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ABSTRACT

A univariate compactly supported refinable function φ can always be written as the convolution
product Bk ∗ f , with Bk the B-spline of order k, f a compactly supported distribution, and k the
approximation orders provided by the underlying shift-invariant space S(φ).

Factorizations of univariate refinable vectors Φ were also studied and utilized in the literature.
One of the by-products of this article is a rigorous analysis of that factorization notion, including,
possibly, the first precise definition of that process.

The main goal of this article is the introduction of a special factorization algorithm of refinable
vectors that generalizes the scalar case as closely (and unexpectedly) as possible: the original vector
Φ is shown to be ‘almost’ in the form Bk ∗ F , with F still compactly supported and refinable, and
k the approximation order of S(Φ): ‘almost’ in the sense that Φ and Bk ∗ F differ at most in one
entry. The algorithm guarantees F to retain the possible favorable properties of Φ, such as the
stability of the shifts of Φ and/or the polynomiality of the mask symbol. At the same time, the
theory and the algorithm are derived under relatively mild conditions and, in particular, apply to
Φ whose shifts are not stable, as well as to refinable vectors which are not compactly supported.

The usefulness of this specific factorization for the study of the smoothness of FSI wavelets
(known also as ‘multiwavelets’ and ‘multiple wavelets’) is explained.

The analysis invokes in an essential way the theory of finitely generated shift-invariant (FSI)
spaces, and, in particular, the tool of superfunction theory.

AMS (MOS) Subject Classifications: Primary 42C15, 42A85, Secondary 41A25, 46E35

Key Words: FSI spaces, refinable vectors, factorization of masks, approximation order, multi-
wavelets.

This work was supported by the National Science Foundation under Grants DMS-9626319 and
DMS-9872890, by the U.S. Army Research Office under Contracts DAAH04-95-1-0089 and DAAG55-
98-1-0443, and by the National Institute of Health.



A new factorization technique of the matrix mask of univariate refinable functions

Gerlind Plonka & Amos Ron

1. Introduction

1.1. Factorization: general

Let Φ be a finite subset of L2 := L2(IR), which we also treat as a vector with n ∈ IN entries.
Let S(Φ) be the smallest closed subspace of L2 that contains each Eαφ, φ ∈ Φ, α ∈ ZZ. Here, Eα

is the shift operator
Eα : f 7→ f(· + α).

The space S(Φ) is known as a finitely generated shift-invariant (FSI, for short) space. FSI
spaces are employed in several different areas of analysis, the most relevant ones to the present
paper are wavelets and uniform subdivisions.

For certain applications concerning FSI spaces (one of which is discussed in §5 of this paper),
it is useful to attempt factoring the vector Φ. Here, a factorization means expressing Φ in the
form

Φ = V F,

with F a ‘simpler’ (in a suitable sense) vector, and V a convolution operator, i.e., a matrix of order
Φ × F , whose entries are convolution operators.

In more than one variable there are no universal factorization techniques (and the reasons
for that are intrinsic), and this is the main reason the current paper is restricted to the more
favorable univariate case. In that case, general factorization techniques can be either based on
the dependence relations among the shifts of Φ or on the approximation properties of S(Φ); we
are especially interested in the latter subject. For example, assume that Φ = {φ} is a singleton
compactly supported distribution, and that, for some integer k,

φ ∗′ p :=
∑

α∈ZZ

p(α)E−αφ ∈ Π, ∀p ∈ Πk,

where
Π

is the space of all polynomials in one variable, and

Πk := {p ∈ Π : deg p ≤ k}.

Then it is known, [R1], that φ can be written in the form B ∗ f , with B the B-spline of order k,
and f some distribution of shorter support. We will actually prove and invoke a stronger variant
of that result in the current article.

A naive extension of the aforementioned result to the vector case is the following ansatz: ‘if
the shifts of the compactly supported Φ span all polynomials of degree ≤ k, then Φ = B ∗ F , with
B as before, and F another compactly supported vector’. While this ‘naive extension’ is invalid,
it is pleasing that a slightly modified version of it is true; however, the simple argument of [R1]
does not carry over, and one needs to resort to some of the most powerful techniques in FSI space
theory, techniques that nowadays are nicknamed superfunction theory.
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We are ready now to elaborate further on these matters. First (and in contrast with [R1]),
our sole interest here is in a vector Φ which is refinable. By definition, this means that, for some
dilation operator Ds of the form

(1.1) Ds : f 7→ f(·/s),

we have that

Ds(S(Φ)) ⊂ S(Φ).

We will always assume that the dilation parameter s is an integer greater than 1. (The symbol
f(·/s) above should be understood as the function t 7→ f(t/s)). The refinability assumption on
S(Φ) is equivalent, [BDR2], to the existence of a matrix P whose rows and columns are indexed
by Φ, and whose entries are measurable 2π-periodic functions, for which

(1.2) Φ̂(s·) = PΦ̂, a.e.

The relation expressed in (1.2) is known as the refinement equation, and the matrix P is referred
to as the mask symbol (or, sometimes, as the ‘mask’ or the ‘symbol’).

Certain guidelines should be followed when considering the problem of factoring a refinable
Φ. First, we require that each one of the convolution factors is refinable (note that B-splines are
refinable with respect to all integer dilation parameters s). Second, in many practical situations
the vector Φ is not explicitly known and the actual input is the symbol P. Naturally, one then
needs to factor the symbol P, i.e., if the obtained factorization is, e.g., Φ = B ∗ F , then the
practical information we seek is the mask symbol of F . The entire factorization can then be
viewed as a factorization of P; we will explain in the sequel the simple connection between the
factorization at the function level and at the symbol level. Third, the functions Φ and/or the
symbol P usually possess some ‘favorable’ properties. For example, the entries of P may be
trigonometric polynomials, the functions in Φ may be compactly supported, their shifts may form
a Riesz basis for S(Φ), etc. It is then desired that the process retains those properties, e.g., that
the entries of the symbol P0 of the factor F are still polynomials, if those of P were ones.

In view of the above, we formalize the notion of ‘factoring the mask symbol of a refinable
function’ as follows:

Definition 1.3. A kth order factorization process is a process that applies to a class of
‘admissible’ refinable vectors Φ. The input of the process is the mask symbol P of Φ and the
output is a matrix Q such that Q is the mask symbol of a vector F (whose cardinality equals that
of Φ) for which S(Bk ∗ F ) = S(Φ), with Bk the B-spline of order k.

Example: trivial factorization. The simplest factorization of order k is the k-fold differentiation,
i.e., F := DkΦ. In that event, Bk ∗F = ∇kΦ, with ∇ := 1−E−1 the backward difference operator,
hence (since S(∇G) = S(G) for any finite function set G ⊂ L2) it is a ‘factorization of order k’ with
Q = skP. However, a factorization should aid us when studying refinable vectors via their symbol.
Here, in contrast, the symbol of the new vector F is essentially the same the symbol of the original
Φ, and the entire factorization is not only trivial but also useless. Non-trivial factorizations must
rely on the (e.g., approximation) properties of the vector Φ (in contrast, the present factorization is
‘universal’: it does not require any property of Φ, and does not require any knowledge on P). We
will impose in the sequel an additional condition on the factorization process, which will exclude
the present trivial factorization.
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1.2. Superfunction theory and the factorization of [P]

The adjective ‘new’ in the title of this paper certainly indicates that factorization techniques of
refinable Φ’s are already in the literature. Indeed, a method for factoring the symbol of a refinable
vector was introduced by the first named author in [P]. Another factorization technique, which is
carried out on the space/time domain, and which is based on [P], can be found in [MS]. In this
subsection, we will first survey some aspects of superfunction theory, and recast the factorization
of [P] in these terms.

Superfunction theory is a notion intimately related to approximation orders of FSI spaces
(the discussion here equally applies to multivariate functions; in fact, superfunction theory was
motivated, first and foremost, by multivariate approximation problems). One says that the FSI
space S(Φ) provides approximation order k if, given any ‘sufficiently smooth’ function g ∈ L2,
we have that (as h→ 0)

dist(g,Dh(S(Φ))) = O(hk).

It was conjectured by Babuška (cf. [SF]) that if Φ is compactly supported (the FSI space is then
termed local), and if S(Φ) provides approximation order k, then there exists a finite linear combi-
nation ψ of Φ and its shifts (necessarily, thus, of compact support), such that the small subspace
S(ψ) of S(Φ) already provides the same approximation order k. Babuška’s conjecture was proved
true in [BDR2], and ψ above (which, we emphasize, is not unique) was subsequently nicknamed ‘su-
perfunction’. The reference [BDR2] contains extensions of the aforementioned results to non-local
FSI spaces; nonetheless, all those results are too general for our context: their ultimate success
is their validity under extremely mild conditions, alas, the superfunctions, under those conditions,
lack certain properties which we need here.

We will use instead the more recent (and also more straightforward) superfunction results that
were established in [BDR4]. There, improved superfunction results were obtained under additional,
reasonably mild, conditions on the vector Φ. The basic condition there was termed Strong H(k)
Condition, and a slightly stronger (unnamed) condition was used there in the applications to
refinable functions. We will recall these two conditions, and name the latter one. But, first, we
recall the notions of the bracket product and the Gramian from [BDR1,BDR2].

Definitions 1.4.
(a) Let f, g ∈ L2. Their bracket product [f, g] is the 2π-periodization of fg:

[f, g] :=
∑

l∈2πZZ

f(· + l)g(· + l).

Note that the bracket product lies in L1(TT), where TT denotes the torus.
(b) Let Φ ⊂ L2 be finite. The Gramian G := GΦ is the Hermitian Φ × Φ matrix whose (ϕ, φ)-

entry, φ, ϕ ∈ Φ, is the bracket product [φ̂, ϕ̂].

Definition 1.5: The strong H(k) property. Let Ξ be a finite subset of IR, and let k be a
positive integer. We say that Φ satisfies the strong H(k) property at Ξ if the following two
conditions hold:

(I) For some neighborhood O of the origin, and for each ξ ∈ Ξ, each φ̂, φ ∈ Φ, as well as each
entry of the Gramian GΦ, is k times continuously differentiable on ξ +O + 2πZZ.

(II) G(ξ) is invertible, for every ξ ∈ Ξ.

The default set Ξ is {0}, thus the strong H(k) property means ‘the strong H(k) property at
Ξ = {0}’.

The unnamed condition in [BDR4] corresponds now to the strong H(k) property at

Ξs := {2πj

s
: j = 0, . . . , s− 1},
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and this is indeed the basic condition we will need in this paper. The core of the strong H(k)
property is its second requirement. It is worth stressing that that requirement is much weaker than
more commonly used assumptions, such as the L2-stability of the shifts of Φ (which is also known
as ‘the Riesz basis property’) or the linear independence of those shifts. We elaborate on that point
in the next section. Requirement (I) in the definition is technical and mild: it is satisfied if, e.g.,
each φ ∈ Φ decays at ∞ at a rate O(| · |−ρ) for some ρ > k + 1.

We want now to explain the factorization technique that was developed in [P]. For that, we
use the following univariate case of Theorem 4.2 of [BDR4]. The reader should immediately note
that this is ‘a superfunction result’. In this result, as elsewhere in this paper, the notation

D

stands for the differentiation operator.

Result 1.6. Assume that Φ satisfies the strong H(k) property for some k, and that S(Φ) provides
approximation order k. Then there exist vectors yl := {yl(φ) : φ ∈ Φ} ∈ CΦ, l = 0, . . . , k − 1, such
that y0 6= 0, and such that, if ψ is a finite linear combination of Φ and its shifts, i.e., if

ψ̂ =
∑

φ∈Φ

τφφ̂,

for some trigonometric polynomials τφ, φ ∈ Φ, then S(ψ) provides approximation order j ≤ k if

Dlτφ(0) = yl(φ), φ ∈ Φ, l = 0, . . . , j − 1.

The factorization method of [P] revisited. This method is inductive. Assume that Φ satisfies
the strong H(1) property, and that S(Φ) provides approximation order k ≥ 1. Then, Result 1.6, a
superfunction ψ1 that provides approximation order 1 is available in the form

ψ1 =
∑

φ∈Φ

y0(φ)φ.

Now, order Φ in any way {φ1, φ2, . . . , φn} so that, for some j, y0(φl) 6= 0 if and only if l ≤ j. Then,
replace the vector Φ = {φ1, φ2, . . . , φn} by a vector Ψ = {ψ1, ψ2, . . . , ψn}, as follows:
(a) ψ1 is the aforementioned superfunction.
(b) For l = 1, . . . , j−1, ψl+1 = ψl+y0(φl)∇φl, with ∇ = 1−E−1 the backward difference operator.
(c) For l > j, ψl = ∇φl.

Obviously, S(Ψ) = S(Φ). Under a mild condition on ψ1 (e.g., a mild decay condition at ∞),
the fact that ψ1 provides approximation order 1 implies that ψ1 = B1 ∗ f1, with B1 the B-spline
of order 1, and f1 some function/distribution. Also, for every function g, ∇g = B1 ∗ Dg. All in
all, one concludes that there exists a vector F (consisting of either functions or distributions), such
that

Ψ = B1 ∗ F.
If F lies in L2, one can show that it provides approximation order k− 1. If it still satisfies the H(1)
property, the process may be continued, and another factorization step can be applied.

The above description does not mention refinability. In contrast, the process in [P] assumes
refinability and is described there as an algorithm for factoring the mask symbol. Indeed, the above
vector F is still refinable, and the highlight of the factorization of [P] is the (non-trivial) fact that,
if the original symbol P of Φ consists of trigonometric polynomials, so is the symbol of the new
F (cf. [P] for more details. The strong H(1) property does not suffice for the validity of the last
assertion: one needs for that to assume the strong H(1) property at Ξs. [P] makes an assumption
that is equivalent to L2-stability.)
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While the above details correspond exactly to the algorithm in [P] (with the only difference
being that we use here backward difference as opposed to the forward difference used in [P]),
it should be stressed that many other variants of that algorithm are possible. One should only
follow the rule that ψj above, j > 1, lies in the span of {ψ1,∇φ1,∇φ2,∇φ3, . . .}, with ψ1 the
aforementioned superfunction.

1.3. Our new factorization technique: why and what?

The method of this article is developed under assumptions weaker than those assumed in [P].
However, it will be erroneous to conclude that our aim is at a factorization method that applies to
a wider range of FSI spaces. Had we wanted to, we could have rederived the method of [P] under
the conditions we assume here.

In order to explain our motivation, we first note that the factorization outlined in the previous
subsection ‘shuffles’ the vector Φ. More precisely, in contrast with the unavailable ‘naive factor-
ization’ Φ = B ∗ F (where there is a natural correspondence between the elements of Φ and F ),
no simple relation exists (in the method of [P]) between the original entries of Φ and those of the
factor F . For the application of certain emerging algorithms this is a disadvantage. Specifically,
in [RS] a new technique for estimating the smoothness of refinable functions was developed. The
technique there does not require the factorization of the mask symbol, but its numerical stability is
dramatically improved if a factorization is first done. On the other hand, the [RS] method allows
one to find separately the smoothness of each entry of F (previous results, such as that of [CDP,
MS] which incidentally are based on the [P] factorization, could find only the common smoothness
of all the functions in Φ). However, as we had just explained, the existing factorization techniques
‘scramble’ the functions in Φ, hence one cannot convert the componentwise smoothness estimates
on F to componentwise smoothness estimates on Φ. This drawback is exactly the one that we over-
come with the new method: in this new method, there will be a simple correspondence between
the functions in the original Φ and those in the final factor F .

Our method can start with a vector Φ that may or may not be refinable. Assuming S(Φ) to
provide approximation order k, we attempt to replace one φ0 ∈ Φ by a superfunction ψ (whose
S(ψ) also provides the same approximation order), and to further replace each the remaining
φ ∈ Φ by ∇kφ, where, as before, ∇ is the backward difference. Regardless of the choice of ψ, the
resulting vector Φ0 is factorable into the form Φ0 = Bk ∗F (with Bk the B-spline of order k). The
factorization is adequate: for example, if Φ are of compact support, so are F . However, more care is
required upon assuming Φ to be refinable. For example, if the symbol of Φ is made of trigonometric
polynomials, F is refinable, too, but its symbol, in general, will not be made of polynomials. This
is the reason that we rely on subtle superfunction results: the crux is to find a superfunction ψ
so that the polynomiality of the symbol is retained when replacing φ0 by ψ. Theorem 4.12 and
Corollary 5.5 of [BDR4] establish the existence of such superfunction ψ, indicate which entry φ0 of
Φ can be replaced by ψ, and compute the symbol of the new Φ0. (As a matter of fact, the [BDR4]
results we use were tailored by the [BDR4] authors to help us in developing the present method.)
We review those details in §2, and also prove in that section the extension of the [R1] result that
guarantees the factorization of the superfunction ψ into the form Bk ∗ F .

In §3, we provide a unified approach to factorization which is based on superfunction theory
basics. In §4, we discuss the theoretical aspects of our factorization, and then use the results of §3 in
the derivation of an algorithm for the factorization process. In §5 we explain how the factorization
can help in determining the smoothness of refinable vectors via the processing of its mask.
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2. Superfunctions, refinable functions, and other preliminaries

We discuss here three topics in preparation for the factorization algorithm. First, we quote
several superfunction results from [BDR4]; some are used in the next section in a general analysis of
factorization, while others are needed in order to ‘prepare’ the vector Φ for our specific factorization.
We also present a theorem that allows us to factor the B-spline from the superfunction (and which
we already alluded to in the introduction). We finally discuss the notions of L2-stability and
pre-stability, notions that appear in the statements of our main results.

As we already mentioned in §1.2, given an FSI space S(Φ) that provides approximation order k,
one can find in S(Φ) many superfunctions. The study of [BDR4] focuses, initially, on a canonically
chosen superfunction ψ0 which, in the univariate case, has the form

(2.1) ψ̂0 =
∑

φ∈Φ

σφφ̂,

where σφ is a polynomial in the span of {e−ij · : j = 0, 1, . . . , k−1}, that satisfies Djψ̂0(l) = δl,0δj,0
(l ∈ 2πZZ, 0 ≤ j ≤ k − 1). We label this particular superfunction the canonical superfunction
(of order k). Theorem 4.2 of [BDR4] proves that, under the strong H(k) property, there exists a
unique canonical superfunction. The trigonometric polynomial row vector

σ := (σφ)φ∈Φ

of (2.1) will be referred to as the canonical Φ-vector of order k. As we will see in the sequel,
the canonical vector provides key information in the implementation of factorization algorithms,
and, therefore, it is important to be able to compute that vector. In [BDR4], two different methods
are suggested to that end: one (cf. Corollary 4.9 there) does not assume refinability, and relies on

values of the derivatives of Φ̂ at 2πZZ. The other one (cf. Theorem 5.2 there) extracts the canonical
vector directly from the mask symbol P of the refinable Φ, and reads, for a univariate setup, as
follows:

Result 2.2. Let Φ ⊂ L2 be s-refinable with mask symbol P. Suppose that Φ satisfies the strong
H(k) property at Ξs := 2π

s {0, 1, . . . , s− 1}. Then the following conditions are equivalent:
(a) S(Φ) provides approximation order k.
(b) There exists a trigonometric polynomial row vector σ = (σφ)φ∈Φ, so that,

(i) σ(0)Φ̂(0) = 1,
(ii) σ(s·)P has a k-fold zero at each of Ξs\0, and σ(s·)P− σ has a k-fold zero at the origin:

Dj(σ(su)P(u) − δξ,0σ(u))u=ξ = 0, ξ ∈ Ξs, j = 0, . . . , k − 1.

Moreover, σ in (b) is the (unique) canonical Φ-vector of order k, provided each σφ lies in the span
of (e−ij ·)k−1

j=0 . Finally, the implication (b) =⇒ (a) holds under a weaker assumption, viz., that Φ
satisfies the strong H(k) property at 0 only.

Proof: The fact that (a)=⇒(b) follows along the lines of the proof of Theorem 5.2 in
[BDR4]. Assuming a suitable decay condition on Φ and the invertibility of the Gramian GΦ, the
theorem there states that, if S(Φ) provides approximation order k, then (b) holds for some vector
σ. That vector σ can be chosen to be the canonical vector, and this choice is indeed made in the
proof in [BDR4] for Theorem 5.2. The conditions on the decay of Φ and the Gramian can be
replaced by the strong H(k) property at Ξs.

The converse implication, (b)=⇒(a), is also contained in the proof of Theorem 5.2 of [BDR4]:

the proof there shows that, assuming (b), the function ψ0 defined by ψ̂0 = σΦ̂ is the canonical
superfunction of order k.
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However, for the specific factorization technique of §4, we need a further superfunction result.
That other superfunction result is Theorem 4.12 of [BDR4] that reads in the univariate case as
follows:

Result 2.3. Let k be a positive integer, and let Φ be a vector of L2-functions satisfying the strong
H(k) property. If S(Φ) provides approximation order k, then there exists φ0 ∈ Φ and for this φ0 a
unique function ψ that satisfies the following two properties:
(a) ψ satisfies on the Fourier domain a relation of the form

ψ̂ = φ̂0 +
∑

φ∈(Φ\φ0)

τφφ̂,

with each τφ a trigonometric polynomial in the span of (e−ij ·)k−1
j=0 .

(b) ψ satisfies the Strang-Fix conditions of order k:

ψ̂(0) 6= 0, Dj ψ̂(l) = 0 (j = 0, . . . , , k − 1, l ∈ 2πZZ\{0}).
Moreover, S(ψ) provides approximation order k.

Corollary 5.5 of [BDR4] demonstrates the usefulness of this superfunction in the context of
refinable vectors. We quote below the univariate case of that corollary, and provide, for complete-
ness, its simple proof. More details concerning the above result are found in §4, where we discuss a
method for finding this special superfunction; more precisely, we will need to find the trigonometric
polynomials (τφ) above. The computation of τφ will be based on the canonical Φ-vector σ of order
k in Result 2.2. For convenience, we set

Φ′ := Φ\φ0,

and

(2.4) Φ0 := Φ′ ∪ ψ,
with φ0 and ψ as in Result 2.3.

Result 2.5. Assume that the assumptions, hence the conclusions, of Result 2.3 hold. Assume
further that the vector Φ is refinable with mask symbol P. Then, in the notations of Result 2.3,
Φ0 (defined in (2.4)) is also refinable with a symbol P0 of the form

P0 = U1(s·)PU2,

where the entries of U1, U2 are trigonometric polynomials. More precisely, if we order the functions
in Φ0 in any order of the form (ψ, φ2, φ3, . . .), then U1 = I + R, U2 = I − R, with R a matrix
whose first row is

(0, τφ2
, τφ3

, . . .)

and all its other rows 0 (and with τφ the trigonometric polynomials of Result 2.3).

Proof: Let ψ be the superfunction of Result 2.3, its existence and uniqueness has been
shown in Theorem 4.12 of [BDR4]. It is evident that the connection between the vectors Φ and Φ0

is, on the Fourier domain, of the form
Φ̂0 = U1Φ̂,

with U1 having the structure stated in the result. Thus, the symbol P0 of Φ0 is

P0 = U1(s·)PU−1
1 .

It is straightforward to check that U−1
1 = U2, with U2 as in statement of the result.
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We postpone the discussion concerning the computation of ψ as well as explicit constructions
of U1, U2 to §4.

Almost all the observations that are required for the new factorization hold in several variables
(though they are stated and proved in one dimension). The only result that does not extend beyond
the univariate setup is the next theorem. As mentioned before, the compact support case of this
result (i.e., statement (a) here) can already be found in [R1].

Theorem 2.6. Let ψ ∈ L2(IR) and assume that, for some origin neighborhood O, ψ̂ is k-times
continuously differentiable on O+2πZZ\0, and is bounded on O. Further, assume that S(ψ) provides

approximation order k, and that Dkψ̂ grows slowly on O + 2πZZ\0 (here, as usual, ‘slowly’ means
no faster than some polynomial). Then there exists a tempered distribution η such that ψ = Bk ∗η,
with Bk the B-spline of order k. Moreover, η can be chosen in a way that:
(a) If suppψ ⊂ [a, b], then supp η ⊂ [a, b− k].
(b) IfDkψ(u) = O(|u|−ρ) for large |u|, and for some ρ > k+ε with ε > 0, then η(u) = O(|u|−(ρ−k)).
(c) If Dkψ(u) = O(e−β|u|), for some positive β, then η decays at that same exponential rate.

Proof: First, since we assume that S(ψ) provides approximation order k, and since we

further assume that ψ̂ is bounded around the origin, then, ψ must have a k-fold zero at each
j ∈ 2πZZ\0 (see [BDR1]).

Let G1 be the support function of O + 2πZZ, G2 := 1 −G1. We consider the expression (with
B := Bk)

ψ̂

B̂
=
G1ψ̂

B̂
+
G2ψ̂

B̂
.

We will show that each of the two summands above is a tempered distribution, and this will prove
the existence of the required tempered distribution η (we will then use other techniques to prove
the decay assertions).

Firstly, recall that

B̂(u) =

(
1 − e−iu

iu

)k

.

Since 1/(1 − e−iu) is bounded on suppG2, we then conclude that G2/B̂ grows only slowly at ∞,

hence the function G2ψ̂/B̂ is a tempered distribution.
Secondly, let j ∈ 2πZZ\0. We then write

ψ̂(u)/B̂(u) =
ψ̂(u)

(u− j)k

(
u− j

1 − e−iu

)k

(iu)k.

Note that ‖
(

u−j
1−e−iu

)k

‖L∞(j+O) = ‖1/B̂‖L∞(O) ≤ const. Thus, since ψ̂ is assumed to be smooth

at each region of the form j +O, j ∈ 2πZZ\0 and has a k-fold zero at j, it follows that

‖G1ψ̂/B̂‖L∞(j+O) = ‖ψ̂/B̂‖L∞(j+O) ≤ const‖Dkψ̂‖L∞(j+O)|j|k.

Since we assume Dkψ̂ to grow slowly on O + 2πZZ\0, we conclude from the above that G1ψ̂/B̂
grows slowly, as well. This concludes the proof of the existence of η satisfying ψ = B ∗ η.

Now, we prove (a-c), and use for that a different argument (which applies uniformly well to
all three cases, and which is an adaptation of the argument in [R1]). Firstly, note that the Fourier
transform of Dkψ has a k-fold zero at each j ∈ 2πZZ\0, and also has a similar zero at the origin.
Using any of the decay conditions (a-c), a standard application of Poisson’s summation formula
then yields that

(Dkψ) ∗′ p = 0, ∀p ∈ Πk−1.
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We choose p to be the polynomial of degree k − 1,

p(x) :=

(
x− 1

k − 1

)
=

(x− 1)(x− 2) . . . (x− k + 1)

(k − 1)!

for x ∈ IR, i.e., ∇k−1p = (−1)k−1. That polynomial makes the following identity valid

(2.7) η :=
∞∑

α=k

p(α)Eα(Dkψ) =
∞∑

α1=1

· · ·
∞∑

αk=1

Eα1+...+αk(Dkψ).

The decay assumption on Dkψ grants us that the sum that defines η converges absolutely (distri-
butionally). That same decay assumption can be easily used to show that, as t → ∞, η(t) decays
as it is required to. However, since (Dkψ) ∗′ p = 0 (and since p vanishes at {1, . . . , k− 1}), we have
the alternative expression for η

η = −
0∑

α=−∞
p(α)Eα(Dkψ),

which can be used to show that η also decays suitably at −∞. Finally, the right-most expression
for η in (2.7) implies that ∇kη = Dkψ. Now, set g := B ∗ η. Since B is a compactly supported
function, g decays at ∞ at least at the same rate as η does. Further, Dkg = ∇kη, which means
that Dk(g − ψ) = 0, hence that g − ψ is a polynomial. That polynomial is 0, since both g and ψ
vanish at ∞.

We now turn our attention to the third topic of this section: stability and pre-stability. We
recall that a subset G ⊂ L2(IR

d) is called L2-stable if there exist two positive constants c, C, such
that, for any finitely supported sequence u defined on G,

c‖u‖`2(G) ≤ ‖
∑

g∈G

u(g)g‖L2
≤ C‖u‖`2(G).

We are interested in the L2-stability of the set E(Φ) of the integer shifts of Φ. That stability
property was characterized in [BDR2] as follows:

Result 2.8. Let Φ ⊂ L2 be finite with Gramian G. For each ω ∈ IR, let Λ(ω) (respectively, λ(ω))
be the largest (respectively, smallest) eigenvalue of G(ω). Then the shifts E(Φ) of Φ are stable if
and only if the functions Λ and 1/λ are essentially bounded on [−π, π].

The above result is somewhat inconvenient for our purposes, since it does not allow a simple
extension of the stability property from L2-functions to distributions. Therefore we will use instead
the following related notion, labeled ‘pre-stability’.

Definition 2.9. Let Φ be a finite collection of tempered distributions and assume that Φ̂ are
continuous. We say that the shifts E(Φ) of Φ are pre-stable if, for each θ ∈ IR, the restriction of

Φ̂ to θ + 2πZZ is linearly independent.
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The following result draws a connection between the notions of stability and pre-stability:

Proposition 2.10. Let Φ ⊂ L2 be finite, and assume that for each φ ∈ Φ (i) φ̂ is continuous, and

(ii) [φ̂, φ̂] is finite everywhere. Let λ be the eigenvalue function of Result 2.8. If E(Φ) are pre-stable,
then 1/λ ∈ L∞(IR).

Proof of Proposition 2.10. We let Gm, m ∈ IN, be the matrix obtained from the Gramian G
of Φ by replacing each bracket product [ϕ̂, φ̂] with

m∑

j=−m

ϕ̂(· + 2πj)φ̂(· + 2πj).

Fix ω ∈ [−π, π], and let λm(ω) be the smallest eigenvalue of Gm(ω). Since the entries of G(ω) are
assumed finite, Gm(ω) converges to G(ω), and hence

0 ≤ λm(ω) ↑ λ(ω).

(since G(ω), Gm(ω) as well as (G−Gm)(ω) are Hermitian and non-negative). Furthermore, since
the entries of Gm are continuous, so is the function λm, hence its zero set Ωm ⊂ [−π, π] is compact.

Now, the assumption of pre-stability is equivalent to λ having no zeros. This means that
∩mΩm = ∅, hence that Ωm = ∅, for a large enough m. But this implies that the continuous
function λm vanishes nowhere, hence that 1/λm is bounded; a fortiori 1/λ is bounded.

Thus, if we know that Φ are in L2, that their Fourier transform is continuous, and that their
Gramian matrix has bounded entries, pre-stability implies stability. The boundedness of the Gram
entries is a ‘minor’ assumption, in the sense that it is usually implied by technical conditions on
Φ (either a mild decay condition on Φ, or, in the case Φ̂ is continuous, by a mild smoothness
assumption on Φ). Moreover, the following result, which is essentially due to [JM], provides simple
conditions under which pre-stability and stability become equivalent notions for L2-vectors Φ. One
should keep in mind, however, that the main point in the pre-stability notion is its applicability to
functions and distributions outside L2.

Corollary 2.11. Let Φ ⊂ L2 be finite, and assume that the entries of the Gramian G of Φ are
continuous (i.e., equal a.e. to continuous functions). Then the shifts of E(Φ) are stable if and only
if they are pre-stable.

We note that the product [f̂ , ĝ] is the Fourier series of the sequence

ZZ 3 j 7→ 〈f,Ejg〉,
hence that the product is continuous if, e.g., f and g are both O(| · |−(1+ε)) at ∞, for some ε > 0.

Proof: Since G has continuous entries, its eigenvalue function Λ is continuous (and 2π-
periodic). This implies that Λ is bounded, hence that stability is equivalent here to the boundedness
of 1/λ. Since λ is continuous, too, 1/λ is bounded iff λ vanishes nowhere. That latter condition is
equivalent to pre-stability.

The discussion so far reveals that the stability of E(Φ) can be roughly thought of as the
invertibility of GΦ everywhere. At the same time, the essential requirement in ‘the strong H(k)
property at Ξ’ is the invertibility of GΦ at each ξ ∈ Ξ. Thus, (the second part of) the H(k) property
is a significant relaxation of the stability requirement.

For a refinable Φ, a characterization of L2-stability of E(Φ) is possible in terms of its mask
symbol P. We refer to [H,S] and the references within for more details.
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3. General facts about factorizations

Before we develop the new factorization technique that we aim at, we would like to clarify the
notion of a ‘factorization process’. We have already defined it in the introduction, but immediately
showed there that, as defined, the notion is broad enough to admit ‘factorizations’ that are not
connected with approximation properties of Φ and useless for our purposes. In this section, we
provide further details about the nature of a ‘useful factorization’ and discuss the relations between
those ‘useful factorizations’ on the one hand, and the matrices involved in the factorization on the
other hand. The general discussion here will be used in the next section in the conversion of our
new factorization technique from a mere existence theorem to an actual algorithm.

The following example is the prototype of what may be considered a ‘useful factorization’, and
is hidden in the core of all practical factorizations.

The simplest example of ‘good’ factorization. Assume that the vector Φ contains a function
φ0 whose shift-invariant space S(φ0) provides approximation order k. Then, under some mild
conditions on φ0, Theorem 2.6 provides us with a factorization φ0 = Bk ∗η, for some distribution η.
We then define the factor F to be (η,Dk(Φ\φ0)). Note that Bk ∗F = (φ0,∇k(Φ\φ0)) =: Φ1. Since
(cf. e.g., [BDR1]) S(Φ1) = S(Φ), we conclude that the above process is indeed a ‘factorization of
order k’.

One should note that there is only a subtle difference between the example here and the trivial
(and worthless) factorization (§1.1).

The above example fully demonstrates the role played here by ‘superfunction theory’. The
function φ0 is clearly a superfunction. If the original vector Φ does not contain a superfunction,
the factorization process starts with changing the vector Φ to another vector, say Φ1, which contains
a superfunction among its entries. The above procedure can then be applied to Φ1. If the symbol
P of Φ is known to be a polynomial matrix, then the actual challenge here is to select Φ1 such that
its symbol is a polynomial matrix, too. The move then from the symbol of Φ1 to the symbol of F
is guaranteed to preserve the polynomiality of the mask symbol.

Questions addressed in this section: A factorization was defined as Φ 7→ F , with S(Φ) =
S(Bk∗F ). For refinable vectors, this yields the existence of a matrix C with 2π-periodic measurable
entries such that

Φ̂(u) =
1

(iu)k
C(u) F̂ (u),

and, with P and Q the mask symbols of Φ and F respectively,

(3.1) PC = s−kC(s·)Q, a.e.

(See assertion (a) in the theorem below.) We are then interested here in the following two questions:
(1) How exactly we distinguish between ‘useful’ and ‘useless’ factorizations?
(2) What are the characteristics of the transition matrices C that are involved in ‘useful’ factor-

izations?

Definition: good factorization. A good factorization process of order k is a factorization
process of order k Φ 7→ F (i.e., S(Φ) = S(Bk ∗ F )) such that F̂ is continuous at 0 and F̂ (0) 6= 0.

As we shall see in Theorem 4.1, there is a close connection between the existence of a good
factorization of Φ of a certain order and the approximation properties of S(Φ). Such a relation

cannot exist if we remove the condition F̂ (0) 6= 0 from that definition. Indeed, suppose that the

vector F̂ is smooth at 0 and F̂ (0) = 0. Then, there exists a (distribution) vector F1 and a positive

integer j, such that F = DjF1 and F̂1(0) 6= 0. We then have

Bj ∗ F = Bj ∗DjF1 = DjB1 ∗ F1 = ∇jF1.
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This implies that the factorization (of order j) F1 7→ F is the trivial factorization that we try to
avoid, while the factorization Φ 7→ F1 is a good factorization of order k − j. Thus, the kth order
factorization Φ 7→ F is obtained by a trivial inflation of a factorization of lower order, and hence
the value of k cannot provide then any information about any property of the space S(Φ).

The following theorem establishes the connection between good factorizations and their cor-
responding transition matrices. Connections are also drawn between those transition matrices and
the superfunctions in the FSI space. A complementary theorem (Theorem 3.6 ) discusses the con-
verse problem, of choosing the transition matrix C in a way that, given a matrix Q, the ‘lifted’
matrix P (defined by PC = s−kC(s·)Q) is the symbol of a vector Φ whose FSI space provides
approximation order k.

Theorem 3.2. Let Φ 7→ F be a factorization process of order k, and assume that Φ̂ is bounded
around the origin and that F̂ is continuous at each j ∈ 2πZZ. Then:
(a) Φ is refinable if and only if F is refinable. Furthermore, the corresponding mask symbols P

and Q satisfy a relation
PC = s−kC(s·)Q

for some matrix C with 2π-periodic entries. In particular,

Φ̂(u) =
1

(iu)k
C(u) F̂ (u).

(b) If F and Φ are refinable with symbols P and Q, then the determinant of the matrix C in the
relation PC = s−k C(s·)Q must have a k-fold zero at the origin, provided that the factorization
is good, and that the entries of C are smooth at the origin.

(c) Assume, in addition to (b), that F̂ are linearly independent over 2πZZ. Let ψ be a function in

S(Φ), i.e., ψ̂ = τ Φ̂, with τ a row vector indexed by Φ whose entries are bounded, 2π-periodic,
and smooth at the origin. If ψ is a superfunction (i.e., S(ψ) provides approximation order k)
then τC has a k-fold zero at the origin.

Most of the technical conditions that are assumed in the above theorem are satisfied auto-
matically in practical situations. For example, the following corollary is a special case of Theorem
3.2:

Corollary 3.3. Let Φ 7→ F be a good factorization process of order k. Assume that Φ and F are
compactly supported refinable vectors with polynomial refinement symbols P and Q which satisfy
the relation PC = s−kC(s·)Q, for some trigonometric polynomial matrix C. Then:
(a) detC vanishes to order k at the origin.

(b) Assume Φ̂ are linearly independent over 2πZZ, and let τ = (τφ)φ∈Φ be a vector of trigonometric
polynomials. If the compactly supported function ψ defined by

ψ̂ := τ Φ̂

is a superfunction, then τC vanishes at the origin to order k.

Proof of Theorem 3.2. (a) Since we assume that S(Φ) = S(Bk ∗F ), there exist, [BDR2], an a.e.
invertible matrix U with 2π-periodic measurable entries such that

Φ̂ = B̂k U F̂ .

If Φ̂ is refinable with mask symbol P, we conclude from

B̂k(s·)U(s·) F̂ (s·) = Φ̂(s·) = P Φ̂ = B̂k PU F̂
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that F is refinable with symbol Q = B̂k

B̂k(s·)
U−1(s·)PU . Analogous computations prove that Φ is

refinable whenever F is refinable. Thus, (a) is established with C := (1 − e−i·)kU.
(b): From the relation (3.1) (which was established in (a)), and the fact that DkΦ is refinable

with symbol P′ := skP, we conclude that P′C = C(s·)Q, hence that D̂kΦ = CF̂ . Since F̂ (0) 6= 0,

we may assume that the first entry of F̂ (0) is non-zero. Let F be the matrix obtained from the

identity matrix by replacing its first column by F̂ . Then detF is continuous at the origin and
does not vanish there. On the other hand, detCdetF vanishes at the origin to order k since CF
contains the column D̂kΦ which vanishes to that order at the origin. Thus, detC has a k-fold zero
at the origin.

(c): Since ψ̂ = τ Φ̂ is a superfunction, and since τ is bounded while Φ̂ is bounded around the

origin, it follows (cf. [BDR1: Theorem 1.14]) that ψ̂ has a k-fold zero at each j ∈ 2πZZ\0, hence

that D̂kψ has such a zero everywhere on 2πZZ. On the other hand D̂kψ = τD̂kΦ = τCF̂ , with
the second equality following from the proof of (b). But τC is 2π-periodic, and the vectors F̂ (j),

j ∈ 2πZZ, span all of CF (due to the linear independence of F̂ over 2πZZ), hence it easily follows
that τC vanishes to order k at the origin.

Example: Orthogonal GHM-scaling functions [GHM]. Choose s = n = 2, and let Φ =
(φ1, φ2)

T be the vector which has the mask symbol

(3.4) P(u) =
1

20

(
6(1 + e−iu) 8

√
2

1√
2
(1 + e−iu)(−1 + 10e−iu − e−2iu) −3 + 10e−iu − 3e−2iu

)
,

and which is normalized by ‖φ1‖L1
=

√
2/3. These conditions define Φ uniquely, and we find

suppφ1 = [0, 1], suppφ2 = [0, 2]. The space S(Φ) provides approximation order 2. In particular,
one can show, [SS], that

B2(x) =
1√
2

(φ1(x) + φ1(x− 1)) + φ2(x),

where B2 is the hat function with support [0, 2]. Choosing F = (D2φ1, δ)
T , where δ denotes the

Dirac distribution, it follows that Φ 7→ F is a good factorization process (of order 2), since from

B̂2 F̂ =

(
(1 − e−i·)2φ̂1

B̂2

)
=

(
(1 − e−i·)2 0
1√
2
(1 + e−i·) 1

)
Φ̂,

it follows that S(B2 ∗F ) = S(Φ), while F̂ (0) = (0, 1)T 6= 0. Further, Φ̂(u) = (iu)−2 C(u)F̂ (u) with

C(u) =

(
1 0

− 1√
2
(1 + e−iu) (1 − e−iu)2

)
.

The symbol Q of F is then found with the aid of the relation 4PC = C(2·)Q:

Q(u) =
1

5

(
−2(1 + e−iu) 8

√
2(1 − e−iu)2

0 5

)
.

We can now check that the matrix C satisfies the conditions asserted in Theorem 3.2: indeed,
detC vanishes to order 2 at 0, and choosing the superfunction ψ := B2 (which satisfies ψ̂ = B̂2 =

τ Φ̂, for τ(u) = ( 1√
2
(1 + e−iu), 1)), we find that τ C as well as D(τ C) vanish at the origin.

13



Obviously, the factorization process is not unique. Using, e.g., the matrix factorization of
Example 4.5 of [P], we obtain P(u) = 4−1 C̃(2u) Q̃(u) C̃(u)−1 with

C̃(u) =

(√
2(1 + e−iu) −2

√
2

−4e−iu 2(1 + e−iu)

)
, Q̃(u) =

(
1 0

1
10 (−1 + 20e−iu − e−2iu) −2

5 (1 + e−iu)

)
.

The function vector F̃ = (δ, f̃2)
T corresponding to Q̃ satisfies the relations D2φ2 = −4δ + 2f̃2 +

2E−1f̃2 and D2φ1 =
√

2(δ + E−1δ − 2f̃2).
These two factorizations are still closely related in the sense that the (infinite) span of E(F )

coincides with that of E(F̃ ), and suppD2φ1 = supp f̃2 = [0, 1].

Our use of the above theorem (in the next section) will be as follows: our specific factorization
technique there exploits a transition matrix C of a very special structure. That structure will
be then combined with the ‘universal properties’ that are attributed in the theorem above to all
transition matrices, and the result will be an algorithm that finds the special transition matrix C
of our process.

As stated before, we also establish a converse theorem, concerning the passage from the symbol
Q of some refinable vector to the symbol P of a refinable vector that provides high approximation
order. In that theorem, we will need the following lemma:

Lemma 3.5. Let C be a square n× n matrix with 2π-periodic entries. Assume that C is smooth
at the origin, that detC has a zero at the origin of exact order k, and that rankC(0) = n − 1.
Then, after permuting the columns of C if necessary, C can be factored into

C = Ck (I + Tk),

such that:
(i) I is the identity matrix and

Tk =




(1 − e−i·)k − 1 0 . . . 0
t2 0 . . . 0
t3 0 . . . 0
· · · ·
tn 0 . . . 0


 ,

with tj , 2 ≤ j ≤ n, trigonometric polynomials with spectrum in {0,−1, . . . ,−(k − 1)}.
(ii) The entries of the first column of Ck are as smooth as the corresponding entries of C, save

the fact that at the origin the former may ‘lose’ k orders of smoothness. In particular, since
C and Ck differ at most in their first column, Ck is a trigonometric polynomial matrix, if C
is one.

Proof: Since rankC(0) = n− 1, we may assume without loss that the last n− 1 columns
of that matrix are linearly independent. It suffices to prove the k = 1 case, and then to apply
induction: indeed, suppose that the factorization is possible for j < k. Then, the last n − 1
columns of Cj are the same as those of C, hence these columns are still linearly independent in
Cj(0). Also, Cj(0) is still singular, since det(I + Tj) has a zero at the origin of exact order j, and
j < k. Therefore, the case k = 1 applies here to extract another factor of the form I+T1 from Cj .
The induction is completed with the observation that the product of two expressions of form I+Tj

and I + T1 is clearly an expression of the form I + Tj+1. So, we assume without loss that k = 1.
Since C(0) is singular, there exists a vector v = (1, v2, v3, . . . , vn)T ∈ Cn such that C(0)v = 0. This
means that there exists a smooth vector w such that Cv = tw, with t(u) := 1−e−iu. (Here ‘smooth’
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is meant in the sense of the case k = 1 in the theorem, i.e., that w is as smooth as the entries of
C, except at the origin, where it may lose one order of smoothness.) Let C1 (respectively V) be
the matrix obtained from C (respectively I) when replacing the first column by w (respectively
v). Then the above shows that CV = C1 diag(t, 1, . . . , 1). The result now follows from the fact
that diag(t, 1, . . . , 1)V−1 has exactly the required form I + T1 (with the first column of T1 being
(t− 1,−v2, . . . ,−vn)T .)

Theorem 3.6. Let Q be the symbol of an s-refinable distribution vector F with n entries:

F̂ (su) = Q(u) F̂ (u).

Let C be an n× n matrix whose entries are 2π-periodic bounded functions that are smooth at the
origin. Assume that the following conditions are satisfied for some numbers k > 0, and m < k−1/2.

(i) F̂ is smooth at the origin, and grows slowly at ∞: |F̂ (u)| = O(|u|m).
(ii) Q(0) has no eigenvalue of the form sl (l ∈ IN, l ≥ k).
(iii) detC has a k-fold zero at the origin, and rankC(0) = n− 1.

(iv) While F̂ (0) 6= 0, CF̂ has a k-fold zero at the origin.
Then the matrix

(3.7) P(u) :=
1

sk
C(su)Q(u)C(u)−1

is a symbol of a uniquely determined (up to multiplicative constant) s-refinable vector Φ ⊂ L2

whose corresponding S(Φ) provides approximation order k. Moreover, the functions in Φ decay at
±∞ at the same rates as the distributions in F (in particular, Φ is compactly supported if F is
compactly supported) provided that C is a trigonometric polynomial matrix.

Proof: We note that the vector Φ is obtained from the inverse transform Φ0 of CF̂ by a
k-fold integration, i.e., Φ̂(u) = (iu)−kΦ̂0(u) = (iu)−k C(u) F̂ (u) (this is due to the appearance of
the s−k factor in the definition of P).

We first want to show that the vector Φ is uniquely determined by P, and for that rewrite
(3.7) as PC = s−kC(s·)Q, which gives at the origin the relation

(3.8) P(0)C(0) = s−kC(0)Q(0).

We recall that Φ can be a refinable vector with symbol P only if P(0) has an eigenvalue of the
form µ = sl, l ≥ 0 (cf. [HC], [JS]; the statements there are confined to compactly supported Φ
and dyadic dilations, but the argument extends verbatim to arbitrary dilations, and to the case
when P and Φ̂ are merely smooth at the origin). Let y be any left eigenvector of P(0) whose
corresponding eigenvalue is a power sl of s. Then (3.8) implies that sk+lyC(0) = yC(0)Q(0). Since
sk+l cannot be an eigenvalue of Q(0) (because of assumption (ii)), we conclude that yC(0) = 0.
Since rankC(0) = n− 1, it follows further that y is uniquely determined (up to a multiplication by
a scalar). This implies that there exists a unique right eigenpair of P(0) of the form (sl, x), l ≥ 0,
and from that one easily concludes the uniqueness. Indeed, given a solution Φ, one observes from
the relation Φ̂(s·) = PΦ̂ that (sj ,Dj(Φ̂)(0)) is a right eigenpair of P(0), with j the first derivative

of Φ̂ that does not vanish at the origin. Thus, the uniqueness of the right eigenpair (sl, x) implies
that, given two different solutions Φ and Ψ, they vanish both to same order j at the origin, and
Dj(Φ̂)(0) = Dj(Ψ̂)(0) = x. But, then, the transform of the non-trivial solution Φ − Ψ has a zero
at the origin of order j + 1, hence P(0) has the eigenvalue sj+1, which is a contradiction.
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Since C is bounded, it follows from the slow growth assumption on F̂ that |Φ̂0(u)| = O(|u|m),

hence that |Φ̂(u)| = O(|u|m−k). Since m− k < −1/2, we conclude that Φ ⊂ L2.

If C is a trigonometric polynomial matrix, then Φ0 lies in the finite span of the shifts of F ; in
particular Φ0 decays at ±∞ (at least) at the same rate as F . Since condition (iv) above implies

that Φ̂0 vanishes to order k at the origin, it easily follows that Φ also decays at ±∞ at that same
rate (with the usual exception: if Φ0 decays at ±∞ at an algebraic rate l, the decay rate of Φ may
only be l − k.)

In order to prove that S(Φ) provides approximation order k, we invoke Lemma 3.5: since our
matrix C here satisfies the assumptions made in the lemma, we can factor C into Ck(I + T), with

T being in the form of Tk in the lemma. Note that the first entry of a vector (I + T)F̂ is of the
form (1 − e−iu)kη̂1(u), with η1 the first entry of F . This implies that the first entry in the inverse

transform of (I+T)F̂ is ∇kη1. When applying the k-fold integration, we obtain a vector Φ1 whose
first entry is Bk ∗ η1. Note that

Φ̂ = CkΦ̂1.

Now, Ck(0) is invertible, hence Ck is invertible on some neighborhood Ω of the origin. Let S
(respectively S1) be the set of all functions in S(Φ) (respectively, S(Φ1)) whose Fourier transform

is supported on Ω + 2πZZ. The relations Φ̂ = CkΦ̂1, and Φ̂1 = C−1
k Φ̂, which are valid on Ω + 2πZZ,

show, [BDR2], that S = S1. On the other hand, the general theory of approximation orders of FSI
spaces, [BDR1,BDR2], implies that the approximation orders provided by any S(F ) are determined

by the restriction of F̂ to Ω + 2πZZ. Combining all the above, we conclude that the approximation
orders provided by S(Φ) equal those provided by S(Φ1).

We now recall that one of the entries of Φ1 is of the form φ1 := Bk ∗ η1, and show that the
subspace S(φ1) of S(Φ1) already provides approximation order k. For that we observe first that

η̂1(0) 6= 0 (otherwise, since C(0)F̂ (0) = 0 by assumption, we get from the linear independence of

the last n−1 columns of C(0) that F̂ (0) = 0.) Thus, [BDR1], in order to prove that S(φ1) provides

approximation order k, it suffices to show that
∑

j∈2πZZ\0 |φ̂1(u+ j)|2 = O(|u|2k), near the origin.

Using the fact that |B̂k(u)|2 = sin2k(u/2)|u/2|−2k, that requirement is reduced to showing that∑
j∈2πZZ\0 |η̂1(u + j)|2|u + j|−2k is bounded near the origin. However, that follows from the slow

growth of η̂1, together with the fact that m− k < −1/2.

Again, the conditions in the theorem can be simplified under various additional assumptions
on the refinable vectors. We provide here a sample result in this direction, in which we study the
following additional feature of stability.

Corollary 3.9. Assume that F is a compactly supported refinable vector, with symbol Q, whose
shifts are pre-stable, and let C be a trigonometric polynomial matrix which is non-singular every-
where on (0, 2π). If (i-iv) of Theorem 3.6 are valid then the solution Φ of Theorem 3.6 is compactly
supported and has stable shifts, provided that the zero detC has at the origin is exactly of order k.

Proof: The existence of a unique solution was proved in Theorem 3.6, and the argument
that proves the compact support of Φ is sketched there, too. So, it remains to show that the shifts
of Φ are stable. Since Φ has compact support, the stability requirement is equivalent to pre-stability
(see Corollary 2.11 and the discussion following it), i.e., equivalent to the linear independence, for
each θ ∈ [0, 2π), of the sequences

cθ,φ : 2πZZ 7→ C : l 7→ φ̂(θ + l), φ ∈ Φ.
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For θ ∈ (0, 2π) that linear independence is clear from the relation Φ̂(θ+l) = (i(θ+l))−kC(θ)F̂ (θ+l)

(since C(θ) is invertible, and the sequences l 7→ f̂(θ + l), f ∈ F are linearly independent, by the
pre-stability assumption on the shifts of F ). It remains, thus, to show the linear independence of

{φ̂(l)}l∈2πZZ, φ ∈ Φ.

For that, note first that the restriction to 2πZZ\0 of Φ̂ has rank n − 1: indeed, assume that

yΦ̂(l) = 0, for every l ∈ 2πZZ\0. Then yC(0)F̂ (l) = 0, for every l ∈ 2πZZ (with the case l = 0

follows from the assumed fact that C(0)F̂ (0) = 0). The pre-stability assumption on F then implies
that yC(0) = 0; however, C(0) has rank n−1, by assumption, hence such y is (essentially) unique.

Consequently, in order to complete the proof here we need to show that, yΦ̂(0) 6= 0, for the unique
y in kerC(0).

Let E := qC−1, with q := detC. Then the entries of E are trigonometric polynomials, hence
EC as well as CE are continuous everywhere. Since off the origin EC = CE = qI (with I the
identity), we conclude then that E(0)C(0) = C(0)E(0) = 0. However, rankC(0) = n− 1, with the

corresponding left (right) eigenvector being y (F̂ (0), due to assumption (iv)), hence, necessarily

E(0) = cF̂ (0)y, for some non-zero c. Combining these observations with the identity

q(u)C−1(u)Φ̂(u) = (iu)−kq(u)F̂ (u)

(which is valid everywhere off the origin), we obtain, by taking u→ 0, that

(cyΦ̂(0))F̂ (0) = ( lim
u→0

(iu)−kq(u))F̂ (0),

i.e., yΦ̂(0) = (limu→0(iu)
−kq(u))/c. Since we assume that the order of the zero detC has at the

origin is exactly k, we conclude that yΦ̂(0) 6= 0.

Example: spline functions. Take F̂ (u) = (1, iu, . . . , (iu)n−1)T and let k ≥ n. Then obviously,
F is compactly supported, has pre-stable integer shifts and F is s-refinable with symbol Q(u) =
diag(1, s, s2, . . . , sn−1). Let further, C = Ck (Tk + I) with

Tk(u) =




(1 − e−iu)k − 1 0 . . . 0
t2(u) 0 . . . 0
t3(u) 0 . . . 0
· · · ·

tn(u) 0 . . . 0


 ,

where each tj , 2 ≤ j ≤ n, lies in the span of (e−ilu)k−1
l=0 and is determined by Dltj(0) =

−δl,j−1 i
j−1 (j−1)! for l = 0, . . . , k−1. Then indeed,Dl[(Tk(u)+I) F̂ (u)]|u=0 = 0 for l = 0, . . . , k−1,

and conditions (ii)–(iv) of Theorem 3.6 are satisfied.
If, further, Ck is a matrix of trigonometric polynomials, the vector Φ which corresponds to

the symbol P = s−kC(s·)QC−1 is a vector of compactly supported spline functions of degree k−1
with integer knots.

For instance, choose n = 2 (i.e., F̂ (u) = (1, iu)T ), k = 2, and Ck = I. Then, t2(u) = e−iu − 1
and

Φ̂(u) =

(
φ̂1(u)

φ̂2(u)

)
=

1

(iu)2

(
(1 − e−iu)2 0
−1 + e−iu 1

)
F̂ (u),

leading to

φ1(x) =





x x ∈ (0, 1]
2 − x x ∈ (1, 2]

0 x 6∈ (0, 2]
, φ2(x) =

{
1 − x x ∈ (0, 1]

0 x 6∈ (0, 1]
.
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The corresponding symbol P2 reads

P2(u) =
1

s2




(
1−e−ius

1−e−iu

)2

0

−(1−e−isu)+s(1−e−iu)
(1−e−iu)2 s


 .

For n = 2, k = 3, and Ck = I, we find t2(u) = 2−1(−3 + 4e−iu − e−2iu) and

Φ̂(u) =
1

(iu)3

(
(1 − e−iu)3 0

1
2 (−3 + 4e−iu − e−2iu) 1

)
F̂ (u)

with the corresponding symbol

P3(u) =
1

s3 (1 − e−iu)3

(
(1 − e−ius)3 0

1
2 ((1 − e−ius)(−3 + e−ius) + s(1 − e−iu)(3 − e−iu)) s

)
.

This time, the first entry is B3 and the second, φ2, satisfies

4φ2(x) =





(−3x+ 4)x x ∈ (0, 1]
(2 − x)2 x ∈ (1, 2]

0 x 6∈ (0, 2]
.

4. Factoring the refinement symbol

The main result of this paper, which leads to the new factorization is as follows:

Theorem 4.1. Let Φ be an s-refinable vector of L2-functions with symbol P that provides ap-
proximation order k. Assume further that
(i) Φ satisfies the strong H(k) property at Ξs = {2πj/s : j = 0, . . . , s− 1}.
(ii) DkΦ̂ grows slowly on O+ 2πZZ, with O the neighborhood that appears in the H(k) condition.
Then there exist φ0 ∈ Φ and a distribution η such that

F := η ∪DkΦ′, Φ′ := Φ\φ0

is s-refinable with a symbol Q, and the following hold:
(a) The entries of Q have the same smoothness as those of P. In particular, if P is a matrix-valued

trigonometric polynomial, then so is Q.
(b) If Φ satisfies the strong H(k+1) property, but S(Φ) does not provide approximation order k+1,

no non-zero distribution in the finite span of {Ejf : f ∈ F, j ∈ ZZ} is in L2(IR).
(c) If the shifts of Φ are L2-stable then the shifts of F are pre-stable.
(d) Φ 7→ F is a good factorization process of order k, i.e., S(Bk ∗F ) = S(Φ), with Bk the B-spline

of order k and F̂ is continuous at 0 and satisfies F̂ (0) 6= 0.

Since the case when P is polynomial (hence Φ is compactly supported) is of primary interest
here, we find it suitable to restate the main theorem for this particular case:
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Corollary 4.2. Let Φ be an s-refinable vector of compactly supported L2-functions with trigono-
metric polynomial symbol P, and assume that S(Φ) provides approximation order k. Assume

further that Φ̂ are linearly independent over θ + 2πZZ, for every θ ∈ Ξs. Then there exist φ0 ∈ Φ
and a compactly supported distribution η such that

F := η ∪DkΦ′,

with Φ′ := Φ\φ0, is s-refinable with a trigonometric polynomial symbol Q, and the following hold:
(a) No entry of F is in L2(IR) unless S(Φ) provides approximation order k + 1.
(b) If the shifts of Φ are L2-stable then the shifts of F are pre-stable.
(c) F is a factor of Φ in the sense that S(Bk ∗ F ) = S(Φ), with Bk the B-spline of order k.

Remark: the exact meaning of the ‘same smoothness’. We claim in the above theorem that
the new symbol Q is ‘as smooth as’ the old symbol P is. The precise meaning of that statement is as
follows: each entry q of the new mask will be proved to be in the form pt, with p the corresponding
entry of the old mask, and t a rational (entry-dependent) trigonometric polynomial; the rational
polynomial t has the following property: first, all its poles are at Ξs, and second, if t has a pole of
order j at ξ, then p is smooth in a neighborhood of ξ and has a zero of order ≥ j at ξ itself. One
then concludes that the entries of Q are trigonometric polynomials (respectively, analytic functions,
C∞-functions, continuous functions) if the entries of P satisfy that property. However, the property
P ∈ Cρ is not inherited by Q.

We turn our attention now to the proof of Theorem 4.1. For that, several preparations are
needed. We start with the following definition from [R2]:

Definition 4.3. Let k be a positive integer. We say that Φ ⊂ L2 has the Property H(k) if the
following condition is met: S(Φ) provides approximation order k for the entire W k

2 whenever there
exists a nonzero function f ∈W k−1

2 such that, for some sequence (hi)i that decreases to zero,

dist (f, Dh(S(Φ))) = o(hk−1), h = h1, h2, . . . .

If Φ is refinable, then dist(f,Dh(S(Φ)) = 0, for every f ∈ S(Φ), and every h = s−m, m positive
integer. Thus, if the refinable S(Φ) satisfies the Property H(k) and has non-zero intersection with
W k−1

2 , it must provide approximation order k. The reference [R2] establishes simple sufficient
conditions for the satisfaction of the H(k) property. For example, it shows that in the univariate
case every local FSI space satisfies that property, regardless of the value of k. However, if the
generators Φ are not compactly supported, more should be assumed. For example, the following is
implied by the proof of Proposition 4.2 in [R2].

Result 4.4. Let k be a positive integer, Φ a finite subset of L2(IR
d). If Φ has the strong H(k)

property then it also has the Property H(k).

In addition to the above, we need to following (technical) lemma:

Lemma 4.5. Let Φ0 := (ψ, φ2, . . . , φn)T be an s-refinable vector of L2-functions with a symbol
P0, which satisfies the strong H(k) property at Ξs = { 2πj

s : j = 0, . . . , k − 1}. Further, assume

that ψ satisfies the Strang-Fix conditions of order k (i.e., ψ̂ has zero of order k at each point of
2πZZ\0, but does not vanish at the origin.) Then each of the off-diagonal entries in the first row of
P0 has a k-fold zero at each ξ ∈ Ξs. The diagonal element of the first row has a k-fold zero at each
ξ ∈ Ξs\0.
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Proof: Let v be the first row of P0; then ψ̂ = v( ·
s ) Φ̂0(

·
s ). Assume first to the contrary

that some derivative Dj , 0 ≤ j < k of v does not vanish at some r ∈ 2π
s {1, . . . , s − 1}. We may

assume without loss that

(4.6) Dj′v(r) = 0, j′ ∈ {0, . . . , j − 1}.
Now, for every m ∈ 2πZZ,

0 = Djψ̂((r +m)s) = (Djv)(r) Φ̂0(r +m),

with the left-most equality due to the Strang-Fix conditions, while the right-most equality due to
(4.6). Since, by our strong H(k) property at r, the sequences Φ̂0(r+ ·) are linearly independent on
2πZZ, we obtain the contradiction that Djv(r) = 0.

It remains to show that the non-diagonal entries of v vanish to order k at 0, too. We choose in
the previous argument r = 0, and assume that m ∈ 2πZZ\0. With v′ the off-diagonal entries of the

vector v, and Φ′
0 := Φ0\ψ, we observe that, for l < k, Dl(v Φ̂0)(m) = Dl(v′ Φ̂′

0)(m), since ψ̂ has a
k-fold zero at m, due to its satisfaction of the Strang-Fix conditions.

Thus, we may repeat the same argument by negation as for the case r 6= 0, to find j such that
Djv′(0) 6= 0, while

0 = Djψ̂(sm) = (Djv′)(0) Φ̂′
0(m).

In order to reach the desired contradiction, we need thus to know that the entries of Φ̂′
0 are linearly

independent on 2πZZ\0. Suppose that there is a non-trivial linear combination φ̂ of span Φ̂′
0 that

vanishes on 2πZZ\0. Since ψ̂ also vanishes there, then a non-trivial linear combination of ψ̂ and φ̂
must vanish at all the 2π-integers. However, the strong H(k) property that we assume here implies,

inter alia, that Φ̂0 are linearly independent over 2πZZ.

Proof of Theorem 4.1.
We first invoke Result 2.3 and replace one of the entries of Φ by the superfunction ψ of that

result. It is elementary to verify that the new vector still satisfies the strong H(k) property. Also,
Result 2.5 tells us that the symbol of the new vector is obtained by multiplying P by matrix-valued
trigonometric polynomials, hence the new mask maintains all the smoothness properties of P. We
denote the new vector by Φ0 = ψ ∪ Φ′ and its symbol by P0.

Next, by Theorem 2.6 there exists a tempered distribution η such that ψ = Bk ∗ η. We define

F := (η,DkΦ′).

We will show that this vector F is refinable with mask Q, and that (F,Q) satisfy the requirements
(a-d). The most immediate condition is, perhaps, (d): upon convolving F with B := Bk, we obtain

B ∗ F = (ψ,∇kΦ′) =: Φ1.

As easily follows from Theorem 1.7 of [BDR2], S(∇kΦ′) = S(Φ′), and thus S(Φ1) = S(Φ0). It

is also straightforward to see that S(Φ0) = S(Φ). The continuity of F̂ at the origin follows from

the continuity of Φ̂, the latter being granted by the strong H(k) property; finally, F̂ (0) 6= 0, since

η̂(0) 6= 0 (since ψ̂(0) 6= 0, by Result 2.3). Altogether, we obtain (d).
In order to prove the refinability of F (and in order to find its mask Q), it is convenient to

inspect first the vector Φ1 (see above). We note that any vector G that generates S(Φ) (in the sense
that S(G) = S(Φ)) is refinable, hence so is Φ1. However, we would like to find its mask. For that,

note that Φ̂1 = D Φ̂0 with D the diagonal matrix D(u) := diag (1, (1 − e−iu)k, . . . , (1 − e−iu)k),
hence indeed Φ1 is refinable with symbol

P1 := D(s·)P0D
−1.
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Now, Φ1 = B ∗ F , and B is refinable with symbol

s−k

(
1 − e−isu

1 − e−iu

)k

.

Therefore, we obtain that F is indeed refinable with symbol

Q(u) = sk

(
1 − e−iu

1 − e−isu

)k

D(su)P0(u)D(u)−1.

Introducing D1(u) := (1 − e−iu)k D(u)−1 = diag ((1 − e−iu)k, 1, . . . , 1), we can rewrite Q as

Q = sk D−1
1 (s·)P0 D1.

So, only the entries in the first (i.e., ψ-) row of P0 are being divided when switching to Q: the

diagonal entry is divided by ( 1−e−isu

1−e−iu )k, and the rest by (1 − e−isu)k.
We are claiming, however, that the entries of Q are smooth; thus we need to show that each

entry in the first row of P0 vanishes to order k at each of the zeros of the polynomial it is divided
by. For that, we have Lemma 4.5: Since our ψ satisfies the SF conditions of order k (thanks to
Result 2.3), and since the vector Φ1 satisfies the strong H(k) property, we are entitled to invoke
that lemma. It is elementary to check that the zeros the lemma grants us are exactly those we need
in order to render the above division ‘benign’, and (a) is thus proved.

Assertion (b) follows from Result 4.4 (together with the discussion preceding that result): If
there exists a non-zero L2-function f in the span of E(F ), then g := Bk ∗ f ∈ W k

2 and, by (d), g
lies in S(Φ). Therefore, the strong H(k+1) property will imply that S(Φ) provides approximation
order k + 1.

Finally, in view of Corollary 2.11, we may assume, while proving (c), that Φ̂ are linear inde-

pendent over each θ+ 2πZZ, θ ∈ IR (and prove that F̂ has a similar property). First, in view of the

definition of Φ0, it is clear that Φ̂0 is also linearly independent over each θ + 2πZZ. Since

F̂ (u) =
1

B̂k(u)
D(u)Φ̂0(u) = (η̂(u), (iu)kΦ̂′(u)),

and D(u) is invertible for u ∈ (0, 2π), the linear independence of {Φ̂0(u + 2πl)}l∈ZZ gives the

linear independence of {F̂ (u+ 2πl)}l∈ZZ. It remains to show that {f̂(2πl)}l∈ZZ (f ∈ F ) are linearly

independent, or equivalently, that {F̂ (2πl) : l ∈ ZZ} has rank n. By the L2-stability of Φ0,

rank{Φ̂0(2πl) : l ∈ ZZ} = n, and, since ψ̂(2πl) = δ0,l, rank{Φ̂′(2πl) : l ∈ ZZ \ {0}} = n − 1. Thus,

rank{(2πil)k Φ̂′(2πl) : l ∈ ZZ \ {0}} = n− 1 and the assertion follows since η̂(0) = ψ̂(0)/B̂k(0) 6= 0,

while the other entries of F̂ (0) are all 0.

We would like to describe an algorithm that implements the factorization whose existence is
asserted in Theorem 4.1. For that purpose, we only need the following general sketch of the proof
of the theorem. First, in order to find the factor F , we replace one of the entries of Φ by the
superfunction ψ of Result 2.3. The new vector Φ0 is then related to the old one Φ via Φ̂0 = U1Φ̂,
with U1 as in Result 2.5. In the next step, a k-fold difference is applied to each φ ∈ (Φ0\ψ) to
yield a new vector Φ1 which is related to Φ0 via

Φ̂1 = DΦ̂0, D(u) = diag (1, (1 − e−iu)k, . . . , (1 − e−iu)k).

Finally, the B-spline Bk is factored from each of the entries of Φ1 resulting in the final vector F .
Thus

(4.7) F̂ = B̂−1
k DU1Φ̂.

We state below the corollary that summarizes those observations. In that corollary we use the
following (essentially known: cf. e.g. [DM], Lemma 2.1, and the case k = 1 in Result 2.3) lemma:
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Lemma 4.8. Let Φ be a refinable vector such that
(i) Φ̂ is continuous on O + 2πZZ, with O some neighborhood of the origin and Φ̂(0) 6= 0;

(ii) the sequences Φ̂|2πZZ are in c0(2πZZ) and are linearly independent.
Let P be the symbol of Φ. Then 1 is a (geometrically) simple eigenvalue of P(0).

Proof: Since Φ̂(0) = P(0)Φ̂(0) and Φ̂(0) 6= 0, 1 is an eigenvalue of P(0). If, now, (1, y)

is a left-eigenpair of P(0), then y Φ̂(sml) = yP(0)m Φ̂(l) = y Φ̂(l) for l ∈ 2πZZ \ 0 which implies

(by taking m → ∞, and using the decay conditions on Φ̂) that yΦ̂(l) = 0. If (1, y′) is yet another

eigenpair of P(0), then, too, y′ Φ̂ = 0 on 2πZZ\0, which implies that x Φ̂ = 0 on 2πZZ for some

non-trivial linear combination of y, y′. However, Φ̂ are assumed to be linearly independent on 2πZZ,
hence x = 0, i.e. {y, y′} are dependent, hence 1 is a simple eigenvalue.

Corollary 4.9. Let Φ be an s-refinable vector of L2-functions with symbol P which satisfies
conditions (i), (ii) of Theorem 4.1. Suppose that Φ is ordered such that the first entry of the left
(i.e., row) 1-eigenvector of P(0) is not zero. Assume that S(Φ) provides approximation order k.
Then P admits a factorization

P(u) =

(
1 − e−isu

s(1 − e−iu)

)k

W(su)−1 Q(u)W(u),

with W a matrix of the form

W(u) =




1 τφ2
(u) . . . τφn

(u)
0 (1 − e−iu)k . . . 0
...

. . .
. . .

...
0 . . . 0 (1 − e−iu)k


 ,

where τφj
(u), j = 2, . . . , n, are suitable trigonometric polynomials in the span of (e−ij·)k−1

j=0 . More-
over, the entries of Q have the same smoothness as those of P and, in particular, Q only has
trigonometric polynomials as entries if P does. Finally, the factorization is a good factorization of
order k.

Proof: The result follows directly from the discussion preceding this theorem (with W
here being DU1). The only part that requires verification is the statement concerning the correct
ordering of the elements in Φ, i.e., that we may replace the first entry of Φ by the superfunction
ψ of Result 2.3. For that, we recall from the proof of Theorem 4.12 in [BDR4] that φ ∈ Φ is
replaceable by the superfunction if, with σ the canonical k-vector, the φ-entry of σ(0) is non-zero
(see Result 2.2). Since, by Result 2.2(iii), (1, σ(0)) is a left (row) eigenpair of P(0), if follows from
the simplicity of the eigenvalue 1 of P(0) (and from the assumption we make) that the first entry
of σ(0) does not vanish, hence that we may replace that entry by the superfunction.

Discussion: An algorithm for computing the symbol Q of F . As said before, the practical
input/output of a factorization process are the symbols P and Q (rather than the vectors Φ and
F ). In order to be able to compute Q from P, we only need to know the transition matrix C (in

the relation Φ̂ = (i·)−kCF̂ ), since Q is related to P as in (3.7). Comparing (3.7) with Corollary
4.9, we find that C−1(u) = (1 − e−iu)−kW(u), and one can then check directly that

C =




(1−e−i·)k −τ2 . . . −τn
0 1 0 . . . 0
... 0

. . .
. . .

...
...

. . .
. . . 0

0 . . . 0 1



,
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with τj , j = 2, . . . , n, trigonometric polynomials with spectrum in {0,−1, . . . ,−(k−1)}. In order to
determine the trigonometric polynomials τ = (τ2, . . . , τn), we appeal to the general conditions on a
factorization matrix C from Theorem 3.2; specifically we invoke (c) there. As the superfunction in
that result we choose the canonical one (as discussed at the beginning of section 2). We will have
then (a) to find the canonical vector σ of order k, and (b) to use the fact that σC has a k-fold zero
at the origin in order to compute the above τ -polynomials.

The second task here is straightforward: with σj := σφj
, the condition about σC requires that

each σj − τjσ1 has a zero of order k at the origin (j = 2, . . . , n). Fixing j, and differentiating this
function m times (m = 0, . . . , k − 1) at the origin leads to a lower triangular k × k linear system
Ax = b, with x(r) = Drτj(0), b(m) = Dmσj(0), and A(m, r) =

(
m
r

)
Dm−rσ1(0) (r = 0, . . . , k − 1,

m ≥ r). Note that the system is invertible since σ1(0) 6= 0. One then easily finds τj from its kth
order Taylor expansion at the origin.

The argument above shows that we do not need to find the canonical vector σ, but only its
derivatives (up to order k − 1) at the origin. For that we invoke now part (ii) of Result 2.2.

As discussed before, the strong H(k) property implies that 1 is a simple eigenvalue of P(0).

Since σ(0) is the corresponding left eigenvector, and Φ̂(0) is the corresponding right eigenvector, it

follows that σ(0) is already determined by conditions σ(0)P(0) = σ(0) and σ(0) Φ̂(0) = 1.
An m-fold differentiation of the expression σ(su)P(u) − δ0lσ(u), followed by an evaluation at

u = 0 leads to the system

Dmσ(0) (smP(0) − I) = −
m∑

µ=1

(
m

µ

)
sm−µ Dm−µσ(0)DµP(0),

and evaluation at u = ξ, ξ ∈ Ξ \ {0}, to the systems

Dmσ(0) (smP(ξ)) = −
m∑

µ=1

(
m

µ

)
sm−µDm−µσ(0)DµP(ξ).

The right hand side in each of the above systems requires the vectors Drσ(0), r = 0, . . . ,m − 1,
hence we can compute Dmσ(0) recursively for m = 1, 2, . . . , k − 1, provided that the matrices

[
I − smP(0), P

(
2π

s

)
, . . . ,P

(
2π(s− 1)

s

)]

(where m > 0) do not have a common left-eigenpair (0, w). Thus, it remains only to show that

such an eigenpair (0, w) cannot exist: the refinability of Φ̂ implies that, for each l ∈ 2πZZ\0,

Φ̂(l) = P(0)rlP(ξ)v, for suitable integer rl, ξ ∈ Ξs\0, and a vector v ∈ Cn; hence, if an eigenpair

(0, w) exists, it follows that w ⊥ Φ̂(l). Furthermore, since P(0)Φ̂(0) = Φ̂(0), it also follows that

w ⊥ Φ̂(0). This implies that Φ̂ are linearly dependent on 2πZZ, hence that the Gramian matrix of Φ
is singular at the origin, contradicting thereby the strong H(k) property that we assume throughout.

Example: GHM-scaling functions. Consider again the GHM-scaling vector Φ = (φ1, φ2)
T with

symbol P as in (3.4) for s = 2. Then, with y := (1,
√

2
2 ), (1, y) is a left eigenpair of P(0) hence

either entry of Φ is replaceable by the special superfunction ψ. Let us first compute the canonical
superfunction ψ0 = σΦ, or more precisely, the canonical Φ-vector σ of order 2. As stated in Result
2.2 (i,ii), (σ(0),Dσ(0)) is determined by σ(0) Φ̂(0) = 1 and

σ(0)P(0) = σ(0), σ(0)P(π) = 0,

2Dσ(0)P(0) + σ(0)DP(0) = Dσ(0) 2Dσ(0)P(π) + σ(0)DP(π) = 0;
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also, σ(u) = (σ(0) − iDσ(0)) + iDσ(0) e−iu. These equalities provide, with Φ̂(0) = 1
3 (
√

2, 1)T , the

vectors σ(0) = (
√

2, 1) and Dσ(0) = i
2 (

√
2, 2) and hence σ(u) = (

√
2

2 (3 − e−iu), (2 − e−iu)). If
we want to replace φ1 by its corresponding superfunction ψ = ψ1 (from Result 2.3), we need to
compute τ ′ = τφ2

. The above relations lead to

τφ2
(0) =

1

σφ1
(0)

σφ2
(0) =

√
2

2
,

Dτφ2
(0) =

1

σφ1
(0)

(Dσφ2
(0) −Dσφ1

(0)τφ2
(0)) =

i
√

2

4

Hence, τφ2
=

√
2

4 (3 − e−iu). The special superfunction (of Result 2.3) corresponding to φ1 is then

ψ1 = φ1 +
√

2
4 (3φ2 − φ2(· − 1)).

The special superfunction ψ = ψ2 corresponding to φ2 is obtained by computing τφ1
. We

find, analogously as before, τφ1
(0) =

√
2 and Dτφ1

(0) = −i
√

2
2 , and hence τφ1

(u) =
√

2
2 (1 + e−iu).

Thus, the superfunction corresponding to φ2, ψ2 = φ2 +
√

2
2 (φ1 + φ1(· − 1)) is the hat function B2

(cf. Example in §3).

Note that according to Theorem 2.6 ψ1 = ψ2 ∗ η, with a suitable distribution η.

5. An application: the smoothness of univariate refinable vectors

As mentioned before, the new factorization technique leads to numerical methods for the
computation of the smoothness exponent of each entry in a univariate refinable vector Φ. This
application is the topic of the current section. We focus on the L2-smoothness parameter (aliased
as ‘Sobolev regularity’), which is defined, for a tempered distribution φ, as

α(φ) := sup{α ∈ IR : φ ∈Wα
2 },

with Wα
2 the usual Sobolev space. Note that we do not exclude the possibility of a negative α.

Let Φ ⊂ L2(IR) be an s-refinable vector with mask symbol P:

Φ̂(s·) = PΦ̂.

A major challenge in wavelet theory is to determine the smoothness of the functions in Φ using
mostly information about the mask P. It is beyond the scope of this paper to review to any extent
the enormous work that was done on this problem and we refer to [MS, RS] and references therein.
We will incorporate, however, some of the most recent results on the matter from [RS], hence need
to briefly review those particular results. We mention that the results of that reference apply to
refinable vector functions in several variables, however, aiming at combining those techniques with
our univariate factorization results, we describe the results of [RS] in a univariate context only.

The functions/distributions we study here are the components of a refinable vector F , partic-
ularly that of Theorem 4.1. However, this study is only the means for finding the smoothness of
the entries of the original refinable Φ. We rely here on the facts that almost all the entries of Φ
coincide with those of Bk ∗ F , and on the following

24



Proposition 5.1. Let F be a refinable vector of compactly supported tempered distributions with
bounded symbol P. Then, for each f ∈ F , and each B-spline of order k, α(Bk ∗ f) = α(f) + k.

We prove this result at the end of this section (since the only proof we know involves the
transfer operator, and is, surprisingly, very technical and elaborate).

The reference [RS] suggests two equivalent techniques for determining the smoothness of a
refinable Φ, the transfer operator approach, and the subdivision operator approach. We
choose here to describe the problem in terms of the conceptually simpler subdivision approach.
(We stress that the subdivision operator approach is not necessarily the right approach from the
computational point of view.) In order to simplify the presentation, we assume throughout the
remainder of this section that the refinable vector Φ is compactly supported (but not necessarily
that the mask symbol is polynomial), choose an interval [0, a] that contains suppΦ, and set

H := span{u 7→ e−iru : r ∈ ([−a, a] ∩ ZZ)}.

Definition 5.2. Let Φ be s-refinable with mask symbol P. The subdivision operator is a map
T ∗ from HΦ into itself defined by

T ∗ : g 7→ √
sP P∗D−1g,

with D−1 : g 7→ g(s·), and with P the orthogonal projection onto HΦ (say, from L2(TT)Φ)).

The techniques that use either the transfer operator iterations and/or the subdivision operator
iterations are intrinsically numerically unstable: they attempt to compute eigenvalues that are
smaller in magnitude than the spectral radius of the operator. In rough terms, there might be
three different sources for this unfortunate phenomenon (i.e., that we are bound to chase a non-
dominant eigenvalue):

(i) The refinable Φ consists of functions, and not merely distributions. In this case, the spectrum
of the subdivision operator contains large eigenvalues that are connected to approximation orders
/ polynomial reproduction (some of them are guaranteed to be larger than the eigenvalue we are
after). Factorization solves this problem. The problem can be solved without factorization (see
below) but at the cost of the above-mentioned numerical instability.

(ii) The shifts of Φ are not stable/pre-stable. This grants the subdivision operator additional
irrelevant eigenvalues (that may or may not be large), hence should be suppressed, too, if large. In
fact, [RS] is the first article to tackle the regularity problem without the assumption of stability.
We note that in one variable a factorization method (of a completely different nature compared to
the one here or that in [P]) can still be used to overcome that particular problem (cf. [R3] for a
discussion of that other factorization technique in the univariate scalar case).

(iii) The attempt to find separate regularity estimates for each of the entries in Φ. At the time
this article is written, we know of no method (even in one dimension) for avoiding this problem.

When reading the two results below, it is useful to keep in mind the following picture: the
use of the Gramian in these results is the way one suppresses (at least in theory) the eigenvalues
that arise from instability (cf. (ii) above). The use of the trigonometric polynomial u below is the
way one suppresses the eigenvalues that arise from the positive smoothness of the entries of Φ (cf.
(i) above). Finally, componentwise estimates of the smoothness are obtained by choosing different
initial seeds.

We quote now two different results from [RS]: the first concerns the smoothness of L2-refinable
Φ, and the second concerns the smoothness of Φ whose entries are not in L2. We recall the notion
of the Gramian as defined in Definition 1.4, and the notions of stability and pre-stability of the
shifts of Φ (cf. §2).

In what follows the Gramian G is considered pointwise as a quadratic form, i.e., given v : TT →
CΦ, the notation G(v) stands for the (scalar) function t 7→ v∗(t)G(t)v(t).
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Result 5.3. Let Φ ⊂ L2 be s-refinable with mask P and Gramian G. For φ ∈ Φ, let 1φ ∈ IRΦ

be the vector whose φ-entry is 1 and the other entries are zero. Finally, let w(u) := (1 − e−iu)2m,
with m any positive integer that exceeds the regularity parameter of Φ. Then:

(I) Define a(k, φ) := ‖G(wT ∗k(1φ))‖1/k
L1(TT), and find a(φ) := lim supk→∞ a(k, φ). Then the regu-

larity parameter α(φ) of φ is α(φ) = − logs a(φ)
2 .

(II) Define aI(k, φ) := ‖wT ∗k(1φ)‖1/k
L2(TT), and find aI(φ) := lim supk→∞ aI(k, φ). Then the regu-

larity parameter α(φ) of φ satisfies α(φ) ≥ − logs aI(φ), and equality holds if the shifts of Φ
are L2-stable.

Result 5.4. Let Φ be an s-refinable vector of compactly supported distributions. Let ν be a
“sufficiently smooth” compactly supported function, for which ν ∗ Φ ⊂ L2, and let G be the
Gramian of ν ∗ Φ.
(I) Set b(k, φ) := ‖G(T ∗k(1φ))‖1/k

L1(TT), and let b(φ) := lim supk→∞ b(k, φ). Then the (negative)

regularity parameter of φ is − logs b(φ)
2 .

(II) Set bI(k, φ) := ‖T ∗k(1φ)‖1/k
L2(TT), and let bI(φ) := lim supk→∞ bI(k, φ). Then the regularity

parameter α(φ) of φ satisfies α(φ) ≥ − logs bI(φ), and equality holds if the shifts of Φ are
pre-stable.

We want to apply Result 5.3 (II) on the one hand and Result 5.4 (II) on the other hand for
estimating the regularity parameter of the entries φ of Φ separately.

Example: GHM-scaling functions. Let us compute the regularity parameter of the first entry
φ1 of GHM-scaling function Φ = (φ1, φ2)

T .
First we compute α(φ1) directly using Result 5.3 (II). From the example in §3 we recall that

P(u) =
1

20

(
6(1 + e−iu) 8

√
2

1√
2
(1 + e−iu)(−1 + 10e−iu − e−2iu) −3 + 10e−iu − 3e−2iu

)
.

Further, we choose w(u) := (1 − e−iu)4. Hence we obtain

aI(k, φ1) = ||2k/2 wPP∗ PP∗(2·) . . . PP∗(2k−1·)(1φ1
)||1/k

L2(TT)

with (1φ1
) = (1, 0)T . The space H in the definition of the subdivision operator T ∗ := T ∗

P
can be

chosen to be very small, e.g., we can choose a = 2. Observing that, for k ≥ 2, the map PP∗(2k·)
(considered as acting on HΦ) is reduced to P∗

0 with

P0 :=
1

20

(
6 8

√
2

− 1√
2

−3

)
,

it follows that
aI(k, φ1) = ||2k/2 wPP∗ PP∗(2·) (P∗

0)
k−2(1φ1

)||1/k
L2(TT).

The entries in the vector w (T ∗
P )k 1φ1

= 2k/2 wPP∗ PP∗(2·) (P∗
0)

k−2(1φ1
) are trigonometric

polynomials of degree at least 4, and we can use Parseval’s identity to compute the L2(TT)-
norm. In this way, with αk(φ1) := − log2 aI(k, φ1), we obtain α10(φ1) = 1.161580, α100(φ1) =
1.466152, α500(φ1) = 1.493230. However, already for k = 600, the MATHEMATICA program is
not able to compute αk(φ1). The reason is that the two trigonometrical polynomials (p1,k, p2,k)
(with (p1,k, p2,k)T = w (T ∗

P )k 1φ1
), both have an L2(TT)-norm exponentially decreasing to zero.

While for k = 10 we have ‖p1,k‖L2(TT) = 0.00012915, ||p2,k||L2(TT) = 0.0000189487, we find for
k = 100, ||p1,k||L2(TT) = 2.96755 × 10−45, ||p2,k||L2(TT) = 4.35085 × 10−45 and for k = 500,
||p1,k||L2(TT) = 7.15155 × 10−226, ||p2,k||L2(TT) = 1.04852 × 10−225.
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Let us now compute α(φ1) using Result 5.4 (II). Invoking our results of §4, the general proce-
dure is as follows: For a refinable function vector Φ with given mask symbol P and approximation
order k, we first choose an appropriate good factorization process Φ 7→ F of order k and then
compute the (negative) regularity parameter of the entries Dkφ, φ ∈ Φ of F (recall that all the
functions in the vector F , with the exception of one, are of this form).

From the example in §3, we recall that Φ 7→ F with F = (D2φ1, δ) (with δ the Dirac distribu-
tion) is a good factorization process (of order 2) and F is refinable with

Q(u) =
1

5

(
−2(1 + e−iu) 8

√
2(1 − e−iu)2

0 5

)
.

This time, we are able to compute

bI(D
2φ1) := lim sup

k→∞
bI(k,D

2φ1) = lim sup
k→∞

‖2k/2 PQ∗ PQ∗(2·) . . . PQ∗(2k−1·)
(

1
0

)
‖1/k

L2(TT)

exactly. Again, we choose a = 2 for the spaceH (in the definition of the transfer operator T ∗ = T ∗
Q).

As before, we find that, for k ≥ 2, PQ∗(2k·) = Q∗
0 with

Q0 =
1

5

(
−2 8

√
2

0 5

)
.

It follows that

bI(k,D
2φ1) = ||2k/2 PQ∗ PQ∗(2·) (Q∗

0)
k−2

(
1
0

)
||1/k

L2(TT).

Observing that

(Q∗
0)

k

(
1
0

)
=

(
(−2/5)k

8
√

2
7 (1 − (−2/5)k)

)

we find

bI(k, D
2φ1) =

∥∥∥∥2k/2

(
(−2/5)k(1 + ei· + e2i·)

8
√

2 (−2/5)k−1 (2/35 − 2/5ei· + 7/5e2i·) + 8
√

2/7

)∥∥∥∥
1/k

L2(TT)

=
√

2

(
‖(−2

5
)k(1 + ei· + e2i·)‖2

L2(TT)2 + ‖8
√

2 (
−2

5
)k−1(

2

35
− 2

5
ei· +

7

5
e2i·) +

8
√

2

7
‖2

L2(TT)2

)1/(2k)

.

Parseval’s identity yields

bI(k, D
2φ1) =

√
2

(
67699

49
(−2

5
)2k − 256

49
(−2

5
)k +

128

49

)1/(2k)

,

hence bI(D
2φ1) = limk→∞ bI(k,D

2φ1) =
√

2 and, since the shifts of F are pre-stable, α(φ1) =
2− log2 bI(D

2φ1) = 1.5. This regularity parameter has also been found for the two functions φ1, φ2

using the transfer operator approach, see e.g. [J], Example 4.2.
Numerical computation yields bI(10,D2φ1) =

√
2 · 1.04917, bI(100,D2φ1) =

√
2 · 1.00481,

bI(1000,D2φ1) =
√

2 · 1.00048, and with αk(φ1) = 2 − log2 bI(k,D
2φ1), it follows α10(φ1) =

1.430741, α100(φ1) = 1.493074, α1000(φ1) = 1.499307, α100000(φ1) = 1.4999931. The algorithm is
numerically stable; considering the two polynomials q1,k, q2,k with (q1,k, q2,k)T = 2−k/2(T ∗

Q)k(1, 0)T

we observe that the L2(TT)-norm of q1,k tends to zero while the L2(TT)-norm of q2,k tends to
(8
√

2/7)1/2.
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Proof of Proposition 5.1. The fact that α(Bk ∗ f) ≥ α(f)+ k is trivial: Dk(Bk ∗ f) = ∇kf , and
obviously α(∇kf) ≥ α(f). The refinability assumption plays no role here.

For the converse we let T be the transfer operator defined as follows: let F be refinable with
mask Q. Then T is defined on all F × F matrices H whose entries are in L2(TT) as

TH :=

s−1∑

m=0

(QHQ∗)(
· + 2πm

s
).

Section 3 of [RS] proves that if ν is a sufficiently smooth compactly supported function with mean-
value 1, and if w is a 2π-periodic function which vanishes at the origin to a ‘high enough’ order,
and is positive in some punctured neighborhood of the origin, then, with Gν the Gramian of ν ∗F ,
and with gφ,m the φ-diagonal entry of Tm(wGν), we have that

α(φ) = −
logs lim supm→∞ ‖gφ,m‖1/m

L1(TT)

2
.

With loss, we assume that ν is of the form ν = Bk ∗ ν′, with ν′ some other ‘sufficiently smooth’
mollifier.

Now, suppose that we replace F by Φ := Bk ∗ F , and set out to find the smoothness of the
entries of Φ using the above recipe. Since ν ′ ∗Φ = ν ∗F , we may still use the same Gramian Gν as
before. As the other mollifier w′ we choose w′ = sin(·/2)2kw, with w the function used above. Let
P be the symbol of Φ, then

PHP∗ =

(
sin(s · /2)

s sin(·/2)

)2k

QHQ∗.

This implies, with T1 the transfer operator associated with Φ, that

T1(w
′Gν) = s−2k sin2k(·/2)T (wGν),

hence that
Tm

1 (w′Gν) = s−2km sin2k(·/2)Tm(wGν),

Finally, since F and Φ are compactly supported, [RS] shows that the matrices Tm
1 (w′Gν) and

Tm(wGν), m = 1, 2, . . . all lie in some finite dimensional space. Since all norms are equivalent on
finite dimensional spaces,

lim sup
m→∞

‖gφ,m‖1/m
L1(TT) = lim sup

m→∞

(∫

TT

sin2k(·/2)gφ,m

)1/m

.

The result now follows.
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