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Abstract. Re�nement equations involving matrix masks are receiving a lot of attention these days.
They can play a central role in the study of re�nable �nitely generated shift-invariant spaces, multires-
olutions generated by more than one function, multi-wavelets, splines with multiple knots, and matrix
subdivision schemes | including Hermite-type subdivision schemes. Several recent papers on this subject
begin with an assumption on the eigenstructure of the mask, pointing out that this assumption is heuris-

tically \natural" or \preferred". In this note, we prove that stability of the shifts of the re�nable function
requires this assumption.
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1. Introduction. Several desirable properties are not available with compactly sup-
ported orthogonal wavelets, e.g., symmetry and piecewise polynomial structure. Presently,
multi-wavelets seem to o�er a satisfactory alternative (cf., e.g., [3], [5]). Multi-wavelets are
wavelets constructed from a re�nable function vector � which satis�es a matrix re�nement
equation of the form

� =
X
�2ZZd

a(�)�(MT � ��):

Here, each coe�cient a(�) is a �� � matrix, and M 2 ZZd�d. Re�nable function vectors
have also appeared in the study of matrix subdivision schemes, which play an important
role in the analysis of multivariate subdivision schemes (cf. [4]).

As in the case of a single re�nable function, it is often impossible to study a re�nable
function vector directly. In such a case, its properties are analyzed indirectly via the
coe�cient sequence (a(�))�2ZZd (cf., e.g., [2], [6], [7], [8], [10], [11]). For example, the
eigenstructure of the matrix

A(0) =
X
�2ZZd

a(�)

has played an important role in such analyses. In particular, it is assumed in [7] and [11],
that 1 is a simple eigenvalue of A(0) and that all other eigenvalues have modulus strictly
less than 1. In this paper, we demonstrate that this is a very reasonable assumption by
proving that without such an assumption, the re�nable function vector � can not possibly
have stable shifts.

A slightly weaker statement has already been proved by Cohen, Dyn, and Levin in [1]
for `1-stability. In that paper, they assumed that a(�) = 0 for all but �nitely many � and
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that the associated subdivision scheme is C0, i.e., convergent. In this paper we strengthen
and extend their results.

To present our results in a general setting, we recall the following de�nition from [9]:

Lp := Lp(IRd) :=
�
� : IRd ! C

�� j�jp := ke�kLp([0::1)d) <1
	

for 1 � p � 1, where e� :=
P

�2ZZd j�(� � �)j. As pointed out in [9], Lp is a Banach space
with norm j � jp and

Lp � L1 \ Lp:

Now, let M 2 ZZd�d be an integer matrix satisfying limk!1M�k = 0. And let
�1; : : : ; �m 2 Lp. We say that � := (�j)mj=1 is M-re�nable if there exist sequences

aj;k 2 `1(ZZd) (1 � j; k � m) such that

�j =
mX
k=1

X
�2ZZd

aj;k(�)�k(M
T � ��) (j = 1; : : : ;m):

Equivalently, � is re�nable if

b�(M�) = A(�)b�(�) for all � 2 IRd; (1:1)

where the matrix A := (Aj;k)1�j;k�m of (continuous 2�-periodic) functions is de�ned by

Aj;k(�) :=
1

jdetM j

X
�2ZZd

aj;k(�)e
�ih�;�i:

The matrix A is referred to as the (re�nement) mask.
It is already well-known that equation (1.1) has only the trivial solution � = 0 if the

spectral radius �(A(0)) < 1. It is also well-known that convergence of the in�nite product

P :=
1Y
j=1

A(M�j �) (1:2)

requires that (i) �(A(0)) � 1, (ii) 1 be the only eigenvalue of modulus 1, and (iii) the
algebraic and geometric multiplicities of the eigenvalue 1 be the same. When this product
does converge, the function � de�ned by b�(�) = P (�)x is a solution to equation (1.1) for
any x 2 Cm. Convergence of the matrix subdivision scheme associated with equation (1.1)
requires similar assumptions on A (cf. [1]). Nonetheless, solutions to equation (1.1) may
exist even without such assumptions (as pointed out in [6] and [2]). However, the existence
of solutions with stable shifts will require these and more.

The shifts of �1; : : : ; �m 2 Lp are said to be `p-stable if there exist constants 0 <
c1 � c2 <1 such that

c1

mX
j=1

kajk`p � k
mX
j=1

X
�2ZZd

aj(�)�j (� � �)kLp � c2

mX
j=1

kajk`p
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for any a1; : : : ; am 2 `p(ZZd). In [9], Jia and Micchelli proved that the shifts of any
�1; : : : ; �m 2 Lp are `p-stable if and only if the sequences

�b�j(� + 2��)
�
�2ZZd

(j = 1; : : : ;m)

are linearly independent for every � 2 IRd. This will play the major role in our proofs.
In the statement of our theorems, we use the following terminology. An eigenvalue is

non-degenerate if its algebraic and geometric multiplicities agree. A simple eigenvalue
is a non-degenerate eigenvalue of multiplicity one.

To facilitate our proofs, we de�ne

V := f v 2 ZZd j v =Mt for some t 2 [0 : : 1)d g:

Then V is a complete set of representatives for the quotient group ZZd=MZZd. In particular,
ZZd is the disjoint union of the sets v +MZZd (v 2 V ). We will actually only ever make
use of the set V 0 := V n0.

2. Stability imposes structure.
Theorem 2.1. Let �1; : : : ; �m 2 Lp. Suppose � := (�j)mj=1 is M-re�nable with mask

A. If the shifts of �1; : : : ; �m are `p-stable, then 1 is a simple eigenvalue of A(0) and all

other eigenvalues have modulus strictly less than 1. Moreover, b�(0) is a right 1-eigenvector.
Proof. We assume stability to demonstrate the eigenvalue assertions.
By the re�nement equation (1.1), we have for any � 2 IRd and n 2 IN,

b�(�) = kY
j=1

A(M�j �)b�(M�k�)

since M�k ! 0 (and since A and b� are both continuous), �(A(0)) < 1 would imply that
� is identically zero | contradicting the assumption that the shifts of � are stable. So
�(A(0)) � 1.

Now, suppose y 2 Cm satis�es yTA(0) = �yT 6= 0 for some � 2 C with j�j � 1. Then
the re�nement equation (1.1) implies that

yT b�(2Mk(M� + v)�) = yTAk(0)A(2M�1v�)b�(2M�1v� + 2��)

= �kyTA(2M�1v�)b�(2M�1v� + 2��)
(2:1)

for any k 2 ZZ+, � 2 ZZd, v 2 V 0. Since v 2 V 0 (hence M� + v 6= 0), our assumptions on
M imply that limk!1 jMk(M� + v)j = 1. Since yT� 2 Lp � L1, the left-hand side of
equation (2.1) then tends to zero as k tends to in�nity. And, since j�j � 1, this implies
that

yTA(2M�1v�)b�(2M�1v� + 2��) = 0

for every � 2 ZZd (which implies that yTA(2M�1v�) = 0 for every v 2 V 0, since the shifts

of � are stable). Together with equation (2.1), this implies that yT b�(2��) = 0 for all
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� 2 ZZdn0, since every such � has a (unique) representation of the form � = Mk(M�+ v)
for some k 2 ZZ+, � 2 ZZd, v 2 V 0. The stability of the shifts of � then implies that

yT b�(0) 6= 0 and, a fortiori, b�(0) 6= 0. The re�nement equation (1.1) then implies thatb�(0) is a right 1-eigenvector of A(0).
Now, suppose that yT1 A(0) = �1y

T
1 6= 0 and yT2 A(0) = �2y

T
2 6= 0 with j�ij � 1 (i =

1; 2). The above arguments imply that yTi
b�(2��) = 0 8� 2 ZZdn0 and yTi

b�(0) 6= 0 |

without loss of generality, we may assume that yTi
b�(0) = 1. Then (y2 � y1)T b�(2��) = 0

for every � 2 ZZd. The stability of the shifts of � now implies that y1 = y2.
We conclude that 1 is an eigenvalue of A(0) of geometric multiplicity one. It is the

only eigenvalue outside the open unit disc. Its (unique up to multiplicity) right eigenvector

is b�(0) and its (unique up to multiplicity) left eigenvector, yT , satis�es yT b�(2��) = 0 for
all � 2 ZZdn0. If the algebraic multiplicity of the eigenvalue 1 were greater than one, then
the (one dimensional) left and right eigenspaces would be orthogonal one to the other (this

follows easily by considering the Jordan canonical form of A(0)). That is, yT b�(0) would
be zero | contradicting the assumption that the shifts of � are stable.

Remark. The above proof in fact implies that the left-eigenvector yT of A(0) actually
satis�es the \sum rules"

yT
X
�2ZZd

a(� +MT�) = yT 8� 2 ZZd;

as well as the so-called Strang-Fix conditions of order 1

yT b�(0) 6= 0; yT b�(2��) = 0 8� 2 ZZdn0:

So stability implies accuracy of order 1 (or density) as expected.

3. Stability of matrix functions. A generalized stability notion for matrix func-
tions has been recently considered in [1]. In the spirit of that paper, we will say that the
shifts of anym�n matrix � = (�j;k) of Lp-functions are `p-stable if there exist constants
0 < c1 � c2 <1 such that

c1

mX
j=1

kajk`p �
nX

k=1

k
mX
j=1

X
�2ZZd

aj (�)�j;k(� � �)kLp � c2

mX
j=1

kajk`p

for any a1; : : : ; am 2 `p(ZZd).
Many of the results from [9] can be generalized to cover this notion. To state some

pertinent ones, we �rst recall some of their notation. We denote the d-dimensional torus

�
(z1; : : : ; zd) 2 Cd

�� jz1j = � � � = jzdj = 1
	

by TTd. Then, for any f; g 2 L2, de�ne

[f; g](z) :=
X
�2ZZd

hf; g(� � �)iz� (z 2 TTd);
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where hf; gi :=
R
IRd fg for f; g 2 L2(IRd). And, lastly, for �1; : : : ; �m 2 Lp, de�ne

S1(�1; : : : ; �m) :=
n mX

j=1

X
�2ZZd

aj (�)�j(� � �)
��� aj 2 `1(ZZd) for j = 1; : : : ;m

o
:

It is worth pointing out that [f; g](z) is a continuous function of z on TTd, and that
S1(�1; : : : ; �m) is a subspace of Lp(IRd).

A generalized statement of [9, Theorem 4.1] is
Theorem 3.1. Let �j;k 2 L2(IRd); (j = 1; : : : ;m; k = 1; : : : ; n). Then the shifts of

� = (�j;k) are `2-stable if and only if one of the following conditions holds:

(i) For any � 2 IRd, the sequences (b�j;k(� + 2��))n
k=1;�2ZZd

(j = 1; : : : ;m) are

linearly independent.
(ii) The matrix (

Pn

k=1[�j;k; �`;k](z))1�j;`�m is positive de�nite for every z 2 TTd.
(iii) There exist gj;k 2 S1(�1;k; : : : ; �m;k) (j = 1; : : : ;m; k = 1; : : : ; n) such that

nX
k=1

hgj;k; �`;k(� � �)i = �j`�0� for 1 � j; ` �m and � 2 ZZd:

And [9, Theorem 4.2] is generalized as follows.
Theorem 3.2. Let �j;k 2 Lp(IRd); (j = 1; : : : ;m; k = 1; : : : ; n). Then the shifts of

� = (�j;k) are `p-stable if and only if condition (3.1.i) holds.
The proofs of these theorems are clear from the proofs of [9, Theorem 3.3], [9, Theorem

3.5], and [9, Theorem 4.1]. We now state a generalization of Theorem 2.1. The proof is
similar, so we provide only the major distinctions below.

Theorem 3.3. Let �j;k 2 Lp(IRd); (j = 1; : : : ;m; k = 1; : : : ; n). Suppose � = (�j;k)
is M-re�nable with mask A. If the shifts of � are `p-stable, then 1 is a non-degenerate
eigenvalue of A(0); its multiplicity is the rank of the matrix b�(0) = �b�i;j(0)�; and all other

eigenvalues have modulus strictly less than 1. In particular, the columns of b�(0) must span
the right 1-eigenspace of A(0).

Proof. De�ne

W := f y 2 Cm j yTA(0) = �yT for some j�j � 1 g and X := fx 2 Cm j A(0)x = x g:

Then rank b�(0) � dimX � dimW , since every non-zero column of b�(0) is a right 1-
eigenvector of A(0).

As in the proof of Theorem 2.1, if y 2 W then yT b�(2��) = 0 for all � 2 ZZdn0.

If the shifts of � are stable, then yT b�(0) 6= 0 for every y 2 W . This implies that

dimW � rank b�(0), hence both must equal the geometric multiplicity of the eigenvalue 1.
In particular, all other eigenvalues have modulus strictly less than one, and the columns
of b�(0) span the right 1-eigenspace.

If the algebraic multiplicity of the eigenvalue 1 is greater than its geometric multi-
plicity, then there exists a left 1-eigenvector y for which yTx = 0 for all x 2 X. Such y
satis�es yT b�(2��) = 0 for all � 2 ZZd and the shifts of � are not stable.



6 THOMAS A. HOGAN

We can say even more under slightly more restrictive assumptions on the sequences
(aj;k(�))�2ZZ. Suppose, for example, that each of these sequences decays exponentially
fast, then the entries of the matrix A are analytic functions. Now, if � is a matrix solution
to the re�nement equation (1.1) and the shifts of � are stable, then the arguments of
[6] (and the consequences of Theorem 3.3) imply that the in�nite matrix product (1.2) is
convergent, and that the map v 7! Pv is an isomorphism from the right 1-eigenspace of
A(0) onto the (vector) solution space of the re�nement equation (1.1). Hence this solution
space is already spanned by some N of the columns of �, where N is the multiplicity of
the eigenvalue 1 of A(0). This leads to

Theorem 3.4. Suppose some (matrix) solution of the re�nement equation (1.1) has
`p-stable shifts. Then a given solution � has `p-stable shifts if and only if the columns ofb�(0) span the right 1-eigenspace of A(0).
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