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Abstract

A parametric curve f 2 L
(m)
2 ([0: :1]�! IRd) is a near-interpolant to prescribed data points zij 2 IRd at data sites ti,

0=t1�t2� � � � �tn=1, and within tolerances 0 < "ij � 1, if jf (j�1)(ti) � zij j � "ij for i=1:n and j=1:m. In this paper,

optimality conditions are derived for those near-interpolants that minimize
R 1
0 jf

(m)j2. We consider both �xed and free data

sites, with the possibility of repetitions. For �xed data sites the problem is convex, and we obtain a full characterization for

the minimizers (i.e., a necessary and suÆcient optimality condition); for free data sites the problem is non-convex, and we

obtain a �rst-order necessary condition. These conditions are applied to the computation of best near-interpolants in [K99c].

1. Introduction

The goal in the variational problem of \best near-interpolation" is to obtain the \smoothest"
possible parametric curves that meet prescribed data to within local bounds on the error from in-
terpolation. Near-interpolation is particularly bene�cial when there is noise or randomness in the
data, situations that often cause problems in curve �ts. Moreover, there is a natural mechanism in
near-interpolation (via active and inactive constraints) for selecting an optimal sequence of data sites
that is often smaller than the given sequence of data points. This is bene�cial since the minimizers
are polynomial splines and a reduction in the number of data sites means a reduction in the number
of polynomial pieces. Since we are considering curves here, the data sites are the parameter loca-
tions at which the curves meet the data and may vary from curve to curve. Hence, to include all
parametrizations, the data sites are allowed to vary in the most general case.

The setup is as follows. We say that a curve f : [0: :1]�! IRd in some normed linear space X is
a near-interpolant to prescribed data z 2 Z within tolerances " and with respect to a data map

�t : X�!Z if �tf 2 B�
" (z) for a particular neighborhood B

�
" (z) of z. Here, X := L

(m)
2 ([0: :1]�! IRd)

is the Sobolev space of vector-valued functions (curves) f such that f (m) is in the Lebesgue space
Y := L2([0: :1]�! IRd), m � 1. In particular, the curves in X have m�1 continuous derivatives. The
data map

(1:1) �t : X �! Z := (IRm�n)d : f 7�! (�ijf := f (j�1)(ti) : i=1:n; j=1:m)

is then continuous on X for any sequence of data sites

t 2 ��
n := ft 2 IRn : 0=t1�t2� � � ��tn=1g;

and is moreover onto when the data sites are strictly increasing, i.e., when

t 2 �n := ft 2 IRn : 0=t1<t2< � � �<tn=1g:
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For prescribed sequences of data z = (zij) and tolerances " = ("ij) with 0 < "ij � 1, let

B�
" (z) := �

ij
B�
"ij (zij);

with B�
"ij
(zij) the closed Euclidean ball of radius "ij in IRd. Hence, �tf 2 B�

" (z) when j�ijf � zij j �
"ij for all i and j. This generalizes interpolation where �tf = z. In particular, �ijf � zij when "ij
is small { hence the term \near-interpolant". Note that the monotonicity of the data sites forces the
curves to meet the data points zij in the order in which they appear in the sequence z.

For a given functional J : X �! IR, we say that f is a best near-interpolant for �xed data
sites t if it solves the minimization problem

(A) minimize
f2X

fJ(f) : �tf 2 B�
" (z)g;

and for free data sites if (f; t) solves

(B) minimize
f2X; t2��

n

fJ(f) : �tf 2 B�
" (z)g:

Here, J is the standard quadratic functional

J : X �! IR : f 7�!
Z 1

0

jf (m)(s)j2 ds;

a semi-norm on X.

In this paper, optimality conditions are derived for the solutions to (A) and (B). For (A), the
data sites are �xed. As a consequence, the problem is convex, and we obtain full characterizations
(i.e., necessary and suÆcient optimality conditions) for the solutions. We �rst derive an abstract
characterization by the method of Lagrange, stated in Theorem 4.2, and second, with the solutions
known to be polynomial spline curves, we give a �nite-dimensional characterization that is useful for
computation, stated in Theorem 5.8. The connection between these characterizations is made by a
result stated in Lemma 5.3, part (ii). We also state conditions for the existence and uniqueness of
solutions to problem (A).

With the data sites free to vary, problem (B) is not convex, and we obtain a �rst-order necessary
optimality condition for the (local) solutions. As in problem (A), the solutions to (B) are spline
curves. Hence, to obtain a necessary condition, the minimization in problem (B) is restricted to a
certain subset of splines in X that is parametrized by the coeÆcients and breakpoints (i.e., data
sites) of the spline curves. The parametrization is de�ned with respect to the spline basis dual to
�t, for each t, which is particularly convenient since the constraints in (B) become independent of
the data sites. Hence, in this parametrization, J can be varied \freely" with respect to the data sites
without a�ecting the feasibility of the curves. The results of this variation are stated in Lemma 7.3
and Proposition 7.5, and the necessary condition is stated in Theorem 7.9. As with the optimality
conditions derived for problem (A), the necessary condition for the solutions to (B) apply in the case
of repeated data sites, i.e., when ti = ti+1 for some i. The existence of solutions to problem (B) is
investigated in [K99b].

For the case that d = 1, problem (A) is similar to the problem

(1:2) minimize
f2X

fJ(f) : aij � �ijf � bijg
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of \best interpolation with inequality constraints", as studied, for example, in [A67], [L69], [MS69],
[CP78] and [AE95], in more or less generality. As a consequence, the characterization obtained here
is similar to that in these papers, with, in particular, the extension to curves here. The connection
between problems (1.2) and (A) is discussed further in [K99d].

Problem (B) is similar to the problem of \best interpolation by curves", to which (B) reduces
when "ij = 0. This was studied in [To82], [M84], [SeSi86], [RaSe88] and [Se97] for data maps of the
form f 7�! f(ti) (i.e., "ij =1 for j > 1 in the setup here), in which case the minimizers are \natural
spline curves" in Cm. In particular, for m = 2, a necessary optimality condition is derived in [To82]
(as described in detail in [To98]) based on the calculus of variations. Since their curves are C2 and
their interpolation conditions are of the form f 7�! f(ti), those results do not directly apply here.
Hence, the variational method used here is di�erent. For the problem of interpolation, existence and
uniqueness are veri�ed when m = 2 and d = 1 in [M84], existence is veri�ed for m � 1 and d � 1 in
[SeSi86], and uniqueness is investigated in [Se97] in the case that m = 2 and d � 1. The existence
results in [SeSi86] are extended to the problem of near-interpolation in [K99b].

2. Additional notation

The following notation will be used in the remainder of this paper. Let D be the derivative
operator for functions in X. Then Dm is m-fold di�erentiation, and in particular Dmf = f (m) and
DmX = Y . The kernel of Dm, denoted kerDm, is the linear space of those functions in X whose
restriction to [0: :1] is a polynomial (curve) of order m, i.e., of degree < m.

Let

hf; gi
X
:=

mX
j=1

f (j�1)(0) � g(j�1)(0)
| {z }

hf; gi
kerDm

+

Z 1

0

f (m)(s) � g(m)(s) ds

| {z }
h f (m); g(m)i

Y

be inner products on X, kerDm and Y , respectively, with u � v denoting the standard dot product
on IRd. Norms are de�ned in the usual way:

kfk := hf; fi1=2:
With this, X becomes a complete inner product space (i.e., a Hilbert space). Note in particular that

J(f) = kf (m)k2
Y
;

which is the square of a seminorm on X. On Z we have the inner product

h�; �i
Z
:=

nX
i=1

mX
j=1

�ij � �ij :

The optimality conditions derived in this paper depend on certain sequences of \weights" w =
(wij) (i.e., \Lagrange multipliers") with wij 2 IR for each i and j. These act on sequences � = (�ij)
in Z by

w� := (wij�ij : i=1:n; j=1:m)
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with �ij 2 IRd for each i and j, and hence on the maps �t by

w�t : X �! Z : f 7�! w (�tf):

The solutions to (A) and (B) are in the linear space

(2:1) $2m;t := $2m;t([0: :1] �! IRd)

of piecewise polynomial curves on [0: :1], into IRd, of order 2m, and with m�1 continuous derivatives
at the \breakpoints" ti in t. On $2m;t, let

(2:2)

f(t+i ) := lim
t#ti

f(t); f(t�i ) := lim
t"ti

f(t);

��ij : f 7�! f (j�1)(t�i );

jmpti : f 7�! f(t+i )� f(t�i );

	t : f 7�! ((�1)m+j�1jmptif
(2m�j) : i=1:n; j=1:m):

To accommodate the \jump maps" at t1 = 0 and tn = 1, we specify that f (j�1)(0�):=0=:f (j�1)(1+):

The optimality conditions in Theorem 4.2 are stated in terms of the adjoint operators ��ij :

IRd �! X, ��t : Z �! X and Dm� : Y �! X, with X = X� and Z = Z� under the usual isometric
isomorphisms. In particular, ��ij is associated with the representer of �ij , and

��t : � 7�!
X
ij

��ij�ij:

It is convenient for deriving the optimality conditions to write the constraints in (A) and (B) in
terms of inequalities. For this, let

�t : X �! IRm�n : f 7�! (�ij(f) : i=1:n; j=1:m)

with
�ij : X �! IR : f 7�! j�ijf � zij j2;

and let "2 := ("2ij : i=1:n; j=1:m): Then, problems (A) and (B) can be restated as

(2:3) minimize
f2X

fJ(f) : �t(f) � "2g

for �xed t 2 ��
n , and

(2:4) minimize
f2X; t2��

n

fJ(f) : �t(f) � "2g;

respectively.
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3. Existence of the solutions to problem (A)

Theorem 3.1. Assume that ��1t B�
" (z) 6= ;. Then, solutions to (A) exist, and all solutions are

mapped by Dm to the same function.

Proof: Since ��1t B�
" (z) is not empty, its image Dm(��1t B�

" (z)) is not empty. Moreover,
��1t B�

" (z), as the inverse image of a convex set under a linear map, is convex, hence so is its linear
image Dm(��1t B�

" (z)). Further, as the inverse image of a closed set under a bounded linear map,
��1t B�

" (z) is closed, hence so is its image Dm(��1t B�
" (z)) since D

m is a bounded linear map (since
kDmfk

Y
� kfk

X
) from a Banach space onto a Banach space, hence an open map (by the Open

Mapping Theorem).

By a standard theorem on projections in Hilbert spaces, the nonempty, closed and convex set
Dm(��1t B�

" (z)) contains a unique element h of minimal norm. Since J = kDm(�)k2
Y
, then � solves

(A) i� � 2 ��1t B�
" (z) and Dm� = h.

Proposition 3.2. Let t 2 �n. Then �t : X �! Z is onto and ��t : Z �! X is 1-1.

Proof: When t 2 �n, it is easy to �nd f 2 X such that �tf = � for any � 2 Z. Indeed,
there is a unique piecewise polynomial (curve) of order 2m that satis�es this condition. Hence, �t

maps X onto Z. Since the dimension of Z is �nite, it follows that ��t : Z �! X is 1-1.

Corollary 3.3. Solutions to (A) exist when t 2 �n, or when t 2 ��
n and B�

"ij
(zij)\B�

"i+1;j
(zi+1;j) 6=

; for j=1:m when ti = ti+1.

Proof: By Proposition 3.2, �tf = z for some f 2 X when t 2 �n, implying, in particular,
that ��1t B�

" (z) is not empty. On the other hand, when t 2 ��
n and there are repeated data sites,

then, with t0 := (ti : ti 6= ti�1) the maximal strictly increasing subsequence of t, �t0 maps X 1-1
and onto its range. Then �t0f = ẑ for some f 2 X, with ẑ 2 B�

" (z) de�ned such that ẑij = ẑi+1;j

when ti = ti+1, which necessarily exists by the assumption that B�
"ij (zij)\B"i+1;j 6= ;. Hence, again,

��1t B�
" (z) is not empty, and by Theorem 3.1, minimizers exist.

4. An abstract characterization of the solutions to (A)

The functional J and the feasible set ��1t B�
" (z) for Problem (A) are convex. Hence, the op-

timality conditions derived here are an in�nite-dimensional extension of the so-called Kuhn-Tucker
conditions. These are particularly easy to derive when problem (A) is written as in (2.3) since J and
�ij are Frech�et di�erentiable functions. Indeed, the derivatives of J and �ij at � 2 X are given by
the maps

DJ(�) : f 7�! 2 hDm�;Dmfi
Y
= hrJ(�); fi

X

and
D�ij(�) : f 7�! 2 h�ij� � zij ; �ijfiZ = hr�ij(�); fiX ;
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respectively, with the \gradient" of J at � given by

rJ(�) := 2Dm�Dm�

and the gradient of �ij at � given by

r�ij(�) := 2��ij(�ij� � zij);

which are the representers for DJ(�) and D�ij(�), respectively (see [BP78: page 93]). (Note that
the usage of D in DJ and D�ij is di�erent than in the maps D and Dm used throughout this thesis.)

For necessity in the characterization of the solutions to (A), we assume the following constraint
quali�cation:

Condition 4.1 (Slater's condition, [BP78: page 157]). �t(f) < "2 for some f 2 X (equiva-
lently, the interior of ��1t B�

" (z) is not empty).

Condition 4.1 holds in problem (A) when t 2 �n, or when ti = ti+1 for some i and the interior
of B�

"ij (zij) \ B�
"i+1;j(zi+1;j) is not empty for j=1:m (under the standing assumption that "ij > 0).

This is not the case when B�
"ij (zij) \ B�

"i+1;j (zi+1;j) consists of a single point in IRd, i.e., when the
constraints force \interpolation" at a point. Since the constraint quali�cation in Condition 4.1 applies
only to inequality constraints, the solution in this case is to replace the inequality constraints leading
to interpolation by certain equality constraints. This was discussed in [K99a], but is excluded here
for simplicity of the exposition.

The characterization stated next is a \Lagrange-type" result. Basically, under the constraint
quali�cation in Condition 4.1, � minimizes (A) i� rJ(�) is in the span of those r�ij(�) for which
�ij(�) = "2ij (i.e, those constraints that are \active").

Theorem 4.2. Let t 2 ��
n , z 2 Z and " 2 IRm�n

+ . Assume that Condition 4.1 holds. Let � 2
��1t B�

" (z).

(i) If kerDm \ ��1t B�
" (z)=;, then � solves (A) i� for some w 2 IRm�n

(4:3)
Dm�Dm� + ��t w(�t� � z) = 0;

w � 0; w (�t(f)� "2) = 0:

(ii) If kerDm \ ��1t B�
" (z) 6=;, then � solves (A) i� � 2 kerDm.

Proof: Part (ii) is trivial since J(�) = kDm�k2
Y
= 0 i� � 2 kerDm. Hence, it remains to

verify part (i). For this, recall that the functionals J and �ij are convex and di�erentiable on X,
with gradients rJ(�) and r�ij(�) as de�ned above. It follows by a direct application of [BP78: page
159, Corollary 1.2] that � solves (A) i�

rJ(�) +
nX
i=1

mX
j=1

wij r�ij(�) = 0

6



for some w = (wij) in IRm�n such that wij � 0 and wij�ij(f) = 0 for all i and j. Then, (4.3) follows
on setting rJ(�) = 2Dm�Dm� and

nX
i=1

mX
j=1

wij r�ij(�) =
nX
i=1

mX
j=1

wij 2�
�
ij(�ij� � zij)

= 2
nX
i=1

mX
j=1

��ij wij (�ij� � zij)

= 2��t w(�t� � z):

5. A �nite-dimensional characterization of the solutions to (A)

Theorem 4.2 characterizes the solutions to (A) as solutions to a linear equation in the in�nite-
dimensional space X. In this section, we �rst verify by standard means that the solutions are spline
curves, and then we derive a �nite-dimensional characterization that is useful for computation. The
case of repeated data sites (when ti = ti+1 for some i) will require special attention here. For the
�rst few results, we will assume that there are no such repetitions, i.e, that t 2 �n.

Proposition 5.1. Assume that t 2 �n. Then, ran(�
�
t ) = $2m;t.

Proof: Assume �rst that d = 1. In this case, it is well-known that the \representers" ��ij of
the functionals �ij are in $2m;t. Indeed, these representers can be calculated from the \reproducing
kernel function" on X (see [W90: p. 8] and [dBL66]). Therefore, ran(��t ) = span(��ij) � $2m;t in
this case. Moreover, it is well-known that the dimension of $2m;t is mn. Indeed, each f 2 $2m;t can

be uniquely represented by n� 1 polynomials pi of order 2m (degree 2m� 1) such that p
(j�1)
i (ti) =

f (j�1)(ti) and p
(j�1)
i (ti+1) = f (j�1)(ti+1) for i=1:n and j=1:m (the so-called two-point Hermite

interpolants). Therefore, #��ij = mn = dim$2m;t, and since ��t is 1-1 (by Proposition 3.2), it follows
that ran(��t ) = $2m;t.

When d > 1, the same arguments apply to each component of the vector maps ��ij . In this case,
dim$2m;t = dmn:

Corollary 5.2. Assume that t 2 �n and that � solves (A). Then � 2 $2m;t.

Proof: If kerDm \ ��1t B�
" (z) 6=;, then � 2 ker J = kerDm � $2m;t. Hence, assume that

kerDm \ ��1t B�
" (z)=; from here on. Let � =: p + h in kerDm � (kerDm)?, an orthogonal sum

decomposition of X. Since h 2 (kerDm)?, it follows that

hDm�Dmh; �i
X
= hDmh;Dm�i

Y
= hh; �i

kerDm + hDmh;Dm�i
Y
= hh; �i

X
;

and so Dm�Dmh = h. That is, Dm�Dm is the identity map on (kerDm)?. By (4.3)

h = Dm�Dm� = ���t w(�t� � z):

Therefore, h 2 ran(��t ) = $2m;t (by Proposition 5.1), ans so � = p+ h 2 kerDm + $2m;t = $2m;t.
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In (5.4) of the next result, the value of the J on $2m;t is stated in terms of the \jump-map"
	t : X �! Z de�ned in (2.2); a standard application of integration by parts. In (5.5), these jump-
maps are shown to have a particular abstract representation that provides a useful means to pass
from the abstract in�nite dimensional problem on X to the �nite-dimensional problem on $2m;t, and
that is used to derive the characterization stated in Theorem 5.8.

Lemma 5.3. Let t 2 �n and f 2 $2m;t, and let 	t be the \jump-map" from (2.2). Then,

(5:4) J(f) = h	tf;�tfiZ

(5:5) 	tf = (��t )
�1Dm�Dmf:

Proof: Since f 2 $2m;t, the one-sided derivatives f (j�1)(t�i ) are de�ned for all i and j. Let
g 2 X. By integration by parts,

hDmf;Dmgi
Y
=

Z 1

0

f (m) � g(m) =
n�1X
i=1

Z ti+1

ti

f (m) � g(m)

=
n�1X
i=1

mX
j=1

(�1)j�1 f (m+j�1) � g(m�j)
���t�i+1
t+
i

+ (�1)m
Z ti+1

ti

f (2m) � g

=
nX
i=1

mX
j=1

(�1)j (jmptif
(m+j�1)) � g(m�j)(ti) + 0

=
nX
i=1

mX
j=1

(�1)m�j+1 (jmptif
(2m�j)) � g(j�1)(ti)

= h	tf;�tgiZ :

With g = f ,

J(f) = hDmf;Dmfi
Y
= h	tf;�tfiZ ;

proving (5.4). On passing to the adjoints,

hDm�Dmf; gi
X
= h��t 	tf; giX ;

and since this holds for all g in X, it follows that

Dm�Dmf = ��t 	tf:

In particular, Dm�Dmf is in the range of the map ��t . Since t 2 �n (i.e., there are no repetitions of
the data sites), then ��t is 1-1 (by Proposition 3.2), and so (��t )

�1 is well-de�ned on the range of ��t .
Hence, (5.5) follows.
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The earlier results in this section assumed that the data sites had not repetitions, i.e., ti 6= ti+1

for all i. However, in the characterization stated next, repetitions are allowed. The main diÆculty
in this case is that the map �t : X �! Z is not onto. To remedy this diÆculty, we will apply the
above results with respect to the maximal strictly increasing subsequence of t, de�ned as

(5:6) t0 := (ti : ti 6= ti�1):

Then, the data map �t0 maps X onto its range, and certain results above apply with respect to t0

and �t0 . Corresponding to t0, let

(5:7)

w0ij :=
X
tk=t

0
i

wkj and

z0ij :=

�P
tk=t

0
i
wkjzkj=w

0
ij ; if w0ij 6= 0;

0; otherwise,

for i=1:n0 and j=1:m with n0 := #t0. With this setup, we can now state a �nite-dimensional
characterization for solutions to (A). In the case that t 2 �n, simply remove the \primes" where
they appear.

Theorem 5.8. Let t 2 ��
n , z 2 Z and " 2 IRm�n

+ , and let 	t be the \jump-map" from (2.2).

Assume that Condition 4.1 holds. Let � 2 ��1t B�
" (z).

(i) If kerDm \ ��1t B�
" (z)=;, then � solves (A) i� for some w 2 IRm�n

(5:9)
(w0�t0 +	t0) � = w0z0;

w � 0; w (�t(f)� "2) = 0:

In this case � 2 $2m;t0 .

(ii) If kerDm \ ��1t B�
" (z) 6=;, then � solves (A) i� � 2 kerDm.

Proof: Part (ii) was proved in Theorem 4.2. It was also shown in this theorem that, when
kerDm \ ��1t B�

" (z)=;, � solves (A) i�

(5:10) Dm�Dm� + ��tw(�t� � z) = 0

for some w � 0 with wij = 0 when j�ij� � zij j < "ij . Now,

��t w(�t� � z) =
nX
i=1

mX
j=1

wij(�ij� � zij) � �ij =
n0X
i=1

mX
j=1

X
tk=t0i

wkj(�kj� � zkj) � �kj ;

while X
tk=t0i

wkj(�kj� � zkj) � �kj =
X
tk=t0i

wkj(�
0
ij� � zkj) � �0ij

= (
X
tk=t0i

wkj)(�
0
ij�) � �0ij � (

X
tk=t0i

wkjzkj) � �0ij

= w0ij(�
0
ij�) � �0ij � w0ijz

0
ij � �0ij

= w0ij(�
0
ij� � z0ij) � �0ij ;
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and so

(5:11) ��t w(�t� � z) =
n0X
i=1

mX
j=1

w0ij(�
0
ij� � z0ij) � �0ij = ��t0w

0(�t0� � z0):

Hence, by (5.10)

(5:12) Dm�Dm� + ��t0 w
0(�t0� � z0) = 0:

Since there are no repetitions of the data sites in t0, it follows by Proposition 3.2 (with t0 in place
of t) that �t0 maps X 1-1 onto its target. As a consequence, � 2 $2m;t0 by Corollary 5.2 with t0 in
place of t, and 	t0� = (��t0)

�1Dm�Dm� by Lemma 5.3. By (5.12), Dm�Dm� is in the range of the
1-1 map ��t0 , and so,

(��t0)
�1Dm�Dm� + w0(�t0� � z0) = 0:

By (5.5), but with t0 in place of t,

	t0� = (��t0)
�1Dm�Dm�;

and so
	t0� + w0(�t0� � z0) = 0;

which is equivalent to the corresponding equation in (5.9).

By (5.9),
	t0� = �w0(�t0� � z0) = �w(�t� � z):

That is,

(5:13) jmpt0
i
�(2m�j) = (�1)m+jw0ij(�

0
ij� � z0ij) = (�1)m+j

X
tk=ti

wkj(�kj� � zkj);

for i=1:n0 and j=1:m. In particular, jmpt0
i
�(2m�j) = 0 when w0ij = 0. As a consequence, � reduces

to a \natural spline" when wij = 0 for j > 1 (which is necessarily the case when "ij =1 for j > 1).

6. Uniqueness of the solutions to (A)

In this section, we �rst prove the unique solvability of the linear system in Theorem 5.8 for certain
�xed weights, and then, by independent means, we verify the stronger result that the solutions to
problem (A) are unique under similar conditions on the weights. In the case of repeated data sites,
we follow the convention in (5.6) and (5.7).

Proposition 6.1. Let t 2 ��
n and w 2 IRm�n

�0 . Let Vt0 be the basis for $2m;t0 dual to �t0 . Suppose
that kerDm \ ker w�t=f0g. Then, the quadratic form associated to the map (w0 �t0 + 	t0)Vt0 is

positive de�nite on Z 0 := (IRm�n0)d, and the restriction of (w0 �t0 +	t0) to $2m;t0 is invertible.

Proof: Let �0 2 Z 0. Since �t0 maps $2m;t0 onto Z
0, then there exists an f 2 $2m;t0 such that

f = Vt0 �
0. For this f ,

�t0f = �t0Vt0 �
0 = �0:
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Then,
�0T (w0 �t0 +	t0)Vt0 �

0 = �0Tw0 �t0Vt0 �
0 + �0T	t0Vt0 �

0

= �0Tw0 �0 + h	t0Vt0 �
0; �0i

Z0

= (�t0f)
Tw0 (�t0f) + h	t0f;�t0fiZ0

= (
p
w0 �t0f)

T (
p
w0 �t0f) + J(f);

the last equality by (5.4). Since w � 0, and hence w0 � 0, the right hand side is non-negative.
Moreover, if it is zero, then f 2 kerJ = kerDm and f 2 ker

p
w0 �t0 = ker w0 �t0 . Since ker w

0 �t0 =
ker w�t, then f = 0 when kerDm \ ker w�t=f0g.

Consequently, (w0 �t0 +	t0)Vt0 is positive de�nite on Z 0, and in particular, it is invertible. Since
Vt0 is invertible as a map to $2m;t0 , the restriction of (w0 �t0 +	t0) to $2m;t0 is invertible.

By Proposition 6.1, there is only one solution to problem (A) that corresponds to each sequence
of weights satisfying (5.9), when kerDm\ ker w�t=f0g. Under certain additional conditions, unique-
ness to (A) follows as well, as stated in part (iii) in the next result.

Proposition 6.2. Let t 2 ��
n , z 2 Z and " 2 IRm�n

+ . Assume that Condition 4.1 holds. Assume

also that kerDm \ ��1t B�
" (z)=;. Let � and �̂ be solutions to (A), and let w and ŵ be as described

in Theorem 5.8 for � and �̂, respectively. Then,

(i) �ij� = �ij �̂ if wij 6= 0 or ŵij 6= 0 (=) � and �̂ agree on active constraints).

(ii) w = ŵ if, for each i and j, the sequence

Sij := (�kj� � zkj : tk = ti and j�kj� � zkj j = "kj)

is linearly independent (unique weights).

(iii) � = �̂ if kerDm \ ker w�t=f0g (uniqueness).

Proof: We start by proving (i), speci�cally, by proving that both wij and ŵij must be zero

when �̂ij� 6= �ij�. So, suppose that v := �ij� � �ij �̂ 6= 0 for some i in f1:ng and j in f1:mg. By
Theorem 5.8, ŵkj � 0 and wkj � 0 for all k such that tk = ti. Moreover, if, for example, wkj > 0,
then j�kj� � zkj j = "kj , hence, �kj� � zkj is normal to the supporting hyperplane to B�

"kj
(zkj) at

�kj� and wkj(�kj� � zkj) � v > 0, while wkj(�kj� � zkj) � v � 0 always holds, with equality only if
wkj = 0. Therefore,

(6:3)
X
tk=ti

wkj(�ij� � zkj) � v � 0

with strict inequality i� wkj > 0 for some k such that tk = ti. Symmetrically,

(6:4)
X
tk=ti

ŵkj(�ij �̂ � zkj) � (�v) � 0

with strict inequality i� ŵkj > 0 for some k such that tk = ti.
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To complete the proof of (i), note by Theorem 3.1 that �̂�� is in kerDm. Hence, jmpti(�̂
(2m�j)�

�(2m�j)) = 0 for i=1:n and j=1:m, and by (5.13)

(6:5)
X
tk=ti

ŵkj(�ij �̂ � zkj) =
X
tk=ti

wkj(�ij� � zkj):

By (6.3) and (6.4), this implies that

0 �
X
tk=ti

ŵkj(�ij �̂ � zkj) � v =
X
tk=ti

wkj(�ij� � zkj) � v � 0;

which can only occur with equality in these inequalities, and moreover, i� ŵkj = wkj = 0 for all k
such that tk = ti. This completes the proof of (i).

To verify (ii), we �rst note by (i) that ŵij = wij = 0 when �ij �̂ 6= �ij�. Hence, it remains to
consider the case that �ij �̂ = �ij�. Assuming this, it follows by (6.5) that

(6:6)
X
tk=ti

(ŵkj � wkj)(�ij� � zkj) = 0:

When j�ij� � zkj j < "kj , then wkj = 0, and moreover ŵkj = 0 since either j�ij �̂ � zkj j < "kj or
�ij �̂ 6= �ij� (applying part (i) here). Hence, (6.6) is equivalent to

X
�kj��zkj2Sij

(ŵkj � wkj)(�ij� � zkj) = 0;

which implies that ŵkj = wkj for all k such that tk = ti when the sequence Sij is linearly independent,
as assumed (and as is trivially the case when t 2 �n). This proves (ii).

Finally, since, by (i), �ij �̂ = �ij� when wij 6= 0, it follows that w�t�̂ = w�t�. Therefore, �̂ � �
is in kerw�t, and so �̂ = � when kerDm \ ker w�t=f0g, proving (iii).

Part (i) of Proposition 6.2 states that distinct minimizers have the same active constraints
when kerDm \ ��1t B�

" (z)=;, and, moreover, the same function values at these constraints. Hence,
minimizers can di�er only at inactive constraints. However, even when kerDm\ ��1t B�

" (z)=;, there
may be more than one solution to (A), as in the following example.

Example 6.7. Let n= m= 2 and d = 1. Let z11 = z21 = 1, "11 = "21 = 1, z12 = 1, z22 = �1 and
"12 = "22 = 1=4. Then kerDm \ ��1t B�

" (z)=;, but the solutions to problem (A) are not unique.

Proof: Since there are feasible functions, then solutions exist by Theorem 3.1. For the given
con�guration, B�

"12
(z12) \ B�

"22
(z22) = ;, and so the end slopes of the feasible functions must di�er.

Since the polynomials in kerDm are linear, then necessarily kerDm \ ��1t B�
" (z)=;.

Let � be one such solution. If �(1) 6= �(0), then �(1 � �) is a solution since it satis�es the
constraints and J(�(1� �)) = J(�). On the other hand, if �(1) = �(0), then either 1 + � or �1+ � is
a solution.
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Although non-uniqueness in (A) may occur, solutions generally are unique for small m. Hence,
it is perhaps not so important to identify all those con�gurations of the data (z; "; t) that lead
to uniqueness, and is moreover a tricky matter since the Hermite-type constraints often reduce to
\Birkho�" constraints when, for example, wij 6= 0 but wi;j�1 = 0 for some i and j. However, a
partial attempt in this direction was made in [K99a]. Two special cases where uniqueness does hold
are when m = 2 and there is no polynomial of degree 2m� 1 that meets the constraints, and when
wij = 1 for j > 1 and kerDm \ ��1t B�

" (z)=;. For the second case, which was already proved in
[L69] when d = 1, it follows that wi1 6= 0 for at leastm weights, in which case kerDm\ ker w�t=f0g,
and uniqueness follows by Proposition 6.2.

7. A necessary optimality condition for the solutions to (B)

In this section we derive a �rst-order necessary optimality condition for the (local) solutions (�; t)
to (B). Since, for such a solution, � necessarily solves (A) for these �xed t, it follows by Theorem 5.8
that � satis�es (5.9) and � 2 $2m;t0 . Hence, the solutions to (B) are splines curves.

To obtain a necessary condition, we �rst consider those functions in X that are splines with data
sites t 2 �n, i.e., data sites with no repetitions. For this, let

$2m := ff 2 X : f 2 $2m;t for some t 2 �ng:

To parametrize $2m, let

' : Z ��n �! $2m : (�; t) �! Vt � =
X
ij

�ij vij

with Vt = [vij ] the basis-map for $2m;t that is dual to �t; the \piecewise Hermite" basis. In particular,

�tf = �t'(�; t) = �tVt � = �

when f = Vt �. As a consequence, the constraints j�ijf�zij j � "ij conveniently reduce to j�ij�zij j �
"ij when f = Vt �, and problem (A) simpli�es to

(7:1) minimize
�2B�" (z); t2�n

J Æ '(�; t):

The necessary condition derived here is obtained by taking variations with respect to the coef-
�cients � and the data sites t, separately. Since the case of �xed t was considered in problem (B), it
remains to consider variations of t with � �xed. This turns out to be particularly convenient in the
setup here since the data sites t can be varied freely in �n without a�ecting the constraint � 2 B�

" (z)
in (7.1). Hence, it remains to consider the unconstrained minimization problem

(7:2) minimize
t2�n

J Æ ' (�; t)

for �xed � 2 B�
" (z).
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To obtain an optimality condition for local solutions, we need to �nd stationary points of (7.2).
For this, we di�erentiate J Æ ' with respect to ti for i=2:n�1 (with t1 = 0 and tn = 1 �xed). For
this, let @ti and @t�

i
denote partial derivative operators. For example, at s 2 [0: :1],

[@t+
i
'(�; t)](s) := lim

�#0

'(�; t+ �ei)(s)� '(�; t)(s)

�

with ei := (

i�1z }| {
0; : : : ; 0; 1; 0; : : : ; 0) 2 IRn. Note that since ti < ti+1 for all i, then t+ �ei 2 �n for small

enough �. To simplify notation, let @t�
i
f := @t�

i
'(�; t) when f = '(�; t).

Lemma 7.3. Let f := '(�; t) for (�; t) 2 Z ��n. For i=2:n�1 and j=1:m,

[@t�
i
f (j�1)](tk) =

�
�f (j)(t�k ); if k = i;
0; otherwise.

For j < m, \�" can be removed.

Proof: With � �xed,
�t+� ei'(�; t+ � ei) = �;

and since (t+ � ei)(k) = tk when k 6= i, it follows that

Dj�1'(�; t+ � ei)(tk) = Dj�1'(�; t+ � ei)((t+ � ei)(k)) = �ij

when k 6= i. In this case,

[@t+
i
f (j�1)](tk) = [@t+

i
Dj�1'(�; t)](tk) = lim

�#0

�ij � �ij
�

= 0:

Likewise, [@t�
i
f (j�1)](tk) = 0 when k 6= i.

Consider the case that k = i. Let

(7:4) pi := pi(t; �) =
2mX
l=1

�l(t)(� � ti)
l�1=(l � 1)!

with �l(t) = f (l�1)(t+i ), the Taylor polynomial representation for f on (ti : : ti+1). Then,

@tip
(j�1)
i =

2mX
l=j

(@ti �l)(t)(� � ti)
l�j=(l� j)!�

2mX
l=j+1

�l(t)(� � ti)
l�j�1=(l � j � 1)!;

and so
[@tip

(j�1)
i ](ti) = (@ti �j)(t)� �j+1(t):

Now, �m+1(t); : : : ; �2m(t) will vary as ti varies, however, �j(t) = �ij for j=1:m, which are �xed
independent of ti. As a consequence,

[@tip
(j�1)
i ](ti) = ��j+1(t) = �p(j)i (ti)

for j=1:m, implying that
[@t+

i
f (j�1)](ti) = �f (j)(t+i ):

Similarly, it can be shown that
[@t�

i
f (j�1)](ti) = �f (j)(t�i )

on considering the restriction of f to (ti�1 : : ti].
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We will now determine the derivative of the map

J Æ ' : Z ��n �! IR : (�; t) 7�!
Z 1

0

jDmf(s)j2 ds
with respect to ti for �xed �. For convenience, let @tiJ(f) denote @tiJ('(�; t)) with f := '(�; t).

Proposition 7.5. Let f := '(�; t) for (�; t) 2 Z ��n. For i=2:n�1,

@tiJ(f) = 2
mX
j=1

(�1)m+j (jmptif
(2m�j)) � f (j)(ti);

with f (m)(ti) := (f (m)(t+i ) + f (m)(t�i ))=2:

Proof: First, note that

(7:6) @tiJ(f) =
n�1X
k=1

@ti

Z tk+1

tk

f (m)(s) � f (m)(s) ds;

and that the restriction of f to the interval (ti : :ti+1) is equivalent to the Taylor polynomial pi de�ned
in (7.4). For each i, the functions �l in (7.4) are rational functions of the di�erences ti�1 � ti, which
are bounded away from zero when t 2 �n, as assumed here. Therefore, the map

(t; s) 7�! p
(j�1)
i (t; s)

is continuously di�erentiable (for all j). As a consequence, Leibniz' rule applies to (7.6), i.e.,

(7:7) @tiJ(f) = f (m) � f (m)
���t�i
t+
i

+ 2
n�1X
k=1

Z tk+1

tk

f (m) � @tif (m);

and the operators @ti and Dj commute. By integration by parts, and with f (2m) � 0, it follows that

(7:8)

Z tk+1

tk

f (m) � @tif (m) =

Z tk+1

tk

f (m) �Dm@tif

= 2
mX
j=1

(�1)m+j f (2m�j) �Dj�1@tif
���tk+1
tk

= 2
mX
j=1

(�1)m+j f (2m�j) � @tif (j�1)
���tk+1
tk

:

By Lemma 7.3 [@t�
i
f (j�1)](tk) equals �f (j)(t�i ) when k = i and is 0 otherwise, hence, with (7.8),

(7.7) reduces to

@tiJ(f) = f (m) � f (m)
���t�i
t+
i

+ 2
mX
j=1

(�1)m+j f (2m�j) � f (j)
���t+i
t�
i

= (jmptif
(m)) � (f (m)(t+i ) + f (m)(t�i )) + 2

m�1X
j=1

(�1)m+j (jmptif
(2m�j)) � f (j)(ti)

= 2
mX
j=1

(�1)m+j (jmptif
(2m�j)) � f (j)(ti)

;

with f (m)(ti) = (f (m)(t+i ) + f (m)(t�i ))=2:
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A necessary condition for (local) solutions (�; t) to problem (B) is stated next. To handle
repeated data sites in the sequence t, Proposition 7.5 will be applied with respect to the sequence t0

in (5.6). Also let n0 := #t0 and w0, z0 and "0 as in (5.7), and let ��ij be as de�ned in (2.2).

Theorem 7.9. Let z 2 Z and " 2 IRm�n
+ . Suppose that (�; t) is a local solution to problem

(B). Assume that Condition 4.1 holds with respect to t, and that kerDm \ ��1t B�
" (z)=;. Then

� 2 ran(Vt0) with Vt0 the basis for $2m;t0 that is dual to �t0 , and for some w 2 IRm�n,

(7:10)

(w0�t0 +	t0) � = w0z0;

w � 0; w (�t(f)� "2) = 0;
mX
j=1

w0ij(�
0
ij� � z0ij) � �0i;j+1� = 0 for i=2:n0�1;

with �i;m+1 = (�+i;m+1 + ��i;m+1)=2.

Proof: Since � necessarily solves problem (A) for the �xed t, then � 2 $2m;t0 and the �rst
two equations in (7.10) follow by Theorem 5.8 part (i). Since t0 is a local minimizer of J Æ'(�0; �) for
�xed �0 2 Z 0 such that � = Vt0�

0, then @t0
i
J(�) = 0. Therefore,

@t0
i
J(�) = 2

mX
j=1

(�1)m+j (jmpt0
i
�(2m�j)) � �(j)(t0i) = 0

by Proposition 7.5 with t0, �n0 , $2m;t0 and Vt0 in place of t, �n, $2m;t and Vt, respectively, and with
�(m)(t0i) := (�(m)((t0i)

+) + �(m)((t0i)
�))=2: By (5.13)

jmpt0
i
�(2m�j) = (�1)m+jw0ij(�

0
ij� � z0ij);

and the third equation in (7.10) follows.

Note that, on expanding out w0ij , �
0
ij and z0ij , the third equation in (7.10) is equivalent to

X
tk=t0i

mX
j=1

wkj(�kj� � zkj) � �k;j+1� = 0;

for each i=2:n0�1. This is an \orthogonality" condition. Indeed, assuming that t 2 �n and m > 1,
this equations reduces to

(�(ti)� zi1) � �0(ti) = 0

at ti when wi1 > 1 and wij = 0 for all j > 1. In particular, this occurs for \natural" spline curves.

Theorem 7.9 was derived, in part, by taking variations of the data sites in directions that
maintain their multiplicities, while holding the coeÆcients � �xed. This prevents diÆculties that can
occur when data sites are separated along a variation. However, it is shown in [K99b] that sequences
((�l; tl)) converge under certain conditions when tl �! t and when �l solves problem (A) for �xed
tl, even when there are repetitions. This contrasts spline \interpolation" with free data sites where
the functional J may become unbounded on similar sequences.
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8. Examples

In the examples that follow m = 2, and consequently the curves are cubic splines. In Figure
8.1, two near-interpolating \functions" are �t to the titanium heat data in [dB78: page 226], with
the abscissae of the data re-scaled over [0: :1] to conform to the setup here. In (a) the tolerances
are small, and consequently the curve mirrors the inections (possibly errors) in the data. With the
larger tolerances in (b) (as indicated by the \gates"), these errors are smoothed over, and a smoother
curve results. Moreover, of the 49 data points, 45 are active in (a) but only 13 in (b). This means
that the curve in (a) needs about 45 polynomial pieces, while the curve in (b) needs only about
13; a signi�cant reduction. Hence, near-interpolation provides an automatic mechanism for choosing
optimal data sites (hence knots) in spline curves that is generally less than the size of the data set.

600 700 800 900 1000 1100

0.6

0.8
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1.2

1.4

1.6

1.8
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2.2

2.4
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0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

"i1=0:001
"i2=1

45 active

J(�)=6:36e�4

(a)

"i1=0:02
"i2=1

13 active

J(�)=4:98e�4

(b)

Figure 8.1. Titanium heat data: 49 data points, m = 2, d = 1, solves (A).

As with the data in Figure 8.1, the data in 8.2 appears to have some error. Consequently, the
curve �t in (a) is rather unwieldy. To better recover the underlying \shape", larger tolerances are
introduced (displayed as circles), producing the curve in (b), which moreover has less \energy", as
measured by J .

(a) "i1=0:01 (b) "i1=0:1

Figure 8.2. Shepherd's crook: m = 2, d = 2, "i2 =1, solves (B).

In Figure 8.3, a sharp corner is approximated by near-interpolants to problem (A) for prescribed
data sites t. For (a), the tolerances "i2 are in�nite for all i, and for (b) these tolerances are chosen
small at the \corners". Consequently, the curve in (a) is a natural spline, unlike that in (b). At each
corner there is a horizontal tangent (1; 0) and a vertical tangent (0;�1) prescribed. The curvature of
the curves at these corners is moreover controlled by the tolerances "i1, i.e., the radii of the displayed
circles. A blowup of one of the corners in (b) is displayed in (c), with the �'s at the points �(ti).
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"i2=1

(a)

"i2=(1;:01;:01;:01;:01;1)

(b) (c)

Figure 8.3. \Sharp" corners: m = 2, d = 2, "i1 = 0:05, solves (A).

In Figure 8.4 the solution to problem (A) for two common choices of parametrizations are
compared to the solution to problem (B). As a consequence of the freedom to select an optimal
parametrization, there are more feasible curves to choose from in (B), and consequently, the third
curve has less energy than the �rst two, as measured by J . In general, parametrizations can have a
signi�cant e�ect on the resulting curves.

Uniform (A) Chordal (A) Optimal (B)

Figure 8.4. Various parametrizations: �xed and free data sites, m = 2, d = 2, "i2 = 0.
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