 0, · · · , p−1. An interesting property of the above-defined
ψ is that it has the shortest support among all Riesz wavelets having regularity p − 1/2 and p
vanishing moments, and for this reason, it is called the “short support” wavelet. We remark that
although φ and ψ have short support, the corresponding generators of the dual system, i.e. φ̃ and
ψ̃, are not compactly supported (see [26]). However, it is shown in [26] that φ̃ and ψ̃ are in L2(R)
and ψ̃ has p vanishing moments.

With the above φ and ψ, we can define the MRA, Vj (j ∈ Z), and a sequence of wavelet spaces

Wj := closure

{ ∑
k∈Z

ckψj,k : {ck} ∈ `0(Z)
}
, j ∈ Z.

We have the following complement relation

Vj = Vj−1 ⊕Wj−1, j ∈ Z,

where ⊕ represents the direct sum of subspaces. This complement relation is the basis of the wavelet
decomposition and reconstruction algorithm. Let J be an integer, then any function s ∈ VJ can be
represented by

s =
∑
k∈Z

〈s, φ̃J,k〉φJ,k. (3.7)

On the other hand, the function s has a wavelet representation as follows

s =
∑
k∈Z

〈s, φ̃J0,k〉φJ0,k +
J−1∑
j=J0

∑
k∈Z

〈s, ψ̃j,k〉ψj,k, (3.8)

where J0 is the coarsest level. In order to solve (3.3), we need to find either 〈s, φ̃J,k〉, that means
we solve (3.3) in B-spline domain, or 〈s, φ̃J0,k〉 and 〈s, ψ̃j,k〉 in the corresponding wavelet domain,
numerically. As we will see, the efficient reconstruction algorithm derived from the short support
of the B-spline and the corresponding wavelet will play an important role in the numerical compu-
tation. Furthermore, since we never use the wavelet decomposition algorithm in the computation,
the infinite support of the dual basis does not get into the picture.

Sobolev spaces can be characterized by the means of wavelets; Sobolev norm of a function is
equivalent to the `2 norm of weighted wavelet coefficients of the function (see [16, 27, 38]). In
particular, Sobolev spaces Wm

2 (R), m ∈ N, can be characterized by the short supported wavelet.
For the s ∈ VJ defined in (3.8), if the regularity of ψ and the vanishing moment of ψ̃ are larger
than m, it is shown in [27] that there exist two positive constants C1 and C2 such that

C1‖s‖2
W m

2 (R) ≤
∑
k∈Z

|〈s, φ̃J0,k〉|2 +
J∑

j=J0

∑
k∈Z

22m(j−J0)|〈s, ψ̃j,k〉|2 ≤ C2‖s‖2
W m

2 (R). (3.9)

As we shall see, this norm equivalence plays a key role in accelerating the conjugate gradient method
in the wavelet domain.

The above discussions are restricted to the univariate setting. Uniform B-splines and short
supported wavelets can be extended to the bivariate setting by the tensor product construction.

11



Since the tensor product construction is standard, we omit here the details and only remark that
the bivariate tensor product of uniform B-splines of order p also satisfies the Strang-Fix conditions
of order p, and the characterization of Sobolev spaces by bivariate tensor product wavelets, which
is similar to (3.9), is still valid.

In addition to tensor product B-splines, box splines are an alternative way of generalizing uni-
form B-splines to multi-dimensions (see [6]). In particular, we are interested in a bivariate box
spline (denoted M2,2,2 in the sequel), which is the basis function for the Loop scheme in computer
graphics, since it induces compactly supported Riesz wavelet functions (see [25]) and consequently
make fast computation in the wavelet domain feasible. Although we have implemented the algo-
rithm to solve (3.3) with φ being M2,2,2, we do not discuss in the following the implementation
details for the box spline based algorithm. We also skip the discussion of the box spline and its
corresponding wavelets, and instead refer the interested readers to [25].

3.2 Computation in B-spline domain

In this subsection, we will investigate the computational components of solving the minimization
problem (3.3). We first consider the computation in the general setting (i.e. with φ, d and m
unspecified), and then discuss the specific issues of the computation in B-spline domain.

The approximation space Sh(φ,Ω) is spanned by all shifted and dilated φ whose support inter-
sect with the interior of Ω. In other words, any function s ∈ Sh(φ,Ω) has the form

s =
M∑

j=1

ujφ(·/h− kj), {k1, k2, . . . , kM} := {k ∈ Zd : supp φ(·/h− k) ∩ Ωo 6= ∅}. (3.10)

With s represented as in (3.10), the regularization term |s|2Hm(Ω) can be written as a quadratic
term, as shown in the following lemma.

Lemma 3.1. Let s be defined in (3.10). Denote by G = [gij ] an M ×M matrix with (i, j)-entry

gij =
〈
φ(·/h− ki), φ(·/h− kj)

〉
Hm(Ω)

,

where 〈·, ·〉Hm(Ω) is the semi-inner product associated with | · |Hm(Ω). Let u be the column vector
with components uj (1 ≤ j ≤M), then one has

|s|2Hm(Ω) = uTGu.

Proof. Since |s|2Hm(Ω) = 〈s, s〉Hm(Ω), one has

|s|2Hm(Ω) =
〈 M∑

j=1

ujφ(·/h− kj),
M∑

j=1

ujφ(·/h− kj)
〉

Hm(Ω)

=
M∑
i=1

M∑
j=1

uiuj

〈
φ(·/h− ki), φ(·/h− kj)

〉
Hm(Ω)

= uTGu

In addition to G, another matrix involved in (3.3), called the observation matrix A, is obtained
by evaluating each basis function at each site in Ξ. If Ξ = {xi}n

i=1, then A is defined by A(i, j) =
φ(xi

h − kj) ,i = 1, · · · , n, j = 1, · · · ,M . Let f denote the column vector consisting of the functional

12



data {f̃i}n
i=1, then the second term in (3.3) becomes ‖Au− f‖2. Thus the regularized least square

problem (3.3) becomes a standard unconstrained minimization problem

minimize αuTGu + ‖Au− f‖2. (3.11)

Although ATA and G can only be guaranteed to be positive semi-definite, we can show that
(ATA + αG), the Hessian of (3.11), is always positive definite provided that the shifts of φ are
locally linearly independent and that a mild condition on the data sites holds. We say that the
data sites {xi}n

i=1 are unisolvent for πd
m−1, if there does not exist a nontrivial polynomial p(x) of

degree (m − 1) such that p(xi) = 0 (i = 1, · · · , n). We mention that this unisolvency condition is
often employed in radial basis function interpolation to guarantee the uniqueness of the interpolant
(see [9]).

Theorem 3.2. Suppose that the shifts of φ are locally linearly independent. If the given scattered
sites {xi}n

i=1 are unisolvent for πd
m−1, then (ATA+ αG) is positive definite.

Proof. To prove that (ATA+ αG) is positive definite, we need to show that uT (ATA+ αG)u = 0
holds only for u = 0. Since both ATA and G are positive semi-definite, uT (ATA + αG)u = 0
implies that Au = 0 and uTGu = 0. Since

|s|2Hm(Ω) = uTGu,

we have |s|Hm(Ω) = 0, which implies that s|Ω is a polynomial of degree (m−1). On the other hand,
by Au = 0, we know that

0 = Au =
(
s(x1), s(x2), · · · , s(xn)

)T
.

Since there does not exist a non-trivial polynomial of degree (m−1) which vanishes at all data sites,
s|Ω must be trivial, i.e., s|Ω ≡ 0. Since s is a linear combination of the basis functions φ(·/h− k),
which are linearly independent over Ω, the coefficient vector u must be the zero vector.

General d, Ω, φ and m are assumed in the above. For the purpose of curve/surface fitting, we
implement the algorithm in one and two dimensions (i.e. d = 1, 2). Furthermore, our implementa-
tion is designed for a special domain Ω, an interval or a rectangle, which is the domain of interest
for many applications. Without loss of generality, we assume that Ω is [0, 1] or [0, 1]2.

In order to compare our scheme to cubic (thin-plate) smoothing spline, we choose φ to be
cubic uniform B-spline in one dimension and the tensor product of cubic uniform B-spline in two
dimensions, and m = 2 (other choices of φ and m can be made as long as the degree of B-spline is
larger than m). Under these assumptions, in 1D case, G can be computed in the following way:

gij =
∫ 1

0
φ
′′
(
x

h
− i)φ

′′
(
x

h
− j)dx,

where φ
′′

denotes the second derivative of φ. It is easy to show that G is symmetric band diagonal
of width seven (without considering boundary effects, it is a Toeplitz matrix). In the 2D case, G
can be obtained similarly; it is band block diagonal of width seven with each block being band
diagonal of width seven.

We need to check the conditions in Theorem 3.2 for the positive definiteness of (ATA + αG).
When d = 1, 2, m = 2 (which concern our implementations), the unisolvency condition on the
data sites reduces to the requirement that there exist two distinct data sites, if d = 1, and three
non-collinear data sites, if d = 2. Note that these are mild conditions which are normally satisfied
in practice. The functions φ used in our implementations, namely the uniform cubic B-spline when
d = 1, and a tensor product of cubic B-spline when d = 2, have locally linearly independent shifts
(see [6], p. 38).
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Assuming that (ATA + αG) is positive definite, finding the solution of (3.11) is equivalent to
solving the following linear system

(ATA+ αG)u = AT f , (3.12)

where G is a banded matrix (or block banded in 2D) of width seven. Moreover, since the support of
φ is compact, ATA is also a banded matrix (or block banded in 2D) of width seven, and therefore,
the matrix (ATA + αG) is banded. In 1D problems, as the size of the linear system is usually
small, the direct methods, e.g., LU factorization or Cholesky factorization, will be efficient enough
to solve (3.12). However, for most 2D problems, if a fine resolution (i.e. small h) is required for
good approximation, the size of the linear system could be very large so that the direct solvers
become inefficient and even impractical due to storage constraints. In that case we have to resort
to iterative solvers. Since (ATA + αG) is sparse, symmetric and positive definite, the conjugate
gradient method is a method of choice.

3.3 Computation in wavelet domain

Assume that we have a reconstruction formula u = Rc, where R is derived from the wavelet
reconstruction algorithm and c is the coefficient vector in terms of a wavelet basis. Then replacing
u with Rc in (3.11) leads to

RT (ATA+ αG)Rc = RTAT f , (3.13)

where the left multiplication by RT is employed to make the resulting system symmetric and
positive definite. Although the two linear systems, (3.12) and (3.13), are equivalent, solving in
the wavelet domain brings several benefits. First, the wavelet-based solution is sparse, i.e, most of
the entries in c are very small and can be set to zero without losing accuracy. As demonstrated
in our numerical experiments, this sparseness property can be used to adaptively choose wavelet
basis functions to improve the quality of fitting results especially in curve fitting. Second, although
the linear systems (3.12) and (3.13) produce the same fitting function, the latter can be solved
more efficiently. Generally speaking, the conjugate gradient method is one of the most efficient
iterative methods for symmetric and positive definite linear systems. However, for the linear system
(3.12), its convergence is quite slow because of ill-conditioning, and consequently a large number
of iterations are required for convergence. However, if a proper normalization factor of the wavelet
basis is encoded in the reconstruction matrix R, (3.13) can be solved efficiently by the conjugate
gradient method. We will quantify the speed improvement in the last section.

Next we discuss how to construct the matrix R based on the reconstruction algorithm. Though
our implementation is based on cubic uniform B-spline (m = 2), we assume general uniform B-
spline and general m in the following discussion. Here we restrict ourselves to the univariate case;
the bivariate case can be discussed similarly. Since wavelets are defined at dyadic scales, we assume
that h = 1/2J for some J ∈ N. Further, we assume that Ω = [0, 1] and φ is a uniform B-spline.
Then each function in Sh(φ, [0, 1]) can be expanded in the basis

ΦJ := {φJ,k : suppφJ,k ∩ (0, 1) 6= ∅, k ∈ Z},

and let the basis ΦJ−1 be defined similarly. In order to obtain a one-level reconstruction matrix,
we need to find a set of wavelet basis functions on the level (J − 1), denoted as ΨJ−1, which is
adjoined to ΦJ−1 to produce a basis which is equivalent to ΦJ . A simple choice

ΨJ−1 = {ψJ−1,k : suppψJ−1,k ∩ (0, 1) 6= ∅, k ∈ Z}

does not work directly since generally #ΦJ < #ΦJ−1 + #ΨJ−1, where # denotes the cardinality
of a set. To have #ΦJ = #ΦJ−1 + #ΨJ−1, we can modify ΨJ−1 by discarding a number of
basis functions whose support intersect with boundaries. Once the set ΨJ−1 is determined, by
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using the two-scale relations (3.4) and (3.5), a φJ−1,k ∈ ΦJ−1 or ψJ−1,k ∈ ΨJ−1 can be written in
terms of φJ,k; it should be noted that when applying the two-scale relations, if φJ,k 6∈ ΦJ , set the
corresponding coefficient to be zero since it has no contribution to the data fitting term and the
regularization term. In matrix notation, there exist matrices GJ and HJ such that

ΦJ−1 = ΦJGJ , ΨJ−1 = ΦJHJ ,

where we use the same notations ΦJ ,ΦJ−1,ΨJ−1 to denote the row vectors of the basis functions
in the corresponding sets. Thus we have the one-level reconstruction formula[

ΦJ−1 ΨJ−1

]
= ΦJRJ ,

where the one-level reconstruction matrix, RJ , is defined by

RJ =
[
GJ HJ

]
.

We note that RJ is nonsingular, since #ΦJ = #ΦJ−1 +#ΨJ−1 and since both ΦJ and ΦJ−1∪ΨJ−1

are bases. This reconstruction can be applied in a similar fashion to each level j = J0, · · · , J − 2,
where J0 denotes the coarsest level. Ultimately, we arrive at the following reconstruction formula:[

Φj Ψj

]
= Φj+1Rj+1, j = J0, · · · , J − 1.

We remark that the matrices Rj+1, j = J0, · · · , J − 1, are very sparse, due to the short support of
the refinement and wavelet masks for φ and ψ.

The Riesz property (3.6) shows that the basis functions ψj,k are normalized such that the L2

norm of a function is equivalent to the `2 norm of the corresponding wavelet coefficients cj,k. For
the purpose of solving the linear system (3.12), this normalization is undesirable since it leads to
an ill-conditioned linear system (probably because the regularization quantity uTGu represents the
Sobolev seminorm of s rather than its L2-norm). In order to avoid this ill-conditioning in (3.12),
we renormalize the wavelet basis functions so that the Sobolev norm is equivalent to the `2 norm
of the corresponding wavelet coefficients. In view of the norm equivalence for Sobolev spaces, given
by (3.9), this goal can be achieved by the following renormalization scheme

φ−m
j,k = 2−mjφj,k, ψ

−m
j,k = 2−mjψj,k, φ̃

−m
j,k = 2mjφ̃j,k, ψ̃

−m
j,k = 2mjψ̃j,k.

Under this new normalization, Φj and Ψj will be replaced by Φ−m
j and Ψ−m

j , and the reconstruction
formula on each level becomes[

Φ−m
j Ψ−m

j

]
= Φ−m

j+12
mRj+1, j = J0, · · · , J − 1. (3.14)

This renormalization scheme is motivated by the Sobolev norm equivalency, and it also can be
viewed as a diagonal preconditioning technique, see [13, 30].

Combining the equations in (3.14) yields[
Φ−m

J0
Ψ−m

J0
· · · Ψ−m

J−1

]
= Φ−m

J 2mRJ

[
2mRJ−1 0

0 I

]
· · ·

[
2mRJ0+1 0

0 I

]
,

where I denotes an identity matrix whose (varying) size is determined by the requirements of matrix
multiplication. Considering that each basis function in Φ−m

J has normalization factor 2(1/2−m)J ,
but the basis functions in (3.10) have no such factor, we define

R = 2(1/2−m)J2mRJ

[
2mRJ−1 0

0 I

]
· · ·

[
2mRJ0+1 0

0 I

]
,

and subsequently obtain [
Φ−m

J0
Ψ−m

J0
· · · Ψ−m

J−1

]
= 2(m−1/2)JΦ−m

J R. (3.15)

Note that 2(m−1/2)JΦ−m
J is the basis, employed in (3.10), with which the B-spline coefficient vector

u is associated. If c is the coefficient vector in terms of the basis
[
Φ−m

J0
Ψ−m

J0
· · · Ψ−m

J−1

]
, then

equation (3.15) gives the reconstruction formula u = Rc.
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4 Numerical experiments

The numerical experiments consist of two parts. In the first part we examine the effectiveness
of our method in the context of curve/surface fitting by comparing, on certain test problems,
the results of our method with those of the classical smoothing spline. In the second part, we
demonstrate the speed improvement obtained by solving the linear system using the wavelet basis.

4.1 Curve and surface fitting

Curve and surface fitting has a wide range of applications in science and engineering. Among
various methods for fitting noisy data, the smoothing spline is classical and is a benchmark for
comparison with other methods (see [24]). Our numerical experiments intend to compare our
method with the smoothing spline method in the context of curve/surface fitting. For the sake
of simplicity, in the following presentation, CSSPL stands for cubic smoothing spline (for curve
fitting), TPSS stands for thin-plate smoothing spline (for surface fitting), and WAVE stands for
our method that gives a solution in the wavelet domain.

We will apply WAVE and CSSPL/TPSS to several synthetic data sets, and then compare their
performance in terms of visual quality and numerical errors. In the experiments, a synthetic noisy
data set {(xi, fi) : i = 1, · · · , n} is generated by adding Gaussian noise to a function f , i.e.,

fi = f(xi) + εi, i = 1, 2, · · · , n, (4.1)

where xi’s are random data sites over [0, 1] or [0, 1]2, and εi’s are additive Gaussian noise drawn from
the normal distribution N(0, σ2). While we assume xi’s are uniformly random in some examples, in
others, we allow the data sites to be drawn from some spatially variant distribution and even with
large holes, as we want to see how our method performs when given data are rather “scattered”.
Once such a data set is generated, WAVE and CSSPL/TPSS are applied to obtain the fitting
curve/surface. In order to make the results comparable, both methods use the same criterion,
generalized cross validation (GCV, see [44]), to choose the smoothing parameter α.

Since the solution given by WAVE expresses the fitting curve/surface in a wavelet basis, it has
a sparse representation, in the sense that most of the wavelet coefficients are very small and can
be discarded without losing accuracy (to have this property, the wavelet coefficients obtained from
solving (3.13) should be renormalized back as they are in the L2 norm). If we wish to improve the
fitting result, a wavelet thresholding technique can be applied to select the most significant basis
functions, i.e., those with the largest coefficients. Collecting together the selected basis functions
leads to a new (sub) basis that has been adapted to the given data. Once the adapted basis has
been constructed, the original data set can be fitted again using this new basis. This new fitting
method, WAVE followed by thresholding and refitting, is referred to as TWAVE in the following
discussion. We will see that TWAVE can use a much smaller number of basis functions to achieve
equivalent, sometimes better, fitting results, especially in curve fitting.

Before we describe the experiments in detail in the next subsection, we provide highlights of
the main experimental results and discuss some features of WAVE in comparison with TPSS. Since
Sh(φ,Ω) is a subspace of the Beppo-Levi space Hm, the solution of (3.3) can be viewed as an
approximation to the solution of (1.1) — the smoothing spline. Consequently, we expect that
WAVE and CSSPL/TPSS will lead to similar results in terms of visual quality and accuracy of
fitting, and this expectation is confirmed in the next subsection.

A prominent difference between WAVE and TPSS (or other RBF methods) is that they employ
different strategies to place the centers of basis functions. TPSS associates with each data site a
radially symmetric basis function centered at the site, thus leading to a linear system of size n×n. In
contrast, WAVE employs a basis that is spanned by the h-dilates and h-shifts of a uniform B-spline,
and hence the size of the corresponding linear system depends only on Ω and the dilation parameter
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h. For the purpose of fitting large data sets, though some fast RBF methods are now available (see
[2, 10]), WAVE offers an alternative solution by providing to the user a flexibility, via choosing the
parameter h, to control the size of the problem such that it can be solved efficiently. Moreover,
due to its efficiency, WAVE allows for the choice of small h to guarantee good approximation. We
emphasize that its efficiency is attributed to two important components in WAVE: compact support
of the uniform B-splines resulting in a sparse linear system, and a properly normalized wavelet basis
which accelerates the convergence of the conjugate gradient solution to the linear system. We will
quantify the speed improvement in the last subsection.

4.2 Numerical experiments

The experiments in this subsection are conducted in the following order: curve fitting, surface
fitting and TWAVE method. The curve fitting experiment employs the following two test functions:

f1(x) = 4.26(e−βx − 4e−2βx + 3e−3βx), with β = 3.25;

f2(x) =

{
sin(4πx), x < 1/2,
sin(16πx), 1/2 ≤ x ≤ 1.

The noisy data are generated according to equation (4.1) with the noise level σ = 0.05, 0.1. We first
give an example to illustrate that WAVE and CSSPL generally lead to visually indistinguishable
fitting results, and then demonstrate by Monte Carlo experiments that the two methods achieve
the same accuracy.

Example 4.1. We apply CSSPL and WAVE to a noisy data set, generated from f2, with n = 150,
σ = 0.1 and uniformly distributed data sites. The noisy sample is shown in the upper-left subplot
of Figure 1. The figure shows the fitting curves obtained by CSSPL and WAVE (h = 1/28). It also
shows the result by TWAVE, which we will elaborate upon later. On each subplot, the number of
coefficients used to describe the curve is displayed in parenthesis in the subtitle.

Figure 1: Comparison of CSSPL, WAVE and TWAVE

It can be seen from the figure that CSSPL and WAVE produce very similar fitting curves. This
is not surprising, because WAVE can be regarded as an approximation of CSSPL and both methods
use the same criteria (i.e. GCV) to determine the smoothing parameter.
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We carry out Monte Carlo experiments on M = 100 noisy data sets, each consisting of n = 300
samples with uniformly distributed data sites. For each data set, let g̃ be the estimate obtained by
one of the methods, then the signal-to-noise ratio (SNR) is computed according to the following
definition

SNR(DB) = 10 log10

Ps

PN
= 10 log10

∑
g2
i∑

(g̃i − gi)2
,

where gi and g̃i denote respectively the amplitude of the original signal and the estimated signal
at site ti, where ti = i

m (i = 0, 1, · · · ,m) is a uniform grid in [0, 1] (in the experiment, we take
m = 200). The experiment aims to compare the average SNR and its standard deviation from M
trials. The result is shown in Table 1. It tells that the two methods have very similar performance
in terms of numerical error.

CSSPL WAVE
mean std mean std

f1
σ = 0.05 28.50 1.66 28.50 1.66
σ = 0.1 24.05 1.51 24.05 1.51

f2
σ = 0.05 29.23 2.52 29.23 2.52
σ = 0.1 24.66 1.23 24.73 1.18

Table 1: SNR for f1, f2: mean and standard deviation.

In the above numerical tests, the data site xi’s are assumed to be uniformly random on [0, 1].
Next we give an example to show that these methods are also applicable to the situation when data
sites have spatially variant density.

Example 4.2. A noisy data set is generated from f1, with n = 100 and σ = 0.1. The distribution
of data sites on [0, 1] follows a non-uniform probability density p(x) = (e− ex); the data density is
decreasing from left to right. Figure 2 shows the results obtained by CSSPL, WAVE and TWAVE.

Figure 2: CSSPL, WAVE and TWAVE for the data with non-uniform sites

Next we turn to the experiment on surface fitting problems. Our implementation of TPSS is
based on a routine tpaps from Spline Toolbox in MATLAB, and we incorporate a GCV procedure
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into this routine to determine the smoothing parameter. The surface fitting experiment employs
the following test functions

f3(x, y) = (−20.25(x− 0.5)2 + (y − 0.5)2)/3;

f4(x, y) =
1.25 + cos(5.4y)
6(1 + (3x− 1)2)

;

f5(x, y) = 0.75 exp
(
− (9x− 2)2 + (9y − 2)2

4

)
+ 0.75 exp

(
− (9x+ 1)2

49
− 9y + 1

10

)
+0.5 exp

(
− (9x− 7)2 + (9y − 3)2

4

)
− 0.2 exp

(
−(9x− 4)2 − (9y − 7)2

)
.

These test functions, which were used in [23] to test interpolation algorithms, are smooth and
present enough shape variations to reveal the quality of a fitting scheme. The standard deviation
σ of the Gaussian noise is chosen such that the signal-to-noise ratio (SNR) of the noisy samples is
about 20DB, which means that σ = 0.01, 0.015, 0.05 for f3, f4, f5 respectively.

Example 4.3. Figure 3 illustrates the fitting results when WAVE and TPSS are applied to a noisy
data set, generated from f4, with n = 400, σ = 0.015 and uniformly distributed data sites. An
interpolation of the noisy sample, obtained by using a MTALAB routine, griddata, is plotted on
the upper-right subplot. On the lower-left is the fitting surface obtained by WAVE, and on the
lower-right is the one produced by TPSS.

Figure 3: Comparison of WAVE and TPSS

It is obvious that interpolation leads to undesirable solutions since the noise is not reduced. Both
regularization approaches, WAVE and TPSS, produce visually pleasing surfaces which are quite
close to the original surface. Since both methods use GCV to determine the smoothing parameter,
we expect them (and this is confirmed in the experiments) to yield very similar fitting surfaces.
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However, minute inspection reveals that the two fitting surfaces differ more near the boundary as
compared with the deep interior of the domain [0, 1]2. This could be due to the smoothness measure
of thin-plate spline being over R2 while WAVE restricts the smoothness penalty on the unit square.

We next carry out Monte Carlo experiments to compare the SNR attained by WAVE and
TPSS. For each test function, M = 50 noisy data sets (with n = 400) are generated according to
(4.1) with uniformly distributed data sites. In WAVE, we choose the scale parameter h = 1/16
so that the dimension of the resulting linear system (361) is close to the dimension of the linear
system produced by TPSS (400). As in the 1D case, the average SNR and its standard deviation
are calculated to obtain Table 2. It is evident from the table that WAVE and TPSS attain very
similar SNR. This is consistent with our inspection on the visual appearance of the fitting surfaces
produced by the two methods.

WAVE TPSS
mean std mean std

f3 σ = 0.01 26.59 0.72 27.15 0.79
f4 σ = 0.015 29.34 0.83 29.14 0.88
f5 σ = 0.05 27.70 0.79 28.29 0.76

Table 2: SNR for f3, f4, f5: mean and standard deviation.

The 2D data sites in the above are assumed to be uniformly distributed on the unit square.
It is known that TPSS is a good method to smoothly fill large holes where data are missing. We
illustrate in the next example that WAVE is also able to do this.

Example 4.4. Figure 4 illustrates the fitting results when WAVE and TPSS are applied to a noisy
data set, generated from f5, with size n = 400 and noise level σ = 0.05. The interpolation shows a
large hole where data are missing. Outside the hole the data are uniformly distributed.

Figure 4: WAVE and TPSS for repairing hole
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Both methods, WAVE and TPSS, can fill the hole smoothly. It seems quite natural that TPSS
is able to fill holes, since it uses globally supported basis functions. However, why is WAVE, which
uses locally supported basis functions, also able to repair large holes. The reason is that whether
the chosen basis functions are globally or locally supported, regularization enforces the smoothness
of surface and thus holes can be filled smoothly.

In the above experiments on surface fitting, we used a 2D tensor product of uniform cubic B-
splines (or its corresponding wavelets) as the basis. We also carried out the numerical experiment
with the box spline M222 or its corresponding wavelets as the basis, and found that it achieves
similar results.

From the above experimental results, we conclude that WAVE achieves the same accuracy and
visual quality as the classical CSSPL/TPSS in both curve and surface fitting. Next we turn to
examine TWAVE method. It is shown in Figure 1 that TWAVE attained the fitting curve on the
lower-right, which is achieved by using the most significant 5% wavelet basis functions. The result is
smoother than the ones attained by CSSPL and WAVE; it also achieves smaller error than CSSPL
and WAVE. It means that TWAVE uses a smaller number of basis functions (31, compared to 150
in CSSPL and 259 in WAVE) to get a better fitting curve. Here we provide one more example
to illustrate the effectiveness of TWAVE. The following titanium heat data set is taken from the
Spline Toolbox in MATLAB (see [4]), and it has been used to test spline approximation algorithms
([3, 17]).

Example 4.5. Let f be defined discretely by titanium heat data, which consist of 49 data points.
A noisy sample is produced by adding Gaussian noise with σ = 0.04 to the value on each data site.
By using CSSPL, WAVE and TWAVE, the fitting curves are generated and shown in Figure 5.

Figure 5: Comparison of CSSPL,WAVE and TWAVE

In this example, WAVE and CSSPL perform equivalently well and both lead to a fitting curve
with small oscillations, while TWAVE leads to a smoother curve. It cannot be attributed to a
larger amount of smoothing in TWAVE, since both WAVE and TWAVE use the same smoothing
parameter. By adaptively choosing the basis functions, via wavelet thresholding, the placement of
the chosen basis functions is adapted to the local variation of the function, i.e., the adapted basis
gives more attention to highly-varying regions, less attention to flat areas. This results in TWAVE
being less sensitive to small local variations, and tends to ignore them and produces more visually
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Number of iterations

N=32 N=64 N=128 N=256
BCG 102 231 915 3052
WCG 38 19 21 17

Computation time

N=32 N=64 N=128 N=256
BCG 0.27 1.61 30.34 380.95
WCG 0.22 0.53 5.80 17.44

Table 3: Comparison of number of iterations and computation time (seconds)

pleasing curves. In other words, TWAVE is more robust to the outliers introduced by noise. The
idea of adaptively choosing basis functions employed in TWAVE is in a similar spirit to the adaptive
knot placing strategy in spline approximation (see, [17, 28]).

4.3 Speed improvement in wavelet domain

In this subsection, we intend to quantify the speed improvement obtained, in solving the linear
system (3.12) with the conjugate gradient method, when the wavelet domain is used instead of the
B-spline domain.

Broadly speaking, the technique of employing the wavelet domain, in place of the B-spline
domain, belongs to a large class of multilevel preconditioning methods (see [8, 13, 45]) which have
been applied successfully in solving numerical differential equations. Some multilevel methods are
wavelet based (see e.g. [13, 30]) in which the norm equivalency is a key element in the design
of the preconditioner. In fact, it has been proved (e.g. [13, 30]) that if an appropriate diagonal
preconditioner is applied to the linear system that is obtained by discretizing an elliptic partial
differential equation in a certain wavelet basis, then the condition number can be bounded by
a constant which is independent of the size of the discretization mesh. In our current setting,
such diagonal preconditioning has been implicitly encoded into the reconstruction matrix R by the
renormalization process.

To simplify the following presentation, let BCG and WCG denote the conjugate gradient method
for (3.12) and (3.13) respectively. The numerical experiment compares the efficiency of BCG and
WCG, in terms of iteration numbers and computation time, when they are applied to a surface
fitting example (the test function f5 with σ = 0.05). The two methods are used to solve the problem
at different scales h = 1/32, 1/64, 1/128, 1/256 (i.e. J = 5, 6, 7, 8). In the experiment, the starting
level J0 = 3 (for the wavelet method) and the smoothing parameter α = 10−2 are fixed at all
scales. The convergence curves in Figure 6 illustrate the decrease of the objective function against
the number of iterations at different scales. It is clear that WCG dramatically reduces the number
of iterations required to reach the minimum value of the objective function, especially when the
resolution is fine. In fact, the convergence rate of WCG is independent of the resolution, while
BCG converges slower as the resolution becomes finer. This convergence behavior can be further
confirmed in Table 3 which displays the number of iterations and computation time required to
achieve the convergence criterion ‖x− x∞‖/‖x∞‖ ≤ 10−3, where x∞ denotes the “exact” solution
obtained by using 4000 conjugate gradient iterations of BCG. However, this is not the case in the
wavelet domain, as evidenced by the constant number of required iterations. It is also clear from
Table 3 that WCG is much more efficient than BCG in terms of computation time, even though
the first uses more time than the latter per iteration. This efficiency is, of course, due to the
significantly smaller number of iterations needed in WCG.

It is well known, for a symmetric positive definite linear system Ax = b, that the number
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Figure 6: The decrease of objective function value in terms of the iteration number: the curve −◦−
describes the convergence of BCG, while the curve − ∗ − describes the convergence of WCG.

of conjugate gradient iterations required to bring the error to a specified tolerance, in the worst
case, is proportional to

√
k(A) (e.g. [15]), where k(A) is the condition number of A. It can

therefore be inferred, from the table, that the conditioning of the linear system in the B-spline
domain deteriorates as the resolution becomes finer. In the wavelet domain, however, we see in the
experiment that the required number of iterations remains constant, which suggests that the linear
system in the wavelet domain (3.13) may have a condition number which is bounded independent
of scale. This phenomenon is worthy of further research.
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