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ABSTRACT

The problem of approximating smooth L,-functions from spaces spanned by the integer
translates of a radially symmetric function ¢ is very well understood. In case the points
of translation, =, are scattered throughout R? the approximation problem is only well
understood in the “stationary” setting. In this work, we provide lower bounds on the
obtainable approximation orders in the “non-stationary” setting under the assumption
that = is a small perturbation of Z? The functions which we can approximate belong
to certain Besov spaces. Our results, which are similar in many respects to the known
results for the case = = Z9, apply specifically to the examples of the Gauss kernel and the
Generalized Multiquadric.

1. INTRODUCTION

Let C(R?) denote the collection of all continuous functions f : R? — C equipped
with the topology of uniform convergence on compact sets. For ¢ € C(R?), and = C
R?, we define So(¢;Z) := span{é(- — &) : £ € =}, and we let S(4;Z) denote the closure of
So(¢; =) in C(R?). The area of Radial Basis Functions has as its motivation the problem
of approximating a smooth function f : R? — C from S(¢;=) given only the information
fl=- The area gets its name from the fact that most of the commonly used functions ¢ are
radially symmetric. Three important examples are the Polyharmonic Spline,

o(z) 2|77, if v—de(0..00)\2N,
x =
l2)" " “log(|x]), if v —d € 2N,

the Gauss kernel, ¢(z) := e_|x|2/4, and the Generalized Multiquadric,

(’Yo—d)/2
<1+ |:1;|2> : if v — d € (—d..00)\2Z4,
ole) = A\ (ro—d)/2 N
<1—|—|:1;| > 10g<1—|—|:1;| >, if yo —d € 2Z4.

Here, N := {1,2,3,...} and Z4 := {0,1,2,...}. The area of Radial Basis Functions
encompasses many practical as well as theoretical issues; for a recent survey the reader is
referred to [8] (see also [12], [22]). In this paper we are concerned only with the issue of
approximation.

Jackson and Buhmann made the simplifying assumption = = Z? in their initial inves-
tigations (cf. [17], [6], [7]). These initial investigations were followed by others working
also under the assumption = = Z? (namely, [13], [9], [5], [2], [4], [23], [18], [19]) until the
simplified problem was very well understood. In order to describe these results, we need a
few more definitions. The space S(¢; =) can be refined by dilation obtaining

S"($3Z) = {s(-/h) : s € S($:2)}.

Or in other words, S"(¢;=) is the closure, in C'(R%), of the span of the h=-translates of
@(-/h). It is hoped that a smooth function f can be approximated better and better from
S"(p;=) as h — 0. In the literature, this is usually quantified by notions of approzimation
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order. The essential requirement in the statement “(Sh(qb; E)) , provides L,-approximation
of order 4”7 is that

dist (f, S"(¢;2); L,) = O(RY), as h — 0,
for all sufficiently smooth f € L, := L,(R?), where

dist (f, 4;X) := inf [|f —al|x.

The notion of ‘sufficiently smooth’ should at least include all compactly supported C'*
functions. We describe now two of the major themes which developed from the above
mentioned works. First, if q/b\, the Fourier transform of ¢, looks like |-|~7 near 0, then
under various (p-dependent) side conditions it was shown that the ladder (Sh(qb;Zd)>h
provides L,-approximation of order v, 1 < p < oo. Typical examples here would be the
Polyharmonic Spline and the Generalized Multiquadric (v := ~o).

The ladder (Sh(qb; E)) , is known as a stationary ladder because it is obtained by dilat-
ing the same space S(¢; =). More generally we may use, as the h-entry of our ladder, the h-
dilate of an h-dependent space S(¢p; =) to obtain a non-stationary ladder (Sh(th; E))h
It is in this more general setting that the second theme was developed. Starting with a
very smooth function ¢, define ¢, := ¢(k(h)-) for some function « : (0..1] — (0..00)
which decays to 0 as h — 0. If q/b\ decays exponentially at co, then it could sometimes be
shown that the non-stationary ladder (Sh(gbh; Zd)>h provides Ly-approximation of order v
provided that x(h) decays to 0 sufficiently fast with k. Typical examples here are the Gauss
kernel and the Generalized Multiquadric. Although arbitrarily high approximation orders
can be obtained if k(h) decays sufficiently fast (see [24], [26], [20] where x(h) = O(h)),
there is a price to be paid in terms of numerical stability as x(h) decreases. Thus, for
practical reasons, it is desirable to know, for a given ~, the slowest decaying x which still
yields Ly-approximation of order 4. For the example of the Gauss kernel, Beatson and

Light [2] have shown that if

. 2 (27)?
Lim r(h)” log(1/h) = ot

then the non-stationary ladder (S*(¢n; Z%)), almost provides L..-approximation of order
~ (their error looks like h” times some power of [logh|). It is now known (cf. [18], [19])
that (S"(¢n; Z?)), provides Ly-approximation of order (exactly) v for all 1 < p < co (see
also [5](p = 00). [4](p = 2)).

Recently, there have been a few successful adaptations of some of the abovementioned
techniques (i.e., those stationary techniques associated with the first theme) to the more
general setting where = is allowed to be scattered throughout R?. Buhmann, Dyn, and
Levin [10] have shown that if b ~ || 7*™ near 0, for some m € N, if certain other side
conditions are satisfied, and if = satisfies a mild restriction, then the stationary lad-
der (S"(¢;Z)), almost provides L..,-approximation of order 2m (their error looks like
O(h*™ |log h])). Moreover, this approximation is realized by an explicit scheme which, at
the & level, uses only the information f|,_. The mild restriction on = is that there should
exist Cy < oo such that every ball of radius Cy contains an element of =.

Dyn and Ron [14] generalized the results of [10]. They showed that if one has in hand
a specific scheme for approximating from the stationary ladder (S”(¢;Z%))y, then this
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scheme can be converted into a scheme for approximation from the ladder (S%(¢;=)),. Un-
der certain circumstances, it was shown that the latter scheme provides L .-approximation
of order ~ if the former did. Their results apply primarily to functions ¢ for which qg ~ ||_k
near 0 for some k > ~. In particular, it was shown that the results of [10] could be obtained
by converting the stationary schemes detailed in the paper [13] into the scheme of [10] via
a variant of the general conversion method of [14]. Following [14], Buhmann and Ron [11]
extended the results of [14] to L,-approximation for p in the range 1 < p < co.

The present work is primarily concerned with providing lower bounds on the L,-
approximation order (1 < p < o0) of a given non-stationary ladder (Sh(th;E))h. Our
results begin with the observation that (Sh(gbh; E))h being able to approximate to order

O(h") the Z%-translates of a certain very nice function 7, in a certain collective sense,
implies that (Sh(gbh; E))h provides Lj-approximation of order ~ for all 1 < p < oo (see
the beginning of Section 5). This is reminiscent of the approach taken in [14] where the
Z%translates of ¢ were approximated from the space S(¢;=). Due to the niceness of 7,
the problem of approximating the shifts of 7 is fairly tractable if = is a sufficiently small
perturbation of Z?, that is, if

§(2):=inf{d >0:29CZ+45Q}

is sufficiently small. Here Q := (—1/2..1/2)? is the open unit cube in R%. We point out
that our ability to approximate the shifts of 7 from S*(¢; =) does not require S(¢p; Z?)
to contain any polynomials; this is in stark contrast to the situation in [14] where the
ability to approximate the shifts of ¢ from S(¢;Z=) is closely related to the polynomials
contained in S(¢;Z%). We are subsequently able to identify sufficient conditions which
ensure that (S"(¢n;=)), provides L,-approximation of order v for all 1 < p < oo. These
sufficient conditions do not assume the family (¢5) to be radially symmetric. However,
we have made considerable effort in specializing our sufficient conditions to the case where
the family (¢p), is obtained by dilating a fixed radially symmetric function ¢, namely,
¢n = ¢(k(h)-) where k : (0..1] — (0..00) is as described above. These specialized
results apply in particular to the examples where ¢ is the Gauss kernel or the Generalized
Multiquadric. For the Gauss kernel we show that if

2
limsup x(h)*log(1/h) < ﬂ-—, for some v € (0..00),
h—0 ~

and if = is a sufficiently small perturbation of Z¢ then the non-stationary ladder
(S"(é1n;Z))n provides L,-approximation of order v for all 1 < p < oo. For the Gener-
alized Multiquadric, we show that if

limsup r(h)log(1l/h) < l, for some 1 € (0..00),
h—0 T

and if = is a sufficiently small perturbation of Z¢? then the non-stationary ladder
(S"(é1n;2))n provides L,-approximation of of order g + 71 for all 1 < p < co.

We have also specialized our general sufficient conditions to the non-stationary scenario
where ¢y, := ¢(h%:) (0 < 6 < 1) and ¢ is a continuous radially symmetric function satisfying

"6 e Ly, ‘qﬁ(x)‘ ~ (14 |2) 77, and MO (p)| = O(p™" ) as p — 00, 0 <k < d+ 1,
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where A is defined by q/b\(:zj) = A(|z]). We show that if v > d and = is a sufficiently small
perturbation of Z?, then the non-stationary ladder (S"(¢4; =Z));, provides L,-approximation
of order 6~ for all 1 < p < .

An outline of the sequel is as follows:

In §2, we give our precise definition of L,-approximation order. The results mentioned
above, which specialize our general result to the case ¢, := ¢(k(h)-) for a fixed radially
symmetric function ¢, are stated in §3 and applied to the examples of Polyharmonic Splines,
the Gauss kernel, and the Generalized Multiquadric. The proofs of these specialized results
are postponed until §6 and §7. Our general results are stated and proved in §5 while a
number of related technical lemmata are gathered into §4.

The following notations are used throughout this work. The natural numbers are
denoted by N := {1,2,3,...}, while the non-negative integers are denoted by Z, :=
{0,1,2,...}. For z € R we define |z| := /23 + - 4 22, while for multi-indices o € Z1,
we define |a| := |ay| + -+ + |ag|. The open unit cube and the open unit ball in R? are
denoted by Q := (=1/2..1/2)? and B := {z € R?: || < 1}, respectively. For open
QO CRY 1<p<oo, and m € Z,, the Sobolev spaces W, () are defined by

1/p

W (€)== {f: HfHW;z(Q) = Z 1D FII%, o) < oo},

lo|<m

with the usual modification when p = co. The space of polynomials of total degree at most
k is denoted II;. The semi-discrete convolution is defined formally by

¢xjci= Y chj)o(-/h—j),  h>0.

jez?

For f € Ly := L;(RY), we denote its Fourier transform by ]/C\(l‘) = / e_,(t)f(t) dt, where

Rd
e, denotes the complex exponential given by e,(t) := ¢'*'t. The inverse Fourier transform
of f is denoted fV. The collection of compactly supported C°°(R?) functions is denoted
by D and their Fourier transforms by D. Moreover, D(2) denotes the set of all functions
in D whose support is contained in 2. All derivatives and supports of functions are to
be understood as distributional. We employ the convention that 0 times anything is 0;
in particular, 0/0 := 0. We use the symbol const to denote generic constants, always
understood to be a real value in the interval (0..00) that depends only on its specified
arguments. Further, the value of const may change with each occurrence. When using
the scaling parameter h, as in (S*(¢y;=))p, it is assumed without further mention that
h € (0..hg] for some hg € (0..1]. Lastly, we employ the standard notation [¢] to denote
the least integer which is > ¢.

2. PRELIMINARIES

In order to make precise the notion, “L,-approximation of order v”, we need to specify
which functions f € L, are sufficiently smooth. This will be the Besov space B;’l which

we now define. Let n € D satisfy 7 = 1 on a neighborhood of the origin, and for f € L,,
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(2)7) . if k=0,
(A *) =a@)f) itk >0,

For 1 <p <oco,v2>0,1<¢q< oo, the Besov space B*Y (see [21]) can be defined as the
collection of all tempered distributions f for which

(2.1) fr =

8

HfHBqu = Hk — 27k kaHL

P éq(Z+)

It is known (cf. [21]) that B}*? is a Banach space, and as such, is independent of the
choice of n (i.e. different choices of n yield equivalent norms). We mention the following
continuous embeddings (cf. [21]; p. 62):

B;7q¢_>B;17q17 if’71 <yorvi =7 q > ¢
k1 k(pd k00 i ;

Byl — WHRY) = By, ifkey;
1 ;00 i

where H is the potential space normed by

1fll3e == H <<1 + |_|2>v/2 f)v

Incidentally, the function n here is the same as that mentioned in the introduction.

Definition 2.2. Let 1 < p < oo, let = C R%, and let (®h)he(o.. ho) De a family in C(RY).
We say that the ladder (S"(¢5;=)), provides L,-approximation of order v > 0 if there
exists ¢ < oo such that

, v>0,1<p<oo.

Ly

dist (f, 5" (¢n; Z); Ly) < ch” | flgya, Vhe (0. hol, fe B

We mention that it is easy to derive from Definition 2.2 that if (S%(¢s;=))s provides
L,-approximation of order v and if 0 < +' < ~, then

dist (f,5"(@n:Z); Ly) < Y ||fll gy s VI € (0. ho. f € By ™.
Moreover, if v/ = +, then the same inequality holds provided we replace R with kY log(2/h).

3. THE RADIALLY SYMMETRIC CASE

Our most general result is Theorem 5.8. There, it is not assumed that the functions
(®h)he(o.. ho] are radially symmetric. However, the theorem is a bit difficult to read due
to its generality. The assumption of radial symmetry turns out to be a convenient means
of reducing the complexity of the theorem. In what follows, we assume that the functions
¢y, are all obtained from a single radially symmetric function ¢ by dilation. The abstract
conditions of Theorem 5.8 can then be replaced by other easily verifiable conditions on a
certain univariate function related to q/b\ Here are the details:
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Theorem 3.1. Let ¢ € C(RY) be a radially symmetric function with at most polynomial
growth at co, and assume that ¢ can be identified on RINO with ||~ \(|-|) for some
Yo €10..00) and A € C([0..00)) with A\(0) # 0. Define

1= sup{n < 50 ¢ [6(2)] = 02 ™) as |e] > oo);
m:=d+ [VO_EL

and assume that

lo(x)] =o(l) as || > 00 if 0 =0;
Yo > [v0 — 1] #f 70 > 0;
/\GCm(O..oo)ﬂCd+1(O..oo);

‘/\(k)(p)‘ =0 asp—0, Y1I<k<m;

(0)  \B(p)| =0 ) s p oo, VO<E<dt1,

for some ¢ € (0..1). If = is a sufficiently small perturbation of Z<, then the stationary
ladder (S"(¢;Z))y provides L,-approzimation of order vo for all1 < p < co. If, in addition
to the above, there exists 6,a, N € (0..00) such that

| exp(—ap®)
Vi sup —————=
S N R IPT

i) Do) = 0(pV exp(—p")) as p 00, YOk <d+1,

< o0;

and if we define ¢y 1= ¢(k(h)-), h € (0..1], for some £ :(0..1] = (0..00) satisfying

4
limsup (k) log(1/h) < ﬂ-—, for some v1 € (0..00),
h—0 T

then the non-stationary ladder (S"(én;=))n provides L,-approzimation of order ~o + 71
for all 1 < p < oo whenever = is a sufficiently small perturbation of Z°.

In order to demonstrate the utility of Theorem 3.1, we consider now a few examples.

Example 3.2. Polyharmonic Spline: Let v > d and define ¢ := |-|7_d if v—d ¢ 2N, or
@ = |-|7_d10g(|-|) if v —d € 2N. We will show, as an application of Theorem 3.1, that
the stationary ladder (S"(¢;=)); provides L,-approximation of order  for all 1 < p < oo
whenever = is a sufficiently small perturbation of Z¢.

According to [16], ¢ can be identified on RO with +const(d,v)|-|”". So, in terms of
Theorem 3.1, A is constant, @ = d, and m = [~]. It is now trivial to verify that conditions

(i)—(v) are satisfied (with 4o := =, ¢ < v —d). The desired conclusion now follows from
Theorem 3.1.
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Example 3.3. Gauss kernel: Let ¢ := e_|x|2/4, and let £ : (0..1] — (0..00) satisfy

2
limsup x(h)*log(1/h) < ﬂ-—, for some v € (0..00).
h—0 ~

Define o
on(x) == Pp(r(h)x) = e "W/ e RY B e (0..1].

We will show, as an application of Theorem 3.1, that the non-stationary ladder (S"(é5; =)
provides L,-approximation of order + for all 1 < p < oo whenever = is a sufficiently small
perturbation of Z¢.

For that note that q/b\(:zj) = (477)‘”26_'“7'2. Hence we fall into the hypothesis of Theorem
3.1 withv =g =0,m =d, and A\(p) = (47T)d/2€_p2. That conditions (1)—(v) hold is fairly
obvious. Condition (vi) holds with 6 := 2 and « := 1. Since AE) € NI, it is easy to see
that condition (vii) is satisfied with N := d + 1. The desired conclusion now follows from
Theorem 3.1 (with v1 := ).

Example 3.4. Generalized Multiquadric: Let vo > 0 and define ¢ := (1 + |-|2)(70_d)/2
if vo—d ¢ 274 or, ¢ := (1 + |-[))0=D/210g(1 4+ |-|*) if vo — d € 2Z,. We will show,
as an application of Theorem 3.1, that the stationary ladder (S"(#;=)), provides L,-

approximation of order v for all 1 < p < oo whenever = is a sufficiently small perturbation
of Z4. Moreover, if : (0..1] — (0..0c0) satisfies

limsup r(h)log(1l/h) < l, for some 1 € (0..00),
h—0 T

and if ¢y := ¢(x(h)-), V h € (0..1], then the non-stationary ladder (S (¢y;=))s provides
L ,-approximation of of order vy + ~; for all 1 < p < oo whenever = is a sufficiently small
perturbation of Z¢.

For this we note that according to [16], ¢ can be identified on RNO  with

b|-|_%/2 K. /2(|"]), where K, is the modified Bessel function of order v (see [1]) and
b = b(d, o) is some nonzero constant. One obtains from [1] that for v > 0,

Kolp) = 57 As () + 0" s () + 0¥ o) As(P) . >0,

where Ay, Ay, As are entire and A;(0) # 0. Actually, As # 0 only when v € N. So, in

terms of Theorem 3.1,

(3.5)  b7'A(p) = p™ P Ky pa(p) = A1(p%) + p70 Az (p%) + p log(p) As(p®),  p=0.

Note that A(0) # 0, A € C([0..00)) N C*>((0..00)), and @ = min{~o,d}. Hence (i), (ii),
and (iii) of Theorem 3.1 hold. If 0 < ¢ < min{1, 40}, then (iv) follows easily from (3.5). We
turn now to conditions (v)—(vii). For this we employ the following integral representation

of K, (see [1]). If v > 0, then

1

K,(p) = const(u)p”/ e (¥ - 1>V_5 dt, p > 0.
1
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Hence,

yo—1

(3.6) A(p) = tconst(d, ’yo)/ﬂo/ e (P —1) 7 dt, p > 0.
1

Note that |[A(p)| > 0 for all p € [0..00). Put 6 := 1. Now if @ > 1, then

Al
exp(—ap)

> const(d, yo) ,070/ ePla=d (t*=1) 2 dt /oo asp oo
1

—1

= const(d, o) ,070/ erlt=a) (#* — 1)0T dt
1

which proves (vi). Now, due to the exponential decay of the integrand in (3.6) when p > 0,
it is a straightforward matter to verify that

AT to—1 oo gk PP to=1
— e Pt —1) * dt:/ —e P (tf—1) * dt, keZs.
dp* J, < ) L dpF < ) +
Hence,

A (p)

const(d, o)

yo—1

) i; G)VO(% — 1) (o= (k=j = 1) p7 /loo(—t)je‘”t (2 —1)"7 dt.

Thus, for p > 1,

yo—1

‘/\(k)(p)‘ < const(d,’yo,k)p%/ the=rt (#*—1) = dt
1

< const(d, ’yo,k)/ﬂoe_p/ thel =t (t* —1) 2 dt = const(d,v0,k)p™e".
1

Therefore (vii) and (v) hold. The desired conclusion now follows from Theorem 3.1.
Another scenario where Theorem 5.8 can be applied is described in the following result.

Theorem 3.7. Let ¢ € C(RY) be a radially symmetric function satisfying |-|d+1 o€ Ly.

Define A € CT10..c0) by q/b\(:zj) = \|z]), = € RY, and assume that for some ~v > d,
: (1+p)77
l sup ————— < oo and
RS MNPl
(17) ‘/\(k)(p) =O0(p "M asp—o oo, YO<k<d+]1.

Let € (0..1] and for h € (0..1] define ¢ := &(h%). If = is a sufficiently small
perturbation of 74, then (S"(¢n;=))n provides Ly-approzimation of order 6 for all 1 <
p < oo.

Theorem 3.7 applies, for example, to the exponentially decaying function
_ —d)/2
6= |

K(y—ay/2(]-]) whose Fourier transform is a constant times (1 + |3 =/2.
Furthermore, if we multiply this function by a radially symmetric o € D\0, then Theorem

3.7 applies to the resultant compactly supported function ¢ = o |-|(7_d)/2 Ky—ays2(]])
provided ¢ has a nonnegative Fourier transform. Regarding the applicability of Theorem
3.7 to Wendland’s compactly supported radial functions ¢gq , it is easy to derive from [25]
that for d odd, if v is chosen to satisfy condition (i), then condition (ii) necessarily fails.
One expects the same in the case d even, but this has yet to be proven.
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4. SOME USEFUL LEMMATA

In this section we gather some technical lemmata which will be used in the following
section. The following lemma shows that a weighted £,-norm is dominated by its corre-
sponding weighted L,-norm for band-limited functions (with a fixed band).

Lemma 4.1. Let p: R? — [1..00) be measurable, have at most polynomial growth at oo,
and satisfy

plz +y) <ple)ply),  Va,yeR”
Then, for all 1 < p < oo,

HPfHep(zd) < const(d, p) HIOfHLp(]Rd) )

whenever f € L, and suppfg 27Q).
Proof. cf. [15; Lemma 1].

The following variant of Poisson’s summation formula shows how the semi-discrete con-
volution acts in the Fourier transform domain.

Lemma 4.2. Let ¢ € 15, and let f be a tempered distribution such that suppfis compact.
Then for all h > 0,

(x4 )™= (k) D F(- —2m/h).
jez?
Proof. cf. [19; Lemma 5.7].

The following result allows us to work with a non-harmonic Fourier series in a way
similar to that of the standard Fourier series provided that the frequencies in our non-
harmonic Fourier series are a sufficiently small perturbation of Z?. We state the result in
slightly more generality than needed only to suggest a useful formulation of the problem.
The context in which we will actually use the lemma is mentioned in the forthcoming
remark. We mention that a similar result can be derived from the results of [15].
Lemma 4.3. Let ¢ € D satisfy > iez E( +275) = 1 (or equivalently, ((j) = o j, j € Z2).
For £ € RY, let 55 be the 2rZ%periodic function defined by

Eg(l’) = Zeg(l’—l—Qﬂ'j)A(l‘—FQﬂ'j), x € R%
JEZ?
Let p:Z% — [1..00) have at most polynomial growth and satisfy
plJ+k) < p(i)plk), Vi keZ”

Then there exists 5(C, p) > 0 such that if & € j +6Q, Vj € Z%, for some 0 < § < (¢, p),
then there exists a linear mapping A : {og — (o, depending only on ( and (&) ;eza . such
that

(1) Aally, < const(d,(,d)[lall,, ,  Vaels;
2 Y (Aa)()g(2) = Y a(jle—j(x). VreRL acly

jez jez?
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Moreover, if w: Z% — [1..00) satisfies

then for all 1 < p < oo,

(3) HwAaWp < const(d, (,w, ) HwaHép , Vaéels.

Remark 4.4. If suppg Cl-m—¢e1..74¢e1]% and E: lon [-7+¢e1..7m —e1]? for some
g1 € (0..7), then (¢ = e¢ on [—7 + &1 ..7 —&1]? for all £ € R%. Hence it follows from (2)
that

(45) Y (Aa)(jle—g () = > a(je—j(z), Vaecl-m+e..m—al’ ach.
jez jez?
In proving Lemma 4.3, we make essential use of the following well known result.

Lemma 4.6. Let X be a Banach space and let L : X — X be a bounded linear operator.
If |1 — L|| < 1, then L is boundedly invertible and

1

I<——
L7 < T

where || || denotes the operator norm in X.

Proof of Lemma 4.5. For § > 0, define

N(©) =Y () 1650 = CC+ iz ) -

jez?

Since p has at most polynomial growth, since ( decays rapidly (being a member of 15),
and since each term in the sum defining N(§) decreases to 0 as 6 — 0, it follows by the
Lebesgue Dominated Convergence Theorem that N(J) — 0 as § — 0. Hence, there exists
§(¢,p) > 0 such that N(d) < 1 whenever 0 < & < §((, p). Let &; € j+6Q, j € Z? for some
0 < < 4(C,p). Define the linear operator L : (o, — (o by

La(j):= Y a(k)C(j —&), ez’

keZd

Let w : Z% — [1..00) satisfy (i) and (ii). For 1 < p < oo, let X, be the Banach space
consisting of all sequences a : Z¢ — C for which HaHXp = HwaHép < o0.

Claim. For 1 <p < o0, L is a boundedly invertible operator on X, and

HL—laHX < const(d, (,w,d) HaHXp , VaeX,.
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proof. In view of Lemma 4.6, and since N(d) < 1, it suffices to show that
(4.7) la = Lallx, < N(d)lallx,,  VaeX,.

If « € Xy, then

la— Lallx, < > w(i) > la(k)|6e,; — (7 — &)

jEZ4 keZd
= Z k)| Z |5k,] (7 —&k)|, Dby Fubini’s Theorem,
kezd ]eZd
w(j +k) + k)
= > w |Z |5], C(J + k= &)l
kezd jEZ4
<> wk)ak)] Y w1850 = CC+ D50 < NG llallx, Dby ().
kezd jEZ4

If a € X, then

la — Lal[x_ < sup w( Z |a(k)[ 10,5 — C(7 = &)l

keZd
J

< lelly., sup 32 S 6y = 0 = &)

keZd
< lallx, s Z \5ko— =Rl 50

k 74
<lallx. Y w(=F) 18k0 =S =Rl s0) < N(O) lallx.

keZd

Having established (4.7) for p = 1 and p = oo, we then obtain (4.7) for all 1 < p < oo by
interpolation (see [3; Theorem 3.6]).

With the Claim in view for the special case w = 1 and p = oo, we define
Aa:= L tq, a € loo.

Note that A is a linear mapping of ¢, onto (., and since the definition of L depends only
on ¢ and ({;);jeza, the same is true of A. Note that (3) follows from the Claim. Note that

(1) follows from (3) in the special case w = 1 and p = 1. We turn now to (2). Let a € /5.
By (1), Aa € (4. Define

V=) (Aa)(G)C(-—&).

jez

Then since Aa € {1 and ¢ € Ly, it follows that ¢» € Ly and
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Similarly, since a € (1, it follows that ( *' a« € Ly and

¢+ a) _CZ Fe_;.

JEZA

Note that for j € Z,

Therefore
EZ (G)e—j = (CH a)=(C¥ ¢)”

€74
E ;Z + 27k), by Lemma 4.2,

Z
- Zf +21k) Y (Aa)(f)e—g, (- +27k) = C Y (Aa)(j)Ce;.

EZd EZd

since Aa € {4. Finally, we obtain (2) from the requirement EjEZd E( +2r5)=1. O

When dealing with basis functions ¢ which have growth at oo, a difficulty which invari-
ably arises is that of identifying functions in S(¢; =) by specifying their Fourier transform.
The following lemma gives, under certain assumptions on ¢, a simple solution to this dif-
ficulty. We mention that the set (0..70] U {70}, appearing below, equals (0..~y] when
~o > 0 and equals {0} when ~o = 0.

Lemma 4.8. Let ¢ € C(R?) have at most polynomial growth at co. Assume that q/b\ can
be identified on RO with |-|77° N, where vo > 0 and \ : R — C is locally integrable on
R?, continuous on a neighborhood of 0, and satisfies \(0) # 0. Assume that there exists
€ (0..7%]U{ro} such that

(@) = o) as Je| > .
Let Z C RY, b € ¢1(Z), and define

) = 2] AMx) Y b(E)e—e(x z € RN\0.
e
If g can be identified a.e. as the Fourier transform of a function g € Ly, and if

(4.9) D (L IEN™TH ()] < oo,

e

then g = 2565 b(&)o(- —§).

We remark that under much weaker assumptions than ¢ € Ly, there is a standard
argument which concludes that g and 2565 b(&)o(- — &) differ by at most a polynomial.
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The strong assumption g € Ly (which will suffice us in the sequel) serves as a simple means
of ensuring that the errant polynomial is in fact 0.

Proof. By (4.9) and since |¢p(x)| = O<|:1;|70_”> it follows that the sum

Fi=> bE)e(-—

e

converges in the space of tempered distributions. We begin by showing that g = ]/C\ on
RAN0. For that let ¢» € D be such that suppt) C R4\0. Then

<¢@>=/“ P 7)Y le)eele

ge=
= b ) |z] 7 Ma)e_e(x) de, since b € (1(=),
22(0/;W¢¢(H| (2)e—e(x) & 0,(3)
=D WO S~ &) = (. f) = (. ).
ce=

Therefore g = J/C\on RN\0, and hence f — ¢ is a polynomial. If 4o = 0, then o — ¢ = 0 and
so by (4.9), |f(z)] = o(1) as |x| — oo; since g € Ly, we must have f = g. Having dispensed
with the case vo = 0, let us assume that 4o > 0 (which implies ¢ > 0). Since g € Ly,
in order to show that ]/C\ = ¢ (and hence prove the lemma), it suffices to show that ]/C\ is
regular (i.e., locally integrable) on some neighborhood of the origin. We will accomplish
this by showing that there exists an ey > 0, F € Ly(£1B/2), and a sequence (fy, )nen in

Ly such that ﬁ, — J/C\in the space of tempered distributions, and ‘ﬁt(aj)‘ < eF(x) for all

x € FB\0, n € N, for some ¢ < co which does not depend on n or .

There exists €1,¢1,¢3 € (0..00) such that ¢; < |/\( )| < ey Va €eB. Define F :=
1+ |_d+”. Note that F' € Li(e1B/2). Let v € D be such that v(0) =1, v > 0, and
suppv C 1 B/2. For n € N, define

Fui= Y BE((- =€) [n) (- — &)

€=

By (4.9), and since 1/(0) = 1, it follows that f,, — f in the space of tempered distributions.

Therefore, fn — f in the space of tempered distributions. On the other hand, since
bel(Z) and v(-/n) ¢ € Ly, it follows that f, € Ly and for « € 1 B\0,

Note that for @ € 1 B\0,

= b(f)e_g(:z;)‘ < % |z|"°. Therefore,

9l 1,
C1

(v (-/n) &) ()| 2], ¥V €eaB\O.

Ful)| <



10 AFFROAIMATION WilHd Pkl URDbED SOl LD

So, in order to establish |f,(z)| < cF(x) Vo € $B\0, and hence prove the lemma, it suffices
to show that

(4.10) [(v(-/n)d) T2)] < e(|z]”7 + |:1;|_d_70+”) for all « € %B\O.

Since v € D and ¢ satisfies ()| = O(|x[°™") as |¢| — oo, it follows that |lv(-/n)¢ll, =
O(ndt70=1) as n — co. Using the estimate |(v(-/n)¢) ()| < |v(-/n)¢ll,, , we thus obtain
(4.10) for the case 0 < |z| < =+, For the remaining case, <+ < |z| < -, we have

((+/m)8) (@)l = (2m)~" | (n5(ne) # 0) ()] < 1177 A

Los(z+2LB)

—7o _
< g <|:1;| — —> < 270 || 770

5. THE GENERAL RESULTS

The foundation of our approach might well be called approzimation by replacement.
Since the structure of S"(¢y; =) is irrelevant to this technique, we will, for the moment,
simply assume that (S)he(o.. ho) 18 @ family of closed subspaces of C(R?) (these will even-
tually correspond to S(¢p;=)), and we define as usual

St={s(-/h):s €Sy}, he(0.. hol.
Beginning with the observation that if h =27" and f € Bg’l, then
Fad > @ mEk—))
k=0 jezd

is a good approximation of f, the idea is to replace each 77<2k . —]) with an approximation
drawn from S}'. In other words, we seek suitable gx ; € ST such that

FrY Y 27 ),

k=0 ;€74

is also a good approximation to f. In order to carry the error analysis through, the issue
becomes not so much how well each 77<2k . —]) is approximated by g ;, but rather how
well, for each k, the mapping

ly 3 c— Zc(j)n(Qk . —j) €L,
JEZ?

is approximated by the mapping

The following definition and lemma provide a simple means for measuring the size of (or
closeness of) such mappings.
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Definition 5.1. We define NV to be the collection of all sequences (f;);ez in C(RY) for
which

Z HfJHLOO(K) < o0 for all compact K C R?, and
JEZ?

HfHNr:maX{sng IFill, D 1] < oo
JE

y d
JEL Lo

For any complex valued function ¢ whose domain contains Z¢, we define formally
f9:=> 9l
jezd

Lemma 5.2. Let f € N. If ¢ € (o, then the sum [ - c converges unconditionally in
C(RY). Moreover, for all 1 < p < oo, the mapping ¢ + f - c is a bounded linear mapping
from (), into L, and as such its norm does not exceed || f|| -

Proof. That the sum f - ¢ converges unconditionally in C(R?) whenever ¢ € (., is an
immediate consequence of the requirement that Ejezd HfJHLOO(K) < oo for all compact

K C R% That the lemma is true for p = 1 and p = oo is clear from the definition of the
N-norm. We then interpolation to obtain the lemma for all 1 < p < oo (see [3, Theorem
3.6])). O

We now state the theorem which provides the foundation of our approach.

Theorem 5.3. Let (S,),c(0..ho] be a family of closed subspaces of C(RY), and define
Sh.={s(-/h):s€ 8.}, Yh,rec(0.. hgl
Letn € Dandc € (0..27) be such that supp7) C eQ and 7 =1 on 1eQ. Putn; :=n(-—j),
j € Z. If there exists v > 0 such that for some A < oo,
d
(5.4) dist (n, (S,’,’)Z ﬂN;N) < Ah7, YO<r<h<ho,
then
dist (£, S} Lp) < (1 + const(d, v) AR || f]l g1 -
for all f € Bg’l, 1 <p< oo

Proof. Without loss of generality assume hg = 1. Let v > 0 and assume that (5.4) holds.
Let 1 < p < oco. Let f € Bg’l, and let fr be as in (2.1), k € Z4. For h € (0..1], let
n := n(h) be the largest integer for which A2" < 1. First, let us make three observations:

Claim 5.5. For all h € (0..1],
(1) fk:n*;lzn—k flm Vk€Z+,
(2) (h2"k)d/r kaHep(hzn—kzd) < const(d) kaHLp ’ Vkely;

(3) Hf—ka

< [ fllgy s b7

Ly
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proof. Note that Suppﬁ is compact. Hence, by Lemma 4.2,

(7 ¥hgnmn f) "= (02778 S Fi(- =2/ (277))

jez

By (2.1), Suppﬁ C suppﬁ(?l_k-> C 2 1eQ, Vk € Z,. Tt is now a straightforward
matter to verify that ﬁ(hQ"_k-> and ﬁ ( — 27Tj/(h2"_k)> have disjoint supports whenever
j € ZN0 and that ﬁ(hQ"_k-> = 1 on the support of ﬁ Therefore, (77 K on— fk>/\: ﬁ
which proves (1). Since supp (fk <h2"_k->> “C h2nkk-l € 27Q), it follows by Lemma
4.1 (with p = 1) that,

kaHep(hzn—kZd)

= ka <h2"_k-> Hép(zd) < const(d) ka <h2"_k-> HLP = const(d) <h2n_k>_d/p kaHLp

which proves (2). Noting that f =3 -, fx, we obtain

Hf—ka < 3 klly, <273 2Rl < By
k=0 g,  k=n+t1 k=n+1

which proves (3) and completes the proof of the claim.

It is convenient to define the scaling operator o} for A > 0 as follows:

onf = f(-/h), if f:R*— G
onf = (O'h(f]‘))jezd, if fe N.

By (5.4) there exists g% = (gf)jezd € (Sh)Zd NN, 0 <k <n, such that
(5.6) |o2i-ng® —m||,, < 427 0 <k <n.

(Note: 2(F=n) i playing the role of h in (5.4), while A is playing the role of r in (5.4).
Inequality (5.6) is a valid application of (5.4) because 0 < h < 2(k=™) < 1.) Note that for
0<k<n, ongt e (S,’l’)Zd NN and it follows from Lemma 5.2 and from the assumption

that S is a closed subspace of C'(R?) that (o,g"*) - c € SF for all ¢ € ¢.,. Therefore, by
Claim 5.5 (2),

7

Sp = Z(ahgk) (T p-195-n fr) €SP

k=0
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Now

7

Sh—ka

k=0

LP
7

Z <Uhgk B Uh?""‘“") ) (o'h—lzk—nfk)

k=0

, by Claim 5.5 (1),
LP

<Y (0207 (grmngt =) - (wmrn Fo,
k=0

<3 (12" )" o-ng® = 0|y I Filly nan-ize), by Lemma 5.2,
k=0

<Y A2 eonst(d) || fall, . by (5.6) and Claim 5.5 (2),
k=0

= const(d)A27"7 22'“ [fxllz, < const(d,y)A|[f]l g1 2.
k=0

Thus, with Claim 5.5 (3) in view, the theorem is proved. O

Returning to our original concern of approximation from S%(¢;; =) we have the following
which is an immediate consequence of Theorem 5.3 (with S, := S(¢,;Z)).

Corollary 5.7. Let (¢n)he(o..ho) be a family of functions in C(RY). Let n € D and
e €(0..27) be such that suppn C @ and =1 on %5@ Put mj :=n(-—j), j € Z% Let
= C R If there exists v > 0 such that

sup dist (n, (S (6 Z))E" N N;N) —O(h"), ash—0,

0<r<h

then (S"(¢n;=))n provides Ly-approzimation of order v (in the sense of Definition 2.2)
for all 1 < p < oo.

We now state the main result of this section. As mentioned before, the set (0..~0]U{v0}
equals (0..7v0] when v > 0 and equals {0} when o = 0.

Theorem 5.8. Let (1) re(o.. ho) be @ family of functions in C'(R?) with at most polynomial
growth at oo, and assume that there exists vo > 0 such that for each h € (0..hg), there
exists a locally integrable function Ay such that q/b\h can be identified on RNO with |-|~7° \y.
Assume that there exists ¢ € (0..27) such that \p, € C(eQ) and |[\p| > 0 on €@, V h €
(0..hg]. Letn € D be such that supph C eQ and =1 on %5@ Assume that there exists
€ (0..7] U{ro} such that for all0 <r < h <1,

(@0)  lén(@)] = olx™™"

)
(i) (1_|_|.|)70—u< (/i1| |70> e

as || — oo;
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Let o € D satisfy suppo C 2nQ and 0 =1 on Q. If there exists v € (0..00) such that

(PN o

Ly jezd
then (S"(¢n;=))n provides Ly-approzimation of order v (in the sense of Definition 2.2)

=O0O(h"), ash—0,

sup
Lo (j+Q)

0<r<h

for all 1 < p < oo whenever = is a sufficiently small perturbation of Z°.

Conditions (i), (ii) serve to ensure that a certain approximant actually belongs to
S™"(¢n;=). As far as the approximation order is concerned, the item of significance is
the behavior of |, (r,h) as r < h — 0, where

() = H(L/i) WO)v S (@ =l

" Ly jE7A

Lo (G4Q)

Note that there are two factors in the definition of , (r,h). In the stationary case, the
second factor is fixed (independent of r and h) and so it is useful only when it is 0; the

significance of the first factor,
H% v
(%)

H | |’Yo
is that it is O(h) if <>\(h )> € L,y for sufficiently small A > 0. In the non-stationary

case, the second factor is usually most responsible for the decay of , (r, h).
In view of Corollary 5.7, in order to prove Theorem 5.8, it suffices to prove the following:

Lemma 5.9. Under the hypothesis of Theorem 5.8, there exists o > 0 such that if (=) <
do, then

=)

— R0

>

Ly Ly

dist (n, (S" (6 ENE AN N)

< const(d, §p) H /h |70> Z <(1—U)|'|_Vox\r>v

L, jezd

Y

Lo (54+Q)

for all0 <r < h < hg.

A Y 3 v
Proof. Put 7,3 1= <%> and ¢, 1= <(1 —o) || /\r> . Without loss of generality
we may assume that Ejezd [ (j+q) < oo and hg = 1. Define p := = (1+]])° ", and
note that 1 < p(j + k) < p(j)p(k) for all j,k € Z? There exists ¢; € (0..7) such that
suppo C [—7 +e1..7 —e1]% Let ( € D satisfy supr= Cl-m—e1..7m+e1]4, C =1 on
[—m+ 1.7 —e1]%, and Ejezd C( +2nj) = 1. Let 6(¢,p) be as in Lemma 4.3, and let

§o € (0..6(¢,p)). Fix 0 < r < h <1, and let = be any perturbation of Z? satisfying
d(=) < do. Using the countable axiom of choice', there exists a sequence (£;);eze with the

LIf = is locally finite, then it is not necessary to use the countable axiom of choice here, since for each
j € 74, we could then define &; to be the unique element of the finite set =N (j + §0Q) which is least in a
lexicographical ordering of R
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property that &; € (j + 6oQ) N = for all j € Z?% Let A be as in Lemma 4.3, and define

ar(j) = b~ n(G —k/h),  JkeZf
b := Aay, k ez

Note that by (ii) of Theorem 5.8 and Lemma 4.1, it follows that pay € ¢; and hence by, is
well defined. By Lemma 4.3 (3),

(5.10) lobily, < const(d. ¢, p.bo) lparll,, , ¥k € B

Hence by (i) of Theorem 5.8,

g =Y be()ér( /b= &) € SMénZE),  VEeZ
jez
Claim 5.11.
g = > b(r(/h =€) +n(-—k), VEkeZ
jez?
proof. Fix k € Z and put ¢ := Zbk(])¢r( — &)+ n(h-—Fk). Since g € Ly (as by € {4
JEZA

and ¢, € Ly) and with Lemma 4.8 in view, in order to prove the claim, it suffices to show
that

(5.12) Glx) = |27 Ap(x) Y brlj)e—e; ( Yz € RNO.
JjEezd

First note that

G =0 il /h) + e Y beieme; = B e/ + (1= ) |17 A0 D brl)e—g;.
jEZd jeZd

Since 0 = 1 on supp# and o = 0 outside of [~7 +&1 .. 7 —51]¢, in order to establish (5.12),
and hence prove the claim, it suffices to show that

o h o
Zbk 6 5J h_de_k/h(l’)w, Ve [—7T—|—€1..7T—€1]d.
jezd Ar(2)

For that let # € [-7 +¢&;..7 —¢;]% Note that on the one hand,

(C+" (h™ (- = k/h))) )
SN C(:L') Z (trn(- — k/h)) {2z — 27y), by Lemma 4.2,

JEZ?
SN Ze—k/h(l' + 27)) T n (2 + 27)), since E: lon [—m+er..m—eq]?,
JEZ?
o o
= h_de—k/h(l’)%, since suppTrp C [—7 41 .. 7 — 1]
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While on the other hand,

(C (W = k/W)) () = | D ax(G)C(- = J) | Ta)

jezs
= C(@) Y anlde—s(@) = 3 aries(@) = Y buli)e—g; (@
JEZ JEZS jEZa
by Remark 4.4 (as € [~7 4+ &1 ..7 — £1]¢). Hence the claim.

Define g := (i ) ez € S"(¢y; E)Zd. Then by Claim 5.11,
(5.13) g 7] k= Zbk /h 5]) VkEZd.
JEZA
Recall that in order to show that g — n € N, we must show that ||g — n|[,, < oo and
additionally that for all compact K C R¢, Z (g — n)kHLm(K) < oo. For the latter, let

kezd
K C R?% be compact. Then
Z (g — n)kHLOO(K)
kezd
< Z Z 0k ()] || (-/ R — gj)HLOO(K)v by (5.13),
kezd jezd
(5.14) = Z |y ( -/ — gj)"Loo(K) Z |br(7)|, Dby Fubini’s Theorem,
jezd kezd
< const(K, h Z [ (+0) sup Z bk (7
jEZA JELY epa

Now, if 7 € Z% and n € N, then

Y b < || Y signum(be(7))be|| = ||A [ D signum(bi(j))as

|k|<n |k|<n o |k|<n o
< const(d, (, do) Z signum(bg(7))ax , by Lemma 4.3 (3),
[k|<n foo
< const(d, , dg) sup Z lax(0)] .
C€T peza
Hence,
sup Z bk (7)| < const(d, (,d0) sup Z lar(7)]
JELY o I pega
_ —d . :
(515) - ConSt(d7C750)]$;§d) h HTﬁh( /h—l_.])Hél
< const(d, ¢, 80)h ™ |71 ( /h)HL1 \ by Lemma 4.1,

= COIlSt(d7 Cv(so) HTthH[q )



vilonarkl JOORNDSUOIN

Combining (5.15) and (5.14) yields Z (g — n)kHLOO(K) < oo. Next we estimate ||g — n]| /.

kezd
If k € Z% then

g = mellp, < > 1Be()HIee(-/h =&, = B el Noelly,

JEZA
< h [+, const(d, ¢, do) |lakll,, » by Lemma 4.3 (1),
= const(d, ¢, o) [0/l I7rn(- =K/,
< const(d, ¢, o) [[¢rllp, I7rnlly, » by Lemma 4.1,

< const(d, ¢, do) llrnll, D eells_jroy -
jez?

Hence, ksuZE)l (g —n)kll,, < const(d,(,do) HTthLl Z lr ]l (j+@)- On the other hand,
S

JEZA
Yolg—mul| < sup >N bl [e(x/h = &)l
kezd Lo v€RY pova jege
= sup Z | (2/h — &) Z bx (7 by Fubini’s theorem,
r€RT S kezd
Sl =&l sup > [be(y
jE7d I JELY 1z
< const(d,¢,60) 3 Werlly_ o Ieally, » by (5.15).
JEZA

Therefore, ||g — n|| v < const(d, (,do) HTnhHLl Z "¢T"Lm(j+Q)‘ In particular,g—mn € N,
JEZ?

and since g € N, it follows that g € A; hence, g € S"(¢,; E)Zd NN, and so we conclude

that

. o d
dist (n,(sh(%:))z mN;N) < const(d, ,60) Il S Il jao)
JEZA
Taking the infimum over all appropriate ( completes the proof. O
6. PROOF OF THEOREM 3.1

The following string of lemmata will be used to prove Theorem 3.1 at the end of this
section.

Lemma 6.1. Let 0 < a < b < oo, and let F € C™(a..b) for some m € N. Then there
exist po k € C°(RN0), 1 <k < |a| < m, such that p, i is homogeneous of degree k — |af
and

o]
(6.2) D(F(I) = Y pakF(|])
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on Q:={r e R¥:a<|z| <b} for all 1 < |a| < m.

Proof. 1If |a| = 1, then D*(F(]-|)) = F'(|-|) D |-| which settles the case m = 1 since
Pan = DY|| € C™ (Rd\()) and is homogeneous of degree 0. Proceeding by induction on
m, assume that (6.2) holds for all 1 < |a| < m — 1 and consider m. Let |a] = m — 1 and
|3] = 1. Then

o

D°TA(F(]-])) = D’ Zpa7kF(k)(|-|) \ by the induction hypothesis,
k=1
o
=3 ((D7pak) PO + pag FCFV() D), sinee |3 =1,
k=1
lo al+1
=) (Dpai) FO(]) + Z Pak—1 (D) FO(]])

e
I
—

Noting that both Dﬁpmk and pa k-1 (Dﬁ ||> are in C'*° (Rd\0> and homogeneous of degree
k — |a + 3], we complete the induction. O

Lemma 6.3. Letn >d, e €(0..1), and § € (0..00). Let
FeC0..5)(1C™0..68). If v € D(6B), then

[+ Her2 ()

< const(d,n,d,e,v) | sup |F(p)|+ max sup M
~ 9 by Uy Oy 0<pss 1<k<"0<p<6 pn d+e—k .

Proof. Without loss of generality assume that the right side of our inequality is finite. Let
v € D(6B), and let g € (1..2] be the middling value satisfying ¢ > d — d/q > ¢/2. Put
r:= (vF(|-]))", and let p be the exponent conjugate to q. Then

[+ pyrteer2-

. —d—+e n
< const(d,n.e) y (L4 I+ )7l w0

1

JEZA
n—d+e n
< constldme) 3 (14 I U+ 1) 7l a0
JEZ?
1/q
< const(d, n, ) Z (1+ |j|)(_d+€/2)q L+ D" THLP , by Holder’s inequality.
JEZA

Note that ¢ (—d + ¢/2) < —d follows from the assumption d — d/q > /2. Therefore,

64) |1+ )" x| < const(d,m.e) (1 + )" 7, < const(dyn, o) [Flypqe
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by the (extended) Hausdorfl-Young Theorem. Put € := suppr. Then

[Pllwygzeney < comst(d:n ) |- llwpeano) < constldsn.e,) ma [ID"(F(-D) 1 o0

|a]
k—|a
< const(dn,2,0) | E(D g+, ma S-HFOED] ) by L6,
k=1 4

1<[al<n
< const(d,n,e,v)| sup |F(p)|+ max H||k—n F(k)(||)‘ . (Q\O))

0<p<é 1<k<n

< const(d, n, ¢, Fp)] + |17 Jemti=s PO )|

< const(d, n, ¢, v) Oililzél (Pl + || Loy 12, N (DI, 530
FM(p)|

< const(d,n,d, e, v sup |F + max su ‘7

< ( ) (0<p126| (p)] X SUD e

as q (¢ —d) > —d is implied by ¢ > d — d/q. So with (6.4) in view, in order to complete
the proof of the lemma, we need only show that D*T € L, for all |o| < n. Since D°T €
L,(R™\0) has been established, it suffices to show that

(6.5) (9,D°T) = / gD*Tdm,
R4\0

forall g € D, |a| < n. Solet g € D, |a] < n. Since F € C([0..§)), (6.5) holds if o = 0; so

assume || > 0. By Lemma 6.1,

o]
D (F(D) = | > pak FO(1)

|a
< const(d,n,e, F) Z |-|k_|a| |[FF R < const(d, n, e, F) |-|€+n_d_|a| .

k=1
Thus F(|-]) € C(RY) N C""4RN0) and the restriction of D*(F(|-])) to R1\0 admits a
continuous extension to all of R? for all |a| < n — d. It follows that F(]-|) € C"~¢(R).
Consequently, 7 = vF(]-]) € C""?(R?) and (6.5) holds whenever |a| < n —d. So assume
n—d < |a| <n. Let p € II,,_; be the Taylor approximation to 7 (at 0). Let o € D(B) be
identically 1 on a neighborhood of 0, and define oy := o(¢-), ¢ € N. Then

(9, D7) = (009, D7) + (1 — 0¢) g, D°T).

Since (1 —o¢) g € D(RN\0) and 7 € C"(R%\0), we have

(1 —0¢)g,D7) = / (1 —0¢)gDTdm — gD°Tdm as { — oco.
R4\0 R \0
Thus, in order to establish (6.5), it suffices to show that (o¢g, D7) — 0 as { — co. Since
la| > n — d, we have D®p = 0. Hence

{oeg. D°7)| = |{o2g, D*(F — p))| = [{D*(019). 7 — p)|
<D i)l 17 = Plly sy (B0 = O(01°1) o(¢=0=D) O(e=) = o(1)
as { — 0. O
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Lemma 6.6. Let ¢ € (0..1), § € (0..00). Let G € C[0..8)(C40..6) satisfy G # 0 on
all of [0..0). If v € D(5B), then

e () (d.6e) 1 Ghp) 1

+ | — < const(d, d,e, v + max sup |——~— 7 sup .
G(-h/ |, 1<k<docp<s | G(p) P77 | ] 0<pes |Glp)

Proof. Put F(p) := G( 5, 0<p < §. Then F € C[0..5)(C%0..6), and so in view of

Lemma 6.3, in order to prove our lemma, it suffices to show that

[P ()] GM(p) 1
max — 2 < const(d,d,e,v) | 1+ max sup |——— su :
S, ek S constld G s ) { T max, e et | ) o2, 60

For this it suffices to prove that for all 1 < k < d,
(6.7)
GD(p)

G(p) p=

k
e—k
0<p<o.
1<5<k o< p<s ) P P

G(p)F(k)(p)‘ < const(d, §,e,v) (1 + max sup

Differentiating the identity F(p)G(p) = 1 and solving for G(p)F ¥ (p) yields

k—
(6.8) G(p)F™® (p ( >F<J> YGE=D(p), 0<p<é 1<k <d

J=0

)_l

!/ !/
For k = 1 this reads G(p)F'(p) = _G) = — ¢ ('0)_1 p°~ which proves (6.7) for the
G(p) G(p) p*
case k = 1. Proceeding by induction, assume that (6.7) holds for all k, 1 < k < k' < d, and
consider k = k' + 1. Let p € (0,6). In view of (6.8), in order to prove (6.7), it suffices to

show that ‘F(]) )G (p )‘ is bounded by the right side of (6.7) for all j = 0,1,... ,k—1.
k
F(p)G®(, ‘ _ &

G(p)ps—*
(6.7). For 1 <j <k — 1, we employ the induction hypothesis to write

For j = 0 we have p° =% which is bounded by the right side of

| | G(é)( ) J e—jG(k—J)( )

(1) (k=) P 7 £
FY(p)G (p)‘ < const(d, d,e,v) (1 + 1121?5]0?;36 Glp)p=—" G(p) ‘
G (p) ok

G(p)p=—!

= t(d, d, e 1
ot e (14 s,

e |
G |
which is bounded by the right side of (6.7). O

Lemma 6.9. Letc € (0..1) and § € (0..00). Let F € C((§..00)). If o € D satisfies
oc=1on B, then

‘F(k)( )“

- < const(d, o, , =0
]Ezz:d = FAD Nk pag) < comstle o 5)0<I1?<a§{+15<s;lfoo pi=e
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Proof. First note that

d
D 1101 = ) POl s < const(@ 1+ 1) (1= o) P
jez
< const(d) ||(1 — o) F(|-|)de+1(Rd) , by (extended) Hausdorfl-Young Theorem,

o]

< const(d, o) | F (|-}l yya+1pa\sp) -

Since the functions p, ; are homogeneous of degree < 0, it follows from Lemma 6.1 that

IFQ-Dlwg+iparsm) < conmstl(d, d) | max

FO(|)]

Ly(RI\S B)
‘F(k)

— const(d, FO ()] p=1 dp < const(d, 5 L}
const(d, )ogrl?gf—i—l/ (P)| P p < const(d,d,¢) 0<Il?gt}i<—|—15<szl<poo p—d=<

4

Proof of Theorem 3.1. In case v > 0, and with (ii) in view, we may assume without loss
of generality that m — d 4+ & < ~9. Note that if v = 0, then m = d. Put §; :=inf{t > 0:
A(t) =0} € (0..00].

Claim 6.10. There exists u € (0..7] U {70} such that
(1) el =ole"™")  as [a = oo
o

an
2 1_|_| | Yo— i (
2 | ) NI
proof. Let v € D(61B). There exists § € (0..671) such that v € D(6B). Define F(p) :=
%, p € [0..6]. Note that F' € C([0..6]). That FF € C™((0..4]) follows from (iii) and
the fact that 6 < §;. We will show that

) ELl, \V/VED((SlB)

(6.11) u++DW”“”<§NE> =

In view of Lemma 6.3 (with n := m), it suffices to show that
(6.12) FO(p)| = 0(pm=17)  as p o,

for all 1 < k < m. Differentiating the identity \(p) F(p) = p*° and solving for F(¥)(p)
yields

(6:18) P9 (p) = 5o |90 (o = 1)+ (o — k1) - §:()Am ) =) ()

7=1
1<k <m,0<p<d. Note that for 1 <k < m,

90 (0 = 1)+ (0 =k + 1) [ = O(p"7F) as p 0,
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since m — d + ¢ < 7 is assumed in case 7o > 0. That (6.12) holds in case k = 1 follows
readily from (6.13), (iv), and the fact that |F(p)| = O(p™) as p — 0. Proceeding by
induction, assume that (6.12) holds for all £, 1 < k <k’ < m, and consider k = k' + 1. By
(iv) and the induction hypothesis, it follows that

‘A(j)(p) F(k—j)(p)‘ = O(p*=7) O(p=TH+i=k) = O(pm=t+e=k)  as p 0,
forall 1 <j <k —1. As for j =k, we have by (iv) that
‘A(k)(p) F(P)‘ = 0(p* ") O(p™) = O(p™™**=7) s p = 0.

Therefore, in view of (6.13), estimate (6.12) holds for k = k' + 1, and thus (6.11) is proved.

Case 1. ~9 > 0.
Since vo > [v0 — 1] (by (ii)), we must have 0 < @ < ~o. Hence @ # (0..71) C (0..7o].
Note that by definition of 7, condition (1) holds for all 4 € (0..1). On the other hand,

m—d+e/2=[vw—Hl+c/2Z2%—F+e/2>5% —p
for ;1 € (0..7) sufficiently close to fi. Hence, by (6.11), condition (2) holds for some

p e (0..0).

Case 2. ~o = 0.
With 4 := 0, condition (1) follows from (i). In particular, m = 0. Hence m—d+c/2 = ¢/2
and thus condition (2) is a consequence of (6.11). Hence the claim.

Let § € (0..7) be such that A # 0 on all of [0..6]. Let 1 € D(6B) satisfy B = 1 on
%53. Let 0 € D(#B) satisty o = 1 on ¢B.

Claim 6.14. If G € C¥T1(§.. o), then

2.

jez?

GF)
< const(d, o, 5’5’70)0<I1?<a§{+1 su 7‘ 70_(56)‘-
<k d<p<oo P c

(a-a) I 6aD)

Leo(34+Q)

proof. Let G € CL(§..00) and put F(p) := p~°G(p), p > 0. In view of Lemma 6.9, it
suffices to show that

) GO
sup % < const(d, d,e,7) max  sup %,
d<p<oo P N 0<j<d+1 d<p<oo po c

for all 0 < k < d+ 1. That this is true can be seen by noting that for 0 <k < d+ 1 and
d < p < oo,

FO) =3 (1) (a0 (0= 1) (0= (1) G ).

Hence the claim.
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Claim 6.15. The stationary ladder (Sh(qb; E))h provides Ly-approximation of order ~q for
all 1 < p < co whenever = is a sufficiently small perturbation of Z¢.

proof. In order to apply Theorem 5.8, put ¢ := ¢, b > 0; then Ay = A(|-|), h > 0. It
follows from Claim 6.10 (with v := (-/h)) that there exists u € (0..v] U {70} such that

conditions (i) and (ii) of Theorem 5.8 hold. Hence, in view of Theorem 5.8, in order to
prove the claim it suffices to show that

(6.16) >

jez

(ﬁ('/h) |'|%>v
AL

That (6.16) holds follows from (iii), (v), and Claim 6.14 (with G := )). So, we now consider

(6.17). If h < 1/2, then

< oo, and
Loo(j+Q)

(=) e AD)

(6.17) ‘ =O0O(h7) ash —0.

Ly

H<%> L () L (k) L
< e |[il)” L <A77<(|Z:T)>v Ll:m@ F ) § <%|)>v Ll

Vv
That (7/7\|-|%)v € L; is an easy consequence of Lemma 6.3 while <)\(7|'.|)> € L, follows
from (iii), (iv), and Lemma 6.6 (with v := ) and G := \). Therefore (6.17) holds and the

claim is proved.

Having dispensed with the stationary case, we turn now to the non-stationary half of
the theorem. Assume that there exists §,a, N € (0..00) such that (vi) and (vii) hold. Let
k:(0..1] = (0..00) satisfy

4

(6.18) lim sup x(h)? log(1/h) < ﬂ-—, for some 1 € (0..00),

h—0 T
and define ¢, := ¢(k(h)-), h € (0..1]. Since x(h) = 0 as h — 0, we may assume without
loss of generality that x(h) < 1V h € (0..1]. Note that q/b\h = /i(h)_dq/b\('/li(h)) and so
on R4\0, o can be identified with |-| 77 k(R)=4\(|-| /k(h)). So in the terminology of
Theorem 5.8, A\, = w(h)"~4\(]-] /&(R)), h € (0..1]. By (vi), A # 0 on all of [0..c0) and
hence it follows from Claim 6.10 that there exists p € (0..~0] U {~o} such that (i) and (ii)
of Theorem 5.8 are satisfied. For 0 < r < h <1, put

, (k) = H(W)v S

L, jeZ8
Then, in view of Theorem 5.8, in order to complete the proof of our theorem, it suffices to
show that

(a=a )

Lo (J+Q)

(6.19) sup , (r,h) = O<h70+71> as h — 0.
0<r<h
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Note that for all 0 < r < h <1,

o201 iy =i | () (L= o) M /()

2.

Lo (54+Q)

L, jezd
By (iii), (iv), (vi), and (vii),
4
exp(—a
C1:= sup 710( ,0> < 00;
0<p<oe  [A(p)]
‘/\(k) P ‘
Cy:= max sup N <%
0<k<d+1 5< peoo P exp(—p?)
M)
C3:= max sup ——— < x©

1<k<d 0<p<oo pe=k

Claim 6.21. Forall 0 <r <h <1,

plre Y )
“ AR || Jr(r) > < const(d, 0., d,,1,C1,C3)r(r) " exp(a(d + 1)(hd/x(r))?) .

Ly
proof. First of all,
(6.22) ) | < |G | Jacmiem
ST SEFT ) |, :

Note that, with v := 7 and G := A(h- /k(r)), the hypothesis of Lemma 6.6 is satisfied.

Now,

G® (p ME (hp/k(r
(623)  max sup ‘pgik‘ = (h/w(r)" max, sup ‘(hp;/i'(oz))i_),f‘ < Cs(h/w(r))*.
On the other hand,
exp(—a(hp/r(r))?
(6.24) sup L sup p(—alhp/x(r))") < Cyexp(a(hé/r(r))?).

0<p<s |G(P)|  o<p<s exp(—a(hp/r(r))?) Mhp/r(r))
It follows from (6.23) and (6.24) that
GM(p) L
Gp)p=F| | ozpes [GOp)]

< const(d, C1,Cs) (1+ (h/r(r))*)" exp(a(d + 1)(hé/r(r))?)
< const(d, Cq, Cg)/i(r)_d 6XP<G(d + 1)(h5/“(r))9> )

14+ max sup
1<k<dp<p<s

forall 0 < r <h <1. In view of (6.22) and Lemma 6.6, the claim is proved.
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Claim 6.25. There exists hy € (0..1] such that

2.

jez

(2= o) 7 A /m(r)D)

Lo (54+Q)

< Cyeonst(d, a,8, N, e,y )r(r) 417N eXp(—li(T)_959> , VO<r<hy.

proof. Put G := \(-/k(r)) € C4TL((§..00)). In view of Claim 6.14, it suffices to show that
there exists hy € (0..1] such that for all 0 < r < hq,

L O/ n())|
(6.26) max  su

< 5d—|—8—|—N—'yO —d—1—N . —959 )
0<k<d+1 5<pfoo pyo—d—g > Cz li(T) eXp( /i(?“) )

Observe that

k
/()] P/
max  sup — = max r(r) sup ——————
0<k<d+1 §<p<oo pro—aTe 0<k<d+1 §<p<oo  pTOTETE
N _
< () max A (p/s(r))] (p/r(r))" exp(=r(r)~"p*)

su N
0<k<d+1 5<p<oo (p/r(r))" exp(—r(r)=?

p
< Cor(r)y~d717N 6<su<p pltetN =0 exp(—/i(r)_ep‘g) :
p< o0

9) /ﬂo—d—e

Since k(r) — 0 as r — 0, it is a straightforward matter to show, using elementary differ-
ential calculus, that there exists hy € (0..1] such that

d+e+N—~o

sup p exp(—ﬁ;(r)_e,oe) = §ltetN=0 eXp(—li(T)_959> , VO0<r<h;y.

d<p<oo
Hence, (6.26) holds and the claim is proved.
Therefore, by (6.20), Claim 6.21, and Claim 6.25, there exists hy € (0..1] such that

, (ryh) < h7const(d, 0,8, N,v0,e,n,C1,C,Cs)

(6.27) < r(r) T2 N exp ((a(d + 1)R? — 1)(8/w(r)?)

forall 0 < r <h < hy. Now in view of (6.18), and since § was chosen arbitrarily in (0..7),
we may assume without loss of generality that § € (0..7) is sufficiently close to = so that

5 — 9
lim sup x(h)? log(1/h) < Q, for some g1 > 0.
h—0 T

Hence there exists hy € (0..hq] such that

) 1/6
k(h) <ER(h):= (fT(l/)fLQ ) V0 <h<hs.
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It can be shown, by applying elementary differential calculus to (6.27), that there exists
ho € (0..hz] such that

sup , (r,h) < h7const(d, 0,8, N,~vo,e,n,C1,C2,Cs)
0<r<h

X E(h)_zd_l_N exp((a(d + 1)h‘9 — 1)(5/E(h))9> ,
for all 0 < h < hg. Now, as h — 0,
()71 exp((a(d + 1)h® — 1)(§/R(h)°) = O(F(h) =21~ exp(—(6/m(h)"))

- ofsursen(- (725) st

= O(exp(—71log(1/h))) = O(h™).

Therefore,

sup , (r,h) = O<h70+71> as h — 0,
0<r<h

which, in view of (6.19), completes the proof. O

7. PROOF OF THEOREM 3.7

Our proof of Theorem 3.7 requires the following two lemmata.

Lemma7.1. Let0<a<b<ooandputQ:={r cRY:a < |z|<b}. IfF € C™T(a..b),
then

b b
_ . d—1 k—t4+d—1 | (k)
IFA-Dllwa+s gy < const(d) (/ P IE(p)] dp + 1gkrél?§d+1/a P ‘F (,0)‘ dp) :

Proof. First note that |[F([-])||, ) = const(d) fab pl~YIF(p)| dp. For 1 < |a| < d+1 we
have by Lemma 6.1 that

|
1D (B (1)), ) < const(d) Y / 21 | O (]| da

lal b b
= const(d) Z/ phlaltd=1 ‘F(k)(p)‘ dp < const(d) 1<kI£l?<Xd—|—1/ phtra=t ‘F(k)(p)‘ dp.
k=1"1¢ - T @

4

Definition. A function F : [0..00) — C is said to be v admissable (v € R) if F(]|-]) €
CIT1(R?) and

: (1+p)
l sup < oo and
DB TR
1 Fk) —O0(p" M aspos o0, 0<k<d+1.
p p p

The relevance of this definition to Theorem 3.7 is that the function A is —~ admissable
while the function 1/) is v admissable.
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Lemma 7.2. Let f be v admissable and let § > 0. Let a € (0..00) and define F(p) :=
flap), 0 < p < oo. The following hold:

(1) Fov>d, then (Dl sy < const(d, 5,7, (1 +a)",
(2) If v < —d and a > 1, then HF(|-|)HW1d+1(Rd\5B) < const(d, d,~, f)a”.

Proof. We employ Lemma 7.1. Assume ~ > d. First we have

o o
/ o'V [F(p)] dp < const(f) / P (L + ap) dp < const(d, 6,7, )(1 + a)".
0 0

Next assume that 1 = k < ¢ < d + 1. Since f(|-|) € C4TL(RY), it follows that F'(0) =
af'(0) =0, and consequently we can write F'(p) = fop F"(s)ds. Hence

)
| o )

0

& p &
< const(d, 5)/ ,0_1/ |F"(s)] dsdp = const(d, 5)/ log(&/s)|F"(s)| ds
0 0 0
f05 log(d/s)(as)"~% ds if v <2

< const(d, d,v, f)(1 +a)”.
fo(s log(d/s)(1 + a5)7_2 ds else

< const(d, 4, f)az{

Finally, assume 2 < k < ¢ < d+ 1. Then

é
/ pk—é—l—d—l
0
a®tt f06 pi Y ap) =it dp fd<y<d+1l=k

< const(d, 4, f)
{ ak 06 P14 ad) " *dp  else
< const(d, &, f)(1 + a)”

o
FW(p) dp < const(d,5)a" [ 21O ap)| dp
0

which proves (1). Turning now to (2), assume that vy < —d, ¢ > 1, and 0 < k < < d+ 1.
Then

oo
k—t+d—1
|
)

F(k)(’o)‘ dp < const(d, , f)“k/ PPN (1 +ap) R dp
&
< const(d, 9,7, f)av/ pt TR dp < const(d, d,~, f)a”
&

which, in view of Lemma 7.1, proves (2). O

Proof of Theorem 3.7. We employ Theorem 5.8 with 79 = ¢ = 0 and ¢ = 1. Note that
Ar = (qb(re-)) C=r(r=9) = r=49\(r=9|.|). The assumptions on ¢ ensure that \ is —~
admissable. Since v > d, it follows that q/b\ € Ly and hence condition (i) of Theorem 5.8

holds. Define
e TR O

do

L1 Ll
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and note that by the (extended) Hausdorfl-Young Theorem,

,1(r,h) < r®const(d) H /\L

1
< pd? t(d
<r—9h|-|>HWg+1<Rd> " const( ”)HA

(r=n|-) HWld‘H(éB)7

where § is the smallest positive real number such that suppn C §B. Since A is —v
admissable, it follows that 1/) is v admissable, and hence by Lemma 7.2 (1),

 1(rah) < 1% const(d,n v, &)(L +rh).

Note in particular that (ii) of Theorem 5.8 now follows. Now define

Z [((1 = o)A HL G+Q) — —dOZ H<(1_U)/\(r—e|‘|)>v

JEZS FEZA

Lo (G4Q)

As was shown in the first display of the proof of Lemma 6.9,

, 2(r) < v~ %const(d, o) A7 |1]) HWd"‘l(Rd\6'B)’

where §' is the largest real for which supp(1 — o) C R\§'B. Since ) is —y admissable and
~ > d, we have by Lemma 7.2 (2) that

,2(r) < v const(d, 0,7, ) (r )77 = r~%const(d, o, v, $)r"”

Therefore,
sup , 1(r, ), o(r) < const(d,0,n,7,6) sup (14 hr=?)7r®
0<r<h 0<r<h
= const(d,0,1,7,¢) sup (r’ +h)7 = const(d,o,n,7,0)(h’ + h)Y = O(h"7)
0<r<h

which, in view of Theorem 5.8, completes the proof. [
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