
On ascertaining inductively the dimension of the joint kernel

of certain commuting linear operators ∗

Carl de Boor, Amos Ron, and Zuowei Shen

Authors’ affiliation and address:
Center for Mathematical Sciences
University of Wisconsin-Madison
Madison WI 53706 USA

updated 27 apr 96 to reflect changes made by copy editor for Advances in Applied Mathematics
and changed reference info

∗ This work was supported by the United States Army under Contract DAAL03-G-90-0090,
and by the National Science Foundation under grants DMS-9000053, DMS-9102857.

i



proposed running head: dimension of joint kernels

Proofs should be sent to:
Carl de Boor
Center for Mathematical Sciences
University of Wisconsin-Madison
Madison WI 53706

ii



Abstract: Given an index set X, a collection IB of subsets of X (all of the same cardinality),
and a collection {`x}x∈X of commuting linear maps on some linear space, the family of linear
operators whose joint kernel K = K(IB) is sought consists of all `A :=

∏
a∈A `a with A any subset

of X which intersects every B ∈ IB. The goal is to establish conditions, on IB and `, which ensure
that

dimK(IB) =
∑
B∈IB

dimK({B}),

or, at least, one or the other of the two inequalities contained in this equality. Concrete instances
of this problem arise in box spline theory, and specific conditions on ` were given by Dahmen and
Micchelli for the case that IB consists of the bases of a matroid.

We give a new approach to this problem, and establish the inequalities and the equality under
various rather weak conditions on IB and `. These conditions involve the solvability of certain linear
systems of the form `b? = φb, b ∈ B, with B ∈ IB, and the existence of ‘placeable’ elements of X,
i.e., of x ∈ X for which every B ∈ IB not containing x has all but one element in common with
some B′ ∈ IB containing x.

AMS (MOS) Subject Classifications: primary: 47A50; secondary: 05B353, 41A63, 35G05, 47D03.

Key Words and phrases: dimension of nullspaces, solvability, matroidal structure, placeable, box
splines.
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On ascertaining inductively the dimension of the joint kernel

of certain commuting linear operators

1. Introduction

Given a linear space S (over some field), we attempt to determine the dimension of spaces of
the form

K := ∩l∈L ker l,

with L a (finite) sequence of linear endomorphisms of S, i.e., a sequence in L(S), chosen in a manner
described below.

We start with a finite set X of atoms, and associate each x ∈ X with a map `x ∈ L(S). No
assumption is made in advance concerning the individual `x, x ∈ X, but it is assumed throughout
this paper that the atomic maps {`x}x∈X commute with one another:

`x`y = `y`x, x, y ∈ X.

This means, in particular, that the product

`A :=
∏
x∈A

`x, A ⊆ X,

is well-defined, without any need for ordering X.
The joint kernel K ⊆ S whose dimension we attempt to determine can be described in terms

of a subset IB of the power set 2X; the latter consists of all subsets of X. In general, the set IB can
be chosen in quite an arbitrary manner, and, in particular, there is no assumption that

X(IB) :=
⋃

B∈IB

B

covers all of X. Once IB is selected, the joint kernel K = K(IB) is defined as

K(IB) :=
⋂

A∈AA(IB)

ker `A,

where
2X ⊇ AA := AA(IB) := {A ⊆ X : ∀{B ∈ IB} A ∩B 6= ∅}

is the set of all subsets of X which meet every B ∈ IB. A particularly simple situation arises when
IB consists of the bases of some matroid. Consistent with this, we call each minimal element (under
inclusion) of AA a cocircuit even when IB does not have matroidal structure, and denote the set of
all cocircuits by

AAmin.

When IB is empty, K(IB) = {0}. More interestingly, when IB consists of a single set B ⊆ X,
K is simply the joint kernel of the atomic maps {`x}x∈B . It was the ingenious idea of Dahmen
and Micchelli [DM3] to study the relation between the dimension of K and the dimensions of the
“block spaces” K({B}), B ∈ IB. Their work was stimulated by two nontrivial examples that occur
in box spline theory (cf. [BH], [DM1], [DM2], [BeR], [DM3]), one of which we now describe.
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Example 1.1. Assume that S is the space D(IRs) of complex-valued distributions (entire functions
or formal power series will do as well), and let each `x be a differential operator of the form
`x = Dvx − λx, where vx ∈ IRs\{0}, λx ∈ C, and Dy, y ∈ IRs, is the directional derivative in the
y-direction. Define

IB := {Y ⊆ X : {vy}y∈Y is a basis for IRs}.
It is easy to verify that in this case, for each B ∈ IB, K({B}) is spanned by one exponential, hence,
in particular, dimK({B}) = 1. It is much harder to prove here that

(1.2) dimK = #IB.

This result was proved first for the case λ = 0 in [DM1] (see also [HS]), and for the general case in
[BeR] and [DM3]. Note that (1.2) can also be written as

(1.3) dimK =
∑
B∈IB

dimK({B}),

and it was Dahmen and Micchelli’s observation in [DM3] that this latter formulation holds in more
general settings which started research into these matters. We will get to a more systematic discus-
sion of the literature later on in this introduction. We mention at this point that the significance
of (1.3) in approximation theory lies in the fact that, whenever {vx}x∈X ⊆ ZZs, K determines
the exponential-polynomial space in the span of the integer translates of the corresponding box
spline (cf. the above-cited references for details). However, the above-mentioned connection is no
more valid when {vx}x∈X 6⊆ ZZs, and the analogous problem (of determining the dimension of
the exponential-polynomials in that span) is hopelessly complicated. It was our desire to settle
this more general problem that partly motivated the research that led to the present paper. More
details can be found in §4.

In the above example, each B ∈ IB, being a basis for IRs, is of cardinality s. We retain such
an assumption throughout this paper, i.e., assume that

(1.4) #B = s, all B ∈ IB,

for some positive integer s, and call it the rank of IB. Also, because of this example (and again in
consistency with matroid theory), we term the elements of IB bases. Our ultimate goal is to prove
(1.3) which, however, cannot be proved in general without further assumptions, as simple examples
show (see Example 2.1). All methods now in the literature, as well as our approach here, separate
the discussion of (1.3) into proving the inequality ≤ (i.e., upper bounds) and the inequality ≥ (i.e.,
lower bounds). Assumptions to be made for the derivation of (1.3) fall into two essentially different
categories, those involving IB and those involving `.

(i) IB-conditions. In addition to (1.4), we assume in the paper one or more of the following:
(1) IB is matroidal (i.e., IB is the collection of bases for a matroid defined on a subset of X); (2) IB
is order-closed; (3) IB is minimum-closed; (4) IB is fair; (5) X contains a replaceable element; (6) IB
satisfies the IE-condition (i.e., ∅ ∈ IE); (7) X contains a placeable element. All these conditions will
be defined in the sequel; still, as an easy reference for the reader, we record the relations observed in
the paper between these various conditions in the following diagram, in which each arrow indicates
a proper (i.e., nonreversible) implication, and, in addition, the absence of an otherwise possible
arrow indicates that the corresponding implication does not hold in general:

(4) −→ (5)
↗

(1) −→ (2) −→ (3)
↘

(6) −→ (7)
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It is probably inherent in the problem (and this is confirmed by [DDM: Theorem 6.2] and by
Proposition 3.24) that, by imposing IB-conditions (of any type), one can infer only upper bounds
(i.e., prove the inequality ≤ in (1.3)), and lower bounds must incorporate knowledge on the oper-
ators involved, which is the second category of assumptions we impose:

(ii) `-conditions, namely, assumptions on the operators {`x}x∈X. We employ three such
assumptions. One is the solvability of certain atomic systems (cf. 3.2), a second is directness of
(IB, `) (cf. 7.1), and a third is s-additivity, from [S] (cf. 8.1).

The known methods employed for the derivation of (1.3) can be divided into inductive and
noninductive. The inductive methods partition IB into two (or more) disjoint subsets

IB = IB1 ∪ IB2,

study the relations between dimK and dimK(IB1)+dimK(IB2), and proceed to the consideration
of each IBj , j = 1, 2. This results in a binary (or higher-order) tree decomposition of IB. The only
two noninductive results that we are aware of are the complex-variable proof in [BeR] that shows
that in Example 1.1 one has

dimK ≥ #IB,

and the polynomial ideal argument in [BR] that shows that in Example 1.1 one has

(1.5) dimK(IB′) ≥ #IB′

for an arbitrary subset IB′ ⊆ IB (as matter of fact, the argument in [BeR] also implies (1.5), but
no formal statement to that extent is made there). The latter result (1.5) is of particular interest
because it proves lower bounds while the matching upper bounds might be invalid; moreover, these
lower bounds require no IB-conditions. We are unaware of noninductive methods for the derivation
of upper bounds. (The proof in [BR] that shows equality to hold in (1.5) in case IB is order-closed
is only seemingly noninductive, since it invokes a result from [DR] which is proved there by an
inductive method.) As for inductive arguments, all those that we are aware of (including, thus,
those of the present paper) require some IB-conditions and, moreover, the IB-conditions which are
known to suffice for lower bounds imply matching upper bounds as a by-product.

The two basic operations in matroid theory are deletion and restriction, and these operations
play a major role in our more general context as well. Precisely, for a given y ∈ X, we delete y
from X to obtain

IB\y := {B ∈ IB : y 6∈ B},
and restrict IB to y to obtain

IB|y := {B ∈ IB : y ∈ B},
and in this way to form a partition of IB into two sets. Note that

(1.6) IB ⊆ IB′ =⇒ K(IB) ⊆ K(IB′),

and hence both spaces K(IB\y) and K(IB|y) are subspaces of K = K(IB).
In principle, we study the exactness of sequences of the form

0 →? ↪→K
j→? → 0,

where the unknown terms should be related to the space of deletion and the space of restriction.
Thanks to (1.6), we have (at least) two options to consider:

(1.7) 0 → K(IB\y) ↪→ K
j→? → 0
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and

(1.8) 0 → K(IB|y) ↪→ K
i→? → 0.

The next step to be made then is the selection of the appropriate map j or i and of the correspond-
ing space now missing in the above sequences. Before we discuss such completions of the above
sequences, we require some further notations and definitions.

Guided by Example 1.1, we refer to the elements of {Y ⊆ X : ∃{B ∈ IB}B ⊆ Y } as the
spanning subsets of X, and to the collection

IH = IH(IB)

of all maximally nonspanning subsets as hyperplanes. We also need the family

II = II(IB) :=
⋃

B∈IB

2B

of all independent subsets of X. We say that IB is matroidal whenever II(IB) defines a matroid
on X(IB), which means (cf. [W]) that II(IB) 6= ∅ and, for any I1, I2 ∈ II(IB) with #I1 = #I2 + 1,
there is y ∈ I1 for which I2 ∪ {y} is still independent. Finally, for Y ⊆ X, we set

(1.9) IBY := {B ∈ IB : B ⊆ Y }.

This is consistent with the notation IB\y introduced earlier if \y is interpreted as X\{y}.
The DM map. Assuming that IB is matroidal, Dahmen and Micchelli offer in [DM3] the following
choice for the missing map and space in (1.7). They choose the map j as

(1.10) j : K → ×
A∈AAmin(IB\y)

K(IBX\A) : f 7→ (
`Af

)
A∈AAmin(IB\y)

,

and employ it, in [DM3: Theorem 3.1], to prove the upper bound

(1.11) dimK ≤
∑
B∈IB

dimK({B})

for a matroidal IB. They also assert (cf. [DM3: Theorem 3.3]) equality in (1.11) under additional
`-conditions, and one of the by-products of the present paper (cf. §5) is the bridging of an apparent
gap in the proof of the supporting Lemma 3.2 of [DM3]. Shen in [S] introduces a condition, called
‘s-additivity’ (cf. §8), on an abelian semi-group G of linear maps on S and, using the DM map,
shows his condition to be necessary and sufficient for equality in (1.11) to hold for all maps `
from X into G and all matroidal IB with rank s. Jia, Riemenschneider and Shen [JRS1] refine
and extend the results of [S], from a matroidal IB to an “order-closed” IB, a notion introduced in
[BR]. Further, [JRS1] prove that if G is a semi-group of differential (resp. difference) operators,
generated by polynomials in s indeterminates over some algebraically closed field of characteristic
0, and the linear space S is a space of formal power series (resp., sequences) in s indeterminates over
the same field, then G is s-additive (cf. Corollary 3.5 and Theorem 4.4 in [JRS1]). More recently,
Dahmen, Dress and Micchelli [DDM], using homological algebra and a replaceability condition
(cf. §2), derived (1.3), i.e., equality in (1.11), for the matroidal and order-closed structure under
certain `-conditions (cf. [DDM: Theorems 6.2, 6.5]). Those conditions are stronger than the basic
solvability condition 3.2 assumed in the present paper.
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It is the DM map that naturally gives rise to the notion of “replaceability”. More about this
map and the exactness of the corresponding short sequence is given in §2 and §8.

The atomic map. It is quite surprising that this simple idea was not used before. Here we choose
i in (1.8) to be the restriction of `y to K, and thus obtain, for any y ∈ X, the following short
sequence

(1.12) 0 → K(IB|y) ↪→ K
i→K(IB\y) → 0.

We will readily observe in §2 that K(IB|y) ⊆ ker i and `yK(IB) ⊆ K(IB\y), hence (1.12) is a short
sequence in the homological sense. However, we can infer neither upper bounds nor lower bounds
from this sequence, since, in general, the sequence is inexact in two different locations: first, we do
not expect in general to have K(IB|y) = ker i, and further, we do not expect in general i to be onto.
The derivation of upper bounds relies on the first exactness, the derivation of lower bounds relies
on the second exactness. It is the desire to prove that K(IB|y) = ker i that leads to the notion of
placeability (§2) and the further desire to prove the ontoness of i that leads to the IE-condition (cf.
§3).

The rest of this paper is organized as follows. Section 2 is devoted to the derivation of upper
bounds using either of the above two approaches. Its main result is Theorem 2.16. The equality
(1.3) is obtained (via the atomic map) in §3, which contains the main result of this paper (Theorem
3.19). An example relevant to box spline theory is studied in §4, and the application of Theorem
3.19 to matroidal and minimum-closed structures (together with some improvements) are discussed
in §5 and §6, respectively (see, in particular, Theorems 5.2 and 6.4), with an application of the
results on matroids and minimum-closed sets presented in §7. The DM map is revisited in §8, which
is the counterpart of §3.

Our joint venture that led eventually to the present paper was initiated by the reading of
[DDM]. We take this opportunity to thank the authors of [DDM] for making that preprint of their
paper available to us.

2. Replaceability and placeability

We describe in this section IB-conditions which allow us to obtain upper bounds on dimK
in terms of dimK(IB\y) and dimK(IB|y) for a suitably chosen y ∈ X. We emphasize that no
`-conditions are imposed here, hence these bounds are valid for an arbitrary S and arbitrary
` : X → L(S). One might wonder whether it may be possible to establish realistic upper bounds on
dimK without any IB-conditions, especially since (1.5) shows that this might be the case for lower
bounds. The following example hints at the difficulties in obtaining such upper bounds without
IB-conditions.

Example 2.1. Let X, IB and {`x}x∈X be as in Example 1.1. We assume that {vx}x∈X are held
fixed, select an arbitrary IB′ ⊆ IB, and consider the possible influence of the choice of the constants
λ := {λx}x on dimK(IB′) (such considerations are intimately related to the notions of “algebraic
multiplicity” and “geometric multiplicity” of a zero of an analytic ideal, cf., e.g., [AGV]). Ideally, we
would like dimK(IB′) to be independent of the choice of λ, as is the case for certain IB′. [BR] shows
that for an arbitrary IB′ ⊆ IB and for a generic choice of λ, K(IB′) is spanned by #IB′ exponentials,
hence its dimension is #IB′. On the other hand, if we choose IB′ to consist of pairwise disjoint
bases, then AAmin consists of all sets containing exactly one element from each B ∈ IB′, hence, with
the choice λx = 0, all x, K(IB′) necessarily equals the space of all s-variate polynomials of degree
< k := #IB′ (since it trivially contains the latter polynomial set, yet it can contain no nontrivial
homogeneous polynomial of degree k), and hence dimK(IB′) =

(
k+s−1

s

)
> k = #IB′ (unless s = 1).

5



Now, suppose that we choose IB′ as above and want to derive lower bounds and upper bounds
on dimK(IB′) without specifying the choice of λ. In view of the above discussion, the best possible
lower bound is (1.5), and this is a realistic bound since it generically coincides with the correct
dimension. In contrast, we cannot provide an upper bound better than dimK(IB′) ≤ (

k+s−1
s

)
,

which, generically, is a gross overestimate of the correct dimension, and deviates from the desired
estimate (1.3).

The example shows, in particular, that the computation of dimK for a general IB might
require detailed knowledge of the interplay between the atomic maps involved. In contrast, we
compute dimK in this paper under mild general assumptions on the atomic maps. It is therefore
understandable that we must employ in our course suitable IB-conditions.

Since the DM map and the atomic map require different IB-conditions, we separate the dis-
cussion accordingly. In these discussions, we use intensively the following simple fact which follows
from the observation that, for any Y ⊆ X and any A ∈ AA(IB\Y ), Y ∪A ∈ AA (where, as mentioned
before, \Y := X\Y ).

Proposition 2.2. For any X, IB and `, and any Y ⊆ X, `Y maps K into K(IB\Y
).

2.1. The DM map, Jia’s intersection condition, and replaceability

We consider the DM map j defined in (1.10) and the corresponding short sequence (1.7).
Because of Proposition 2.2, j is well-defined, and further, one observes that ker j = K(IB\y).

We find it useful in this section to index the target of j by H ∈ IH rather than by A ∈
AAmin(IB\y). This is possible, because

AAmin(IB\y) = {X\(y ∪H) : y /∈ H ∈ IH} ∪ {X\H : y ∈ H ∈ IH} = {X\(y ∪H) : H ∈ IH}.
Further, since IBy∪H = ∅ in case y ∈ H ∈ IH, the only nontrivial components of the elements in the
target

×
H∈IH

K(IBy∪H)

of the DM map are those belonging to

IH\y := {H ∈ IH : y /∈ H}.
Therefore we infer from (1.7), (1.10) the following inequality:

(2.3) dimK ≤ dimK(IB\y) +
∑

H∈IH\y

dimK(IBy∪H).

The arguments so far are valid for a general IB, and hence (2.3) holds in general. It corresponds
to writing IB as the union

(2.4) IB = IB\y ∪
⋃

H∈IH\y

IBy∪H ,

but, offhand, there is no reason to believe that this is a partition of IB, since we might find the
same basis B in two different IBy∪H (this is the case, e.g., for the IB′ in Example 2.1). In case the
union in (2.4) is not disjoint, (2.3) will not lead to the desired upper bound (1.11) on dimK.

This means that we are led to require the intersection condition,

(2.5) ∀{H,H ′ ∈ IH\y} IBy∪H ∩ IBy∪H′ = ∅, unless H = H ′,

first suggested by Jia, in [J].
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Lemma 2.6. The intersection condition (2.5) is satisfied (for y) if and only if, for every B ∈ IB|y,
there is at most one H ∈ IH\y containing B\y.

Proof: We observe that any B ∈ IBy∪H ∩ IBy∪H′ must contain y, i.e., is in IB|y. Thus the
condition B ∈ IBy∪H ∩ IBy∪H′ , H 6= H ′, is equivalent to the condition that (B\y) is contained in
the two different hyperplanes H and H ′.

The intersection condition (2.5), as we will prove in a moment, is equivalent to having y
“replaceable” in IB, in the sense of the following definition.

Definition 2.7. y is replaceable in IB (or, IB-replaceable) if for every B ∈ IB|y and every
B′ ∈ IB there is some x ∈ B′ so that (B\y) ∪ x ∈ IB.

For example, if #X(IB) ≤ s + 1, then every x ∈ X(IB) is replaceable. Thus, the simplest IB
without a replaceable element is {12, 34}.
Proposition 2.8. y is IB-replaceable if and only if (2.5) holds (for y).

Proof: ‘⇐=’: Let B ∈ IB|y and B′ ∈ IB. Since B\y is not spanning, there exists H ∈ IH\y

containing B\y. We claim that, necessarily,

H = H ′ := {x ∈ X : (B\y) ∪ x 6∈ IB}.
For, H ⊆ H ′ since H contains B\y but contains no basis (in particular no basis of the form
(B\y) ∪ x). On the other hand, if there were x ∈ H ′\H, then (B\y) ∪ x would be not spanning,
hence would be contained in some hyperplane H ′′, and this hyperplane could not be H, since H
does not contain x. This would give us two distinct hyperplanes both containing B\y, hence neither
one containing y, and this would contradict (2.5), by Lemma 2.6. But now, knowing that H ′ is a
hyperplane, we know that it cannot contain B′, hence there is some x ∈ B′\H ′ and, by the very
definition of H ′, (B\y) ∪ x ∈ IB for each such x.

‘=⇒’: If IB fails to satisfy (2.5) (for y), then there exist two distinct hyperplanes H,H ′ not
containing y for which there is some B ∈ IBy∪H ∩ IBy∪H′ . B is necessarily of the form (B\y) ∪ y
with B\y ⊆ H ∩H ′. Since H 6= H ′, the union H ∪H ′ properly contains H and H ′, hence spans,
i.e., contains a basis B′. For x ∈ B′, (B\y)∪x is a subset of either H or H ′ (since (B\y) ∈ H ∩H ′

and x ∈ H ∪H ′), hence cannot span. This means that y ∈ B is not replaceable by any x ∈ B′.

We note that this proposition is close to [DDM: Lemma 6.4]. We also note, for later use, the
following characterization of IB being matroidal (this is a standard result; cf., e.g., [W: Theorem
1.2.1]).

Proposition 2.9. The collection IB 6= ∅ is matroidal if and only if every y ∈ X(IB) is IB-replaceable.

Proof: ‘=⇒’: Let y ∈ B ∈ IB and B′ ∈ IB. Since #(B\y) < #B′ and both sets are
independent, the assumption that IB is matroidal implies that there must be x ∈ B′ so that
(B\y) ∪ x is independent, hence a basis.

‘⇐=’: Let P,Q ∈ II with #P < #Q. Then there are P ′, Q′ with P ∪ P ′, Q ∪ Q′ in IB. We
order P ′ in any manner and replace sequentially each p′ ∈ P ′ ⊆ (P ∪ P ′) ∈ IB by an element from
the basis Q ∪ Q′. At the end, we obtain a basis of the form P ∪ P ′′, with P ′′ ⊆ Q ∪ Q′. Since
#P ′′ = #P ′ > #Q′, we must have P ′′ ∩Q 6= ∅, and any set of the form P ∪ q for some q ∈ P ′′ ∩Q
is independent.

Corollary 2.10. For any independent (s−1)-set C, IB|C is matroidal.

Proof: Every x ∈ X(IB|C) is either in C or else completes C to a basis, hence, either way,
is replaceable.
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To summarize: if y is IB-replaceable, then the union (2.4) is disjoint and therefore the estimate
(2.3) provides a first inductive step toward the final desired upper bound (1.11). However, our
primary aim in this paper is the application of the atomic map to which we now turn our attention.

2.2. The atomic map and placeability

Considering (1.12), we observe that, by Proposition 2.2, the map i is well-defined (i.e., maps
intoK(IB\y)). Further, we always have thatK(IB|y) ⊆ ker i = ker `y∩K: the inclusionK(IB|y) ⊆ K
is due to IB|y ⊆ IB, while the inclusion K(IB|y) ⊆ ker `y follows from the fact that {y} is a cocircuit
in IB|y.

The atomic map provides the necessary inductive step towards an upper bound if, in addition
to the above, we also know that K(IB|y) ⊇ ker i. For this, we introduce the following notion of
placeability:

Definition 2.11. We say that Y is placeable into B if Y ∪ C ∈ IB for some C ⊆ B. If Y is
placeable into every B ∈ IB, then we say that Y is placeable (in IB), or, IB-placeable.

For example, if #X ≤ s+ 1, then every x ∈ X(IB) is placeable. Thus, the simplest IB without
a placeable element is {12, 34}. Further, y is replaceable in IB iff for each B ∈ IB, B\y is IB-
placeable. On the other hand, there may be some replaceable atom even though none of the atoms
are placeable, as is the case for IB = {123, 126, 129, 345, 678}, in which 9 is trivially replaceable,
while none of the atoms in 345 can be placed in 678 and vice versa, and 1, 2, or 9 cannot be placed
in either.

Further, if IB is matroidal, then every independent element, i.e., every y ∈ X(IB), is placeable
(by Proposition 2.13 below), but the converse does not hold, as the following example shows. Let
X = 12345 := {1, 2, 3, 4, 5} and take IB :=

(
X
3

)\{123, 124} (with
(
X
d

)
the collection of all d-subsets

of X). Since every x ∈ X is placeable into any B ∈ (X3 ) in three different ways, the removal of two
sets cannot destroy placeability of any x ∈ X. On the other hand, 5 in 125 cannot be replaced by
anything in 234, hence IB fails to be matroidal, by Proposition 2.9.

The following, extended, example shows that the placeability of every x ∈ X fails to imply
various other conditions.

Example 2.12. Let X = 12345678 := {1, ..., 8} and let IB :=
(
X
3

)\{123, 124, 567, 568}. Then,
every x ∈ X is IB-placeable, but no x ∈ X is IB-replaceable: given 1 ≤ x ≤ 4, x in B = 56x cannot
be replaced by any element from 578, and a similar argument applies to x > 4. In particular, IB
is neither matroidal (by Proposition 2.9), nor is it minimum-closed (by Proposition 6.6, and for
whatever ordering we choose to impose on X), hence cannot be order-closed.

The lack of a replaceable atom makes this example inappropriate for an application of the DM
map. On the other hand, we will verify (cf. Example 6.8) that IB here satisfies the IE-condition,
and this guarantees a successful binary decomposition of IB via the atomic map.

We have just seen that total placeability (i.e., having every y ∈ X(IB) placeable) falls short of
implying that IB is matroidal. In this regard, it is useful to note the following two propositions.

Proposition 2.13.
(i) If IB is matroidal, then every independent set is placeable.
(ii) If every independent (s−1)-set is placeable, then IB is matroidal.

Proof: (i): This is a standard matroid argument. Let C ∈ II and B ∈ IB. We are to prove
that B ∪ C contains some B′ ∈ IB|C . This is certainly so in case #C = s. In the contrary case,
B contains some (#C + 1)-set C ′, and, IB being matroidal, this implies that, for some y ∈ C ′,
C ∪ y ∈ II. Downward induction on #C then completes the proof.
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(ii): Since every independent (s−1)-set is placeable if and only if every element of X(IB) is
replaceable, Proposition 2.9 supplies the proof.

Proposition 2.14. If, for every Y ⊆ X, every y ∈ X(IB|Y ) is IB|Y -placeable, then IB is matroidal.

Proof: In view of Proposition 2.9, it suffices to show that every y ∈ X(IB) is replaceable.
Let B,B′ ∈ IB and let y ∈ B. We need to find x ∈ B′ such that (B\y) ∪ x ∈ IB, and may assume
without loss that y 6∈ B′ (otherwise, choose x to be y). We prove the existence of such an atom x
by (downward) induction on #Y , with Y := B ∩ B′, there being nothing to prove when #Y = s.
Also, when #Y = s − 1, we choose x as the single element of B′\B. So, assume #Y < s − 1.
Then B\(y ∪ Y ) is not empty. Let b be one of its elements. By assumption, b is IB|Y -placeable,
hence we can place b in B′, i.e., there is some B′′ ∈ IB|Y for which B′′\B′ = {b}. This implies that
#(B∩B′′) > #Y . Thus, by induction, there exists x ∈ B′′ for which (B\y)∪x ∈ IB. This x differs
from b (since b is in B\y, hence cannot complete this latter set to a basis), and thus x is in B′.

The proposition makes clear that total placeability, while being preserved under deletion (un-
less, of course, we delete the atom in question), cannot be preserved under restriction. Indeed, we
see that, in Example 2.12, 2 fails to be IB|1-placeable into 134.

The next lemma prepares for the main result of this section.

Lemma 2.15. Let Y ⊆ X, and set YY := AA({Y }). Then, AA(IB|Y ) ⊇ AA(IB) ∪ YY, with equality if
and only if Y is IB-placeable. In the latter case,

K(IB|Y ) = K ∩
⋂

y∈Y

ker `y.

Proof: The containment AA(IB|Y ) ⊇ AA(IB) ∪ YY is straightforward.
Assume that Y is not IB-placeable. Then there exists B ∈ IB for which B ∪ Y fails to contain

an element of IB|Y , hence X\(B ∪ Y ) ∈ AA(IB|Y ), yet X\(B ∪ Y ) is neither in AA(IB) (since its
complement contains B) nor in YY (since it is disjoint from Y ).

Assume that Y is IB-placeable, and let A 6∈ AA(IB) ∪ YY. Since A 6∈ AA(IB), X\A contains some
B ∈ IB, and since A 6∈ YY, X\A must contain Y . Since Y is IB-placeable, there is IB|Y 3 B′ ⊆
B ∪ Y ⊆ X\A, hence A 6∈ AA(IB|Y ).

Theorem 2.16. If y is IB-placeable, then

(2.17) dimK ≤ dimK(IB|y) + dimK(IB\y),

with equality if and only if `y maps K onto K(IB\y).

Proof: Since y is IB-placeable, Lemma 2.15 implies that K(IB|y) = K ∩ ker `y, hence that
ker i in (1.12) coincides with K(IB|y). Thus, (1.12) is exact at K and (2.17) follows. Equality in
(2.17) holds if and only if (1.12) is also exact at K(IB\y), i.e., if and only if `y maps K onto K(IB\y).

Use of the atomic map and the placeability notion seems to be more applicable and powerful
than the alternative idea of the DM map and the notion of replaceability. For example, using the
former approach we obtain in the next two sections the equality (1.3) under `-conditions which are
weaker than those employed in [DM3] and [DDM], and weaker than the s-additivity used in [S]
and [JRS1]. Further, the replaceability of y ∈ X is a necessary (albeit not sufficient) condition for
the exactness of the short sequence employed in the DM map, while, in contrast, the short sequence
(1.12) can be exact even for nonplaceable y’s. Indeed, if we choose λ in Example 2.1 in such a
way that K is spanned by (pure) exponentials (which is the generic choice), then, for an arbitrary
IB′ ⊆ IB and an arbitrary y ∈ X, the sequence (1.12) (with IB′ replacing IB) can be easily shown to
be exact (since then K(IB′) is spanned by eigenvectors of `y).
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3. IE-condition and special solvability

In this section we discuss conditions on the map ` : X → L(S) and on IB under which there is
equality in the inequality (2.17).

We expect equality in (2.17) in case `y maps K onto K(IB\y), i.e., in case the equation

`y? = f

has solutions in K for any f ∈ K(IB\y). For this reason, our `-conditions are connected to the
solvability of systems of the form

(3.1) (C,ϕ) : `c? = ϕc, c ∈ C,

with C ⊆ X and ϕ a map into S and defined (at least) on C.

Definition. We call the system (C,ϕ)
(i) special, or, more explicitly, IB-special if ϕc ∈ K(IB\c), all c ∈ C;
(ii) compatible if `cϕb = `bϕc for all c, b ∈ C;
(iii) independent (resp. basic) if C ∈ II (resp. C ∈ IB).

It goes without saying that such compatibility is a necessary condition for the solvability of
such a system.

Solvability condition 3.2. Any special compatible basic system is solvable.

As an example, in Example 1.1 one can easily verify that any compatible basic system is
solvable. However, our solvability condition requires only the solvability of “special” systems,
hence might hold even when some more general compatible basic systems fail to admit solutions.
For example, we can allow S to be finite-dimensional, e.g., to be K itself, which is not possible with
other approaches in the literature.

For our subsequent purposes, it will be important to know that the solution of the special
compatible basic system is in K, but this fact is free:

Lemma 3.3. Any solution of a special basic system (B,ϕ) lies in K.

Proof: Let f be a solution, and let A ∈ AA(IB). Then A contains some element b of our
B, therefore `Af = `A\b`bf = `A\bϕb. Since A ∈ AA(IB), it follows that (A\b) ∈ AA(IB\b), and thus,
because we assume that ϕb ∈ K(IB\b), we obtain `Af = 0.

3.1. The set IE

The solvability condition is all we need for the derivation of (1.3) in case the “effective” rank
is 1 (by Theorem 5.2, since IB|C is matroidal for any independent (s−1)-set C, by Corollary 2.10).
For “effective” rank higher than 1, we use Lemma 3.3 to show that `y maps K onto K(IB\y), by
extending the equation `y? = ϕy with ϕy ∈ K(IB\y) to a special compatible basic system (B,ϕ),
but the existence of such an extension is not trivial. Our proof that this is possible is by induction,
and requires that IB satisfies the IE-condition, by which we mean that

∅ ∈ IE,

with IE = IE(IB) the following peculiar subset of II.

10



Definition 3.4. Let IE = IE(IB) be the collection of all those C ∈ II which either are in IB, or else
there is some b ∈ X\C, called a IB-extender for C, which satisfies the following two conditions:
(i) C ∪ b ∈ IE;
(ii) if IB\b 6= ∅, then C ∈ IE(IB\b).

The recursion required in this definition does terminate after finitely many steps. For, the first
branch leads to a set of higher cardinality, hence this branch terminates after exactly s−#C steps.
The second branch keeps the cardinality of C the same but decreases the number of bases, thus it
is guaranteed to terminate since #IB is finite.

Note also that IE(IB) is not (in general) monotone in IB. For, while IB ⊆ IB′ implies that
II(IB) ⊆ II(IB′), this resulting increase in independent sets could lead to a nontrivial IB′

\b where
before we had IB\b = ∅ (hence C ∈ IE merely because C ∪ b ∈ IE), without guaranteeing that C
lies in IE(IB′

\b) (since, before, we did not need to know whether or not C ∈ IE(IB\b)). On the other
hand, if we make an appropriate assumption, such as that, for all Y , IBY = ∅ =⇒ IB′

Y = ∅, in
order to avoid this objection, then we get the trivial conclusion that IB = IB′.

As an example, an independent (s−1)-set C is in IE if and only if {b ∈ X : C ∪ b ∈ IB} ∈ AA,
as the proof of the following connection between IE and the IB-placeable subsets of X makes clear.

Proposition 3.5. Every C ∈ IE is IB-placeable, and the converse is true if #C = s − 1. In
particular, if s = 2, then y ∈ IE if and only if y is IB-placeable.

Proof: We prove the first claim by (downward) induction on #C and induction on #IB,
it being trivial if #C = s or #IB = 1.

Assume that #C < s, and let B ∈ IB. Since C ∈ IE, it has an extender, b say. In particular,
C ∪ b ∈ IE. If b ∈ B, we apply our induction hypothesis to C ∪ b to conclude that C ∪ b is placeable
in B, a fortiori C is placeable there. If b 6∈ B, then B ∈ IB\b. Since IB\b is a (nonempty) proper
subset of IB, and since we know that we still have C ∈ IE(IB\b), we can conclude by induction that
C is placeable in B.

It remains to show that a IB-placeable C of cardinality s − 1 is in IE: If C is placeable, then
every B ∈ IB must meet the set C ′ := {b ∈ X : C ∪ b ∈ IB}. This means that IB\C′ = ∅, hence
C ∈ IE follows by induction on #C ′, it being trivially true when #C ′ = 1.

In general, placeability does not imply membership in IE. For example, not every IE contains
the empty set (cf. Proposition 3.11 below). As a concrete example, if X = 12345 := {1, 2, 3, 4, 5}
and IB = {123, 234, 245, 135}, then 5 can be placed into any basis, but does not make it into IE
since no 2-set containing 5 is placeable and therefore no such set makes it into IE (in view of the
last proposition). As it turns out, the additional condition needed for a placeable C to be in IE is
that it be already in IE(IB|C). This is a consequence of the following lemma.

Lemma 3.6. If Y ⊆ X contains some placeable C, then Y ∈ IE if and only if Y ∈ IE(IB|C).

Proof: We begin with the observation that, for any Z ⊆ X\C,

(3.7) IB\Z = ∅ ⇐⇒ IB|C\Z = ∅.
Indeed, the necessity is trivial. As for the sufficiency, if B ∈ IB\Z , then C, being placeable, can be
placed into B, and this provides an element of IB|C\Z .

‘=⇒’: The proof is by (downward) induction on #Y and induction on #IB, it being trivially
true when #IB ≤ 1 or if #Y = s. Assume that #IB > 1, and that #Y < s. Since we assume
Y ∈ IE, there exists a IB-extender, say b, for Y . We now verify that b is also a IB|C-extender for
Y : (i) Since Y ∪ b is in IE and is larger than Y , induction on #Y ensures that Y ∪ b ∈ IE(IB|C).
(ii) If IB|C\b 6= ∅, then, by (3.7), IB\b 6= ∅, hence Y ∈ IE(IB\b). Therefore, by induction on #IB,
Y ∈ IE(IB|C\b).
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‘⇐=’: Since (3.7) is an equivalence, the argument just given also works with IB and IB|C
interchanged.

Note that, offhand, Lemma 3.6 implies nothing about the relationship between IE and IE(IB|C).
This reflects the fact that, in general, IE(IB) is not a monotone function of IB.

Corollary 3.8. C ∈ IE if and only if the following two conditions hold:
(a) C is IB-placeable;
(b) C ∈ IE(IB|C).

Proof: Because of Proposition 3.5, it is sufficient to prove that, for a IB-placeable C,
C ∈ IE if and only if C ∈ IE(IB|C). But this is just the special case Y = C in the lemma.

Note that we could not use (a) and (b) of this corollary to define IE because the equivalence
proved in this corollary is a tautology whenever IB = IB|C .

Lemma 3.9. Assume that IB = IB|C .
(a) If Y ∪ C ∈ IE, then J ∈ IE for any Y \C ⊆ J ⊆ Y ∪ C.
(b) If Y ∈ IE, then J ∈ IE for any Y ⊆ J ⊆ Y ∪ C.

Proof: (a): The proof is by (downward) induction on #J , there being nothing to prove
when #J = #(Y ∪ C). If now #J < #(Y ∪ C), then there exists x ∈ (Y ∪ C)\J . We verify that
any such x is an extender for J : (i) J ∪x ∈ IE by induction hypothesis; (ii) any such x is necessarily
in C (since Y \C ⊆ J), hence IB\x = ∅.

(b): The proof is by induction on #IB and (downward) induction on #Y , it being trivially
true when #IB = 1 or #Y = s. So, assume that #IB > 1 and #Y < s. We are to verify that
J ∈ IE. Since Y ∈ IE, it has an extender, b say. Since Y ∪ b is in IE and larger than Y , induction
on #Y implies that J ∪ b ∈ IE, hence we are done in case b ∈ J . Otherwise, to verify that b is an
extender for J , assume that IB\b 6= ∅. Then Y ∈ IE(IB\b), hence J ∈ IE(IB\b), by induction on #IB
(applicable since J ∪ b ∈ IE implies that #IB\b < #IB, and since IB\b = (IB\b)|C).

Corollary 3.10. Assume that IB = IB|C and Y ⊆ X. Then Y ∈ IE if and only if Y ∪ C ∈ IE if
and only if Y \C ∈ IE. In particular, ∅ ∈ IE(IB|C) if and only if C ∈ IE(IB|C).

Proof: Both implications ‘=⇒’ are special cases of the lemma, as is the first ‘⇐=’, while
the second ‘⇐=’ follows from (b) of the lemma since Y ∪ C = (Y \C) ∪ C.

The final results in this subsection aim at providing efficient methods for an inductive verifi-
cation of the IE-condition, i.e., the condition ∅ ∈ IE.

Proposition 3.11. Assume #IB > 1. If ∅ ∈ IE, then, for some b ∈ IE, ∅ ∈ IE(IB|b) and ∅ ∈ IE(IB\b).
Conversely, if ∅ ∈ IE(IB\b) for some b ∈ IE, then ∅ ∈ IE.

Proof: For the sake of both claims here, we note that

(3.12) b ∈ IE =⇒ b ∈ IE(IB|b) =⇒ ∅ ∈ IE(IB|b).

Indeed, the first implication corresponds to the choice C = b in Corollary 3.8, and the second
implication corresponds to the choice C = b in Corollary 3.10.
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Proof of first claim: Let C ⊆ X be a maximal set for which IB = IB|C and note that #C < s
(since #IB > 1). Since ∅ ∈ IE, C ∈ IE by Corollary 3.10, hence has a IB-extender, b. We now
verify that any such b does the job: IB\b 6= ∅ (for, if IB\b were empty, then IB = IB|C∪b, and this
would contradict the maximality of C), and therefore, because b extends C, we have C ∈ IE(IB\b),
or equivalently (by Corollary 3.10, since IB\b = (IB\b)|C), ∅ ∈ IE(IB\b). Further, since C ∪ b ∈ IE,
the choice Y = b in Corollary 3.10 provides the conclusion that b ∈ IE, and hence, by (3.12),
∅ ∈ IE(IB|b).

Proof of second claim: Since b ∈ IE and ∅ ∈ IE(IB\b), b is a IB-extender for ∅.
A repeated application of the last proposition leads to the following partial unraveling of the

condition ∅ ∈ IE:

Corollary 3.13. ∅ ∈ IE if and only if X contains a sequence b1, . . . , br for which bj ∈ IE(IB\b1,...,bj−1),
all j, while #IB\b1,...,br

= 1.

We note that, by Proposition 5.1, ∅ ∈ IE in case IB is matroidal. This provides the following
strengthening of the above corollary.

Corollary 3.14. ∅ ∈ IE if and only if X contains a sequence b1, . . . , br for which bj ∈ IE(IB\b1,...,bj−1),
all j, while IB\b1,...,br

is matroidal.

Remark 3.15. A complete unraveling of the condition in Proposition 3.11 produces a binary tree
whose nodes are of the form IB|Y \Z for certain Y, Z ⊆ X with Y ∩Z = ∅. Further, each such node
is either a leaf, in which case it contains exactly one B ∈ IB, or else it is the disjoint union of its
two children, IB|(b∪Y )\Z and IB|Y \(Z∪b), with b ∈ X\(Y ∪ Z) IB|Y \Z-placeable. Finally, IB is the
root of this tree. Since such a tree is obtainable whenever IB satisfies the IE-condition, we call it
an IE-tree for IB.

Lemma 3.16. Every node of an IE-tree for IB satisfies the IE-condition.

Proof: We proceed by induction on #IB, it being trivially true if #IB = 1. If #IB > 1, and
b is the placeable element used to split the root node, IB, then, by Corollary 3.8, b ∈ IE if and only
if b ∈ IE(IB|b), and, by Corollary 3.10, this latter condition is equivalent to having ∅ ∈ IE(IB|b), and
this condition holds by induction hypothesis. Thus b ∈ IE, and, by Proposition 3.11, this implies
that ∅ ∈ IE since ∅ ∈ IE(IB\b) by induction hypothesis.

We have proved the following characterization of the IE-condition.

Theorem 3.17. ∅ ∈ IE if and only if there is an IE-tree for IB.

Without the requirement that the b used to split IB|Y \Z be IB|Y \Z-placeable, every IB would
have such a tree.

With or without this placeability requirement, the leaves of such a tree constitute the partition
of IB into its elements.

3.2. Dimension estimates

We now turn our attention to the main topic of this section, namely the connection between
the content of IE and the validity of (1.3). The central ingredient for our argument is the following
proposition for whose proof the set IE was tailor-made.

Proposition 3.18. If the solvability condition 3.2 holds, then, any special compatible system
(C,ϕ) with C ∈ IE can be extended to a special compatible basic system, hence has solutions in K.

Proof: The proof is by (downward) induction on #C and induction on #IB. The statement
is trivial if IB is empty or if C is a basis.
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Let IB and C ∈ IE\IB be given, and assume that we already know the claim for larger C ∈ IE
as well as for any set C ′ ∈ IE(IB′) with #IB′ < #IB.

Let b be an extender for C. Then C ∪ b is in IE and larger than C. We claim that we can
correspondingly find some ϕb ∈ K(IB\b) so that the extended special system (C ∪ b, ϕ) is still
compatible. For this, it is necessary and sufficient that ϕb solve the system (C, `bϕ). There are two
cases:

(i) if IB\b = ∅, then IB = IB|b, hence {b} ∈ AA, therefore ker `b ⊇ K ⊇ K(IB\c) for all c ∈ C
and, in particular, `bϕc = 0 for all c ∈ C, thus the trivial choice ϕb = 0 solves (C, `bϕ).

(ii) if IB\b 6= ∅, then we know that C ∈ IE(IB\b), and the system (C, `bϕ) is compatible and
IB\b–special (since (C,ϕ) is compatible and IB-special, and because of Proposition 2.2). Also, since
C ∪ b ∈ IE, it is contained in some B ∈ IB and this B is necessarily not in IB\b. This implies that
IB\b is a proper subset of IB. It follows, by induction hypothesis, that (C, `bϕ) has a solution in
K(IB\b), and any such is suitable as ϕb.

Since C ∪ b is in IE and larger than C, induction now allows the conclusion that our present
(extended) special and compatible system is part of a special compatible basic system.

We are now ready to state and prove the main result of this paper:

Theorem 3.19.
(a) Assume that the solvability condition 3.2 holds. Then, for any y ∈ IE, `y maps K onto K(IB\y),

and

(3.20) dimK = dimK(IB|y) + dimK(IB\y).

(b) Assume that ∅ ∈ IE. Then

(3.21) dimK ≤
∑
B∈IB

dimK({B}),

with equality in case the solvability condition 3.2 holds.

Proof: (a): Since y ∈ IE, Proposition 3.18 implies that the linear equation `y? = ϕy with
ϕy ∈ K(IB\y) can be extended to a special compatible basic system (B,ϕ), and, by assumption,
this is solvable, while, by Lemma 3.3, any solution of such a system is in K. This proves that `y
maps K onto K(IB\y). On the other hand, since y ∈ IE, it is IB-placeable (by Proposition 3.5).
Now apply Theorem 2.16.

(b): We prove this part by induction on #IB, it being trivially true when #IB = 1. Assume
that #IB > 1. Then, by Proposition 3.11, there exists b ∈ IE for which ∅ is contained in both
IE(IB|b) and IE(IB\b). In particular, neither IB|b nor IB\b is empty, hence both are of cardinality
< #IB, and induction therefore provides the inequalities

(3.22) dimK(IB|b) ≤
∑

B∈IB|b

dimK({B}), dimK(IB\b) ≤
∑

B∈IB\b

dimK({B}).

On the other hand, since b is in IE, hence placeable, Theorem 2.16 implies that

(3.23) dimK ≤ dimK(IB|b) + dimK(IB\b).

Combining (3.22) and (3.23), we obtain (3.21).
For the equality assertion, note that, as soon as the solvability condition 3.2 is assumed with

respect to IB, it automatically holds with respect to any subset IB′ ⊆ IB (since K(IB′) ⊆ K).
Therefore, if the solvability condition 3.2 holds, then, by (a) and by induction, we have equality in
(3.22) and (3.23), hence obtain equality in (3.21).
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The final claim in this section provides a partial converse of (b) in the above theorem.

Proposition 3.24. Let B be a basis in IB that satisfies, for some ordering B = (b1, ..., bs),

IB\a 6= ∅ =⇒ Ia := {b ∈ B : b < a} ∈ IE(IB\a), a ∈ B.

If
dimK =

∑
B′∈IB

dimK({B′}),

then any IB-special compatible system (B,ϕ) is solvable.

Proof: We are to prove that, for any such B ∈ IB, any IB–special compatible system (B,ϕ)
is solvable. Since, by Lemma 3.3, any solution of such a system is necessarily inK, this is equivalent
to proving that the map

P : S → Ss : f 7→ (`bf)b∈B

carries K onto the space Φ := Φbs , where, for a, b, c ∈ B, we define

Φa := {(ϕb) ∈ ×
b≤a

K(IB\b) : ∀{b, c ≤ a} `cϕb = `bϕc}.

Since P maps K into Φ and K ∩ kerP = K({B}), while

dimK =
∑

B′∈IB

dimK({B′})

by assumption, it is therefore sufficient to prove that

(3.25) dimΦ ≤
∑

B′∈IB\B

dimK{(B′}).

For this, we claim, and prove inductively, that

(3.26) dim Φa ≤
∑
b≤a

dim

(
K(IB\b) ∩

⋂
c<b

ker `c

)
.

The case a = b1 is trivial, since Φb1 = K(IB\b1), and (3.26) asserts that dimΦb1 ≤ dimK(IB\b1).
Assume, thus, that (3.26) holds for a ≤ c := bk−1, and consider the case a = bk. We note that
every element ϕ ∈ Φa is of the form (ψ, ϕa), with ψ ∈ Φc, and ϕa satisfying suitable compatibility
conditions. Conversely, if ψ ∈ Φc is extendible to ϕ = (ψ, ϕa) ∈ Φa, then it is easily checked that
any other such extension (ψ, ϕ′

a) must satisfy

ϕa − ϕ′
a ∈ K(IB\a) ∩

⋂
b<a

ker `b.

Therefore, it readily follows that

dim Φa ≤ dim Φc + dim

(
K(IB\a) ∩

⋂
b<a

ker `b

)
,

and (3.26) follows.
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Further, if IB\a 6= ∅, then the set Ia = {b ∈ B : b < a} is in IE(IB\a) by assumption, hence is
IB\a-placeable by Proposition 3.5. Thus it follows from Lemma 2.15 that

K(IB\a) ∩
⋂
b<a

ker `b = K((IB\a)|Ia
),

and this equality holds trivially when IB\a = ∅. Therefore, since Φ = Φbs , we obtain from (3.26)
and the last equation that

dimΦ ≤
∑
a∈B

dimK((IB\a)|Ia
) ≤

∑
a∈B

∑
B′∈(IB\a)|Ia

dimK({B′}).

Here, the second inequality is trivial for all a with IB\a = ∅ and follows for all other a ∈ B from
Theorem 3.19(b), since Ia ∈ IE(IB\a) by assumption, hence in IE((IB\a)|Ia

) (by Corollary 3.8),
therefore ∅ ∈ IE((IB\a)|Ia

) (by Corollary 3.10 applied to C = Ia). Further, this double sum equals∑
B′∈IB\B dimK({B′}) since IB\B is the disjoint union of the sets (IB\a)|Ia

, a ∈ B.

Note that all inequalities established during the proof must actually be equalities. Further, in
terms of the IE-tree for IB (see Remark 3.15), the only bases which offhand satisfy the conditions
of the proposition are those belonging to the largest matroidal node (of the tree) of the form IB|Y .

4. An example

In this section, we apply our results from the previous one to an example whose solution is
important in box spline theory. Since Approximation Theory and in particular box spline theory is
not an issue in this paper, we discuss neither the connections nor the applications of this example to
box splines. However, the example has intrinsic importance for the discussion in this paper since it
provides a naturally arising instance when the condition ∅ ∈ IE holds (and hence (1.3) holds), while
the seemingly more verifiable, but stronger, conditions (minimum-closed, order-closed, matroidal)
are invalid.

The example goes as follows: M is an s-dimensional linear subspace of IRd which is spanned
by integer vectors. We associate each x ∈ X with a vector vx ∈ QQd\0 and define the coverage of
x as the set

(4.1) Zx(M) := {α ∈M ∩ ZZd : vx · α ∈ ZZ\0}.
This set does not change if we replace vx by its orthogonal projection onto M , and this orthogonal
projection is again in QQd since M is spanned by integer vectors. We may, and do, therefore assume
without loss of generality that vx ∈ M for all x ∈ X. More generally, the coverage of Y ⊆ X is,
by definition, the union

ZY (M) := ∪y∈Y Zy(M).

Further, we say that x ∈ X weakly covers Z ⊆ ZZd ∩M in case {0} 6= vx · Z ⊆ ZZ, and call x an
M-integer if it weakly covers all of M ∩ ZZd. We note that x is an IRd-integer exactly when vx

is a nontrivial integer vector. Finally, for ease of notation, we use the orthogonal complement of
Y ⊆ X to mean the orthogonal complement of the corresponding set of vectors in QQ:

Y ⊥ := ∩y∈Y vy
⊥.

Based on these notions, we define the set IB as follows. An illustration for this definition can
be found in Example 6.9.
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Definition 4.2. The collection IB = IB(M) consists of those sets B ⊆ X of cardinality s for which
M ∩ B⊥ = {0}, and, in some ordering B = {b1, ..., bs}, and for each j = 1, ..., s, Bj := {b1, ..., bj}
covers (M ∩ ZZd)\Bj

⊥.

Since dimM = s = #B, the condition that M ∩ B⊥ = {0} implies that, for each B ∈ IB,
(vb)b∈B is a basis for M (recall our assumption that, for each x, vx ∈M). Each B ∈ IB is not just
a set, but an ordered set, but we do not count two such B as different elements of IB if they only
differ in the ordering of the elements.

Further, if B = (b1, . . . , bs) and, for some j > 1, bj is an M -integer, then we can exchange it
with its neighbor to the left, i.e., then also B′ := (Bj−2, bj , bj−1, bj+1, . . . , bs) satisfies the condition
of the definition: Since (b1, . . . , bj) covers (M ∩ ZZd)\(b1, . . . , bj)⊥ regardless of the order in which
we write the terms in the sequence (b1, . . . , bj), the only issue is whether (Bj−2, bj) covers (M ∩
ZZd)\(Bj−2, bj)⊥. However, M∩ZZd is the union of (M∩ZZd)\Bj−2

⊥ with (M∩ZZd)∩Bj−2
⊥, and the

first set is covered by Bj−2, while bj , being an M -integer, covers everything in M ∩ZZd except those
elements in bj⊥. Thus, (Bj−2, bj) covers everything in M ∩ZZd except for (M ∩ZZd)∩Bj−2

⊥∩ bj⊥,
i.e., everything in (M ∩ ZZd)\(Bj−2, bj)⊥.

A slightly different definition of IB could have been to merely require the s-set B ∈ IB to cover
all nontrivial integers in M . If s ≤ 3, this latter variant can be proved to be equivalent to the one
we had chosen above. However, it is possible to give examples for s = 4 of s-sets of rational vectors
which cover all the (nontrivial) integers in a space of dimension 4, which nevertheless do not satisfy
the terms of the definition for any ordering of its elements.

If M = IRd, and each x is an M -integer (which is equivalent in this case to having vx ∈ ZZd),
then IB consists exactly of all subsets B whose corresponding {vx}x∈B form a basis for IRd. In
other words, the present setting generalizes the box spline setup described in Example 1.1. As a
matter of fact, it is the present setup that one needs to study when the ‘directions’ of a box spline
are permitted to be rational vectors.

Our technical goal is to prove the following two results:

Lemma 4.3. Every M -integer is in IE.

Lemma 4.4. ∅ ∈ IE.

This latter lemma, when combined with Theorem 3.19, provides us with the following.

Theorem 4.5.

(4.6) dimK ≤
∑
B∈IB

dimK({B}),

and equality holds whenever the solvability condition 3.2 holds.

The problem germane to box spline theory needs only the case M = IRd, and ` and S as in
Example 1.1. For this case, we need only the upper bound result (4.6), with the matching lower
bound already being provided by (1.5) (recall that, for this choice of the operators, dimK({B}) =
1). The fact that we have chosen to define the problem on linear subspaces M ⊆ IRd is technical:
we need it for the inductive proof. We did not restrict attention to the specific ` of Example 1.1
simply because the results of §3 allow us to prove the above theorem without prescribing `.

We prove Lemma 4.4 simultaneously with Lemma 4.3:

Proof of Lemma 4.4 and Lemma 4.3. We use induction on s = dimM , the proof being obvious
if dimM = 1, since for any rank-1 IB, we always have ∅ ∈ IE, and further {y} is then in IB iff y is
an M -integer. Assume thus that s = dimM > 1.
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First note that the first element in any basis must be an M -integer: Indeed, with b1 the first
element in question, it must cover (M ∩ ZZd)\b1⊥, hence ZZ ⊇ vb1 · (M ∩ ZZd) 6= {0}, the inequality
due to the fact that vb1 is a rational vector and part of a basis for M . In particular, there are
M -integers in X unless IB is empty.

Further, we claim that any M -integer y can be placed into any B ∈ IB: Let B := {b1, ..., bs}
and set vj := vbj , all j. Since vy ∈M\0, and (v1, . . . , vs) is a basis for M , there is a smallest r ≥ 1
for which

(4.7) span{v1, ..., vr} = span{v1, ..., vr−1, vy}.

We contend that y can replace br in B. Since the role of br in B is to cover (M ∩ ZZd ∩B⊥
r−1)\B⊥

r ,
we need to prove that y covers this set as well. Since y weakly covers all of M ∩ ZZd, we need only
verify that it does not vanish on B⊥

r−1\B⊥
r , i.e., that vy ·α 6= 0, all α ∈ B⊥

r−1\B⊥
r . For this, observe

that, by choice of r, vy ∈ cvr + span(vj)j<r for some nonzero c, hence, for any α ∈ B⊥
r−1\B⊥

r ,
vy · α = cvr · α 6= 0. Thus, indeed, B′ := (B\br) ∪ y ∈ IB, and y is thus placeable. After placing y
into B, the discussion following the definition of IB implies that we can place y as the first element
of B′ (without changing the order of the rest).

Since y is placeable, it is, by Corollary 3.8, in IE if and only if it is in IE(IB|y), and, by Corollary
3.10 (applied with C = {y} and Y = ∅), this latter condition is equivalent to having ∅ ∈ IE(IB|y).
Thus, to prove that y ∈ IE, it remains to show that ∅ ∈ IE(IB|y). For this we apply induction
on s: we first define M ′ to be the subspace of M which is perpendicular to vy. Since y covers
(M\M ′) ∩ ZZd, but certainly does not cover any α ∈ (M ′ ∩ ZZd), we conclude that B ∈ IB(M ′) if
and only if (y,B) ∈ IB. In particular, ∅ ∈ IE(IB|y) if and only if ∅ ∈ IE(IB(M ′)), and the latter
condition holds by induction hypothesis since dimM ′ = s− 1.

To complete the inductive step (and thereby the proof of the two lemmata), it remains to show
that ∅ ∈ IE, which we prove by induction on the number of M -integers in X. Assume that there
is an M -integer y. Since y is in IE, it can serve as an extender for ∅, provided ∅ ∈ IE(IB\y) in case
IB\y 6= ∅. But the latter proviso holds by our induction hypothesis (on the number of M -integers,
of which X\y is guaranteed to contain at least one since IB\y 6= ∅, but fewer than does X).

5. Matroid structure and special solvability

In this section, we prove the dimension formula (1.3) under the assumption that IB is matroidal.
Recall from Proposition 2.9 that IB is matroidal if and only if each independent x is replaceable

in IB, and, from Proposition 2.13, that, if IB is matroidal, then every independent element x is IB-
placeable, with the converse not true in general.

Proposition 5.1. IB is matroidal if and only if IE = II.

Proof: ‘=⇒’: It is sufficient to prove that, for any C ⊂ B ∈ IB, and any b ∈ B\C,
C ∈ II(IB\b) in case IB\b 6= ∅. For this, if B′ ∈ IB\b, then, since IB is matroidal, C is placeable in B′,
i.e., extendible to a basis using only elements of B′ and, since b 6∈ B′, this implies that C ∈ II(IB\b).

‘⇐=’: If IE = II, then, by Proposition 3.5, every independent set is placeable, hence IB is
matroidal by Proposition 2.13.
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If IB is matroidal, then, for any x ∈ X, also IB|x and IB\x are matroidal.
For matroidal IB, we have the following theorem.

Theorem 5.2. If IB is matroidal and dimK <∞, then, the following are equivalent:

(i) The solvability condition 3.2 holds.

(ii) For all Y ⊆ X and y ∈ Y , `y maps K(IBY ) onto K(IBY \y).
(iii)

dimK =
∑
B∈IB

dimK({B}).

Proof: (i)=⇒(ii): Let y ∈ Y ⊆ X. Since IB is matroidal, so is IBY , hence y ∈ IE(IBY ) by
Proposition 5.1. Since, for every b ∈ Y , K(IBY \b) ⊂ K(IB\b), the solvability condition 3.2 (which is
assumed to hold with respect to IB) holds with respect to IBY , too. Therefore, Theorem 3.19 (a),
with IB there replaced by IBY , implies that `y maps K(IBY ) onto K(IBY \y).

(ii)=⇒(iii): The proof is by induction on #IB, it being trivially true when #IB ≤ 1. Assume
#IB > 1, and choose y ∈ X(IB) so that IB\y 6= ∅. Since y ∈ IE (by Proposition 5.1), we conclude
from Theorem 3.19 that

dimK = dimK(IB|y) + dimK(IB\y),

and this equals
∑

B∈IB|y
dimK({B}) +

∑
B∈IB\y

dimK({B}) by induction (applicable since both
IB|y and IB\y have smaller cardinality than IB), and this equals

∑
B∈IB

dimK({B})

since IB is the disjoint union of IB|y and IB\y.
(iii)=⇒(i): This implication is a special case of Proposition 3.24, since IB\b is matroidal for

any b, hence, by Proposition 5.1, every B ∈ IB satisfies the conditions imposed on B in Proposition
3.24.

Corollary 5.3. If IB is matroidal, dimK < ∞, and s > 2, then any of the conditions (i)-(iii) in
Theorem 5.2 is equivalent to the following condition:

(iv) For every (some) r ∈ (1 ds), and every Y ⊆ X, every IBY –special compatible independent
system (C,ϕ) with #C = r has solutions in K(IBY ).

Proof: (i) =⇒ (iv): Given a IBY -special compatible independent system (C,ϕ), since IBY

is matroidal, we have C ∈ IE(IBY ) by Proposition 5.1. Hence, by Proposition 3.18, (C,ϕ) can be
extended to a IBY -special compatible basic system (B,ϕ). Since every IBY -special system is also
IB-special, assumption (i) implies the solvability of (B,ϕ), and any of its solutions is necessarily in
K(IBY ), by Lemma 3.3. Hence, (C,ϕ) has solutions in K(IBY ).

(iv) =⇒ (ii): Given an independent y ∈ Y and ϕ ∈ K(IBY \y), we know, from Proposition 5.1
and the fact that IBY is matroidal, that y ∈ IE. Therefore, the proof of Proposition 3.18 shows
that the equation (y, ϕ) can be extended, step by step, to a IBY -special compatible basic system.
Instead of performing all the s−1 steps of this extension process, we can stop after r−1 steps to
obtain a IBY -special compatible independent system of r equations, which admits a solution in
K(IBY ), since (iv) is assumed.
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Remark. We note that, in [DM3], (iii) is obtained under the (explicit) assumption that every
compatible independent system (C,ϕ) is solvable and the (implicit) assumption that any IB–special
compatible independent system (C,ϕ) actually has solutions in K. Since we are able to derive (iii)
from (i), we are in effect avoiding the possibly hard task of verifying that certain systems not only
are solvable, but have solutions in some subspace (like K). In fact, since we show that (i), (ii), and
(iv) are all equivalent, we are incidentally closing the gap in the argument for (i)=⇒(iii) in [DM3:
Lemma 3.2] by showing that any IB-special compatible independent system (C,ϕ) has solutions in
K if any IB-special compatible basic system is solvable.

6. Order-closed and minimum-closed

We now consider a weakening of the assumption that IB is matroidal. Any total order on X
induces a corresponding partial order on IB by the prescription

B := (b1 < · · · < bs) ≤ B′ := (b′1 < · · · < b′s) ⇐⇒ bj ≤ b′j , j = 1, . . . , s.

We recall from [BR] the following weakening of being matroidal.

Definition. We call IB order-closed in IB′ if

(i) IB ⊆ IB′;
(ii) IB′ is matroidal;

(iii) B′ ≤ B for some B′ ∈ IB′ and B ∈ IB implies that B′ ∈ IB.

We note that, for any Y ⊆ X, IBY is order-closed in IB′
Y if IB is order-closed in IB′.

Lemma 6.1. Any order-closed IB has a unique minimal element, namely the unique minimal
element of the associated matroidal IB′.

Proof: Let B =: (b1 < · · · < bs) be a minimal element of IB. If not B ≤ B′ for all B′ ∈ IB′,
then there would exist B′ = (b′1, . . . .b

′
s) ∈ IB′ so that b′j < bj for some j. Assume without loss that

j is the smallest such index. Since IB′ is matroidal and both (b1, . . . , bj−1) and (b′1, . . . , b
′
j) are in

II(IB′), there would exist some k ≤ j so that (b1, . . . , bj−1, b
′
k) ∈ II(IB′) and, further, (b1, . . . , bj−1, b

′
k)

could be completed to an element B′′ = (b1, . . . , bj−1, b
′
k, . . .) of IB′ using elements from B. Since

b′k ≤ b′j < bj , it would follow that B′′ < B, hence B′′ ∈ IB (since IB is order-closed), and this would
contradict the minimality of B.

In particular, given an ordering on X, any matroidal IB has a unique minimal element, which
we will denote by

min IB.

Since we often need only this consequence of order-closedness, we give it a special name.

Definition 6.2. We call IB minimum-closed in IB′ if

(i) IB ⊆ IB′;
(ii) IB′ is matroidal;

(iii) for all Y ⊆ X, min IB′
Y ∈ IBY .

Again, if IB is minimum-closed in IB′, so is IBY in IB′
Y for any Y ⊆ X.
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Proposition 6.3. If (b1 < · · · < bs) := min IB, with IB minimum-closed in IB′, then, for any k ≥ 0,
Ik := (b1, . . . , bk) is in IE, as well as in IE(IB\bk+1) if IB\bk+1 is not empty. In particular, ∅ ∈ IE.

Proof: The proof is by induction on #IB and (downward) induction on k ≤ s, it being
trivially true when #IB = 1 or k = s.

So assume that #IB > 1 and k < s. Then, by induction hypothesis, Ik ∪ bk+1 ∈ IE. If
IB\bk+1 6= ∅, let B′ be its minimal element. Then Ik ⊆ B′ since, otherwise, we could complete Ik to
an element B′′ of the matroidal IB′

\bk+1
by elements from B′, and this would imply that B′′ < B′,

contradicting the minimality of B′. Therefore, Ik is the initial segment of the minimal element for
IB\bk+1 , hence in IE(IB\bk+1), by induction hypothesis (on #IB). This verifies that Ik ∈ IE.

For a minimum-closed IB, we have the following dimension formula.

Theorem 6.4. If IB is minimum-closed (in particular, if IB is order-closed) in IB′, then

(6.5) dimK ≤
∑
B∈IB

K({B}),

with equality in case the solvability condition 3.2 holds. Further, if equality holds, then any IB-
special compatible system (min IB, ϕ) is solvable.

Proof: By Proposition 6.3, ∅ ∈ IE, hence the claim here follows from part (b) of Theorem
3.19, with the final statement true by the same Proposition 6.3 and Proposition 3.24.

In the rest of this section we make several observations relevant to minimum-closedness.

Proposition 6.6. If IB is minimum-closed in IB′ and #IB > 1, then y := max{x ∈ X(IB) : IB\x 6=
∅} is well-defined and replaceable.

Proof: Let B,B′ ∈ IB and assume y ∈ B. We need to find b ∈ B′ that replaces y. If
y ∈ B′, take b = y. Otherwise, since IB′ is matroidal and B,B′ ∈ IB ⊆ IB′, we can find b ∈ B′

for which B′′ := (B\y) ∪ b ∈ IB′. Since Y := B′′ ∪ y contains a basis (namely B) from IB and
IB is minimum-closed, IB must contain min IB′

Y . However, min IB′
Y = B′′ because y > b (by the

maximality of y and the fact that B ∈ IB\b, hence IB\b 6= ∅).

Proposition 6.7. Let IB ⊆ IB′ for some matroidal IB′. Then, IB is minimum-closed in IB′ if and
only if, for each Y ⊆ X of cardinality s+ 1,

IBY 6= ∅ =⇒ min IB′
Y ∈ IB.

Proof: The implication ‘=⇒’ is trivial.
‘⇐=’: Let Y ⊆ X, and assume that B ∈ IBY . Let B′ := min IB′

Y . We need to show that
B′ ∈ IB, and for this we can assume without loss that Y = B ∪B′ (since otherwise we can replace
Y by its subset B ∪ B′). We prove the desired result by induction on #Y . If #Y ≤ s + 1, then
B′ = min IB′

Y ∈ IB, by assumption. Assume now that #Y > s+ 1. Let y be the maximal element
in B\B′ and C be the set of all elements in B which are larger than y. Then, C ⊆ B ∩ B′ by the
choice of y.

First we observe that we need only to prove that IBY \y 6= ∅. Indeed, we clearly have B′ ⊆
(Y \y), and therefore B′ = min IB′

Y \y, and hence, by the induction hypothesis (applicable since Y \y
has one less element and our proof goes by induction on #Y ), B′ ∈ IB.

Since IB′ is matroidal, we can replace y ∈ B by an element x ∈ B′.

21



We claim that x < y for any such x: if not, every element in the subset C ∪ x of B′ is larger
than y. Thus, B′ contains at least #C + 1 elements which are larger than y, while B contains only
#C elements larger than y, and this is impossible, since B′ < B.

We now let B′′ := (B\y)∪ x. We claim that it suffices to prove that B′′ = min IB′
B∪x. Indeed,

B ∪ x consists of s + 1 atoms, and contains a basis from IB (viz. B), therefore, B′′ ∈ IB by the
hypothesis of the proposition. Since B′′ ⊆ Y \y, this proves that IBY \y 6= ∅, and, by the above
observation, completes the proof of the proposition.

Thus, it remains to show that B′′ = B′′′ := min IB′
B∪x. If not, then B′′′ < B′′. Since B′′

misses only y (from B ∪ x), B′′′ must miss then a larger element, and because we already proved
that x < y, this missed atom must belong to C. But then B′′′ contains only #C − 1 atoms larger
than y, while B′ contains at least #C atoms larger than y, hence B′ cannot be smaller than B′′′.
This contradicts the minimality of B′, thereby completing the proof.

We now give examples to show that, in general, the implications

order-closed =⇒ minimum-closed =⇒ ∅ ∈ IE

proved and used in this section cannot be reversed even if we permit complete freedom in the choice
of the matroidal IB′ in which IB is to be order-, resp., minimum-closed, and also permit complete
freedom in the ordering.

The first example shows that a IB satisfying the IE-condition need not be minimum-closed in
any matroidal IB′ and in any ordering.

Example 6.8. Let X and IB be as in Example 2.12. Since X contains no IB-replaceable atom,
Proposition 6.6 shows that IB is never minimum-closed regardless of the ordering we choose for X.
On the other hand, we claim that ∅ ∈ IE(IB). One binary tree that proves this claim goes as follows:
we choose 3 (which was verified to be placeable). In IB|3 every atom is replaceable (since only one
3-set that contains 3 is not a basis), hence is a matroid, by Proposition 2.9. As for IB\3, here 4 is
placeable (since it was so in the beginning). Again, IB\3|4 is matroidal, and we need to look only
at IB\3,4, which is an order-closed subset for the ordering {1, 2, 7, 8, 5, 6} and with IB′ :=

(
X\{3,4}

3

)
.

The next example is a strengthening of the preceding one, in that it shows that the results
on minimum-closedness are not general enough to solve the problem of §4; i.e., while Lemma 4.4
asserts that ∅ ∈ IE, the stronger assertion “IB is minimum-closed” is, in general, invalid for IB
considered in §4.

Example 6.9. Let X = 123456 := {1, . . . , 6}, and IB = {12, 23, 13, 14, 25, 36}. This is the IB
obtained in §4 for the choice M = IRd, d = 2, and

v1 = (1, 0), v2 = (0, 1), v3 = (1, 1), v4 = (1/2, 1), v5 = (1, 1/2), v6 = (1/2,−1/2).

We now assume that IB is minimum-closed in some matroidal IB′ and with respect to some ordering
< on X, and derive from this a contradiction.

First, due to the symmetries in IB, we can assume without loss of generality that 4 < 5 < 6.
Then, we consider the following three subsets of X:
(a): Y = 356. The only basis in IBY is 36. If 35 ∈ IB′, then, as 5 < 6 implies 35 < 36, IBY would
not be minimum-closed in IB′

Y . Therefore, we must have 35 6∈ IB′.
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(b): Y = 346. Repeating the argument in (a), with 4 replacing 5, we conclude that 34 6∈ IB′.
Consequently, since 34, 35 6∈ IB′, and IB′ is matroidal, also 45 6∈ IB′ (since, otherwise, 3 could not
be placed into the basis 45).
(c): Y = 245. Since 25 ∈ IB ⊂ IB′, and 45 6∈ IB′, we must have 24 ∈ IB′ (otherwise, 4 cannot be
placed into 25). Thus IBY = {25} while IB′

Y = {24, 25}, and since 24 < 25, IBY is not minimum-
closed in IB′

Y .

The final example shows that the results concerning minimum-closed IB are a true general-
ization of their order-closed counterparts, by exhibiting a minimum-closed IB which fails to be
order-closed in any matroidal IB′ containing it and any ordering of X.

Example 6.10. Let X = 12345 := {1, ..., 5}, and take IB :=
(
X
3

)\{125, 135, 245, 345}. The
resulting IB is trivially minimum-closed in

(
X
3

)
with respect to the natural ordering, since each of

the four sets omitted contains the largest atom, 5, hence is the minimum basis in some IB0
Y only in

the trivial case when it equals Y .
Assume now that IB is order-closed in some matroidal IB′ and with respect to some ordering

< on X. We show that this assumption is untenable.
First, we claim that, with this assumption, necessarily 125 ∈ IB′ and prove this by contradic-

tion. Indeed, if 125 6∈ IB′, then necessarily 135 ∈ IB′ since otherwise no element from 123 ∈ IB ⊆ IB′

could be used to replace 4 in 145 ∈ IB ⊆ IB′. With that, comparison of 135 ∈ IB′\IB with 145 ∈ IB
implies that 4 < 3. On the other hand, the same argument shows that (still under the assumption
125 6∈ IB′) also 245 is necessarily in IB′, and, now, comparison of 245 ∈ IB′\IB with 235 ∈ IB shows
that 3 < 4, a contradiction.

Since 2 and 3 enter the definition of IB symmetrically, as do 1 and 4, it follows that necessarily
all the four sets excluded from IB must be in IB′. In particular, both 135 and 245 must be in IB′,
yet, as we just saw, this leads to the contradictory conclusions that 4 < 3 and 3 < 4. We have
reached a contradiction.

Note that all the 3-sets actively involved in this example are in IB|5. We can therefore think of
this example as being of rank 2, with the atom 5 added only in order to make IB minimum-closed.
With this, IB itself reduces to that simplest of pathological examples in the context of this paper,
namely the set

12, 34

which must fail to be order-closed since the dimension theorem fails for it in general.

7. Dimension equalities without IB-conditions

In this section, we consider a nice application of the material detailed in the last two sec-
tions. This application is based on the following `-condition, which we show later on to imply our
solvability condition 3.2 under the additional assumption that (7.4) holds.

Definition 7.1. We call the pair (IB, `) direct if, for every B ∈ IB and every x ∈ X\B, `x defines
a (linear) automorphism on K({B}).

For example, the pair (IB, `) of Example 1.1 is direct for a generic choice of the constants
{λx}x. Note that `x is a (linear) automorphism on K({B}) exactly when it is 1-1 on K({B}) since,
in any case, for any f ∈ K({B}) and any b ∈ B, `b(`xf) = `x(`bf) = 0, hence `x maps K({B})
into itself.

We chose the term “direct” since, for a direct (IB, `), the sum
∑

B∈IBK({B}) is direct. This
implies at once that, for a direct (IB, `),
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(7.2) dimK ≥
∑
B∈IB

dimK({B}),

since, by (1.6), we always have the inclusion

(7.3) K ⊇
∑
B∈IB

K({B}).

It is also clear that, for a matroidal IB, equality holds in (7.2), since the converse inequality

(7.4) dimK ≤
∑
B∈IB

dimK({B})

holds for such IB, by virtue of Theorem 3.19(b) and the fact that every matroidal IB satisfies the
IE-condition. However, the following theorem seems to be less obvious:

Theorem 7.5. Assume that the pair (IB0, `) is direct and IB0 is matroidal. Then the equality

dimK =
∑
B∈IB

dimK({B})

holds for an arbitrary IB ⊆ IB0.

In view of (7.2), we need only to prove (7.4). We present two different arguments for (7.4), each
of which proves (7.4) in a more general setup than required here. The first approach relaxes the
requirement that IB0 be matroidal, and the second approach relaxes the `-condition of directness.

Our first generalized version of Theorem 7.5 reads as follows:

Theorem 7.6. Theorem 7.5 holds even if we assume that IB0, in lieu of being matroidal, merely
satisfies

dimK(IB0) ≤
∑

B∈IB0

dimK({B}).

Thus, this stronger version of Theorem 7.5 applies to any IB0 satisfying the IE-condition (in
particular, to order-closed or minimum-closed IB0), as well as to any fair IB0 (cf. the next section).

Proof: Consider the map

P : K(IB0) → ×
B∈IB0\IB

K({B}) : f 7→ (`X\Bf)B∈IB0\IB.

P is well-defined (i.e., into) by Proposition 2.2, and

kerP = K(IB0) ∩
⋂

B∈IB0\IB
ker `X\B ⊇ K.

Further, P is onto since, for any B,B′ ∈ IB0,

`X\B′K({B}) =
{

0, B′ 6= B;
K({B′}), B′ = B,

and K({B}) ⊆ K(IB0) for all B ∈ IB0. It follows that

dim kerP +
∑

B∈IB0\IB
dimK({B}) = dimK(IB0) ≤

∑
B∈IB0

dimK({B}).

Hence,
dimK ≤ dimkerP ≤

∑
B∈IB

dimK({B}),

and the desired equality now follows from (7.2).
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The other approach for the proof of Theorem 7.5 goes as follows. We introduce a new atom x
and define `x to be the zero map. Further, using X ∪ x as the atom set, we attempt to find a new
set IB′ of bases of rank s+ 1 that satisfies the following three conditions:
(i) (B, x) ∈ IB′ ⇐⇒ B ∈ IB.
(ii) K({B′}) = 0, for every B′ ∈ IB′

\x.
(iii) dimK(IB′) ≤∑B∈IB′ dimK({B}).
Proposition 7.7. If IB has a rank-(s+1) “extension” IB′ that satisfies the conditions (i-iii) specified
above, then (7.4) holds.

Proof: We observe that, since `x = 0, K({(B, x)}) = K({B}), while K({B′}) = 0, for
any other B′ ∈ IB′, because of assumption (ii). Thus, (iii) leads to

dimK(IB′) ≤
∑
B∈IB

dimK({B}).

The claim then follows from the fact that K ⊆ K(IB′) which can be observed in the following
way. Given A ∈ AA(IB′), we have two possibilities to consider: (1) x ∈ A. In such a case `A = 0
and therefore it annihilates K. (2) x 6∈ A. Then, since A intersects every (B, x), B ∈ IB, it must
intersect every B ∈ IB, hence lies in AA(IB). Thus, indeed, K ⊆ K(IB′).

Consequently, the inequality (7.4) required for the proof of Theorem 7.5 is established, as soon
as we demonstrate the existence of a IB′ which satisfies (i-iii), as we do in the next proposition.

Proposition 7.8. Assume that IB0 is matroidal and the pair (IB0, `) is direct. For an arbitrary
IB ⊆ IB0, and a new atom x 6∈ X, define

IB′ := {(B, x) : B ∈ IB} ∪ {(B, y) : B ∈ IB0, y ∈ X\B}.

Then IB′ satisfies conditions (i-iii) above, and hence (7.4) holds (by Proposition 7.7).

Proof: The fact that (ii) is satisfied follows from the directness of (IB0, `). Condition (i)
trivially follows from the definition of IB′. The last condition, (iii), will follow from Theorem 6.4 as
soon as we show that IB′ is minimum-closed in

IB′
0 := {(B, y) : B ∈ IB0, y ∈ (X ∪ x)\B},

in any ordering that makes x the maximal atom.
For that, we first want to show that IB′

0 is matroidal. Here, we consider two bases (B, y),
(B′, z) in IB′

0 (namely, B,B′ ∈ IB0), choose a ∈ (B, y) and search for a replacement for a in (B′, z).
If a = y, we can replace it by any atom in (B′ ∪ z)\B. Otherwise, a ∈ B, and in this case we
consider two different possibilities. (a): (B\a)∪ y ∈ IB0. Then we can write (B, y) = (B′′, a), with
B′′ ∈ IB0, and proceed as in the previous case. (b): (B\a) ∪ y 6∈ IB0. Since B,B′ ∈ IB0, and IB0 is
matroidal, there exists b ∈ B′, for which (B\a) ∪ b ∈ IB0. Since we assume that (B\a) ∪ y 6∈ IB0,
we must have b 6= y, and hence this b is an appropriate replacement for a.

To prove that IB′ is minimum-closed in IB′
0, we first observe that all the bases in IB′

0\IB′ contain
x. Now, let Y ⊆ X∪ x be of cardinality > s+ 1 = rank IB′

0. If Y contains a basis (B, x) ∈ IB′
0\IB′,

then B ∈ IB0, and choosing any y ∈ Y \(B ∪ x), we obtain a basis (B, y) ∈ IB′. Since x is maximal
in our ordering, (B, y) < (B, x), and hence (B, x) is not the minimal basis of IB′

0 on Y . Therefore,
IB′ is minimum-closed in IB′

0, as claimed.
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We want to unravel a little bit the three conditions (i-iii) required of the “extension” IB′.
Condition (i) determines an initial set of bases in IB′, and the subsequent problem is to determine
IB′

\x. Condition (ii) is an `-condition, and asserts that for every basis B′ ∈ IB′
\x and every b ∈ B′,

`b is 1-1 on K({B\b}). This is a weakening of the assumption that (IB, `) be direct, since we may
try to construct IB′ in such a way that IB′

\x is small. In contrast, Condition (iii) (which should
be regarded as a IB-condition on IB′, because upper bound assertions do not require `-conditions)
pulls the situation in the opposite direction, since the IB-conditions which are known to imply upper
bounds usually assert a certain “richness” property of the underlying set of bases.

The following example illustrates further the conditions (i-iii).

Example 7.9. Let IB0 be the collection of all s-sets in X, hence IB0 is matroidal. Assume that,
in some ordering < on X, the following condition is satisfied: for every B ∈ IB0 and every y ∈ X
with y > b for all b ∈ B, `y is 1-1 on K({B}). We claim that then the inequality (7.4) holds for an
arbitrary IB ⊆ IB0 (i.e., an arbitrary collection of s-sets).

To verify this, we show that, given IB ⊆ IB0, we can construct IB′ that satisfies (i-iii) (and then
invoke Proposition 7.8). We define IB′

0 to be the collection of all (s + 1)-sets in X ∪ x (with x a
new atom and `x = 0), and define

IB′ := {(B, x) : B ∈ IB} ∪ {B′ : B′ ⊆ X, #B′ = s+ 1}.
Here, condition (i) trivially holds, and condition (ii) holds, since, for the largest atom b in every
(s + 1)-set B′ ∈ IB′

\x, `b is assumed to be 1-1 on K({B\b}). As for condition (iii), one verifies,
as in the proof for Proposition 7.8, that, with x chosen to be the largest atom in X ∪ x, IB′ is
minimum-closed in IB′

0.

We close this section with a proof that, in the presence of the upper bound (7.4), directness
implies the solvability condition 3.2.

Proposition 7.10. If (IB, `) is direct and satisfies (7.4), then every IB-special basic compatible
system is solvable.

Proof: Let IB′ ⊆ IB. By Theorem 7.6, the assumptions imply that

dimK(IB′) =
∑

B∈IB′
dimK({B}),

while, by directness,
∑

B∈IB′ K({B}) is direct and in K(IB′). Hence, altogether,

K(IB′) =
⊕

B∈IB′
K({B}).

For each B ∈ IB, let PB be the projector on K onto K({B}) corresponding to this direct sum
decomposition of K. Since each `y maps each of these summands K({B}) into itself, `y commutes
with each such PB . Hence, if the basic system (B′, ϕ) is special and compatible, then, for each
B ∈ IB, the system

(7.11) `b? = PBϕb, b ∈ B′,

is compatible and, further, PBϕb = 0 in case b ∈ B, since by assumption, the original system is
special, hence

ϕb ∈ K(IB\b) =
⊕

B∈IB\b

K({B}).
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In particular, PB′ϕb = 0 for all b ∈ B′, hence fB′ := 0 solves (7.11) in case B = B′. In the contrary
case, at least one of the `b involved is invertible on K({B}), hence the system has a solution in
K({B}), namely

fB := (`b|K({B}))−1PBϕb.

It follows that f ∈ K given by the identity

PBf = fB , B ∈ IB

solves the original system.

8. A replaceability condition and s-additivity

In the last five sections we analysed the dimension of K with the aid of the atomic map, hence
are now in a position to enlarge on the remarks at the end of §2 concerning the relative merits of the
two approaches, via the DM map and via the atomic map, to the bounding of dimK. In view of the
examples discussed in this paper, the IB-conditions required for the application of the atomic map
(e.g., placeability) are more likely to hold than their DM counterparts (replaceability). Secondly
(and more importantly), the `-condition we use in the atomic approach (i.e., the solvability condition
3.2) is weaker than the one we need for the implementation of the DM map (the s-additivity, see
below). This means that as long as we have in hand IB-conditions which allow us to decompose IB
through the atomic map (for example if ∅ ∈ IE), we can get no better results by using the DM map.
This observation applies, in particular, to matroidal, order-closed, and minimum-closed structures.
The notion of replaceability plays an important role in the discussion in [DDM: §6], and hence
various results obtained there are related to those of this section. We mention, however, that the
method and the `-condition that we employ here differ from the ones used in [DDM].

In this section, we consider as an `-condition the notion of s-additivity, which was introduced in
[S] and was successfully applied in [S] and [JRS1] for a matroidal and order-closed IB respectively.
While we already derived, in §5 and §6, results stronger than their counterparts from [S] and [JRS1],
the approach of [JRS1] can be extended to yield new dimension results which are not obtained in
the previous sections. This is due to the fact that the existence of a replaceable atom (needed here)
does not imply the existence of a placeable element. It thus requires a complementary discussion
of estimates for K via the DM map and the notion of replaceability.

For this discussion, let
G

denote the abelian semi-group generated by (the elements of) `(X). Since this discussion involves
the joint kernel of an arbitrary sequence L in G, we also use the letter K for such a joint kernel,
i.e., write

K(L) :=
⋂
l∈L

ker l,

and trust that the reader will have no difficulty distinguishing between K(L) for a sequence L in
G and K(IB) for a collection IB of subsets of X.

Definition 8.1. We say that G is s-additive in case

dimK(L, gh) = dimK(L, g) + dimK(L, h)

for arbitrary (s−1)-sequences L and arbitrary elements g, h (in G).

Before making use of this condition, it is perhaps useful to compare it to the solvability
condition 3.2 placed on ` in §3, as is done in the following proposition which also fully answers the
question raised in [RJS].
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Proposition 8.2. G is s-additive if and only if, for every matroidal IB and every ` : X → G with
dimK <∞, every special compatible basic system is solvable.

Proof: It follows from [S: Theorem (2.4)] that G is s-additive if and only if (iii) of Theorem
5.2 holds for an arbitrary matroidal IB (of rank s) and ` : X → G. But, for each fixed matroidal
IB and ` : X → G, (iii) is equivalent to (i) of Theorem 5.2 which says that any special compatible
basic system is solvable.

We note that a comparison of s-additivity and the solvability condition 3.2 has also been made
in [JRS2]. In particular, [JRS2: Theorem (2.11)] can be derived from Proposition 8.2 and Corollary
5.3.

The following lemma will play an important role in the proof of the main induction step in the
next theorem. It is a variant of [JRS1: Theorem (2.1)], and employs the notation

K`(IB) :=
⋂

A∈AAmin(IB)

ker `A

whenever the dependence on the particular map ` needs stressing.

Lemma 8.3. Assume that y ∈ X, H ∈ IH, and ` : X → G satisfy the following conditions:
(i) dimK <∞;
(ii) For arbitrary `′ : y ∪H → G,

dimK`′(IBy∪H) =
∑

B∈IB(y∪H)

dimK`′({B});

(iii) y is IB-replaceable.
Then, for each ϕ ∈ K(IBy∪H), the system

(8.4)
`X\(y∪H)? = ϕ

`X\(y∪H′)? = 0 ∀H ′ ∈ IH\H

has solutions in K.

Proof: We apply [JRS1: Theorem (2.1)] to prove this lemma. For this, note that IB ⊆ IB′,
where IB′ := {B ⊆ X(IB) : #B = s} is matroidal. Then the conditions (i) and (ii) are exactly the
same as the conditions (i) and (ii) of that theorem.

As to condition (iii), since y is IB-replaceable,

H = {x ∈ X : (B\y) ∪ x 6∈ IB}

for each B ∈ IBy∪H , as proved at the beginning of the proof of Proposition 2.8. This implies that,
for all B ∈ IBy∪H and for all x ∈ X\H, (B\y) ∪ x ∈ IB which is the condition (iii) of [JRS1:
Theorem (2.1)].

The solvability of (8.4) therefore follows from that theorem. We now prove that each such
solution f is necessarily in K. This means that we need to show that `X\H′f = 0, for all H ′ ∈ IH.
If H ′ 6= H, then already `X\(y∪H′)f = 0. Otherwise, H ′ = H, and there are two possibilities to
consider: (a) y ∈ H. In this case IBy∪H = ∅, and hence ϕ = 0, and thus `X\Hf = `X\(y∪H)f =
ϕ = 0. (b) y 6∈ H. Here, we compute `X\Hf = `y`X\(y∪H)f = `yϕ = 0, with the last equality since
ϕ ∈ K(IBy∪H), and y is a cocircuit in IBy∪H .
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We note that the proof, in Proposition 3.18, of the solvability of system (3.1) does not rely on
any dimension identity involving subspaces of K. This, as we saw in §3, gives a new approach to
the study of the joint kernels and solves problems which cannot be easily solved by the other way.
On the other hand, the proof of the solvability of the system (8.4) relies on condition (ii) which is
a dimension identity for the subspace K(IBy∪H) of K. This motivates the following definition.

Definition 8.5. We say that IB is fair if, for all Y ⊆ X with #IBY > 1, there exists a IBY -
replaceable y for which IBY \y 6= ∅.

Note that IB is fair in case it satisfies some property which (i) is inherited by subsets (i.e.,
holds with respect to any IBY , Y ⊆ X), and which (ii) implies, in case #IB > 1, the existence
of a replaceable y ∈ X whose corresponding IB\y and IB|y are not empty. An instance of such a
property is minimum-closedness (which is obviously inherited by subsets, and which satisfies (ii)
by Proposition 6.6), and, hence, we have we have the following.

Corollary 8.6. Every minimum-closed IB is fair.

This last corollary is not extremely useful, since results on minimum-closed IB were already
established in §6 by other means, and the results below on fair structures will not improve upon
those from §6. It is more significant to note that a fair IB need not be minimum-closed, since
otherwise our main result here (Theorem 8.10) would become a weaker version of (the first part
of) Theorem 6.4. The next example serves this purpose.

Example 8.7. Let M := IRd, d = 2, and let IB be chosen as in §4, with respect to the present M . It
can be checked then that IB is fair. Precisely, given Y ⊆ X, if Y contains only integer vectors, then
IBY is matroidal (as observed in the discussion prior to Lemma 4.3) and hence every y ∈ X(IBY ) is
IBY -replaceable. Otherwise, every noninteger y ∈ X(IBY ) is IBY -replaceable: since such y appears
second, hence last, in every basis B that contains it, its only contribution is to cover the nonzero
integers on the line which is not covered by the other atom in that basis, or equivalently, to cover a
nonzero integer α, α′ on this line which is closest to the origin. Given another basis B′, there must
be b ∈ B′ that covers α and this b can replace y in B.

On the other hand, Example 6.9 exhibits a special case of the above setup which is not
minimum-closed, hence fair cannot imply minimum-closedness. As a matter of fact, since that
example satisfies the IE-condition (as does every IB of §4), we see that even the IE-condition com-
bined with the assumption that IB is fair does not imply minimum-closedness. Finally, the following
example shows that IB can be fair without satisfying the IE-condition. This means that the results
in this section concerning dimK could not have been derived directly from their counterparts in
§3.

Example 8.8. Let IB = {123, 124, 125, 246, 147, 367, 467, 567}. Then only 4 is placeable, and, in
IB\4 = {123, 125, 367, 567}, only 3 and 5 are placeable, and, with x = 3 or 5, IB\4|x = {12x, x67}
cannot be split any further by a placeable element. Thus, by Theorem 3.17, IB does not satisfy the
IE-condition. On the other hand, IB is fair, as one verifies directly.

Proposition 8.9. If IB is fair, then

dimK ≤
∑
B∈IB

dimK({B}).

Proof: We use induction on #IB, it being trivially true in case #IB ≤ 1. So, assume
that #IB > 1. Then, there is, by assumption, a replaceable y ∈ X(IB), and, by Proposition 2.8,
this implies (2.5) which, in turn, implies that IB is the disjoint union of the collections IBy∪H ,
H ∈ IH, and IB\y. Further, since y ∈ X(IB), #IB\y < #IB, and since IB\y 6= ∅, by assumption, also
#IBy∪H < #IB, H ∈ IH. Therefore, induction together with (2.3) finishes the proof.
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We have been reminded that this proposition was already proved in [J], with the ‘intersection
conditions’ used there enforcing, by Proposition 2.8, what we have called here ‘fair’.

Theorem 8.10. Suppose that IB (of rank s) is fair and G is s-additive. Then, for arbitrary
` : X → G with dimK <∞,

dimK =
∑
B∈IB

dimK({B}).

Proof: The proof is by induction on #IB, it being trivially true when #IB ≤ 1. Let
y ∈ X(IB) be IB-replaceable, with IB\y 6= ∅. The major induction step is to prove that the short
sequence

(8.11) 0 → K(IB\y) ↪→K
j→ ×

H∈IH
K(IBy∪H) → 0

is exact, with j defined by (1.10), but using H ∈ IH rather than A ∈ AAmin(IB\y) to index the
components of j’s target, as discussed at the beginning of §2.1.

Since ker j = K(IB\y), the sequence is exact at K. To prove that the sequence (8.11) is exact,
it remains to show that j is onto. This follows by applying Lemma 8.3 to each H ∈ IH. Lemma
8.3 can be applied to each H ∈ IH, since, for each H ∈ IH, (i) holds by assumption and (iii) holds
by the choice of y, while, finally, since y ∈ X(IB), #IB\y < #IB and since IB\y 6= ∅, #IBy∪H < #IB
for each H, hence (ii) holds by induction hypothesis.

It follows from the exactness of the sequence (8.11) that

dimK = dimK(IB\y) +
∑

H∈IH

dimK(IBy∪H).

Since y is IB-replaceable,
⋃

H∈IH IBy∪H is a disjoint union, by Proposition 2.8. Therefore, IB is
the disjoint union of IB\y and {IBy∪H , H ∈ IH}. Applying the induction hypothesis to K(IB\y) and
{K(IBy∪H) : H ∈ IH}, we have

dimK =
∑
B∈IB

dimK({B}).

We remark that the exactness of (8.11) gives the exactness of the “Hom” of the sequence (6.31)
of [DDM], and Theorem 8.10 holds if IB is ‘strongly coherent’ as defined in [DDM]. Interested
readers should consult [DDM] for details.

As noted before, being fair is implied by minimum-closedness, thereby is also implied by order-
closedness, and these implications are proper. Our result, thus, improves [JRS1: Theorem (2.3)],
since the latter concerns order-closed sets. The argument we use, however, is essentially the one in
[JRS1].
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